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Appendix

Appendix I
Lemma 1. The minimum value of piece-wise function (6.22) given in Section 6.4 is
obtained when b = b0.

s(b) =

{
(αλ2−αλ)b2+b−1

(αλ−α+1)b−1 0 < b ≤ b0
(1−α)b2+(αλ+α−1)b−α

(αλ−α+1)b−1 b0 < b ≤ 1
(1)

Proof. For case of 0 < b ≤ b0, its derivative is

s′(b) =
α(λ− 1)(λ(αy − α+ 1)b2 − 2λb+ 1)

((αλ− α+ 1)b− 1)2

The denominator is obviously positive. For the numerator, since the discriminant of
λ(αλ − α + 1)b2 − 2λb + 1 = 0 is (2λ)2 − 4λ(αλ − λ + 1), which is negative
since 0 < λ < 1, so we know λ(αλ− α + 1)b2 − 2λb+ 1 > 0. Moreover, we have
λ− 1 < 0, so putting them together we know the numerator is negative. In summary,
s′(b) is negative and thus s(b) is monotonically decreasing with respect to b in the
range b ∈ (0, b0].

For case of b0 < b ≤ 1, we can compute the derivative of s(b) by

s′(b) =
(1− λ)((λy − x+ 1)b2 − 2b− (λy − x− 1))

((λy − x+ 1)b− 1)2

The denominator is obviously positive. For the numerator, we focus on (xλ − x +
1)b2 − 2b− (xλ− x− 1) part. The following equation

(xλ− x+ 1)b2 − 2b− (xλ− x− 1) = 0

has two roots b1 = 1 and b2 = 1+(x−xλ)
1−(x−xλ) , which is greater than 1, so we know (xλ−

x+ 1)b2− 2b− (xλ−x− 1) is either always positive or always negative in the range
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of b ∈ (b0, 1). Since we can construct (xλ − x + 1)b2 − 2b − (xλ − x − 1) > 0
with x = λ = b = 0.5, so we know (xλ − x + 1)b2 − 2b − (xλ − x − 1) is always
positive. Moreover, since 1−x > 0, the numerator of s′(b) is positive, so overall s′(b)
is positive, and thus s(b) is monotonically increasing with respect to b in the range of
b ∈ (b0, 1].

In summary, we have proved s(b) is monotonically decreasing in (0, b0], and
monotonically increasing in (b0, 1], both with respect to b, so the smallest value of
s(b) must occur at b0.

Lemma 2. If 0 < α < 1 and 0 ≤ λ < 1, then

b10 =
(2− αλ− α) + (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
> 1 (2)

b20 =
(2− αλ− α)− (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
∈ [0, 1] (3)

Proof. We start with proving b10 > 1. We first prove b10 ≥ 0 by showing both the nu-
merator and dominator are positive. For simplicity, we use N1 andM1 to denote the
numerator and denominator of b10 in (2), andN2 andM2 the numerator and denomina-
tor of b20 in (3). Note that the following reasoning relies on that α ∈ (0, 1), λ ∈ [0, 1).

1. N1 > 0. First, we have

N1 ×N2

= (2− αλ− α)2 − (1− λ)2(−3α2 + 4α)

= 4αλ(1− λ)(1− α) + 4(1− α)2

> 0

Moreover, it is easy to see N2 > 0. Therefore, we can conclude that N1 is also
positive.

2. M1 > 0. 2(−αλ2 +αλ−α+ 1) = 2(αλ(1−λ) + (1−α)), which is positive.

In summary, both the numerator and the denominator of b10 in (2) are positive, so
b10 ≥ 0. Next we prove b10 ≤ 1 by showing N1 −M1 ≤ 0:

N1 −M1

= (λ− 1)(
√
−3α2 + 4α+ α(2λ− 1))

which is negative if λ ≥ 0.5 (since λ−1 < 0 and
√
−3α2 + 4α+α(2λ−1) ≥ 0). So

in the following we focus on the case of λ < 0.5. Since λ < 0.5, we know α(2λ− 1)



is negative, so we define two positive number A and B as follows

A =
√
−3α2 + 4α (4)

B = α(1− 2λ) (5)

soN1−M1 = (λ− 1)(A−B). Since λ− 1 < 0, we only need to prove A−B > 0,
which is equivalent to provingA2−B2 > 0 (as bothA andB are positive): A2−B2 >
0, which is done as follows:

A2 −B2 =− 3α2 + 4α− α2(2λ− 1)2

=4α(1− α) + 4α2λ(1− λ)

>0

so we have A−B > 0 and thus N1 −M1 = (λ− 1)(A−B) < 0. In summary, we
have proved N1 −M1 < 0 for the cases of both λ ≥ 0.5 and λ < 0.5, so we know
b10 ∈ [0, 1].

Next we prove b20 > 1, by showing N2 −M2 > 0

N2 −M2

= (1− λ)(
√
−3α2 + 4α− α(2λ− 1))

If λ ≤ 0.5, then
√
−3α2 + 4α − α(2λ − 1) > 0, and since 1 − λ > 0 we have

N2 −M2 > 0. If λ > 0.5, we let C = α(2λ − 1) > 0 and also use A as defined
above, N2 − M2 = (1 − λ)(A − C). To prove A − C > 0, it suffices to prove
A2 − C2 > 0, as shown in the following:

A2 − C2 = − 3α2 + 4α− α2(2λ− 1)2

= 4α− (3 + (2λ− 1)2)α2

> 4α− 4α2 (λ < 1 ,so 2λ− 1 < 1)

> 0

By nowwe have provedN2−M2 for both cases of λ ≤ 0.5 and λ > 0.5, so we known
b20 > 1.

Appendix II
Experimental results between EDF-VD and AMC are depicted in Figure 1 - 3, where
pCriticality= 0.3.
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Figure 1: λ = 0.3
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Figure 2: λ = 0.5
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Figure 3: λ = 0.7


