

**Latency, energy, and schedulability of real-time embedded systems** Liu, D.; Liu D.

### Citation

Liu, D. (2017, September 6). *Latency, energy, and schedulability of real-time embedded systems*. Retrieved from https://hdl.handle.net/1887/54951

| Version:         | Not Applicable (or Unknown)                                                                                                            |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| License:         | <u>Licence agreement concerning inclusion of doctoral thesis in the</u><br><u>Institutional Repository of the University of Leiden</u> |
| Downloaded from: | https://hdl.handle.net/1887/54951                                                                                                      |

Note: To cite this publication please use the final published version (if applicable).

Cover Page



# Universiteit Leiden



The handle <u>http://hdl.handle.net/1887/54951</u> holds various files of this Leiden University dissertation

Author: Liu, D. Title: Latency, energy, and schedulability of real-time embedded systems Issue Date: 2017-09-06

## Appendix

#### **Appendix I**

**Lemma 1.** The minimum value of piece-wise function (6.22) given in Section 6.4 is obtained when  $b = b_0$ .

$$s(b) = \begin{cases} \frac{(\alpha\lambda^2 - \alpha\lambda)b^2 + b - 1}{(\alpha\lambda - \alpha + 1)b - 1} & 0 < b \le b_0\\ \frac{(1 - \alpha)b^2 + (\alpha\lambda + \alpha - 1)b - \alpha}{(\alpha\lambda - \alpha + 1)b - 1} & b_0 < b \le 1 \end{cases}$$
(1)

*Proof.* For case of  $0 < b \le b_0$ , its derivative is

$$s'(b) = \frac{\alpha(\lambda - 1)(\lambda(\alpha y - \alpha + 1)b^2 - 2\lambda b + 1)}{((\alpha \lambda - \alpha + 1)b - 1)^2}$$

The denominator is obviously positive. For the numerator, since the discriminant of  $\lambda(\alpha\lambda - \alpha + 1)b^2 - 2\lambda b + 1 = 0$  is  $(2\lambda)^2 - 4\lambda(\alpha\lambda - \lambda + 1)$ , which is negative since  $0 < \lambda < 1$ , so we know  $\lambda(\alpha\lambda - \alpha + 1)b^2 - 2\lambda b + 1 > 0$ . Moreover, we have  $\lambda - 1 < 0$ , so putting them together we know the numerator is negative. In summary, s'(b) is negative and thus s(b) is monotonically decreasing with respect to b in the range  $b \in (0, b_0]$ .

For case of  $b_0 < b \le 1$ , we can compute the derivative of s(b) by

$$s'(b) = \frac{(1-\lambda)((\lambda y - x + 1)b^2 - 2b - (\lambda y - x - 1))}{((\lambda y - x + 1)b - 1)^2}$$

The denominator is obviously positive. For the numerator, we focus on  $(x\lambda - x + 1)b^2 - 2b - (x\lambda - x - 1)$  part. The following equation

$$(x\lambda - x + 1)b^2 - 2b - (x\lambda - x - 1) = 0$$

has two roots  $b_1 = 1$  and  $b_2 = \frac{1+(x-x\lambda)}{1-(x-x\lambda)}$ , which is greater than 1, so we know  $(x\lambda - x + 1)b^2 - 2b - (x\lambda - x - 1)$  is either always positive or always negative in the range

of  $b \in (b_0, 1)$ . Since we can construct  $(x\lambda - x + 1)b^2 - 2b - (x\lambda - x - 1) > 0$ with  $x = \lambda = b = 0.5$ , so we know  $(x\lambda - x + 1)b^2 - 2b - (x\lambda - x - 1)$  is always positive. Moreover, since 1 - x > 0, the numerator of s'(b) is positive, so overall s'(b)is positive, and thus s(b) is monotonically increasing with respect to b in the range of  $b \in (b_0, 1]$ .

In summary, we have proved s(b) is monotonically decreasing in  $(0, b_0]$ , and monotonically increasing in  $(b_0, 1]$ , both with respect to b, so the smallest value of s(b) must occur at  $b_0$ .

**Lemma 2.** If  $0 < \alpha < 1$  and  $0 \le \lambda < 1$ , then

$$b_0^1 = \frac{(2 - \alpha\lambda - \alpha) + (1 - \lambda)\sqrt{-3\alpha^2 + 4\alpha}}{2(-\alpha\lambda^2 + \alpha\lambda - \alpha + 1)} > 1$$
<sup>(2)</sup>

$$b_0^2 = \frac{(2 - \alpha\lambda - \alpha) - (1 - \lambda)\sqrt{-3\alpha^2 + 4\alpha}}{2(-\alpha\lambda^2 + \alpha\lambda - \alpha + 1)} \in [0, 1]$$
(3)

*Proof.* We start with proving  $b_0^1 > 1$ . We first prove  $b_0^1 \ge 0$  by showing both the numerator and dominator are positive. For simplicity, we use  $N_1$  and  $M_1$  to denote the numerator and denominator of  $b_0^1$  in (2), and  $N_2$  and  $M_2$  the numerator and denominator of  $b_0^2$  in (3). Note that the following reasoning relies on that  $\alpha \in (0, 1), \lambda \in [0, 1)$ .

1.  $N_1 > 0$ . First, we have

$$N_1 \times N_2$$
  
=  $(2 - \alpha \lambda - \alpha)^2 - (1 - \lambda)^2 (-3\alpha^2 + 4\alpha)$   
=  $4\alpha\lambda(1 - \lambda)(1 - \alpha) + 4(1 - \alpha)^2$   
> 0

Moreover, it is easy to see  $N_2 > 0$ . Therefore, we can conclude that  $N_1$  is also positive.

2. 
$$M_1 > 0$$
.  $2(-\alpha\lambda^2 + \alpha\lambda - \alpha + 1) = 2(\alpha\lambda(1-\lambda) + (1-\alpha))$ , which is positive.

In summary, both the numerator and the denominator of  $b_0^1$  in (2) are positive, so  $b_0^1 \ge 0$ . Next we prove  $b_0^1 \le 1$  by showing  $N_1 - M_1 \le 0$ :

$$N_1 - M_1$$
  
=  $(\lambda - 1)(\sqrt{-3\alpha^2 + 4\alpha} + \alpha(2\lambda - 1))$ 

which is negative if  $\lambda \ge 0.5$  (since  $\lambda - 1 < 0$  and  $\sqrt{-3\alpha^2 + 4\alpha} + \alpha(2\lambda - 1) \ge 0$ ). So in the following we focus on the case of  $\lambda < 0.5$ . Since  $\lambda < 0.5$ , we know  $\alpha(2\lambda - 1)$ 

is negative, so we define two positive number A and B as follows

$$A = \sqrt{-3\alpha^2 + 4\alpha} \tag{4}$$

$$B = \alpha (1 - 2\lambda) \tag{5}$$

so  $N_1 - M_1 = (\lambda - 1)(A - B)$ . Since  $\lambda - 1 < 0$ , we only need to prove A - B > 0, which is equivalent to proving  $A^2 - B^2 > 0$  (as both A and B are positive):  $A^2 - B^2 > 0$ , which is done as follows:

$$A^{2} - B^{2} = -3\alpha^{2} + 4\alpha - \alpha^{2}(2\lambda - 1)^{2}$$
$$= 4\alpha(1 - \alpha) + 4\alpha^{2}\lambda(1 - \lambda)$$
$$> 0$$

so we have A - B > 0 and thus  $N_1 - M_1 = (\lambda - 1)(A - B) < 0$ . In summary, we have proved  $N_1 - M_1 < 0$  for the cases of both  $\lambda \ge 0.5$  and  $\lambda < 0.5$ , so we know  $b_0^1 \in [0, 1]$ .

Next we prove  $b_0^2 > 1$ , by showing  $N_2 - M_2 > 0$ 

$$N_2 - M_2$$
  
=  $(1 - \lambda)(\sqrt{-3\alpha^2 + 4\alpha} - \alpha(2\lambda - 1))$ 

If  $\lambda \leq 0.5$ , then  $\sqrt{-3\alpha^2 + 4\alpha} - \alpha(2\lambda - 1) > 0$ , and since  $1 - \lambda > 0$  we have  $N_2 - M_2 > 0$ . If  $\lambda > 0.5$ , we let  $C = \alpha(2\lambda - 1) > 0$  and also use A as defined above,  $N_2 - M_2 = (1 - \lambda)(A - C)$ . To prove A - C > 0, it suffices to prove  $A^2 - C^2 > 0$ , as shown in the following:

$$\begin{aligned} A^{2} - C^{2} &= -3\alpha^{2} + 4\alpha - \alpha^{2}(2\lambda - 1)^{2} \\ &= 4\alpha - (3 + (2\lambda - 1)^{2})\alpha^{2} \\ &> 4\alpha - 4\alpha^{2} \ (\lambda < 1 \text{ ,so } 2\lambda - 1 < 1) \\ &> 0 \end{aligned}$$

By now we have proved  $N_2 - M_2$  for both cases of  $\lambda \le 0.5$  and  $\lambda > 0.5$ , so we known  $b_0^2 > 1$ .

### **Appendix II**

Experimental results between EDF-VD and AMC are depicted in Figure 1 - 3, where pCriticality = 0.3.



Figure 1:  $\lambda = 0.3$ 



Figure 2:  $\lambda = 0.5$ 



Figure 3:  $\lambda = 0.7$