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Chapter 6

Schedulability Analysis of
Imprecise Mixed-Criticality
Systems

Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, Wang Yi,
"EDF-VD Scheduling of Mixed-Criticality Systems with Degraded Quality Guarantees",
"IEEE International Real-Time Systems Symposium (RTSS’16)", Porto, Portugal, Nov. 29 - Dec. 02, 2016.

As explained in Section 1.1.3, real-time applications with different criticality levels
are being implemented on a shared computing platform in order to reduce Size,

Weight, and Power (SWaP). We refer to this kind of integrated systems as Mixed-
Criticality (MC) systems.

One of the core issues of MC systems stems from the certification authorities
(CAs), as explained in Section 1.2 (Problem 3). Vestal in [Ves07] proposes a new
model to specify real-time applications in MC systems. The new model captures
the core features of MC systems and has received considerable attention since 2007.
However, this classical MC model also receives some criticism from system design-
ers [BB13], who complain that the model is too pessimistic in dropping off all low-
criticality application tasks when any high-criticality application task overruns. Such
an approach seriously disturbs the service of low-criticality tasks and influences the
effectiveness of the whole system [BB13][SZ13].

To cope with the criticism and concerns from system designers, Burns and Baruah
in [BB13] improve the classical MC model by introducing reduced WCETs for low-
criticality tasks. Then, if any high-criticality task overruns its high-criticality WCET,
instead of discarding low-criticality tasks, the improved MC model schedules low-
criticality tasks with their reduced WCETs. Since the idea of reducing execution bud-
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gets to keep tasks running is conceptually similar to the imprecise computation model
[LLS+91][LSL+94], suchMC systems we call imprecise mixed criticality (IMC) sys-
tems in [LSG+16].

Even though the IMC model is deemed to be a generalization of the classical
MC model, it has not received sufficient attention. Only two works investigate the
scheduling analysis of the IMC model. In [BB13], Burns and Baruah consider pre-
emptive fixed-priority scheduling for the IMC model and extend the adaptive mixed
criticality (AMC) [BBD11] approach to provide a schedulability test for the IMC
model. Recently, Barauh et al in [BBG16] study the schedulability of the IMC model
under Mixed-Criticality fluid scheduling (MC-fluid) [LPG+14].1 Another widely-
studiedMC scheduling algorithm, EDF-VD [BBD+12], which has shown strong com-
petence by both theoretical and empirical evaluations on the classical MC model
[BBD+12, EY14, Eas13], has not been investigated for the IMC model. Therefore, in
this chapter, we analyze the scheduability of the IMC model under EDF-VD schedul-
ing. The novel technical contributions of our work include

• We propose a sufficient test for the IMC model under EDF-VD, - see Theorem
6.3.3 in Section 6.3;

• For the IMC model under EDF-VD, we derive a speedup factor function with
respect to the utilization ratios of high criticality tasks and low criticality tasks -
see Theorem 6.4.1 in Section 6.4. The derived speedup factor function enables
us to quantify the suboptimality of EDF-VD and evaluate the impact of the
utilization ratios on the speedup factor. We also compute the maximum value
4/3 of the speedup factor function, which is equal to the speedup factor bound
for the classical MC model [BBD+12].

• With extensive experiments, we show that for the IMC model, by using our
proposed sufficient test, in most cases EDF-VD outperforms AMC [BB13] in
terms of the number of schedulable task sets. Moreover, the experimental re-
sults validate the observations we have obtained for the speedup factor.

6.1 Related Work
Burns and Davis in [BD15] give a comprehensive review of the work on real-time
scheduling for MC systems. Many of these works, e.g., [BBD+12] [EY14][Eas13],
consider the classical MC model in which all low criticality tasks are discarded if
the system switches to the high-criticality mode. In [BB13], Burns and Baruah dis-
cuss three approaches to keep some low criticality tasks running in high-criticality

1This work got public after our RTSS paper [LSG+16] was accepted.
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mode. The first approach is to change the priority of low criticality tasks. However,
for fixed-priority scheduling, de-prioritizing low criticality tasks cannot guarantee the
execution of the low criticality tasks with a short deadline after the mode switches
[BB13]. Similarly, for EDF, lowering the priority of low criticality tasks leads to a
degraded service [HGST14]. In our work, we consider the IMC model which im-
proves the schedulability of low criticality tasks in high-criticality mode by reducing
their execution time. The IMC model can guarantee the regular service of a system
by trading off the quality of the produced results. For some applications given in
[LLS+91][LSL+94][RKKK14b], such trade-off is preferred.

The second approach in [BB13] is to extend the periods of low criticality tasks
when the system mode changes to high-criticality mode such that the low criticality
tasks execute less frequently to ensure their schedulability. Su et al. [SZ13][SGZ14]
and Jan et al. [J+13] both consider this model. However, some applications might
prefer an on-time result with a degraded quality rather than a delayed result with a per-
fect quality. Some example applications can be seen in [CLL90][LLS+91][LSL+94].
Then, the approach of extending periods is less useful for this kind of applications.

The last approach proposed in [BB13] is to reduce the execution budget of low
criticality tasks when the systemmode switches, i.e., the use of the IMCmodel studied
in this chapter. In [BB13], the authors extend the AMC [BBD11] approach to test the
schedulability of an IMC task set under fixed-priority scheduling. Recently, MC-fluid
(MCF) scheduling of the IMC model is studied in [BBG16]. In practice, the MCF
scheduling suffers from extremely high context switch overhead due to its very fine-
grained scheduling units and thus it is difficult to be implemented on a real platform,
whereas the EDF-VD scheduling considered in this chapter that is devised based on
the the original EDF algorithm does not introduce too much scheduling overhead,
thereby allowing to be implemented on a real platform. However, the schedulability
problem for an IMC task set under EDF-VD [BBD+12], has not yet been addressed.
Therefore, in our work, we study the schedulability of the IMC task model under
EDF-VD and propose a sufficient test for it.

6.2 Preliminaries
This section first introduces the IMC task model and its execution semantics. Then,
we give a brief explanation to the EDF-VD scheduling [BBD+12] and an example to
illustrate the execution semantics of the IMC model under the EDF-VD scheduling.

6.2.1 Imprecise Mixed-Criticality Task Model

We use the implicit-deadline sporadic task model given in [BB13] where a task set Γ
includes n tasks which are scheduled on a uniprocessor. Without loss of generality,
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all tasks in Γ are assumed to start at time 0. Each task τi in Γ generates an infinite
sequence of jobs {J1

i , J
2
i ...} and is characterized by τi = {Ti, Di, Li, Ci}:

• Ti is the period or the minimal separation interval between two consecutive
jobs;

• Di denotes the relative task deadline, where Di = Ti;

• Li ∈ {LO,HI} denotes the criticality (low or high) of a task. In this work, like
in many previous research works [SZ13][HGST14][BBD+12] [EY14][Eas13],
we consider a dual-criticality MC model. Then, we split tasks into two task
sets, ΓLO = {τi|Li = LO} and ΓHI = {τi|Li = HI};

• Ci = {CLOi , CHIi } is a list of WCETs, where CLOi and CHIi represent the
WCET in low-criticality mode and the WCET in high-criticality mode, respec-
tively. For a high-criticality task, it has CLOi ≤ CHIi , whereas CLOi ≥ CHIi

for a low-criticality task, i.e., low-criticality task τi has a reduced WCET in
high-criticality mode.

Then each job Ji is characterized by Ji = {ai, di, Li, Ci}, where ai is the absolute
release time and di is the absolute deadline. Note that if low-criticality task τi has
CHIi = 0, it will be immediately discarded at the time of the switch to high-criticality
mode. In this case, the IMC model behaves like the classical MC model.

The utilization of a task is used to denote the ratio between its WCET and its
period. We define the following utilizations for an IMC task set Γ:

• For every task τi, it has uLOi =
CLO

i
Ti

, uHIi =
CHI

i
Ti

;

• For all low-criticality tasks, we have total utilizations

ULOLO =
∑

∀τi∈ΓLO

uLOi , UHILO =
∑

∀τi∈ΓLO

uHIi

• For all high-criticality tasks, we have total utilizations

ULOHI =
∑

∀τi∈ΓHI

uLOi , UHIHI =
∑

∀τi∈ΓHI

uHIi

• For an IMC task set, we have

ULO = ULOLO + ULOHI , UHI = UHILO + UHIHI
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6.2.2 Execution Semantics of the IMC Model

The execution semantics of the IMC model are similar to those of the classical MC
model. Themajor difference occurs after a system switches to high-criticality mode.
Instead of discarding all low-criticality tasks, as it is done in the classical MC model,
the IMC model tries to schedule low-criticality tasks with their reduced execution
times CHIi . The execution semantics of the IMC model are summarized as follows:

• The system starts in low-criticality mode, and remains in this mode as long as
no high-criticality job overruns its low-criticality WCET CLOi . If any job of a
low-criticality task tries to execute beyond its CLOi , the system will suspend it
and launch a new job at the next period;

• If any job of high-criticality task executes for its CLOi time units without sig-
naling completion, the system immediately switches to high-criticality mode;

• As the system switches to high-criticality mode, if jobs of low-criticality tasks
have completed execution for more than their CHIi but less than their CLOi , the
jobs will be suspended till the tasks release new jobs for the next period. How-
ever, if jobs of low-criticality tasks have not completed their CHIi (≤ CLOi ) by
the switch time instant, the jobs will complete the left execution to CHIi after
the switch time instant and before their deadlines. Hereafter, all jobs are sched-
uled usingCHIi . For high-criticality tasks, if their jobs have not completed their
CLOi (≤ CHIi ) by the switch time instant, all jobs will continue to be scheduled
to complete CHIi . After that, all jobs are scheduled using CHIi .

Santy et al. [SGTG12] have shown that the system can switch back from the high-
criticality mode to the low-criticality mode when there is an idle period and no high-
criticality job awaits for execution. For the IMC model, we can use the same scenario
to trigger the switch-back. In this work, we focus on the switch from low-criticality
mode to high-criticality mode.

6.2.3 EDF-VD Scheduling

The challenge to schedule MC tasks with the EDF scheduling algorithm [LL73] is
to deal with the overrun of high-criticality tasks when the system switches from low-
criticality mode to high-criticality mode. Baruah et al. proposed in [BBD+12] to
artificially tighten deadlines of jobs of high-criticality tasks in low-criticality mode
such that the system can preserve execution budgets for the high-criticality tasks across
mode switches. This approach is called EDF with virtual deadlines (EDF-VD).
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Task L CLOi CHIi Ti D̂i

τ1 LO 3 2 9
τ2 HI 4 8 10 7

Table 6.1: Illustrative example

τ1
0 5 10 15 18

τ2
0 5 10 15 20

Switch

Figure 6.1: Scheduling of Example 6.1

6.2.4 An Illustrative Example

Here, we give a simple example to illustrate the execution semantics of the IMCmodel
under EDF-VD. Table 6.1 gives two tasks, one low-criticality task τ1 and one high-
criticality task τ2, where D̂i is the virtual deadline. Figure 6.1 depicts the scheduling
of the given IMC task set, where we assume that the mode switch occurs in the second
period of τ2. When the system switches to high-criticality mode, τ2 will be scheduled
by its original deadline 10 instead of its virtual deadline 7. Hence, τ1 preempts τ2 at
the switch time instant. Since in high-criticality mode τ1 only has execution budget of
2 , i.e., CHI1 , τ1 executes one unit and suspends. Then, τ2 completes its left execution
4 (CHI2 − CLO2 ) before its deadline.

6.3 Schedulability Analysis

In this section, we analyze the scheduability of the IMCmodel under EDF-VD schedul-
ing and propose the first sufficient scheduability test. To ensure the timing correctness
of the IMCmodel, we need to guarantee the scheduability for both high-criticality and
low-criticality modes. Following, we demonstrate our analysis procedure and the for-
mal theoretical proof.

6.3.1 Low Criticality Mode

We first ensure the schedulability of tasks when they are in low-criticality mode. As
the task model is in low-criticality mode, the tasks can be considered as traditional
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real-time tasks scheduled by EDF algorithm with virtual deadlines (VD). The follow-
ing theorem is given in [BBD+12] for tasks scheduled in low-criticality mode.

Theorem 6.3.1 (Theorem 1 from [BBD+12]). The following condition is sufficient
for ensuring that EDF-VD successfully schedules all tasks in low-criticality mode:

1 ≥ ULOHI
x

+ ULOLO (6.1)

where x ∈ (0, 1) is used to uniformly modify the relative deadline of high-criticality
tasks.

Since the IMC model behaves as the classical MC model in low-criticality mode,
Theorem 6.3.1 holds for the IMC model as well.

6.3.2 High Criticality Mode

For high-criticalitymode, the classicalMCmodel discards all low-criticality jobs after
the switch to high-criticality mode. In contrast, the IMC model keeps low-criticality
jobs running but with degraded quality, i.e., a shorter execution time. So the schedula-
bility condition in [BBD+12] does not work for the IMC model in the high-criticality
mode. Thus, we need a new test for the IMC model in high-criticality mode.

To derive the sufficient test in high-criticality mode, suppose that there is a time
interval [0, t2], where a first deadline miss occurs at t2 and t1 denotes the time instant
of the switch to high-criticality mode in the time interval, where t1 < t2. Assume
that J is the minimal set of jobs generated from task set Γ which leads to the first
deadlinemiss at t2. Theminimality ofJ means that removing any job inJ guarantees
the schedulability of the rest of J . Here, we introduce some notations for our later
interpretation. Let variable ηi denote the cumulative execution time of task τi in the
interval [0, t2]. J1 denotes a special high-criticality job which has switch time instant
t1 within its period (a1, d1), i.e, a1 < t1 < d1. Furthermore, J1 is the job with the
earliest release time amongst all high-criticality jobs in J which execute in [t1, t2).
Moreover, we define a special type of job for low-criticality tasks which is useful for
our later proofs.

Definition 6.3.1. A job Ji from low-criticality task τi is a carry-over job, if its absolute
release time ai is before and its absolute deadline di is after the switch time instant,
i.e., ai < t1 < di.

With the notations introduced above, we have the following propositions,

Proposition 4 (Fact 1 from [BBD+12]). All jobs in J that execute in [t1, t2) have
deadline ≤ t2.
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It is easy to observe that only jobs which have deadlines ≤ t2 are possible to
cause a deadline miss at t2. If a job has its deadline > t2 and is still in set J , it will
contradict the minimality of J .

Proposition 5. The switch time instant t1 has

t1 < (a1 + x(t2 − a1)) (6.2)

Proof. Let us consider a time instant (a1+x(d1−a1))which is the virtual deadline of
job J1. Since J1 executes in time interval [t1, t2), its virtual deadline (a1+x(d1−a1))
must be greater than the switch time instant t1. Otherwise, it should have completed
its low-criticality execution before t1, and this contradicts that it executes in [t1, t2).
Thus, it has

t1 < (a1 + x(d1 − a1))

⇒t1 < (a1 + x(t2 − a1)) (since d1 ≤ t2)

Proposition 6. If a carry-over job Ji has its cumulative execution equal to (di −
ai)u

LO
i and uLOi > uHIi , its deadline di is ≤ (a1 + x(t2 − a1)).

Proof. For a carry-over job Ji, if it has its cumulative execution equal to (di−ai)uLOi
and uLOi > uHIi , it should complete its CLOi execution before t1. Otherwise, if job
Ji has executed time units Ci ∈ [CHIi , CLOi ) at time instant t1, it will be suspended
and will not execute after t1.

Now, we will show that when job Ji completes its CLOi execution, its deadline is
di ≤ (a1 + x(t2 − a1)). We prove this by contradiction. First, we suppose that Ji
has its deadline di > (a1 + x(t2 − a1)) and release time ai. As shown above, job Ji
completes its CLOi execution before t1. Let us assume a time instant t∗ as the latest
time instant at which this carry-over job Ji starts to execute before t1. This means that
at this time instant all jobs in J with deadline≤ (a1 +x(t2−a1)) have finished their
executions. This indicates that these jobs will not have any execution within interval
[t∗, t2]. Therefore, jobs in J with release time at or after time instant t∗ can form a
smaller job set which causes a deadline miss at t2. Then, it contradicts the minimality
ofJ . Thus, carry-over job Ji with its cumulative execution time equal to (di−ai)uLOi
and uLOi > uHIi has its deadline di ≤ (a1 + x(t2 − a1)).

With the propositions and notations given above, we derive an upper bound of the
cumulative execution time ηi of low-criticality task τi.

Lemma 6.3.1. For any low-criticality task τi, it has

ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi (6.3)
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Proof. If uLOi = uHIi , it is trivial to see that Lemma 6.3.1 holds. Below we focus on
the case when uLOi > uHIi . If a system switches to high-criticality mode at t1, then
we know that low-criticality tasks are scheduled using CLOi before t1 and using CHIi

after t1. To prove this lemma, we need to consider two cases, where τi releases a job
within interval (a1, t2] or it does not. We prove the two cases separately.

Case A (task τi releases a job within interval (a1, t2]): There are two sub-cases
to be considered.

• Sub-case 1 (No carry-over job): The deadline of a job of low-criticality task
τi coincides with switch time instant t1. The cumulative execution time of low-
criticality task τi within time interval [0, t2] can be bounded as follows,

ηi ≤ (t1 − 0) · uLOi + (t2 − t1) · uHIi

Since t1 < (a1 +x(t2− a1)) according to Proposition 5 and for low-criticality
task τi it has uLOi > uHIi , then

ηi <
(
a1 + x(t2 − a1)

)
uLOi +

(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi < (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

• Sub-case 2 (with carry-over job): In this case, before the carry-over job, jobs
of τi are scheduled with its CLOi . After the carry-over job, jobs of τi are sched-
uled with its CHIi . It is trivial to observe that for a carry-over job its maximum
cumulative execution time can be obtained when it completes its CLOi within
its period [ai, di], i.e., (di − ai)u

LO
i . Considering the maximum cumulative

execution for the carry-over job, we then have for low-criticality task τi,

ηi ≤ (ai − 0)uLOi + (di − ai)uLOi + (t2 − di)uHIi
⇔ηi ≤ diuLOi + (t2 − di)uHIi

Proposition 6 shows that as Ji has its cumulative execution equal to (di − ai) ·
uLOi , it has di ≤ (a1 + x(t2 − a1)). Given that uLOi > uHIi for low-criticality
task, we have

ηi ≤ diuLOi + (t2 − di)uHIi
⇒ηi ≤

(
a1 + x(t2 − a1)

)
uLOi +

(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

Case B (task τi does not release a job within interval (a1, t2]): In this case, let Ji
denote the last release job of task τi before a1 and ai and di are its absolute release
time and absolute deadline, respectively. If di ≤ t1, we have

ηi = (ai − 0)uLOi + (di − ai) · uLOi = diu
LO
i
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If di > t1, Ji is a carry-over job. As we discussed above, the maximum cumulative
execution time of carry-over job Ji is (di − ai)uLOi , so we have

ηi ≤ (ai − 0)uLOi + (di − ai) · uLOi ⇔ ηi ≤ diuLOi

Similarly, according to Proposition 6, we obtain,

ηi ≤ di · uLOi ≤ (a1 + x(t2 − a1))uLOi

⇒ηi < (a1 + x(t2 − a1))uLOi +
(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi < (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

Lemma 6.3.1 gives the upper bound of the cumulative execution time of a low-
criticality task in high-criticality mode. In order to derive the sufficient test for the
IMCmodel in high-criticality mode, we need to upper bound the cumulative execution
time of high-criticality tasks.

Proposition 7 (Fact 3 from [BBD+12]). For any high-criticality task τi, it holds that

ηi ≤
a1

x
uLOi + (t2 − a1)uHIi (6.4)

Proposition 7 is used to bound the cumulative execution of the high-criticality
tasks. Since in the IMC model the high-criticality tasks are scheduled as in the classi-
cal MCmodel, Proposition 7 holds for the IMCmodel as well. With Lemma 6.3.1 and
Proposition 7, we can derive the sufficient test for the IMC model in high-criticality
mode.

Theorem 6.3.2. The following condition is sufficient for ensuring that EDF-VD suc-
cessfully schedules all tasks in high-criticality mode:

xULOLO + (1− x)UHILO + UHIHI ≤ 1 (6.5)

Proof. Let N denote the cumulative execution time of all tasks in Γ = ΓLO ∪ ΓHI
over interval [0, t2]. We have

N =
∑

∀τi∈ΓLO

ηi +
∑

∀τi∈ΓHI

ηi
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By using Lemma 6.3.1 and Proposition 7, N is bounded as follows

N ≤
∑

∀τi∈ΓLO

((
a1 + x(t2 − a1)

)
uLOi + (1− x)(t2 − a1)uHIi

)
+

∑
∀τi∈ΓHI

(
a1

x
uLOi + (t2 − a1)uHIi

)
⇔N ≤ (a1 + x(t2 − a1))ULOLO + (1− x)(t2 − a1)UHILO

+
a1

x
ULOHI + (t2 − a1)UHIHI

⇔N ≤ a1(ULOLO +
ULOHI
x

) + x(t2 − a1)ULOLO

+ (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

(6.6)

Since the tasks must be schedulable in low-criticality mode, the condition given
in Theorem 6.3.1 holds and we have 1 ≥ (ULOLO +

ULO
HI
x ). Hence,

N ≤a1 + x(t2 − a1)ULOLO

+ (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

(6.7)

Since time instant t2 is the first deadline miss, it means that there is no idle time
instant within interval [0, t2]. Note that if there is an idle instant, jobs from set J
which have release time at or after the latest idle instant can form a smaller job set
causing deadline miss at t2 which contradicts the minimality of J . Then, we obtain

N =

( ∑
∀τi∈ΓLO

ηi +
∑

∀τi∈ΓHI

ηi

)
> t2

⇒a1 + x(t2 − a1)ULOLO + (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

> t2

⇔x(t2 − a1)ULOLO + (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

> t2 − a1

⇔xULOLO + (1− x)UHILO + UHIHI > 1

By taking the contrapositive, we derive the sufficient test for the IMC model when it
is in high-criticality mode:

xULOLO + (1− x)UHILO + UHIHI ≤ 1

Note that if UHILO = 0, i.e., no low-criticality tasks are scheduled after the system
switches to high-criticality mode, our Theorem 6.3.2 is the same as the sufficient
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test (Theorem 2 in [BBD+12]) for the classical MC model in high-criticality mode.
Hence, our Theorem 6.3.2 actually is a generalized schedulability condition for (I)MC
tasks under EDF-VD.

By combining Theorem 6.3.1 (see Section 6.3.1) and our Theorem 6.3.2, we prove
the following theorem,

Theorem 6.3.3. Given an IMC task set, if

UHIHI + ULOLO ≤ 1 (6.8)

then the IMC task set is schedulable by EDF; otherwise, if

ULOHI
1− ULOLO

≤ 1− (UHIHI + UHILO )

ULOLO − UHILO

(6.9)

where
UHIHI + UHILO < 1 and ULOLO < 1 and ULOLO > UHILO (6.10)

then this IMC task set can be scheduled by EDF-VD with a deadline scaling factor x
arbitrarily chosen in the following range

x ∈
[

ULOHI
1− ULOLO

,
1− (UHIHI + UHILO )

ULOLO − UHILO

]
Proof. Total utilization U ≤ 1 is the exact test for EDF on a uniprocessor system. If
the condition in (6.8) is met, the given task set is worst-case reservation [BBD+12]
schedulable under EDF, i.e., the task set can be scheduled by EDF without deadline
scaling for high-criticality tasks and execution budget reduction for low-criticality
tasks. Now, we prove the second condition given by (6.9). From Theorem 6.3.1, we
have,

x ≥
ULOHI

1− ULOLO
From Theorem 6.3.2, we have

xULOLO + (1− x)UHILO + UHIHI ≤ 1

⇔x ≤
1− (UHIHI + UHILO )

ULOLO − UHILO

Therefore, if ULO
HI

1−ULO
LO

≤ 1−(UHI
HI +UHI

LO)

ULO
LO−U

HI
LO

, the schedulability conditions of both Theorem
6.3.1 and 6.3.2 are satisfied. Thus, the IMC tasks are schedulable under EDF-VD.

104



CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

6.4 Speedup Factor

The speedup factor bound is a useful metric to compare the worst-case performance
of different MC scheduling algorithms. The following is the definition of the speedup
factor for an MC scheduling algorithm.

Definition 6.4.1 (from [BBD+12]). The speedup factor of an algorithmA for schedul-
ing MC systems is the smallest real number f ≥ 1 such that any task system that is
schedulable by a hypothetical optimal clairvoyant scheduling algorithm2 on a unit-
speed processor is correctly scheduled by algorithm A on a speed-f processor.

Informally speaking, by increasing the processor’s speed, a non-optimal schedul-
ing algorithm is able to schedule the task sets which are deemed to be unschedulable
by the non-optimal scheduling algorithm but schedulable by an optimal scheduling
algorithm on the processor without speed increase. The speedup factor actually com-
putes howmuch the processor needs to speed up such that the non-optimal scheduling
algorithm achieves the same scheduling performance as an optimal scheduling algo-
rithm. The smaller speedup factor indicates a better scheduling performance for the
non-optimal scheduling algorithm. The speedup factor bound for the classical MC
model under EDF-VD [BBD+12] has been shown to be 4/3.

In the following, we prove the speedup factor of the IMC model under EDF-VD
scheduling. For notational simplicity, we define

UHIHI = c, ULOHI = α× c
ULOLO = b, UHILO = λ× b

where α ∈ (0, 1] and λ ∈ [0, 1]. α denotes the utilization ratio between ULOHI and
UHIHI , while λ denotes the utilization ratio between UHILO and ULOLO .

First, let us analyze the speedup factor of two corner cases. When α = 1, i.e.,
ULOHI = UHIHI , this means that there is no mode-switch. Therefore, the task set is
scheduled by the traditional EDF, i.e., the task set is schedulable if and only if ULOLO +
ULOHI ≤ 1. Since EDF is the optimal scheduling algorithm on a uniprocessor system,
the speedup factor thus is 1. When λ = 1, i.e., ULOLO = UHILO , if the task set is
schedulable in high-criticality mode, it must hold UHIHI + ULOLO ≤ 1 by Theorem
6.3.2. Then it is scheduled by the traditional EDF and thus the speedup factor is 1 as
well.

In our work, instead of generating a single speedup factor bound, we derive a
speedup factor function with respect to (α, λ). This speedup factor function enables

2A ‘clairvoyant’ scheduling algorithm knows all run-time information, e.g., when the mode switch
will occur, prior to run-time.
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us to quantify the suboptimality of EDF-VD for the IMC model in terms of speedup
factor (by our proposed sufficient test) and to evaluate the impact of the utilization
ratio on the schedulability of an IMC task set under EDF-VD.

First, we strive to find a minimum speed s (≤1) for a clairvoyant optimal MC
scheduling algorithm such that any implicit-deadline IMC task set which is schedula-
ble by the clairvoyant optimal MC scheduling algorithm on a speed-s processor can
satisfy the schedulability test given in Theorem 6.3.3, i.e., schedulable under EDF-
VD on a unit-speed processor. Then, we can compute the speed-up factor by simply
computing 1/s.

Lemma 6.4.1. Given b, c ∈ [0, 1], α ∈ (0, 1), λ ∈ [0, 1), and

max{b+ αc, λb+ c} ≤ S(α, λ) (6.11)

where
S(α, λ) =

(1− αλ)((2− αλ− α) + (λ− 1)
√

4α− 3α2)

2(1− α)(αλ− αλ2 − α+ 1)

then it guarantees
αc

1− b
≤ 1− (c+ λb)

b− λb
(6.12)

Proof. Suppose that λ and α are constants and we have a real number s ≤ 1, where
max{b+ αc, λb+ c} ≤ s. We need to find the minimum of s which guarantees that
any b, c ∈ [0, 1] ensure (6.12). First, max{b+ αc, λb+ c} ≤ s implies

b+ αc ≤ s (6.13)

λb+ c ≤ s (6.14)

Then, condition (6.12) can be written as follows,

λb2 + (αλ− α+ 1)bc− (λ+ 1)b− c+ 1 ≥ 0 (6.15)

Inequalities (6.13)(6.14)(6.15) define a feasible space in the three-dimension space,
respectively. In Figure 6.2, the space above the plane is a feasible space satisfying
(6.13), where the plane corresponds to b + αc = s. For (6.14), λb + c = s draws a
plane and the feasible space is above the plane shown in Figure 6.3. Similarly, when
(6.15) makes its right-hand-side equal to the left-hand-side, we draw a vertical curved
surface seen in Figure 6.4 and the space inside the vertical surface is the feasible
space (the opposite of the arrow direction). We need to find the minimum of s in the
feasible space (above the two planes and inside the vertical surface) such that any
b and c that meet (6.11) satisfy (6.12). Since max{b + αc, λb + c} = s is strictly
increasing, to ensure that condition (6.12) hold for any b and c, we strive to minimize

106



CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

max{b+αc, λb+c} in the feasible space. Then, this problem can be transformed into
another form, where, instead of minimizing max{b+ αc, λb+ c} inside the vertical
surface, weminimize the value ofmax{b+αc, λb+c} in the space outside the vertical
surface3 which is defined by

λb2 + (αλ− α+ 1)bc− (λ+ 1)b− c+ 1 ≤ 0 (6.16)

This is equivalent to the minimization of s with the above constraint. Then, the min-
imization problem is formulated as follows,

minimize s (6.17)
subject to b+ αc ≤ s (6.18)

λb+ c ≤ s (6.19)
λb2 + (αλ− α+ 1)bc− (λ+ 1)b− c+ 1 ≤ 0 (6.20)
0 ≤ b ≤ 1, 0 ≤ c ≤ 1 (6.21)

where α and λ are constant and s, b, c are variables. If S(α, λ) is the optimal solution
of the optimization problem (6.17), then Lemma 6.4.1 is proven.

Below, we prove that S(α, λ) is the optimal solution of the optimization problem
(6.17)4

Figure 6.2: plane 1

3As the arrows direct
4This optimization problem is a non-convex problem and thus we cannot use general convex opti-

mization techniques such as the Karush-Kuhn-Tucker (KKT) approach [KT51] to solve it.
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Figure 6.3: plane 2

Figure 6.4: vertical surface

As stated before, the feasible solutions subject to these three constraints (6.18),
(6.19) and (6.20) must be above both planes and outside the vertical curved surface.
First assume that we have a point (b′0, c

′
0, s
′
0) which satisfies all constraints but is not

on the vertical surface. If we connect the origin (0, 0, 0) and (b′0, c
′
0, s
′
0), this line

must have an intersection point (b∗0, c
∗
0, s
∗
0) with the vertical surface. It is easy to

observe that s∗0 < s′0 - see in Figure 6.5. This means that any point which is not on
the vertical surface can find a point with smaller value of s on the vertical surface
which satisfies all constraints. Therefore, the point with the minimum s must be on
the vertical surface. Similarly, the minimum s must be on one of the two planes.

108



CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

Figure 6.5: 3D space of optimization problem (6.17)

Otherwise, if it is not on any plane, we always can find a projected point on one plane
which has a smaller value of s.

We have shown above that to obtain the minimum value of s the point must be
on the vertical surface and one plane. Then, the two planes have an intersection line
and this line intersects with the vertical surface at a point denoted by (b0, c0, s0). By
taking constraints (6.18)(6.19) and (6.20), we formulate a piece-wise function of s
with respect to b as follows.

s(b) =

{
(αλ2−αλ)b2+b−1

(αλ−α+1)b−1 0 < b ≤ b0
(1−α)b2+(αλ+α−1)b−α

(αλ−α+1)b−1 b0 < b ≤ 1
(6.22)

This function covers all points which are on the vertical surface and one plane and
at same time satisfy all constraints. By doing some calculus, we know that Equation
(6.22) is monotonically decreasing in (0, b0] and monotonically increasing in (b0, 1].
Therefore, the minimum value of Equation (6.22) can be obtained at (b0, c0, s0). The
complete proof is given by Lemma 1 in Appendix I. It means that we can obtain the
optimal solution of problem (6.17) by solving the following system of equations.

b0 + αc0 = s0

λb0 + c0 = s0

λb20+(αλ−α+1)b0c0−(λ+1)b0−c0+1 = 0

(6.23)
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By joining the first two equations we have c0 = 1−λ
1−α × b0, and applying it to the last

equation in (6.23) gives

(−αλ2 + αλ− α+ 1)b20 + (αλ+ α− 2)b0 + (1− α) = 0

By the well-known Quadratic Formula we get the two roots of the above quadratic
equation.

b10 =
(2− αλ− α) + (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
(6.24)

b20 =
(2− αλ− α)− (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
(6.25)

We can prove that b20 is larger than 1 and thus should be dropped (since we require
0 ≤ b ≤ 1), while b10 is in the range of [0, 1]. The detailed proof is given by Lemma
2 in Appendix I. As a result, we obtain the optimal solution (b10,

1−λ
1−αb

1
0,

1−αλ
1−α b

1
0) for

Equation (6.23). Thus, we have

S(α, λ) =
1− αλ
1− α

b10

=
(1− αλ)((2− αλ− α) + (λ− 1)

√
4α− 3α2)

2(1− α)(αλ− αλ2 − α+ 1)

Therefore, Lemma 6.4.1 is proven.

Lemma 6.4.1 shows that any IMC task set that is schedulable by an optimal clair-
voyant MC scheduling algorithm on a speed-S(α, λ) is schedulable by EDF-VD on a
unit-speed processor. Therefore, we can compute the speedup factor of EDF-VD by
1/S(α, λ).

Theorem 6.4.1. The speedup factor of EDF-VD with IMC task sets is

f =
2(1− α)(αλ− αλ2 − α+ 1)

(1− αλ)((2− αλ− α) + (λ− 1)
√

4α− 3α2)

Proof. Follow the explanation given above.

The speedup factor is shown to be a function of α and λ. Figure 6.6 plots the 3D
image of this function and Table 6.2 lists some of the values with different α and λ.
By doing some calculus, we obtain the maximum value 1.333 (4/3) of the speedup
factor function when λ = 0 and α = 1

3 , which is highlighted in Figure 6.6 and Table
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Figure 6.6: 3D image of the speedup factor w.r.t α and λ

λ
α 0.1 0.3 1/3 0.5 0.7 0.9 1

0 1.254 1.332 1.333 1.309 1.227 1.091 1
0.1 1.231 1.308 1.310 1.293 1.219 1.090 1
0.3 1.183 1.256 1.259 1.254 1.201 1.087 1
0.5 1.134 1.195 1.200 1.206 1.174 1.083 1
0.7 1.082 1.126 1.130 1.143 1.133 1.074 1
0.9 1.028 1.046 1.048 1.056 1.061 1.048 1
1 1 1 1 1 1 1 1

Table 6.2: The speedup factor w.r.t α and λ
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6.2. We see that the speedup factor bound is achieved when the task set is a classical
MC task set. From Figure 6.6 and Table 6.2, we observe different trends for the
speedup factor with respect to α and λ.

• First, given a fixed λ, the speedup factor is not a monotonic function with re-
spect to α. The relation between α and the speedup factor draws a downward
parabola. Therefore, a straightforward conclusion regarding the impact of α on
the speedup factor cannot be drawn.

• Given a fixed α, the speedup factor is a monotonically decreasing function with
respect to increasing λ. It is seen that increasing λ leads to a smaller value of
the speedup factor. This means that a larger λ brings a positive effect on the
schedulability of an IMC task set.

6.5 Experimental Evaluation

In this section, we conduct experiments to evaluate the effectiveness of the proposed
sufficient test for the IMC model in terms of schedulable task sets (acceptance ratio).
Moreover, we conduct experiments to verify the two observations stated at the end
of Section 6.4 regarding the impact of α and λ on the average acceptance ratio. Our
experiments are based on randomly generated MC tasks. We use a task generation ap-
proach, similar to that used in [Eas13][EY14], to randomly generate IMC task sets to
evaluate the proposed sufficient test. Each task τi is generated based on the following
procedure,

• pCriticality is the probability that the generated task is a high-criticality task;
pCriticality∈ [0, 1].

• Period Ti is randomly selected from the range [100, 1000].

• In order to have sufficient number of tasks in a task set, utilizationui is randomly
drawn from the range[0.05, 0.2].

• For any task τi, CLOi = ui ∗ Ti.

• R ≥ 1 denotes the ratio CHIi /CLOi for every high-criticality task. If Li = HI ,
we set CHIi = R ∗ CLOi . It is easy to see that α used in the speedup factor
function is equal to 1

R ;

• λ ∈ (0, 1] denotes the ratio CHIi /CLOi for every low-criticality task. If Li =
LO, we set CHIi = λ ∗ CLOi .
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In the experiment, we generate IMC task sets with different target utilization U . Each
task set is generated as follows. Given a target utilization U , we first initialize an
empty task set. Then, we generate task τi according to the task generation procedure
introduced above and add the generated task to the task set. The task set generation
stops as we have

U − 0.05 ≤ Uavg ≤ U + 0.05

where
Uavg =

ULO + UHI

2

is the average total utilization of the generated task set. If adding a new task makes
Uavg > U+0.05, then the added task will be removed and a new taskwill be generated
and added to the task set till the condition is met.

6.5.1 Comparison with AMC [BB13]

In the first experiment, we compare EDF-VD by using our proposed test to the AMC
approach in [BB13] in terms of average acceptance ratio. In this experiment,R is ran-
domly selected from a uniform distribution [1.5, 2.5]. With differentλ and pCriticality
settings, we vary Uavg from 0.4 to 0.95 with step of 0.05, to evaluate the effectiveness
of the proposed sufficient test in terms of the average acceptance ratios. We generate
10,000 task sets for each given Uavg. Since all experimental results follow the similar
trend, in this section, we only present the experimental results when pCriticality= 0.5.
Results with different pCriticality settings can be found in Appendix III. The results
are shown in Figure 6.7-6.9, where the x-axis denotes the varying Uavg and the y-axis
denotes the acceptance ratio. In the figures, let EDF-VD and AMC denote our pro-
posed schedulability test and the one proposed in [BB13], respectively. In most cases,
EDF-VD outperforms AMC in terms of acceptance ratio. We observe the following
trends:

1. When Uavg ∈ [0.5, 0.8], EDF-VD always outperforms AMC in terms of accep-
tance ratio. However, if Uavg > 0.8 and λ = 0.3 or 0.5, AMC performs better
than EDF-VD. The same trend is also found for the classical MC model under
EDF-VD and AMC, see in [EY14].

2. By comparing figures in Figure 6.7-6.9, we see that the average acceptance
ratio improves when λ increases. This confirms the observation for the speedup
factor we stated at the end of Section 6.4. The increasing λ leads to a smaller
speedup factor. As a result, it provides a better schedulability. We need to notice
that when λ increases, not only EDF-VD improves its acceptance ratio but the
acceptance ratio of AMC [BB13] also improves.
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Figure 6.7: λ = 0.3
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Figure 6.8: λ = 0.5
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Figure 6.9: λ = 0.7
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Figure 6.10: Impact of λ

6.5.2 Impact of α and λ

In the first experiment, we compare our proposed sufficient test to the existing AMC
approach. In this section, we conduct experiments to further evaluate the impact
of λ and α (1/R) on the acceptance ratio. In this experiment, we select Uavg =
{0.65, 0.7, 0.75, 0.8, 0.85} to conduct experiments. We fix Uavg to a certain utiliza-
tion and vary λ and α to evaluate the impact.

We first show the results for λ. The results are depicted in Figure 6.10, where the
x-axis denotes the value of λ from 0.2 to 0.9 with step of 0.1 and the y-axis denotes the
average acceptance ratio. R is randomly selected from a uniform distribution [1.5, 2.5]
and pCriticality= 0.5. Similarly, 10,000 task sets are generated for each point in the
figures. A clear trend can be observed that the acceptance ratio increases as λ in-
creases. This trend confirms the positive impact of increasing λ on the schedulability
which we have observed in Section 6.4.

Next we conduct experiments to evaluate the impact of α on the schedulability.
Similarly, we fix Uavg and vary α to carry out the experiments. Due to α = 1

R , if
α is given, we compute the corresponding R to generate task sets. The results are
depicted in Figure 6.11, where λ = 0.5. The x-axis denotes the varying α from 0.1
to 0.9 with step of 0.1. while the y-axis denotes the average acceptance ratio. First,
from Table 6.2, we see that with increasing α the speedup factor first increases till a
point. This means within this range the scheduling performance of EDF-VD gradually
decreases. After that point, the speedup factor decreases which means the scheduling
performance of EDF-VD gradually improves. The experimental results confirm what
we have observed for α in Section 6.4. The acceptance ratio gradually decreases till
a point and then it increases.
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Figure 6.11: Impact of α
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