
Latency, energy, and schedulability of real-time embedded systems
Liu, D.; Liu D.

Citation
Liu, D. (2017, September 6). Latency, energy, and schedulability of real-time embedded
systems. Retrieved from https://hdl.handle.net/1887/54951
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/54951
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/54951


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/54951 holds various files of this Leiden University 
dissertation 
 
Author: Liu, D. 
Title: Latency, energy, and schedulability of real-time embedded systems 
Issue Date: 2017-09-06 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/54951
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 5

Energy Optimization for
Real-Time Tasks

Di Liu, Jelena Spasic, Peng Wang, and Todor Stefanov,
"Energy-Efficient Scheduling of Real-Time Tasks on Heterogeneous Multicores Using Task Splitting",
"The 22nd IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications", Daegu, South Korea, 2016, pp. 1-10.

As we discussed in Section 2.2.3, the semi-partitioned scheduling/task-splitting,
e.g., [BDWZ12, GSYY10, JLBK13, BBA11], can achieve a good trade-off be-

tween global scheduling and partitioned scheduling in terms of schedulability, re-
source utilization and scheduling overhead. The advantage of the task-splitting tech-
nique has been extended to another dimension, namely, energy-efficient real-time
scheduling. Lu and Guo [LG11] investigated to use the task-splitting technique given
in [GSYY10] to energy-efficiently schedule real-time tasks under fixed-priority schedul-
ing on homogeneous multicore systems. As presented in Section 1.1, the heteroge-
neous multicore systems are gradually replacing the homogeneous multicore systems
in order to satisfy diverse performance requirements of different applications and at
the same time reduce the energy consumption. However, there is no work investigat-
ing the task-splitting approach on heterogeneous multicore systems for the energy-
efficient purpose. Motivated by this fact, in this chapter, we investigate how to adopt
the task-splitting approach with dynamic priority scheduling to better utilize the re-
sources on heterogeneous multicore systems for energy efficiency. We select the C=D
approach [BDWZ12], which will be introduced in details later in Section 5.2.4, to split
tasks among heterogeneous cores. We extend the C=D approach for heterogeneous
multicore systems and propose an allocation algorithm to schedule real-time tasks
with C=D task-splitting on heterogeneous multicore systems. Formally, our novel
technical contributions are summarized as follows:

67



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

• We analyze the properties of the C=D task-splitting and extend it for hetero-
geneous multicore systems. We present a new definition, namely ‘valid split’,
for the C=D task-splitting on heterogeneous multicore systems. This analysis
is presented in Section 5.4;

• Based on the analysis of the C=D task-splitting and the characteristics of het-
erogeneous multicore systems, we propose an energy-efficient algorithm, called
ASHM, to allocate and split real-time tasks on heterogeneous multicore sys-
tems. Algorithm ASHM is presented in Section 5.5;

• Since the existing methods to compute the minimum operational frequency for
each core cannot work with the C=D approach, we propose a new approach
based onQuick convergence Processor-demandAnalysis (QPA) [ZB09] to com-
pute the minimum frequency for each core in the system. This proposed ap-
proach is presented in Section 5.5.4

The extensive experiments on synthetic real-time tasks shows the effectiveness
of our ASHM algorithm over the existing partitioned algorithms in terms of energy
efficiency.

5.1 Related Work

Energy-efficient scheduling for real-time systems has been widely explored in the past
two decades. Chen and Kuo in [CK07] comprehensively reviewed most of the papers
addressing energy-efficient real-time scheduling problems before 2007. An updated
review for energy-efficient real-time scheduling is provided by Bambagini et al. in
[BMAB16]. We can see from [CK07, BMAB16] that most of the works consider
homogeneous systems, whereas in this work we consider heterogeneous multicore
systems which are more energy-efficient but more difficult to effectively schedule the
tasks.

A few works consider heterogeneous systems. Chen and Thiele in [CT08] pro-
posed a polynomial algorithm to energy efficiently schedule periodic tasks on hetero-
geneous systems but the systems they considered had only two cores. In contrast, we
consider a more general system model where the system has two types of cores, and
for each core type we can have any number of cores which can be seen on many real
commercial processors. Chen et al. [CST09] developed two polynomial-time algo-
rithms to energy efficiently allocate real-time tasks on a more general system model
that can have different types of processors and different number of processors for
each type like we consider in our work. However, in their work, they do not take
voltage/frequency scaling (VFS) into account, whereas we consider VFS as a crucial

68



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

technique to improve the energy efficiency. With the consideration of VFS, we can
further minimize the energy consumption of the heterogeneous system. In [HTC07],
Huang et al. proposed an allocation algorithm to schedule frame-based real-time tasks
on heterogeneous multicore systems, where a non-preemptive scheduling is consid-
ered. The main difference compared to our work is: (1) they consider frame-based
real-time task model, whereas we consider the periodic task model which is more
general; (2) the non-preemptive scheduling, they consider, is known to be NP-hard in
the strong sense even on uniprocessor [JSM91]. In contrast, we consider preemptive
scheduling.

Recently, more interests have risen for energy efficient real-time scheduling on
single-ISA heterogeneous multicore systems. Liu et al. [LSCS15] consider an opti-
mal cluster scheduling to schedule real-time tasks on cluster heterogeneous multicore
systems. However, from practical perspective the optimal cluster scheduling suffers
from a very high overhead caused by frequent context switching and task migration.
When the overhead is taken into account, the achieved resource utilization may be
quite low in practice [BBA11]. In contrast, the C=D task-splitting, we consider, has
a limited number of migrations and on each core a normal EDF scheduler is used to
schedule real-time tasks, hence it significantly reduces the context-switching and task
migration overhead and makes it more practical for real implementation. Colin et al.
[CKR14] and Elewi et al. [ESAS14] adopt the partitioned EDF scheduling to sched-
ule real-time tasks on heterogeneous multicore systems, where both consider energy
minimization as the objective. Due to the capacity loss of partitioned scheduling,
the proposed approaches from [CKR14] and [ESAS14] do not fully utilize ‘LITTLE’
cores on a heterogeneous multicore system and thus possibly lose some opportuni-
ties to further reduce the energy consumption. Contrarily, in our work, we adopt the
state-of-the-art C=D task-splitting approach to exploit the energy efficiency of a het-
erogeneous multicore system. Our experimental results on randomly generated task
sets demonstrate the merit of the task-splitting on heterogeneous multicore systems.

A few works study the task migration/splitting approaches for energy-efficient
real-timemulticore system. Chen et al. [CHC+04] address the energy-efficient schedul-
ing problem on homogeneous multicore systems with task migration, in which all
tasks have the same release time and a common deadline. In our work, we consider a
more general and widely-used periodic task model and instead of homogeneous mul-
ticore systems, we consider heterogeneous multicore systems which are more energy
efficient. Lu and Guo [LG11] adopt the task-splitting approach proposed by Guan
et al. [GSYY10] on homogeneous multicore systems to achieve energy efficiency.
The main difference between [LG11] and our work is twofold:1) they consider fixed
priority scheduling, whereas dynamic priority scheduling, i.e., earliest deadline first
(EDF) [LL73], is adopted in our work. It is known that EDF can achieve better re-

69



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

source utilization than fixed-priority scheduling; 2) they consider homogeneous mul-
ticore systems, whereas we target heterogeneous multicore systems which are more
energy-efficient.

5.2 Background
In this section, we present the system model, task model, and energy model used
in this work. Then, we give a brief description of the C=D task-splitting approach
[BDWZ12].

5.2.1 System Model

We consider a heterogeneous multicore system M which consists of two types of
cores, the ‘big’ core for performance and the ‘LITTLE’ core for low power. Through-
out this chapter, we use PE and EE to denote a ‘big’ core and a ‘LITTLE’ core, re-
spectively, like what we did in Chapter 4. We useMEE andMPE to denote the sets
consisting of all EE cores and all PE cores, respectively. The power consumption of
one core can be computed by the following equation,

P (f) = αf b + s (5.1)

where α and b ∈ [2, 3] are technology-based parameters [CK07], f is the opera-
tional frequency. For different types of cores, α and b are different. The first term of
Equation (5.1) is the frequency-related power consumption, i.e., the dynamic power
consumption. s denotes the power consumption unrelated to the frequency, i.e., the
static power consumption. Each core executes independently from the others and has
a discrete frequency set at which the core can run. Let fj = {f1, · · · , fl} denote the
frequency set of core j. Without loss of generality, we assume that the frequencies in
the set are sorted in increasing order, i.e., fk < fk+1.

5.2.2 Task Model

The task model adopted in this work is similar to the one introduced in Section 2.2.1,
but all tasks are assumed to start at time instant 0, i.e., S1 = S2 = · · · = Sn =
0. Moreover, since we have two type of cores, the WCET of each task may vary
when executing on different types of cores. We slightly extend the model to have two
WCETs as we did in Chapter 4.

• CEEi andCPEi are the worst-case execution times (WCETs) of task τi executing
on an EE core and PE core at the maximum frequency, respectively;

Then, a task is characterized by a tuple of parameters τi = {CEEi , CPEi , Di, Ti}.

70



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

5.2.3 Energy Model

With the system and task models discussed above, we explain how to compute the
energy consumption for the system. After all tasks are allocated to cores, the energy
consumption for each core can be computed as follows:

Ej = hp

(
αjf

bj
j

fmax
fj

∑
∀τi∈Γj

Ci
Ti

+ sj

)
(5.2)

where Γj is the task set containing all tasks allocated to core j and hp is the hyper-
period of task setΓj . The hyper-period is the least commonmultiple (lcm) of all tasks’
periods. Every hyper-period has the same workload and thus we compute the energy
consumption within one hyper-period. The energy consumption of the whole system
is the summation of the energy consumption Ej of all cores.

5.2.4 C=D Task-Splitting

In this work, we adopt the C=D task-splitting to schedule real-time tasks on a hetero-
geneous multicore system. Burns et al. in [BDWZ12] propose the C=D approach to
split real-time tasks on homogeneous systems. They use a preemptive earliest dead-
line first (EDF) scheduling [LL73] to schedule the tasks on each core. The tasks are
first allocated to cores according to a certain allocation algorithm. If task τi cannot
be integrally allocated to a core, the C=D approach splits unassigned task τi into two
parts/subtasks, τ1

i and τ2
i . The split procedure is as follows:

• Find a processor x and then compute the maximum computation time C1
i for

subtask τ1
i which ensures the schedulablility of subtask τ1

i on processor x. For
subtask τ1

i , its deadline D1
i is set to be equal to C1

i and its period T 1
i is equiv-

alent to its original period Ti, i.e., τ1
i = {C1

i , D
1
i = C1

i , T
1
i = Ti}. Then,

subtask τ1
i is allocated to processor x;

• According to subtask τ1
i , we can obtain the second subtask τ2

i . The WCET C2
i

of τ2
i is computed as C2

i = Ci − C1
i , its deadline D2

i is computed as D2
i =

Di − D1
i and its period T 2

i equals to its original period, T 2
i = Ti, i.e., τ2

i =
{C2

i = Ci − C1
i , D

2
i = Di − D1

i , T
2
i = Ti}. Subtask τ2

i is allocated to a
processor which has enough space to schedule subtask τ2

i and is different from
processor x on which subtask τ1

i is allocated.

In the remainder of this chapter, we call subtask τ1
i the first subtask and subtask τ2

i

the second subtask.
The C=D task-splitting permits each core to have only one first subtask τ1

i . This
means that the whole system has at most M split tasks, where M is the number of

71



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

cores. This task-splitting scheme can be realized by using task migration. τ1
i com-

pletes its execution on the allocated core. Then it migrates to the core where τ2
i is

assigned and continues the execution of subtask τ2
i . From the experimental results

in [JLBK13], the C=D task-splitting outperforms other existing semi-partition/task-
splitting approaches in terms of schedulability.

Migration Overhead: Like [BDWZ12], in our work the migration overhead is
assumed to be negligible. An extensive number of experiments on real hardware sys-
tems [BBA11] have shown that with cache coherence among cores the task migra-
tion overhead is at the similar order of magnitude as the normal context switching.
The cache coherence hardware architecture, like CoreLink CCI-400 Cache Coherent
Interconnect [ARM16], has been adopted by the big.LITTLE multicore systems to
maintain the cache coherence between cores. Therefore, the migration overhead is
accounted for in the WCET of a task.

5.3 Motivational Example

In this section, we use an example to motivate the application of the C=D task-splitting
approach on heterogeneous multicore systems for energy efficiency purpose. For sim-
plicity, assume that we have a multicore system with one PE core and one EE core.
The PE core and EE core have different power parameters α and b (see Equation (5.1)
and (5.2)). In this example, we use the parameter values from Table 4.3 given in
Section 4.2.2 of Chapter 4. We recap it here for reference convenience.

Core type α(W/Mhzb) b s(W )

PE 3.03× 10−9 2.621 0.155
EE 2.62× 10−9 2.12 0.027

Table 5.1: Power parameters for different core types

CPE(ms) CEE(ms) D(ms) T(ms)

τ1 55 110 100 100
τ2 20 40 100 100
τ3 20 40 100 100
τ4 15 30 100 100

Table 5.2: The original task set

72



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

CPE(ms) CEE(ms) D(ms) T(ms)

τ1
4 10 20 20 100
τ2

4 5 10 80 100

Table 5.3: Split subtasks

Suppose to have four tasks with the parameters given in Table 5.2. As far as the
deadlines can be ensured, we strive to partition/allocate as many tasks as possible to
the EE core in order to save energy consumption. However, since scheduling τ1 on
the EE core will violate the deadline guarantee, only τ2, τ3, and τ4 are eligible to be
scheduled on the EE core. But we cannot schedule τ2, τ3, and τ4 together on the EE
core, because a total utilization of 1.1 > 1 leads to infeasibility. One task has to be
scheduled on the PE core along with τ1. Then, we obtain a fully partitioned allocation
for the given task set, where τ1 and τ4 are scheduled on the PE core and τ2 and τ3 are
scheduled on the EE core. In contrast to the above fully partitioned allocation, we
adopt the C=D task-splitting (explained in Section 5.2.4) to schedule the tasks on the
multicore system. In the splitting case, τ1 is scheduled on the PE core while τ2 and τ3

are scheduled on the EE core. But τ4 is split into two subtasks, τ1
4 and τ2

4 , and then we
schedule τ1

4 on the EE core and τ2
4 on the PE core. The parameters for the subtasks

are shown in Table 5.3,
With the given allocation and the power parameters, we can compute a minimum

frequency for each core such that the energy consumption can be minimized by using
VFS while deadlines are still ensured. Table 5.4 shows the allocation, the minimum
operational frequency of each core, and the energy consumption of the multicore sys-
tem. We can see that the splitting approach saves energy consumption by 32% com-
pared to the partitioned approach because it can effectively utilize the EE core to save
energy and at the same time it can reduce the workload allocated to the PE core. As a
result, the PE core in the splitting approach executes at a lower frequency compared
to the partitioned approach.

Mapping PE EE fPE fEE Energy(mJ)

Partitioned τ1, τ4 τ2, τ3 1.4GHz 1.2GHz 5.42
Splitting τ1, τ2

4 τ2, τ3, τ1
4 1.2GHz 1.4GHz 3.69

Table 5.4: Energy consumption

From the example, we see the advantage of the C=D task-splitting approach on
heterogeneous systems in terms of energy efficiency. In the subsequent sections, we
will introduce our novel approach to exploit the C=D task-splitting on heterogeneous

73



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

multicore systems for minimizing the energy consumption.

5.4 C=D Task-Splitting on Heterogeneous Multiprocessor
Systems

In [BDWZ12], the C=D task-splitting is devised for homogeneous multiprocessor sys-
tems. However, in ourwork, we target heterogeneousmulticore systems [Mit15][Mit16]
which have been emerging as an alternative of the conventional homogeneous multi-
core systems. In this section, we investigate how to adopt the C=D task-splitting on a
heterogeneous system.

5.4.1 Task Splitting

CPE CEE D T
τ1 60 120 100 100
τ1

1 25 50 50 100
τ2

1 35 70 50 100
τ1

1 41 82 82 100
τ2

1 19 38 18 100

Table 5.5: Let us assume that we split τ1 into two subtasks τ1
1 and τ2

1 and allocate τ1
1

and τ2
1 to an EE core and a PE core, respectively. We assume that there is no constraint

on the split. We give two different splits for τ1 shown in rows 3,4 and 5,6. For the first
split shown in rows 3,4, there is no problem to schedule the subtasks. However, for
the second split, although the execution time on the EE core is maximized, it causes
a deadline miss for subtask τ2

1 due to CPE > D, seen in the last row with red color.

Since, on heterogeneous multicore systems, a task’s WCET is varying upon the
allocated core, the splitting on the heterogeneous multicore system should pay more
attention to the varying WCET and the relation between the obtained two subtasks.
First, the deadline of the first subtask τ1

i is set according to where the first subtask is
allocated. For instance, assume that a subtask τ1

i has its CPEi = 5 and CEEi = 10.
If it is allocated to a PE core, its deadline D1

i equals to CPEi = 5, otherwise D1
i =

CEEi = 10 if allocated to an EE core. Moreover, in some cases an improper split
might cause a deadline miss for the second subtask τ2

i . The example given in Table
5.5 demonstrates this issue.

From the example, we observe the potential split issue on a heterogeneous mul-
ticore system. Thus, we give the following property to ensure that a proper split on

74



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

heterogeneous multicore systems is obtained:

Property 1. On a heterogeneous multicore system, the following inequality must hold
for a split task τi,

Ti − C1
i ≥ C2

i (5.3)

where C1
i and C2

i are the WCETs of subtasks τ1
i and τ2

i , depending on which type of
core the subtasks have been allocated.

This property is to ensure enough space to execute the second subtask τ2
i on a

heterogeneous system. We can see that for subtask τ2
i it must have,

D2
i ≥ C2

i (5.4)

Since D2
i = Di −D1

i = Ti −D1
i and D1

i = C1
i , see Section 5.2.4, we obtain

Ti − C1
i ≥ C2

i (5.5)

Thus, the property is observed. Based on this property, we give the following defini-
tion,

Definition 5.4.1 (valid split). If two subtasks τ1
i and τ2

i obtained by splitting task τi
satisfy Property 1, we call such split a valid split.

If the split is not a valid split, then the second subtask cannot meet its deadline.

5.4.2 Subtask Allocation

In Section 5.4.1, we discussed how to find a valid split for a task on a heterogeneous
multicore system. Here, we continue to discuss the allocation of subtasks. Before
proceeding to the discussion, we distinguish tasks in two categories and give their
definitions as follows,

Definition 5.4.2. If a task can be integrally scheduled on an EE core, we call such
task an eligible task (E-task).

Definition 5.4.3. If a task cannot be integrally scheduled on an EE core, we call such
task a non-eligible task (NE-task).

If we look at the motivational example in Section 5.3-Table 5.2, τ2, τ3, and τ4 are
E-tasks and τ1 is NE-task. Now, we discuss the possible allocation destinations for
these two categories of tasks.

75



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

E-task

When an E-task is selected to be split, any split is a valid split regardless of which
type of core the subtasks are allocated. Therefore, for an E-task, the two subtasks
can be allocated to any type of core, as long as the schedulability of the system is
ensured. Thus, we can have three possible combinations to allocate the two subtasks
of an E-task:

• Allocate the two subtasks to two EE cores;

• Allocate the two subtasks to one EE core and one PE core; and

• Allocate the two subtasks to two PE cores.

NE-task

When a NE-task is about to be split, we need to ensure that the obtained split is a valid
split by satisfying Property 1. For a NE-task, we cannot allocate the two subtasks to
two EE cores, because Property 1 will be violated and then it leads to an invalid split.
Excluding the invalid combination, we have two possible combinations to allocate the
two subtasks of a NE-task:

• Allocate the two subtasks to one EE core and one PE core; and

• Allocate the two subtasks to two PE cores.

With the above possible allocation destinations for the two categories of tasks, in
the next section, we will use this information to devise an energy-efficient allocation
strategy for each category of tasks.

5.5 Allocation and Split on Heterogeneous Multicore Sys-
tems (ASHM)

In [CT08], Chen and Thiele have shown that allocating real-time tasks onto two differ-
ent processors is an NP-hard problem. Their problem is just a subset of our problem,
so our problem is also an NP-hard problem. Hence, we propose a heuristic algo-
rithm to energy-efficiently schedule real-time tasks on heterogeneous multicore sys-
temswith task-splitting. We call this algorithm ASHM.ASHM first handles all E-tasks
and then all NE-tasks. For the sake of clarity, we first explain the different parts in
the ASHM algorithm and after that we explain the whole ASHM algorithm. Before
proceeding to the detailed discussion, we introduce the following property for the core
with first subtask τ1

i allocated on it,

76



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Property 2. A core must run at the maximum frequency if first subtask τ1
i of a split

task τi is assigned to it.

It is trivial to see this property because the first subtask of a split task has its
WCET equal to the deadline. Scaling down the frequency leads to a deadline miss.
This property is useful to determine the allocation of the subtasks.

5.5.1 Allocation and splitting of E-tasks

ASHM first starts to allocate and split E-tasks. The procedure to allocate and split
E-tasks is summarized as follows:

1. Use a bin-packing algorithm, first-fit-decreasing (FFD) [CGJ97], to integrally
allocate E-tasks to EE cores;

2. Split unallocated E-tasks on the platform. For a given unallocated E-task τi, we
use the following allocation and splitting order,

(a) Split τi among two EE cores. If it fails, try step b);

(b) Split τi among one EE core and one PE core. If fails, try step c);

(c) Allocate τi integrally to one PE core. If it fails, try step d);

(d) Split τi among two PE cores. If it fails, the system is unschedulable on
the platform withM = {MEE ,MPE}.

For the first step, we use FFD to integrally allocate EE tasks to EE cores because FFD
is proven to be the resource efficient bin-packing algorithm [AY03]. By using FFD
we could leave some EE cores with a lot of free capacity. This could later benefit the
NE-tasks for energy saving.

After some E-tasks are integrally allocated to EE cores, we might have some E-
tasks left unallocated. The next step is to split and allocate them on the system. The
allocation and split order summarized above prioritizes the EE cores to explore the
energy-efficient potential on the EE cores. Therefore, we first try to allocate the sub-
tasks of a split E-task to two EE cores. If the task cannot be split among two EE cores,
this means that there is no enough space on EE cores. So, we try one EE core and one
PE core. Since, a PE core consumes much more power than an EE core and Property
2 indicates the maximum frequency requirement, it is not favorable to allocate the first
subtask to a PE core. Therefore, we constrain ourself to allocate the first subtask to
an EE core and the second subtask to a PE core. For the selection of the PE cores,
we use the approach proposed in [CKR14] which selects the core with the smallest
energy cost contribution to the whole system when the task is allocated to it. If the

77



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

combination of one EE core and one PE core still fails, we need to find an allocation
among PE cores.

On PE cores, we first try to integrally allocate the E-task to one PE core because
if we split an E-task among two PE cores, Property 2 requires that one PE core must
execute at the maximum frequency which leads to a very high power consumption.
Hence, we prefer to integrally allocate the E-task to one PE core than split it among
two PE cores. We also use the approach from [CKR14] to select the energy-efficient
core for the task. If it still fails, we try the final step to split it on two PE cores in order
to ensure its schedulability.

Algorithm 6 presents the pseudo-code to allocate and split E-tasks, called EAS,
following the procedure explained above. EAS takes as inputs task set ΓE consisting
of all E-tasks and the heterogeneous multicore platform consisting of EE core set
MEE and PE core setMPE and outputs the allocation of all E-tasks. At Line 1, we
first use FFD to allocate E-tasks to EE cores integrally. If there are some unallocated
E-tasks, we follow the steps introduced above to split unallocated E-tasks among two
EE cores or one EE core and one PE core - see Line 3-10. We use function mpwr() to
represent the core selection approach from [CKR14], where the inputs of mpwr() are
a core set and a task and the output is a core which can schedule the task and has the
smallest contribution to the energy consumption. However, if the task is not allocated
successfully, we have to try to allocate or split the task among PE cores - see Line
11-24. From Line 12-14, the integral allocation on one PE core is first tried. If it fails,
from Line 15-24 EAS splits τi among two PE cores. Function SPLIT in Algorithm 6
finds the first subtask τ1

i with the maximum WCET which is schedulable on core x
and also gives the corresponding τ2

i . We will explain SPLIT in details later in Section
5.5.3.

5.5.2 Allocation and Splitting of NE-tasks

After all E-tasks are allocated, we proceed towards allocating and splitting NE-tasks
on the system. The procedure to allocate and split NE-task τi is summarized as fol-
lows:

1. Split τi among one EE core and one PE core. If it fails, try step 2);

2. Allocate τi integrally onto one PE core. If it fails, try step 3);

3. Split τi among two PE cores. If it fails, it is unschedulable.

Since, after the allocation of E-tasks, EE cores might have some free space to execute
parts of NE-tasks, we first try to split a NE-task among one EE core and one PE
core in order to utilize EE cores for energy saving. Since the first subtask needs a

78



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Algorithm 6: E-task Allocation and Split (EAS)
Input: All E-tasks ΓE and the heterogeneous multicore platformM = {MEE ,MPE}
Output: Allocation for all E-tasks

1 MEE ← using FFD to allocate tasks from ΓE
2 Γun ← unallocated tasks from ΓE
3 for ∀τi ∈ Γun in order of decreasing U do
4 for ∀x ∈MEE in order of increasing U do
5 τ1

i ,τ2
i = SPLIT(τi, x)

6 if τ1
i 6= ∅ then

7 x← τ1
i

8 y ← mpwr(M = {MEE ,MPE}, τ2
i )

9 if y = ∅ then
10 x← x− τ1

i

11 if τi is not allocated successfully then
12 x← mpwr(MPE , τi)
13 if x 6= ∅ then
14 x← τi

15 else
16 for ∀x ∈MPE in order of decreasing U do
17 τ1

i ,τ2
i = SPLIT(τi, x)

18 if τ1
1 6= ∅ then

19 x← τ1
i

20 y ← mpwr(MPE , τ
2
i )

21 if y = ∅ then
22 x← x− τ1

i

23 else
24 y ← τ2

i

25 if τi is not allocated successfully then
26 return Unschedulable

27 return Allocation of ∀τi ∈ ΓE

79



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

maximum operational frequency (Property 2), we constrain the first subtask to the
EE core and allocate the second subtask to a PE core for ensuring the schedulability.
However, when we maximize the execution time of the first subtask on an EE core,
it might bring a negative effect on the second subtask. Maximizing the execution of
the first subtask will reduce the slack time for the second subtask, i.e.,D2

i −C2
i . As a

consequence, the reduced slack time leaves a little space to scale down the frequency
of the PE core which might compromise the energy saving from the EE core. Hence,
in order to provide an energy-efficient split, we set the following constraint for splitting
a NE-task on one EE core and one PE core.

C2
i

D2
i

≤ Ci
Ti

(5.6)

Constraint (5.6) can guarantee that after the split the slack ratio of the second subtask
is not smaller than before. Therefore, it would not require to run at a higher frequency.
If the task cannot be split on one EE core and one PE core, we integrally allocate NE-
task τi to one PE core. For the integral allocation, we try to allocate task τi to the PE
core given by function mpwr(). If task τi cannot be allocated to a PE core, then we
split it among two PE cores in order to ensure its schedulability.

Algorithm 7 presents the pseudo-code to allocate and split NE-tasks, where we
call this algorithm NEAS. The inputs for NEAS are all NE-tasks and the platform.
From Line 2-13, NEAS splits task τi among one EE core and one PE core. For this
combination NEAS selects the EE core with the smallest utilization and the PE core
given by function mpwr() to split task τi in order to save the energy consumption. At
Line 5-7 constraint (5.6) is checked. If the combination of one EE core and one PE
core fails to allocate task τi, then, from Line 14-17, NEAS tries to integrally allocate
task τi to one PE core which can schedule τi and has the minimum contribution to
the energy consumption. If it does not successfully allocate τi to one PE core, NEAS
splits τi among two PE cores from Line 18-24. In this case, it finds the PE core
with the largest utilization to schedule the first subtask τ1

i . Because τ1
i requires the

maximum frequency to guarantee the schedulability and the PE core with the largest
utilization should execute at a high frequency compared to others, allocating τ1

i to the
PE core would not increase the frequency too much which in turn does not lead to a
lot of extra energy consumption for the task allocated to the PE core. For τ2

i , we still
use function mpwr() to find the candidate core. If splitting among two PE cores fails,
NEAS returns a failure.

5.5.3 The SPLIT function

In this section, we present the SPLIT function used in EAS andNEAS discussed above.
Algorithm 8 presents the pseudo-code for SPLIT. The concept behind the SPLIT algo-

80



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Algorithm 7: NE-task Allocation and Split (NEAS)
Input: All NE-tasks ΓNE and the heterogeneous multicore platform

M = {MEE ,MPE}
Output: Allocation for all NE-tasks

1 for ∀τi ∈ ΓNE in order of decreasing U do
2 for ∀x ∈MEE in order of increasing U do
3 τ1

i ,τ2
i = SPLIT(τi, x)

4 if τ1
i 6= ∅ then

5 while C2
i

D2
i
> Ci

Ti
do

6 C1
i ← C1

i − 1
7 Recompute C2

i according to the new C1
i (see Section 5.2.4)

8 x← τ1
i

9 y ← mpwr(MPE , τ
2
i )

10 if y = ∅ then
11 x← x− τ1

i

12 else
13 y ← τ2

i

14 if τi is not allocated then
15 y ← mpwr(MPE , τ

2
i )

16 if y 6= ∅ then
17 y ← τi; break

18 for ∀pe ∈MPE in order of increasing U do
19 τ1

i ,τ2
i = SPLIT(τi, pe)

20 if τ1
i 6= ∅ then

21 x← τ1
i

22 y ← mpwr(MPE , τ
2
i )

23 if y = ∅ then
24 pe← pe− τ1

i

25 if τi is not allocated successfully then
26 return Unschedulable

27 return Allocation of ∀τi ∈ ΓNE

81



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Algorithm 8: SPLIT
Input: τi and one processor x
Output: subtasks τ1

i , τ
2
i

1 C1
i = D1

i = (0.999− Ux)Ti;
2 Compute subtask τ2

i according to the parameters of τ1
i (see Section 5.2.4)

3 while C2
i > Ti − C1

i and τi is a NE-task and x is an EE core do
4 C1

i ← C1
i − 1

5 Recompute C2
i according to the new C1

i (see Section 5.2.4)

6 Γx ← Γx + τ1
i ;

7 while True do
8 if C1

i < 1 then
9 return τ1

i = τ2
i = ∅

10 if QPA(Γx) reports unschedulable then
11 t←the failure point from QPA
12 while True do
13 I = (t− dbf(Γx − τ1

i , t))/b
t+Ti−(C1

i −1)
Ti

c
14 if I 6= C1

i then
15 C1

i = C1
i − 1

16 else
17 Break;

18 else
19 Compute parameters for subtask τ2

i (see Section 5.2.4)
20 return τ1

i , τ
2
i

82



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

rithm is based on the approach proposed in [BDWZ12] and the properties of the C=D
approach on heterogeneous multicore systems identified and discussed in Section 5.4.
The inputs for SPLIT are a task τi and a core x while the output is two subtasks τ1

i

and τ2
i . The objective of function SPLIT is to find the maximum WCET of τ1

i which
can satisfy the schedulability on core x. The procedure is as follows:

• Initialize the parameters of subtasks. For τ1
i let C1

i = D1
i = (0.999 − Ux)Ti

(Line 1) and configure subtask τ2
i according to subtask τ1

i (Line 2), as explained
in Section 5.2.4, where Ux denotes the total utilization of processor x;

• If τi is a NE-task and x is an EE core (Line 3-5), ensure valid split according
to Property 1;

• Use QPA [ZB09] to test whether subtask τ1
i can be allocated onto core x. If it

is schedulable, return the subtasks τ1
i and τ2

i (Line 10, 18-20);

• If QPA reports ‘unschedulable’, recompute the WCET for subtask τ1
i . In this

case, we use the recurrence approach from [BDWZ12] to make sure that

C1
i = (t− dbf(Γx − τ1

i , t))/b
t+ Ti − (C1

i − 1)

Ti
c (5.7)

where t is the failure point returned by QPA, i.e., the time instance dbf(Γx, t) >
t and dbf(Γx−τ1

i , t) represents the demand of tasks on core x excluding subtask
τ1
i . The recurrence equation in Equation (5.7) computes a maximum value for
C1
i such that dbf(Γx, t) ≤ t which ensures the schedulability of task set Γx at

time instant t. If Equation (5.7) is satisfied, the recurrence procedure stops and
returns C1

i for subtask τ1
i . Otherwise, it decrements C1

i by 1 and repeats the
previous procedure (Line 10-17);

• Return failure if it cannot split task τi on core x (Line 8-9).

Note that we use 0.999 instead of 1 to initialize a subtask at Line 1, because if using
1 would result in that QPA uses the hyper-period of all tasks as bound to test the
schedulability. Then, QPA would be very complex and time-consuming.

5.5.4 Computing the minimum frequency

We use VFS to scale down the frequency of each core so that the energy consumption
is further reduced. However, next to implicit deadline tasks (i.e., unsplit tasks), we
might have some subtasks obtained by splitting on some cores which are constrained
deadline tasks. In such case, we cannot simply use the utilization-based approach
[CK07] [BMAB16] to compute the minimum frequency. Hence, we integrate the

83



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Algorithm 9: Compute Minimum Frequency (CMF)
Input: core x and task set Γx
Output: the minimum operating frequency for core x

1 if x has a first subtask then
2 return fmax
3 else
4 Compute a minimum achievable frequency fcrit based on Ux
5 f ← {∀fi|fi ≥ fcrit} and sort f in order of increasing frequency
6 for ∀fi ∈ f, i = {1, 2, ..., k} do
7 if QPA(Γx, fi) reports schedulable then
8 return fi

9 return fmax

frequency into QPA [ZB09] to efficiently compute the minimum frequency for a core.

Algorithm 9 (CMF) presents the pseudo-code to compute the minimum opera-
tional frequency for each core. The inputs are one core x and a task set Γx which
includes all tasks allocated to core x. The output is the minimum operational fre-
quency for core x. If the core has first subtask τ1

i , its frequency will be set to the
maximum frequency according to Property 2 - see Line 1-2. Otherwise, we compute
a minimum operational frequency for the core from Line 4-8. First, we compute a
frequency called fcrit based on utilization Ux of core x [CK07]. Frequency fcrit can
be deemed as the lower bound of the operational frequency of core x. If the opera-
tional frequency is lower than fcrit, the system is not schedulable. Then, we select
all frequencies from the core’s frequency set which are greater than fcrit and let these
frequencies form a frequency set f sorted in order of increasing frequency - see Line
5. We start with the smallest frequency fi in frequency set f and use QPA to test
whether the task set is schedulable at this frequency - see Line 7. If it is schedulable,
CMF returns frequency fi as the operational frequency. Otherwise, we take frequency
fi+1 and use QPA to test whether the task set is schedulable at this frequency.

5.5.5 The ASHM Algorithm

Given all algorithms explained earlier, we present our complete Allocation and Split
algorithm ASHM using the pseudo-code in Algorithm 10. We first divide all tasks
into two task sets ΓE and ΓNE , one for all E-tasks ΓE and another for all NE-tasks
ΓNE . Then, we use EAS (Algorithm 6) to allocate all E-tasks - see Line 2. If all E-

84



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Algorithm 10: ASHM
Input: all tasks Γ and the platformM = {MEE ,MPE}
Output: the allocation for all tasks and the minimum operational frequency

for each core on the platform
1 ΓE ←all E-tasks, ΓNE ←all E-tasks
2 M ← EAS(ΓE ,M )
3 M ← NEAS(ΓNE ,M )
4 for ∀x ∈M do
5 fx ← CMF(x,Γx)

tasks are successfully allocated, we proceed to allocate all NE-tasks by using NEAS
(Algorithm 7) - see Line 3. Finally, we apply CMF (Algorithm 9) to compute the
minimum frequency for each core - see Line 4-5.

Complexity Analysis: In the worst case, EAS, NEAS, SPLIT and CMF are all
pseudo-polynomial algorithms due to QPA. Although QPA has shown its efficiency in
[ZB09], its complexity is still pseudo-polynomial in the worst case. This worst-case
scenario happens when the utilization U equals to 1. However, in function SPLIT,
we strive to avoid the worst-case scenario to occur by setting the utilization bound
as 0.999 - see Line 1 of Algorithm 8. Therefore, in practice, our algorithms can be
executed very efficiently.

5.6 Evaluation

In this section, we present extensive experimental results to show the effectiveness
of our ASHM algorithm in terms of energy consumption compared to two widely-
used bin-packing algorithms [CGJ97] and two existing related approaches [CKR14]
[ESAS14]. We do not compare with the algorithm proposed in Chapter 4, because
the approach proposed in Chapter 4 is very similar to [CKR14] when we consider the
per-core VFS system. We do not compare with [CST09], because they do not take
VFS into account. Therefore, our approach will always save more energy consump-
tion than [CST09]. Since the authors in [CKR14] have shown that their approach
outperforms the allocation approach proposed in [HTC07], we do not compare our
ASHM to [HTC07].

85



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

5.6.1 Experimental Setup

Task Generation

To evaluate the effectiveness of ASHM, we adopt the widely-used random task gener-
ator based on UUnifast-discard [DB11]. UUnifast-discard enables the generation of
unbiased task sets. It takes as inputs the number of tasks n and the total utilization U
and generates utilization ui for n tasks. The generation procedure is summarized as
follows:

• For each task, utilization ui is generated using UUnifast-discard;

• Period Ti is generated using a log-uniform distribution with a factor of 100
difference between the minimum and maximum possible task period. This
presents a range of task periods from 10ms to 1s in real-time applications [DB11]
[BDWZ12];

• CPEi is computed as CPEi = ui · Ti; and

• CEEi is computed as CEEi = CPEi · cei, where cei is selected from a uniform
random distribution in the range [1.8, 2.3] which represents the variance of the
execution time on different types of cores [Jef12].

Platforms

We have two types of cores (PE and EE) in the platforms and the core’s power param-
eters are shown in Table 5.1 taken from [LSCS15]. In this experiment, we evaluate
the effectiveness of our ASHM algorithm mainly on platforms with limited number
of resources because on a platform with more resources our approach will always per-
form good, especially with more EE cores. Therefore, we conduct experiments on the
following three limited platforms:

1. Platform 1: 2 PE cores and 2 EE cores

2. Platform 2: 2 PE cores and 3 EE cores

3. Platform 3: 3 PE cores and 2 EE cores

On the three platforms, we experiment with task sets with different U and a different
number of tasks.

86



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Comparison approaches

We compare our proposed ASHM algorithm with the following approaches in terms
of energy consumption:

• FFD: Allocate E-tasks and NE-tasks to EE cores and PE cores, respectively,
using FFD [CGJ97]. If E-tasks cannot be allocated to EE cores, then they are
allocated to PE cores using FFD;

• WFD: Similar to FFD, but instead of FFD we use WFD [CGJ97] to allocate
tasks;

• EFD: The allocation algorithm proposed in [ESAS14];

• m-pwr: The allocation algorithm proposed in [CKR14];

Comparison Metric

In the experimental results, we show the energy saving by using our ASHM compared
to the above four reference approaches. The energy saving is computed as follows:

Energy saving =
Eref − EASHM

Eref
· 100[%] (5.8)

where Eref is the energy consumption of one of the four approaches given above and
EASHM is the energy consumption of our proposed ASHM.

5.6.2 Experimental Results

All experimental results are plotted in Figure 5.1 to 5.6. For each point in the figures,
we generate 100 random task sets and compute an average energy saving. Note that
onlywhen all reference approaches can schedule the generated task set we compute the
energy saving using Equation (5.8). Our ASHM always can schedule more task sets
than the other approaches because ASHM uses task-splitting. Since the schedulability
advantage of the task-splitting approach has been reported in [BDWZ12], we do not
compare the number of schedulable task sets in this work.

Impact of the Utilization

In this experiment, we fix the number of tasks for different platforms and then vary the
total utilization to evaluate the effectiveness of ASHM. In order to have both NE-tasks
and E-tasks in the generated task set, the number of tasks is fixed to 7 for all platforms.
The results are plotted in Figure 5.1 to 5.3 where the y-axis is the energy saving com-
puted using Equation (5.8) and the x-axis is the variable utilization. We can see that

87



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

our ASHM outperforms all allocation approaches in terms of energy efficiency. From
the experimental results, we observe:

• The average energy saving byASHM decreases as the total utilization increases.
In the comparison betweenASHM andWFD, EFD andm-pwr, this trend is easy
to be observed although there is some variation due to the randomness of the
generated task sets. The reason is that when we increase the total utilization, the
slack space on the EE cores is reduced such that the task set cannot benefit from
our ASHM too much. However, for FFD in Platform 1 and 3, see Figure 5.1
and 5.3, the energy saving increases until a point and then gradually decreases.
The reason is that when we have task sets with a low utilization, FFD always
tries to use the smallest number of cores to schedule tasks which might cause
the PE cores to execute at a high frequency. The high frequency in turn leads
to high energy consumption.

• ASHM saves more energy consumption on a platform with more EE cores, see
Figure 5.2. The advantage of ASHM is to effectively utilize EE cores on the
platform to achieve energy efficiency. More EE cores provide more space to
split tasks and thus ASHM reduces more the energy consumption.

Impact of the Number of Tasks

In this experiment, we fix the utilization for different platforms and then vary the num-
ber of tasks to evaluate the effectiveness of ASHM. Since larger total utilization leads
to smaller number of schedulable task sets, we fix the utilization to 2 for all platforms
in order to compare our ASHM to the reference approaches on more schedulable task
sets. We ensure that the number of tasks is greater than the number of cores, so we
start with 4 tasks for Platform 1 and 5 tasks for Platform 2 and 3. The results are
plotted in Figure 5.4 to 5.6.

Compared to the well-performed allocation approaches WFD and m-pwr, we can
see that the energy saving is decreasing with the increasing number of tasks. The
reason is that when the number of tasks increases with a fixed utilization, the tasks
in the set become lighter, i.e., with a smaller utilization. Therefore, these tasks are
easy to be allocated among the cores and then EE cores might be completely fulfilled
or just have a little space for splitting of tasks. Therefore, ASHM cannot save too
much in this case. However, as can be seen in Figure 5.4 and 5.6, compared to FFD,
the energy saving by ASHM increases gradually. Since we have more tasks with a
low utilization, FFD might allocate all tasks onto one core which will execute at a
high frequency. However, since the dynamic power consumption still dominates the
total power consumption, executing on two PE cores with lower frequencies is more
energy-efficient than on one PE core with a high frequency.

88



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

 0

 5

 10

 15

 20

 25

 30

 35

 40

1.5 1.7 1.9 2.1 2.3 2.5 2.7

E
ne

rg
y 

Sa
vi

ng
 [

%
]

Utilization

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.1: Varying U on platform with 2 PE cores and 2 EE cores

 0

 10

 20

 30

 40

 50

 60

1.5 1.7 1.9 2.1 2.3 2.5 2.7

E
ne

rg
y 

Sa
vi

ng
 [

%
]

Utilization

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.2: Varying U on platform with 2 PE cores and 3 EE cores

 0

 5

 10

 15

 20

 25

 30

 35

 40

1.6 1.8 2 2.2 2.4 2.6 2.8 3.0

E
ne

rg
y 

Sa
vi

ng
 [

%
]

Utilization

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.3: Varying U on platform with 3 PE cores and 2 EE cores

89



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

 0

 5

 10

 15

 20

 25

 30

 35

 40

4 5 6 7 8 9 10

E
ne

rg
y 

Sa
vi

ng
 [

%
]

The number of tasks

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.4: Varying the number of tasks on platform with 2 PE cores and 2 EE cores

 0

 10

 20

 30

 40

 50

5 6 7 8 9 10

E
ne

rg
y 

Sa
vi

ng
 [

%
]

The number of tasks

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.5: Varying the number of tasks on platform with 2 PE cores and 3 EE cores

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 6 7 8 9 10

E
ne

rg
y 

Sa
vi

ng
 [

%
]

The number of tasks

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.6: Varying the number of tasks on platform with 3 PE cores and 2 EE cores

90



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

5.7 Discussion
ASHM shows it effectiveness on per-core VFS systems via the experimental results in
Section 5.6. We need to notice that a slight modification is capable of adaptingASHM
to cluster heterogeneous multicore systems as considered in Chapter 4, but we leave
this for the future work. On the other hand, since the HRT scheduling framework see
in Section 2.3 can convert CSDF graphs into periodic task sets which can be fed as the
input of the proposed ASHM, ASHM can also be applied by on a CSDF graph under
the HRT scheduling.

91



CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

92


