Universiteit
Leiden
The Netherlands

Latency, energy, and schedulability of real-time embedded systems Liu, D.; Liu D.

Citation

Liu, D. (2017, September 6). Latency, energy, and schedulability of real-time embedded systems. Retrieved from https://hdl.handle.net/1887/54951

Version: Not Applicable (or Unknown)
License:
Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/54951
Note: To cite this publication please use the final published version (if applicable).

Universiteit Leiden

The handle http://hdl.handle.net/1887/54951 holds various files of this Leiden University dissertation

Author: Liu, D.
Title: Latency, energy, and schedulability of real-time embedded systems
Issue Date: 2017-09-06

Appendix

Appendix I

Lemma 1. The minimum value of piece-wise function (6.22) given in Section 6.4 is obtained when $b=b_{0}$.

$$
s(b)= \begin{cases}\frac{\left(\alpha \lambda^{2}-\alpha \lambda\right) b^{2}+b-1}{(\alpha \lambda-\alpha+1) b-1} & 0<b \leq b_{0} \tag{1}\\ \frac{(1-\alpha) b^{2}+(\alpha \lambda+\alpha-1) b-\alpha}{(\alpha \lambda-\alpha+1) b-1} & b_{0}<b \leq 1\end{cases}
$$

Proof. For case of $0<b \leq b_{0}$, its derivative is

$$
s^{\prime}(b)=\frac{\alpha(\lambda-1)\left(\lambda(\alpha y-\alpha+1) b^{2}-2 \lambda b+1\right)}{((\alpha \lambda-\alpha+1) b-1)^{2}}
$$

The denominator is obviously positive. For the numerator, since the discriminant of $\lambda(\alpha \lambda-\alpha+1) b^{2}-2 \lambda b+1=0$ is $(2 \lambda)^{2}-4 \lambda(\alpha \lambda-\lambda+1)$, which is negative since $0<\lambda<1$, so we know $\lambda(\alpha \lambda-\alpha+1) b^{2}-2 \lambda b+1>0$. Moreover, we have $\lambda-1<0$, so putting them together we know the numerator is negative. In summary, $s^{\prime}(b)$ is negative and thus $s(b)$ is monotonically decreasing with respect to b in the range $b \in\left(0, b_{0}\right]$.

For case of $b_{0}<b \leq 1$, we can compute the derivative of $s(b)$ by

$$
s^{\prime}(b)=\frac{(1-\lambda)\left((\lambda y-x+1) b^{2}-2 b-(\lambda y-x-1)\right)}{((\lambda y-x+1) b-1)^{2}}
$$

The denominator is obviously positive. For the numerator, we focus on $(x \lambda-x+$ 1) $b^{2}-2 b-(x \lambda-x-1)$ part. The following equation

$$
(x \lambda-x+1) b^{2}-2 b-(x \lambda-x-1)=0
$$

has two roots $b_{1}=1$ and $b_{2}=\frac{1+(x-x \lambda)}{1-(x-x \lambda)}$, which is greater than 1 , so we know ($x \lambda-$ $x+1) b^{2}-2 b-(x \lambda-x-1)$ is either always positive or always negative in the range
of $b \in\left(b_{0}, 1\right)$. Since we can construct $(x \lambda-x+1) b^{2}-2 b-(x \lambda-x-1)>0$ with $x=\lambda=b=0.5$, so we know $(x \lambda-x+1) b^{2}-2 b-(x \lambda-x-1)$ is always positive. Moreover, since $1-x>0$, the numerator of $s^{\prime}(b)$ is positive, so overall $s^{\prime}(b)$ is positive, and thus $s(b)$ is monotonically increasing with respect to b in the range of $b \in\left(b_{0}, 1\right]$.

In summary, we have proved $s(b)$ is monotonically decreasing in $\left(0, b_{0}\right]$, and monotonically increasing in $\left(b_{0}, 1\right]$, both with respect to b, so the smallest value of $s(b)$ must occur at b_{0}.

Lemma 2. If $0<\alpha<1$ and $0 \leq \lambda<1$, then

$$
\begin{align*}
& b_{0}^{1}=\frac{(2-\alpha \lambda-\alpha)+(1-\lambda) \sqrt{-3 \alpha^{2}+4 \alpha}}{2\left(-\alpha \lambda^{2}+\alpha \lambda-\alpha+1\right)}>1 \tag{2}\\
& b_{0}^{2}=\frac{(2-\alpha \lambda-\alpha)-(1-\lambda) \sqrt{-3 \alpha^{2}+4 \alpha}}{2\left(-\alpha \lambda^{2}+\alpha \lambda-\alpha+1\right)} \in[0,1] \tag{3}
\end{align*}
$$

Proof. We start with proving $b_{0}^{1}>1$. We first prove $b_{0}^{1} \geq 0$ by showing both the numerator and dominator are positive. For simplicity, we use N_{1} and M_{1} to denote the numerator and denominator of b_{0}^{1} in (2), and N_{2} and M_{2} the numerator and denominator of b_{0}^{2} in (3). Note that the following reasoning relies on that $\alpha \in(0,1), \lambda \in[0,1)$.

1. $N_{1}>0$. First, we have

$$
\begin{aligned}
& N_{1} \times N_{2} \\
= & (2-\alpha \lambda-\alpha)^{2}-(1-\lambda)^{2}\left(-3 \alpha^{2}+4 \alpha\right) \\
= & 4 \alpha \lambda(1-\lambda)(1-\alpha)+4(1-\alpha)^{2} \\
> & 0
\end{aligned}
$$

Moreover, it is easy to see $N_{2}>0$. Therefore, we can conclude that N_{1} is also positive.
2. $M_{1}>0.2\left(-\alpha \lambda^{2}+\alpha \lambda-\alpha+1\right)=2(\alpha \lambda(1-\lambda)+(1-\alpha))$, which is positive.

In summary, both the numerator and the denominator of b_{0}^{1} in (2) are positive, so $b_{0}^{1} \geq 0$. Next we prove $b_{0}^{1} \leq 1$ by showing $N_{1}-M_{1} \leq 0$:

$$
\begin{aligned}
& N_{1}-M_{1} \\
= & (\lambda-1)\left(\sqrt{-3 \alpha^{2}+4 \alpha}+\alpha(2 \lambda-1)\right)
\end{aligned}
$$

which is negative if $\lambda \geq 0.5$ (since $\lambda-1<0$ and $\sqrt{-3 \alpha^{2}+4 \alpha}+\alpha(2 \lambda-1) \geq 0$). So in the following we focus on the case of $\lambda<0.5$. Since $\lambda<0.5$, we know $\alpha(2 \lambda-1)$
is negative, so we define two positive number A and B as follows

$$
\begin{align*}
& A=\sqrt{-3 \alpha^{2}+4 \alpha} \tag{4}\\
& B=\alpha(1-2 \lambda) \tag{5}
\end{align*}
$$

so $N_{1}-M_{1}=(\lambda-1)(A-B)$. Since $\lambda-1<0$, we only need to prove $A-B>0$, which is equivalent to proving $A^{2}-B^{2}>0$ (as both A and B are positive): $A^{2}-B^{2}>$ 0 , which is done as follows:

$$
\begin{aligned}
A^{2}-B^{2} & =-3 \alpha^{2}+4 \alpha-\alpha^{2}(2 \lambda-1)^{2} \\
& =4 \alpha(1-\alpha)+4 \alpha^{2} \lambda(1-\lambda) \\
& >0
\end{aligned}
$$

so we have $A-B>0$ and thus $N_{1}-M_{1}=(\lambda-1)(A-B)<0$. In summary, we have proved $N_{1}-M_{1}<0$ for the cases of both $\lambda \geq 0.5$ and $\lambda<0.5$, so we know $b_{0}^{1} \in[0,1]$.

Next we prove $b_{0}^{2}>1$, by showing $N_{2}-M_{2}>0$

$$
\begin{aligned}
& N_{2}-M_{2} \\
= & (1-\lambda)\left(\sqrt{-3 \alpha^{2}+4 \alpha}-\alpha(2 \lambda-1)\right)
\end{aligned}
$$

If $\lambda \leq 0.5$, then $\sqrt{-3 \alpha^{2}+4 \alpha}-\alpha(2 \lambda-1)>0$, and since $1-\lambda>0$ we have $N_{2}-M_{2}>0$. If $\lambda>0.5$, we let $C=\alpha(2 \lambda-1)>0$ and also use A as defined above, $N_{2}-M_{2}=(1-\lambda)(A-C)$. To prove $A-C>0$, it suffices to prove $A^{2}-C^{2}>0$, as shown in the following:

$$
\begin{aligned}
A^{2}-C^{2} & =-3 \alpha^{2}+4 \alpha-\alpha^{2}(2 \lambda-1)^{2} \\
& =4 \alpha-\left(3+(2 \lambda-1)^{2}\right) \alpha^{2} \\
& >4 \alpha-4 \alpha^{2} \quad(\lambda<1, \text { so } 2 \lambda-1<1) \\
& >0
\end{aligned}
$$

By now we have proved $N_{2}-M_{2}$ for both cases of $\lambda \leq 0.5$ and $\lambda>0.5$, so we known $b_{0}^{2}>1$.

Appendix II

Experimental results between EDF-VD and AMC are depicted in Figure 1-3, where pCriticality $=0.3$.

Figure 1: $\lambda=0.3$

Figure 2: $\lambda=0.5$

Figure 3: $\lambda=0.7$

