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Appendix

Appendix I

Lemma 1. The minimum value of piece-wise function (6.22) given in Section 6.4 is
obtained when b = by.

(aX2—aN)b?+b—1
s(b) = { (1(3/\)_13:(1)13\11 —1)b— ebsh M
(oh—at1)b—1 bo<b<1

Proof. For case of 0 < b < by, its derivative is

a(A —D(May —a+1)b? —2Xb + 1)

$'(0) = (A —a+ 1)b — 1)2

The denominator is obviously positive. For the numerator, since the discriminant of
AMad —a+1)b? — 200+ 1 = 0is (2))2 — 4\(a) — X + 1), which is negative
since 0 < A < 1, so we know A(aA — o + 1)b? — 2\b + 1 > 0. Moreover, we have
A —1 < 0, so putting them together we know the numerator is negative. In summary,
s'(b) is negative and thus s(b) is monotonically decreasing with respect to b in the
range b € (0, by].

For case of by < b < 1, we can compute the derivative of s(b) by

1=N(Ay—z+1)b?—2b— Ay —z —1))
(Ay—z+1)b—1)2

s'(b) =
The denominator is obviously positive. For the numerator, we focus on (z\ — = +
1)b%? — 2b — (2 — x — 1) part. The following equation

(gA—z+1)b* —2b— (zA—2—1)=0

1+(z—z))
T—(e—an)’
x+1)b% — 2b— (x\ — x — 1) is either always positive or always negative in the range

has two roots by = 1 and by = which is greater than 1, so we know (z\ —
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of b € (by, 1). Since we can construct (zA — 2 + 1)b? — 2b — (zA —x — 1) > 0
withz = A\ = b = 0.5, so we know (zA — z + 1)b> — 2b — (x\ — x — 1) is always
positive. Moreover, since 1 —xz > 0, the numerator of s'(b) is positive, so overall s'(b)
is positive, and thus s(b) is monotonically increasing with respect to b in the range of
be (bo, 1].

In summary, we have proved s(b) is monotonically decreasing in (0, bp], and
monotonically increasing in (bg, 1], both with respect to b, so the smallest value of
s(b) must occur at by. O

Lemma2. If 0 < o< 1land0 < A < 1, then

2—ar—a)+ (1—-XN)V-3a?+ 4«

1 _

bo = 2(—aX+ad—a+1) > 1 @
—al—a) —(1— 22

b= (2—aX—a)— (1 -AN)vV-3a?+ 4« € [0.1] 3)

2(—aX? +aX—a+1)

Proof. We start with proving b > 1. We first prove b} > 0 by showing both the nu-
merator and dominator are positive. For simplicity, we use N1 and M; to denote the
numerator and denominator of bé in (2), and Ny and M> the numerator and denomina-
tor of b3 in (3). Note that the following reasoning relies on that o« € (0,1), A € [0,1).

1. Ny > 0. First, we have
N1 X N2
=(2—aX—a)?— (1 —N?(=30> + 40a)
= 4aX(1 = N)(1 — ) +4(1 — a)?
>0

Moreover, it is easy to see No > (. Therefore, we can conclude that NV is also
positive.

2. My >0.2(—aX?+ar—a+1) =2(aX(1—A)+ (1 —a)), which is positive.

In summary, both the numerator and the denominator of b(l) in (2) are positive, so
by > 0. Next we prove b} < 1 by showing Ny — M; < 0:

Ny — M,
=A—-1)(V—-3a2+4a+a2X - 1))

which is negative if A > 0.5 (since A—1 < 0 and vV —3a? + 4a+a(2A—1) > 0). So
in the following we focus on the case of A < 0.5. Since A < 0.5, we know a(2A — 1)



is negative, so we define two positive number A and B as follows

A=+V-3a2%+ 4« 4

B=a(l-2)) )
so Ny —M; = (A—1)(A— B). Since A — 1 < 0, we only need to prove A — B > 0,
which is equivalent to proving A2— B? > 0 (as both A and B are positive): A%>—B? >
0, which is done as follows:

A? — B? = - 3a% + 4a — a?(2)\ — 1)?
=da(l — a) +4a’A(1 — \)
>0

so we have A — B > 0 and thus N; — M7 = (A — 1)(A — B) < 0. In summary, we
have proved N1 — M7 < 0 for the cases of both A > 0.5 and A < 0.5, so we know
by € [0,1].

Next we prove b3 > 1, by showing Ny — My > 0

Ny — M>
= (1= M) (V=302 + 40 — a(2X — 1))

If A < 0.5, then v—3a? + 4a — a(2\ — 1) > 0, and since 1 — X\ > 0 we have
No — My > 0. If A > 0.5, we let C = «(2X\ — 1) > 0 and also use A as defined
above, No — My = (1 — X\)(A — C). To prove A — C' > 0, it suffices to prove
A? — C? > 0, as shown in the following:
A%~ C? = —3a% +4a — a?(2) — 1)?

=4da— (3+ 2\ — 1)Ha?

>4a—40® A<1,5020—1<1)

>0

By now we have proved Ny — M5 for both cases of A < 0.5 and A > 0.5, so we known
bg > 1.

O
Appendix II

Experimental results between EDF-VD and AMC are depicted in Figure 1 - 3, where
pCriticality= 0.3.
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Figure 2: A = 0.5
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Figure 3: A = 0.7




