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Abstract: To rapidly assess early inflammatory cell responses

provoked by biomaterials in the full complexity of the living

organism, we developed a zebrafish embryo model which

allows real time analysis of these responses to biomaterial

microspheres. Fluorescently labeled microspheres with differ-

ent properties were injected into embryos of selected trans-

genic zebrafish lines expressing distinct fluorescent proteins

in their neutrophils and macrophages. Recruitment of leuko-

cytes and their interactions with microspheres were moni-

tored using fluorescence microscopy. We developed a novel

method using ImageJ and the plugin ObjectJ project file

“Zebrafish-Immunotest” for rapid and semi-automated fluo-

rescence quantification of the cellular responses. In the

embryo model we observed an ordered inflammatory cell

response to polystyrene and poly (e-caprolactone) micro-

spheres, similar to that described for mammalian animal

models. The responses were characterized by an early infil-

tration of neutrophils followed by macrophages, and subse-

quent differentially timed migration of these cells away from

the microspheres. The size of microspheres (10 and 15 mm)

did not influence the cellular responses. Poly (e-caprolactone)

microspheres provoked a stronger infiltration of neutrophils

and macrophages than polystyrene microspheres did. Our

study shows the potential usefulness of zebrafish embryos

for in vivo evaluation of biomaterial-associated inflammatory

cell responses. VC 2017 Wiley Periodicals, Inc. J Biomed Mater Res

Part A: 105A: 2522–2532, 2017.
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INTRODUCTION

Evaluation of biocompatibility is an essential step in develop-
ment of biomaterials. Routinely, cytotoxicity is first assessed in
vitro in assays with isolated cells. Subsequently in vivo tests are
performed in relevant mammalian models to assess functional-
ity and to analyze tissue responses in histology.1–3 Infiltration of
inflammatory cells, predominantly neutrophils and macro-
phages, in the surrounding tissue characterizes the early phases
of the inflammatory response and reflects the extent of tissue
compatibility of implanted biomaterials.1,3,4 Although histologi-
cal evaluation provides substantial evidence of inflammatory

cell types and numbers in the vicinity of biomaterials, it is
usually time consuming and costly. Because of the need to
restrict the use of experimental animals, histological evalua-
tion often is only performed at a limited number of time
points, and is performed at a late stage of biomaterial devel-
opment. In case the biomaterials eventually fail at this stage,
this causes financial losses and serious delays in time to
market. Moreover, since the animals need to be sacrificed for
evaluation, the assessment of the progression of inflamma-
tory cell responses over time in single animals is not possible
by traditional histology.1,2
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Recent advances in mouse experimental models have
allowed noninvasive characterization of over time cellular
responses to biomedical implants in situ in single animals, uti-
lizing fluorescent probes specific for neutrophils and macro-
phages.3 However, these models generally do not allow
studies at the microscopic level on cell interactions with mate-
rials in situ, and they are not intended for high throughput
screening. Therefore, we sought to develop a complementary
in vivo model which would allow the desired real time analy-
sis of early inflammatory cell responses to biomaterials at an
early stage of the development of these materials.

Zebrafish (Danio rerio) embryos are a powerful in vivo
system that has been widely used for intravital visualization
and analysis of host responses including innate immune
response to bacteria and drugs, and to study biomaterial
nanotoxicity.5–8 A range of transgenic zebrafish lines express-
ing distinct fluorescent proteins in inflammatory (and other)
cell types has been developed.9–13 The optical transparency of
zebrafish embryos allows real time visualization and analysis
of cellular responses using fluorescence imaging techniques.
The power of this in vivo system has been shown in studies on
neutrophil and macrophage responses to tailfin injury of
embryos,13 migration path analysis of neutrophils,14 and real
time recording of phagocytosis of bacteria by macrophages
and/or neutrophils.15

From a biological point of view, the zebrafish embryos
are highly suitable for studying innate immune responses.
The innate immune system of zebrafish and mammals is
highly similar, comprising neutrophils and macrophages as
the major cells types, equally capable of phagocytosing cell
debris, apoptotic cells, and microbes as their mammalian
counterparts.9,16–18 Moreover, orthologs of important mam-
malian chemokines and cytokines as well as similar sigaling
pathways of cell migration/recruitment are present in
zebrafish.14,17,19

From an automation point of view, the high fertility of
zebrafish provides the possibility to obtain the large
numbers of embryos required for high throughput systems
featuring automated robotic microinjection and imaging
techniques.20,21 Last but not least, the easy and relatively
cheap maintenance of zebrafish reduces the costs to at least
100-fold lower levels than for mice.22

Based on these advantages, we aimed to utilize zebrafish
embryos to develop an in vivo model for rapid quantitative
analysis of early inflammatory cell responses to micro-
spheres as model biomaterials, using fluorescence imaging
techniques. To the best of our knowledge, this is the first
study to report the cellular responses to implanted biomate-
rial microspheres and assess the effect of their material
properties on the provoked responses in zebrafish embryos.

MATERIALS AND METHODS

Fluorescent microspheres
Monodispersed poly (e-caprolactone) (PCL) microspheres
loaded with the fluorescent dye Coumarin 102 were prepared
by the oil in water (o/w) single emulsion membrane emulsifi-
cation technique,23 in a fume hood under aseptic conditions. A
10% (w/v) PCL (Molecular weight565,000 g/mol, Sigma

Aldrich) solution in dichloromethane (DCM, Merck) contain-
ing 0.1% (wt) Coumarin 102 (Dye content599%, excitation
wavelength kex: 387 nm, emission wavelength kem: 470 nm,
Sigma Aldrich) was filtered through a 0.45 lm sterile polyte-
trafluoroethlene (PTFE) filter for purifying the polymer solu-
tion, and subsequently pushed through a microsieveTM

membrane with uniform 11 lm pores (Nanomi B.V. The Neth-
erlands) to form polymer droplets with an identical size. The
formed droplets were dispersed in 4% (w/v) poly vinyl alco-
hol (PVA) solution in ultrapure water by vigorous stirring for
approximately 3 hours at room temperature, allowing evapo-
ration of the DCM. The hardened microspheres were washed
repeatedly with ultrapure water containing 0.05% Tween 20
and collected by centrifugation, redispersed in fresh ultrapure
water and stored at 48C. FluorosphereVR polystyrene (PS)
microspheres (10 and 15 lm in diameter, blue fluorescent—
kex: 365 nm, kem: 415 nm, Molecular Probes, Life
technologies) were purchased. Before use, microspheres were
collected by centrifugation, washed repeatedly with sterile
phosphate buffered saline (PBS) and re-dispersed in fresh
PBS.

Characterization of microspheres
The diameter of PCL microspheres was determined using a
Coulter Multisizer (Multisizer 3 Coulter Counter, Beckman
Coulter Electronics). The aperture diameter of the capillary
used for the size measurements was 100 lm. The fluores-
cence intensity of the PCL and PS microspheres was
examined in vitro using a fluorescence stereo microscope
(LM80, Leica). Bright field and fluorescence images of
the microspheres were recorded. The particle size of the
microspheres was characterized using a scanning electron
microscope (SEM, Leica). All SEM specimens were mounted
on metal stubs and sputter-coated with gold (Polaron 5000
sputtering system). All images were captured under a
tension voltage level of 2 kV and a working distance of
approximately 6 mm.

Zebrafish husbandry and collection of embryos
Adult zebrafish were handled in compliance with the local
animal welfare regulations approved by the local animal
welfare committee (DEC) and were maintained according to
standard protocols.24 To allow real time visualization of
macrophage or neutrophil responses separately, zebrafish
transgenic (Tg) lines with green fluorescent macrophages
(mpeg1:Gal4-VP16xUAS:Kaede)10 or neutrophils (mpo:eGFP)12

were used. To be able to study the combined responses of
macrophages and neutrophils Tg lines with green fluorescent
macrophages (mpeg1:Kaede)10 and with red fluorescent neu-
trophils (lysC:Dsred2)11 were pair-wise crossed to breed a Tg
line with both distinct fluorescent cell populations (mpeg1:
Kaede x lysc:DsRed2). Alternatively, Tg lines with red fluores-
cent macrophages (fms:Gal4i186Xunmi149:mCherry)13 and
with green fluorescent neutrophils (mpo:eGFP)12 were pair-
wise crossed. After harvesting, zebrafish embryos were main-
tained in E3 medium24 at 288C. The E3 medium was refreshed
every day. Dead or malformed embryos were removed daily.
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Injection of microspheres into the tail tissue
of zebrafish embryos
The injection procedure is schematically depicted in Figure
1. Zebrafish embryos of the chosen Tg lines were selected
and dechorionized at 2 or 3 days post fertilization (dpf).
The embryos were aligned in U-shaped grooves in an aga-
rose plate submerged in E3 medium, and anesthetized with
0.03% (w/v) tricaine (buffered 3 aminobenzoic acid ethyl
ester, Sigma-Aldrich) added to the E3 medium. The micro-
spheres in 100 ll of microsphere suspension were collected
by centrifugation, washed repeatedly with PBS and dis-
persed in 100 ll of 4% (w/v) Polyvinyl Pyrrolidone (PVP,
Applichem) solution in PBS. This suspension was loaded
into a glass microcapillary (Harvard apparatus, pulled by a
flaming micropipette puller (P-97, Sutter Instrument))
connected to a FemtoJet microinjector (Eppendorf). The
outer diameter of the tip opening of the microcapillary was
manually adjusted to 15 or 20 lm, by breaking under a
light microscope guided by a microruler (LM20, Leica),
to suit the injection of 10 lm and 15 lm microspheres,
respectively. Two to 3 nl of 4% PVP solution containing
microspheres was injected into the tail tissue of zebrafish
embryos using the FemtoJet microinjector under a light
microscope. The majority of embryos received 1 to 3
injected microspheres, some received 4 to 5, and only a few
received 6 to 8 microspheres by one injection. According to
the product information, the concentration of PS10 micro-
spheres and of PS15 microspheres in suspension was 3.6 3

103 and 1.0 3 103 microspheres/ml, respectively. The
concentration of PCL15 microspheres was similar, but was
not measured. Under the same conditions, 2 to 3 nl of 4%
PVP solution without microspheres (designated as PVP solu-
tion) was injected. A group of nontreated embryos (NT)
that were only anesthetized was used as the control for PVP
injection. The numbers of embryos in each group with
injections were initially between 23 to 30 and decreased to
23 to 20, due to exclusion of embryos that died during the
experiments if any. The numbers of embryos in NT groups
were 5 and no embryo died during the experiments.

For confocal microscopy, a single 10 lm PS microsphere
was loaded on the tip of a glass microcapillary with a diam-
eter slightly smaller than that of the microsphere, and
pushed into the tail tissue of zebrafish embryos at 2dpf,

using a Narashige IM-11 injector. This alternative procedure
was used to have maximal control on localized positioning
of the microsphere for confocal imaging.

Image recording using fluorescence microscopy
Zebrafish embryos were anesthetized with 0.03% tricaine
and mounted in 2% (w/v) methylene cellulose (Sigma
Aldrich) for imaging. Sequential images were recorded
under bright field and with FITC, mCherry and UV filters at
a magnification of 160 times. The fluorescent Kaede protein
expressed by macrophages in the zebrafish Tg line (mpeg1:
Kaede) has been reported to undergo photoconversion from
green to red fluorescence under illumination with ultravio-
let light (350–400 nm).25 However, this photoconversion
depends on energy level and period of illumination, and
was not observed under the settings used in our study
(Supporting Information Fig. S1). A Z stack of 20 lm in
depth with a step size of 10 lm was applied, allowing to
take 3 consecutive images with the focus plane for the mid-
dle image set at the microspheres or tissue injury (in case
of PVP injection or in the controls). Each individual zebra-
fish embryo was imaged once every day from 5 hours post
injection (hpi) until 4 days post injection (dpi) using a
fluorescence microscope (Leica, LM80). Dead embryos were
excluded for further image recording since they were dead.
A series of time laps images recording the infiltration of
both neutrophils and macrophages in response to 15 lm
PCL microspheres between 1 to 2 hpi were taken at a
magnification of 100 times and converted into a movie
(Supporting Information Video S1) using ImageJ.

Image recording using confocal microscopy
Zebrafish embryos were anesthetized with 0.03% tricaine,
mounted to the bottom of a MatTek Glass Bottom Culture
Dish (P35G-1–20-C) by covering them with 1.5% (w/v) low
melting point (LMP) agarose solution in demi water, allowed
to solidify at room temperature. A series of time laps
images recording the infiltration of neutrophils in response
to a 10 lm PS microsphere between 1 to 2 hpi were taken
with a confocal microscope (SP5, Leica), and the images
were converted into a movie (Supporting Information Video
S2) using ImageJ.

FIGURE 1. Schematic representation of the injection procedure of microspheres into the tail tissue of zebrafish embryos, aligned in a grooved

agarose plate under a light microscope. Icons (open source): http://www.softicons.com; http://zebrafishart.blogspot.nl/.
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Fluorescence quantification of inflammatory
cell infiltration using ImageJ and ObjectJ
To quantitatively analyze fluorescence intensities correspond-
ing to cell infiltration, we developed an ObjectJ project file
called “Zebrafish-Immunotest”, which runs under ImageJ.
ObjectJ and “Zebrafish-Immunotest” are documented at and
downloadable from the respective following links: <https://
sils.fnwi.uva.nl/bcb/objectj> and <https://sils.fnwi.uva.nl/
bcb/objectj/examples/zebrafish/MD/zebrafish-immunotest.
html�. The procedure for fluorescence quantification
using Zebrafish-Immunotest is as follows and illustrated in
Supporting Information Figure S2. The images recorded
under bright field and with FITC, mCherry and UV filters are
arranged as four-channel hyperstacks. In the project file,
the chosen images are registered as “linked” [Supporting
Information Fig. S2(a)]. The injection site of individual
embryos is manually marked based on the extent of tissue
injury observed in the bright field image [Supporting Infor-
mation Fig. S2(b)]. Within a radius of 50 mm from the injec-
tion point, Zebrafish-Immunotest then detects the highest
peak in both the green and red channel. Peak detection is
preceded by temporary Gaussian smoothing with sigma510
pixels. Either peak position in the two channels is chosen as
the center of a standardized area with a diameter of 100 mm
for recording the integrated fluorescence, which quantifies
the macrophage and neutrophil infiltration in the green and

red channel, respectively [the yellow circle in Supporting
Information Fig. S2(c,d)]. The diameter of 100 mm was
selected since it typically covered the tissue with most of the
local macrophage and neutrophil infiltration in response to
injected microspheres, and did not include circulating cells
in the blood stream of embryos at the late time points
(indicated in Figs. 4 and 6 in the Results section). Data are
visualized in individual result columns for Kaede (green) and
DsRed (red) with direct access of statistics and histograms or
export to spreadsheet programs [Supporting Information Fig.
S2(e)]. The parameters of Zebrafish-Immunotest/ObjectJ can
be freely changed by users to fit the setup of their studies
(detail can be found in the link provided above).

Statistical analysis
The fluorescence quantification (arbitrary units) of neutrophil
and macrophage infiltration of every embryo in each group at
each time point was plotted individually. According to the
Shapiro-Wilk normality test and Kolmogorov-Smirnov test, the
values of integrated fluorescence did not (always) follow a Gaus-
sian distribution. Therefore, the nonparametric Kruskal-Wallis
test was performed to assess whether differences existed
between groups within an experiment (p values< 0.05). Subse-
quently, differences between pairs of groups were analyzed with
the Mann-Whitney test. All analyses were performed using
Prism graphpad 5.0. The results were considered significantly

FIGURE 2. Characterization of microspheres by microscopy. (a) Bright field microscopy; (b) Fluorescence microscopy; (c) Scanning electron

microscopy.
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different for p values< 0.05. Of embryos that died during experi-
ments, the measurements obtained on the days they were still
live were included in statistical analysis.

RESULTS

Characterization of fluorescent microspheres
The size distribution of PCL15 microspheres was 15.461.6
lm. According to the product information, PS10 and PS15
microspheres had very narrow size distributions of 9.96 0.12
lm and 15.460.07 lm, respectively. Scanning electron micro-
scopic analysis confirmed the sizes of these three types of

microspheres [Fig. 2(c)]. All three types of microspheres were
fluorescent owing to encapsulation of blue fluorescent dyes.
PCL15 microspheres were less bright than the two types of PS
microspheres [Fig. 2(b)].

Cell interaction with microspheres in zebrafish
embryos shortly after injection
To investigate whether PCL15 microspheres provoke inflam-
matory cell responses in zebrafish embryos shortly after
injection, we studied the migration of fluorescent protein—
expressing macrophages (red) and neutrophils (green)
between 1 to 2 hours post injection (hpi) of these micro-
spheres into embryos of the zebrafish Tg line (fms:mCherry
x mpo:eGFP) at 2 days post fertilization (dpf) [Fig. 3(a,b),
Supporting Information Video S1]. The neutrophils appa-
rently were rapidly attracted as they had already accumu-
lated at the injection site at 1 hpi. Only a few macrophages
were initially observed at the injection site, but their num-
bers increased between 1 and 2 hpi.

Neutrophil migration in response to an injected PS10
microsphere was studied at 2 dpf using the zebrafish Tg
line with only neutrophils fluorescently tagged (mpo:eGFP)
[Fig. 3(c,d)]. A few neutrophils had already arrived in the
vicinity of the microsphere within 1 hpi. More neutrophils
subsequently were attracted to the injection site between 1
and 2 hpi (Supporting Information Video S2). Several neu-
trophils repeatedly moved toward and away from the PS10
microsphere. Macrophage migration was separately studied
after injection of a PS10 microsphere at 3 dpf, using the
zebrafish Tg line with only macrophages fluorescently
tagged (Mpeg:Kaede). Between 4 to 5 hpi [Fig. 3(e,f), Sup-
porting Information Fig. S1] a large number of macrophages
accumulated in the muscle tissue in the proximity of the
microsphere injected.

Quantification of cell migration toward injected
PS10 microspheres
We quantified the neutrophil and macrophage infiltration at
the injection site in zebrafish embryos in response to injec-
tion of PS10 microspheres or to PVP solution (Figs. 4 and
5). Nontreated embryos were used as controls. In the non-
treated group, no accumulation of neutrophils or macro-
phages patrolling the tail tissue of embryos was observed
during the entire experiment. This validated the use of the
recorded fluorescence in this group as background levels.

Injection of PVP solution, the carrier of the micro-
spheres, led to maximum levels of neutrophil infiltration at
5 hours post injection (hpi). The neutrophil infiltration
strongly decreased at 1 day post injection (dpi) and further
decreased to near background levels at 2 dpi, to reach back-
ground levels at 3 and 4 dpi (Figs. 4 and 5). Injection of
PVP solution also induced a significant macrophage infiltra-
tion at 5 hpi, which increased to maximum levels at 1 dpi,
and then gradually decreased to low levels but remained
significantly elevated until the end of the experiment.

After injection of PS10 microspheres the observed order of
infiltration of neutrophils and macrophages was similar as
triggered by injection of the carrier PVP solution. However, at

FIGURE 3. Inflammatory cell infiltration in response to injection of

microspheres into the tail tissue of zebrafish embryos. a) Fluores-

cence image recording of the accumulation of eGFP—labeled neutro-

phils (green) and mCherry—labeled macrophages (red) in the

proximity of PCL15 microspheres, between 1 to 2 hours after injection

into a 2 days old embryo. Scale bar 5 100 mm; b) Bright field image

corresponding to a). The thick arrows in a) and b) indicate locations

of the microspheres in the tail tissue after injection. The thin arrow

indicates mCherry—expressing pigment cells. These images are part

of Supporting Information Video S1; c) Confocal fluorescence image

recording of the accumulation of eGFP—labeled neutrophils (green)

in the proximity of a PS10 microsphere (blue), between 1 to 2 hours

after injection into a 2 days old embryo. Scale bar 5 50 mm; d) The

blue fluorescent image of c) combined with the corresponding bright

field image. The fluorescent images are part of Supporting Informa-

tion Video S2; e) Fluorescence image recording of the accumulation

of Kaede—labeled macrophages (green) in the proximity of a PS10

microsphere (blue), between 4 to 5 hours after injection into a 3 days

old embryo. Scale bar 5 100 mm; f). The blue fluorescent image of e)

combined with the corresponding bright field image. The fluorescent

images are part of a series of time laps images shown in Supporting

Information Figure S1.
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5 hpi the level of infiltration of both cell types in the PVP solu-
tion group was higher than in the PS10 group (Figs. 4 and 5).

Quantification of cell migration toward injected PS15
and PCL15 microspheres
To evaluate the cell infiltration in response to different
microspheres, the neutrophil and macrophage infiltration
triggered by injected PS15 and PCL15 microspheres was
compared (Figs. 6 and 7). Injection of PS15 or PCL15 micro-
spheres as well as of PVP alone caused a rapid neutrophil
and subsequent macrophage infiltration. The maximum lev-
els of neutrophil infiltration were recorded at 5 hpi. Levels
were still strongly elevated at 1 dpi but decreased to near
background levels at 2 dpi. At 1 dpi significantly higher lev-
els of neutrophil infiltration were observed around PCL15

than around PS15. In all groups macrophages infiltrated
later than neutrophils, reaching their maximum levels at 1
dpi. In the PCL15 group, levels of macrophage infiltration
remained higher than in the PS15 group at 2 and 3 dpi. At
4 dpi macrophage levels in all groups had returned to back-
ground levels.

DISCUSSION

In humans as well as in animal models, the inflammatory
cell response to inserted or implanted biomaterials is char-
acterized by an initial rapid infiltration of neutrophils, fol-
lowed by macrophages.1,26–28 To assess such cellular
responses to biomaterials in a rapid in vivo assay we devel-
oped a zebrafish embryo model, making full use of the pos-
sibility to monitor cell infiltration in response to injected

FIGURE 4. Neutrophil (red, top 3 rows) and macrophage (green, bottom 3 rows) infiltration in response to injected PS10 microspheres or the

carrier PVP solution alone, compared to background levels in nontreated embryos (NT), from 5 hours to 4 days post injection. Injections were

performed at 3 days post fertilization. The yellow circles (100 lm in diameter) indicate the standardized area of fluorescence measurement. The

arrow indicates circulating neutrophils. Scale bar 5 100 mm.
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microspheres in real time, using fluorescence microscopy
and semi-automated quantification of infiltration levels.
Zebrafish embryos have been reported to possess a sophisti-
cated innate immune system which is considered highly
similar to their mammalian counterparts, particularly in the
following aspects such as types of innate immune cells pres-
ent and their functionalities (for example, phagocytosis of
cell debris or microbes), expression of cytokines, and che-
mokines as well as signal transduction systems for cell
recruitment and migration, and sensing of danger molecules.
The similarities in the (innate) immune system of zebrafish

embryos and mammals have been summarized in several
excellent reviews.9,16–18 In the present study, we observed the
same order of cell infiltration in response to implanted bioma-
terials in the zebrafish embryo model as was reported in stud-
ies using mammalian models (for example, mice).26–29 In
addition, the residence time of macrophages in response to
injected microspheres in zebrafish embryos was similar to the
residence time of macrophages in response to 1 lm PLGA
microparticles injected into the subcutaneous tissue beneath
an inserted biomaterial “window” replacing the skin of
mice.29 In both cases, the macrophage accumulation reached

FIGURE 5. Quantification of neutrophil and macrophage infiltration in response to injected PS10 microspheres or to injection of PVP solution in

individual zebrafish embryos from 5 hours to 4 days post injection. Injections were performed at 3 days post fertilization. The infiltration was quanti-

fied as the integrated fluorescence (arbitrary units) of DsRed protein—expressing neutrophils and Kaede protein—expressing macrophages in the

standardized area of measurement (yellow circles, Fig. 4). PS10, embryos injected with PS10 microspheres using 4% PVP solution as carrier; PVP,

embryos injected with 4% PVP solution; NT, nontreated control embryos. Differences between pairs of groups (PVP vs. NT, PS10 vs. PVP) were ana-

lyzed by the Mann Whitney test; * p< 0.05, ** p<0.01, *** p< 0.001. During the experiment the number of embryos in the PS10 group and in the

PVP group decreased from 30 to 20 and from 26 to 22, respectively. The number of embryos in NT group remained at 5.
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maximal levels at 2 days post injection (dpi) and decreased
to control levels at 4 dpi. Although the models are different,
the similar timing of the macrophage response to injected
biomaterials suggests that the zebrafish embryo model is reli-
able for assessing biomaterial associated inflammatory cell
responses.

A variety of material properties such as chemical composi-
tion, shape, size, porosity, surface chemistry, and morphology
may influence the extent of inflammatory cell responses to
biomaterials.1,2,27,30 To assess the applicability of the zebra-
fish embryo model for analyzing such cellular responses, we

compared the cell infiltration provoked by microspheres dif-
fering in particle size (PS10 and PS15) and in chemical compo-
sition (PS15 and PCL15). PVP solution (4% w/v) is needed to
keep the microspheres dispersed for injection into zebrafish
embryos, therefore, we used injection of PVP solution as con-
trol. Although an inflammatory response was provoked by the
injection of PVP solution, this did not preclude detection of
inflammatory cell responses to the microspheres in the zebra-
fish embryo model. Because of the small size of the zebrafish
embryos, we chose 15 lm as the maximal microsphere size, as
it is not too large for the embryos and still allows efficient

FIGURE 6. Neutrophil (red, top three rows) and macrophage (green, bottom three rows) infiltration in response to injected PS15 microspheres,

PCL15 microspheres or the carrier PVP solution alone, compared to background levels in nontreated embryos (NT), from 5 hours to 4 days post

injection. Injections were performed at 3 days post fertilization. The yellow circles indicate the standardized area of fluorescence measurement

(100 lm in diameter). The arrow indicates circulating neutrophils. Scale bar 5 100 mm.
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injection. Moreover, we aimed to study the response to non-
phagocytosed materials, since this is relevant for the response
to implanted medical devices. In vitro31,32 and in vivo stud-
ies27,33 have shown that phagocytic cells of mouse, rabbit and
human rarely phagocytose microspheres larger than 10 lm,
which is why we chose 10 mm as the smallest microsphere
size for our model. Indeed, in real time fluorescence micros-
copy of injected zebrafish embryos, we did not observe phago-
cytosis of the injected microspheres, neither by macrophages
nor neutrophils during the daily observation periods. How-
ever, occasional phagocytosis cannot be ruled out since no

continuous observation was performed. More frequent obser-
vation periods (two times per day) may be considered for fur-
ther studies.

PS10 and PS15 microspheres provoked similar levels of
differences in the infiltration of neutrophils and macro-
phages in comparison to the responses provoked by injec-
tion of the carrier PVP solution alone. This indicates that
the difference in particle size (5 lm) had no influence on
cell infiltration in the present study. Effects of particle size
on cell infiltration have been reported in mouse and rabbit
models, but in these models the size differences of the

FIGURE 7. Quantification of neutrophil and macrophage infiltration in response to injected PS15, PCL15 or injection of PVP solution in individual

zebrafish embryos from 5 hours to 4 days post injection. Injections were performed at 3 days post fertilization. The infiltration was recorded as

the integrated fluorescence (arbitrary units) of DsRed protein—expressing neutrophils or Kaede protein—expressing macrophages in the stand-

ardized area of measurement (yellow circles, Fig. 6). PS15, embryos injected with PS15 microspheres using 4% PVP solution as carrier; PCL15,

embryos injected with PCL15 microspheres using 4% PVP solution as carrier; PVP, embryos injected with 4% PVP solution; NT, nontreated con-

trols. Differences between pairs of groups (PVP vs. NT, PCL15 vs. PVP, PS15 vs. PVP, PCL15 vs. PS15) were analyzed by the Mann Whitney test; *

p< 0.05, ** p< 0.01, *** p<0.001. During the experiment the number of embryos in the PS15 group and in the PCL15 group decreased from 24

to 23 and from 25 to 23, respectively. The number in the PVP group and in the NT group remained at 23 and 5, respectively.
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microspheres were much larger (at least 25 lm).33,34 Such
effects might also be observed in zebrafish embryos when
microspheres with larger size differences would be used.

Zebrafish embryos showed differences in the levels of
inflammatory cell responses to microspheres of different
composition. PCL15 microspheres induced higher levels of
infiltration of neutrophils at 1 day, and of macrophages at 2
as well as 3 days post injection, than PS15 microspheres did.
Microspheres of either of these two types of materials have
been shown to provoke infiltration of inflammatory cells
after injection into mice, rats or rabbits,27,34,35 but to the
best of our knowledge these materials have never been
tested side by side in vivo. The finding that the zebrafish
embryo model revealed differences in cell infiltration levels
induced by these materials, even though they both are bio-
compatible, indicates a high sensitivity of our testing system
to detect differences in inflammatory characteristics of
materials. Therefore, the zebrafish embryo model is
expected to uncover possibly stronger differences in induc-
tion of cellular responses between other materials, allowing
the discrimination of more inflammatory from less inflam-
matory materials. The molecular mechanisms behind these
differences in inflammatory cell responses to PS15 and
PCL15 are the subject of our ongoing studies. The zebrafish
embryo model allows advanced analysis methods for inflam-
matory cell responses, such as in vivo tracking of single cell
migration14 and high throughput transcriptome analysis of
zebrafish genes encoding potentially important cytokines
and chemokines (for example, IL-1b).36 Such analyses may
reveal potential biomarkers which can be used to identify
novel biomaterials with desired response induction.

For all types of microspheres, the resolution of macro-
phage responses rapidly occurred at 4 dpi in the present
study. It is well established that the ratio between the two
subsets of macrophages, namely pro-inflammatory M1 and
anti-inflammatory M2 cells, is crucial for the resolution of
inflammation.4 Interestingly, zebrafish embryos have been
used to develop the first in vivo model allowing real-time
monitoring of macrophage polarization, utilizing a new
transgenic zebrafish line expressing distinct fluorescent pro-
teins in M1 and M2 cells.37 Polarization of macrophages
into M1 and M2-like subtypes of the embryos of this zebra-
fish line has been shown to occur during the inflammation
and resolution phase. Hence, this novel transgenic zebrafish
line will offer the opportunity to study macrophage polar-
ization in presence of biomaterials during different inflam-
mation phases in vivo. Of note, in addition to innate
immune cells, adaptive immune cells have also been
reported to play a role in the host response to particular
biomaterials and may have interaction with macrophages,
particularly during chronic inflammation.38 However, the
adaptive immune system of zebrafish is not fully functional
until 4 weeks post fertilization,7,16,20 so the influence of
adaptive immunity in the model is expected to be very lim-
ited, and would need to be studied in more mature
embryos.39

The zebrafish embryo model offers the unique possibil-
ity to develop high throughput in vivo models for testing

biomaterials, required to complement the successful devel-
opment of high throughput synthesis of biomaterials differ-
ing in chemistry and/or topography, and to complement in
vitro analysis of induced cell behavior.40–42 The model is
amendable to development of a high throughput screening
system, that is, by using advanced robotic injection and
imaging techniques.20 The ImageJ plugin ObjectJ project file
“Zebrafish Immunotest” developed in the present study has
shown its value for analysis of medium-large image sets. It
is also suitable for high throughput analysis and available
through open access, a much desired characteristic for novel
image analysis software.43,44 Combined with established
methods of in vitro cytotoxicity screening, and supported by
the possibilities of high throughput in vivo analysis, our
zebrafish embryo model can help guide the selection of
(novel) biomaterials with desired in vivo cellular response
characteristics at an early stage of their development.

CONCLUSIONS

We have developed a zebrafish embryo model as a novel in
vivo system with potential for rapid and semi-automated
quantitative analysis of early inflammatory cell responses to
injected microspheres. The observed inflammatory cell
responses were very similar to those observed in mamma-
lian animal models. Difference in size of microspheres (in
the injectable size range; 10 and 15 mm in diameter) did
not influence the elicited cellular responses. However, the
difference in chemical composition between PCL and PS
microspheres had significant impact on the elicited cellular
responses. Our study therefore shows that zebrafish
embryos are sufficiently sensitive to discover differences in
the inflammatory cell response to biomaterials with differ-
ent physicochemical characteristics. For future work, this
embryo model can be developed into a high throughput sys-
tem, complementing in vitro cytotoxicity testing for the effi-
cient screening of (novel) biomaterials at an early stage of
their development.
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