
Latency, energy, and schedulability of real-time embedded systems
Liu, D.; Liu D.

Citation
Liu, D. (2017, September 6). Latency, energy, and schedulability of real-time embedded
systems. Retrieved from https://hdl.handle.net/1887/54951

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/54951

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/54951

Cover Page

The handle http://hdl.handle.net/1887/54951 holds various files of this Leiden University
dissertation

Author: Liu, D.
Title: Latency, energy, and schedulability of real-time embedded systems
Issue Date: 2017-09-06

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/54951
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 4

Energy Optimization for
Real-Time Streaming Applications

Di Liu, Jelena Spasic, Gang Chen and Todor Stefanov,
"Energy-efficient mapping of real-time streaming applications on cluster heterogeneous MPSoCs,"
The 13th IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia),
Amsterdam, 2015, pp. 1-10.

With the increasing number of cores/processors fabricated on a chip, the strin-
gent area requirement hinders to implement the core’s frequency and voltage

regulator hardware by using the fine-grained per-core DVFS due to its high hardware
cost [HM07]. In order to balance the energy saving and hardware cost, cluster hetero-
geneous MPSoCs provide a promising solution. On cluster heterogeneous MPSoCs,
all processors on the same cluster operate at the same frequency and voltage level,
i.e., processors on the same cluster are managed by a single frequency and voltage
regulator. Although the cluster heterogeneous MPSoC systems have shown their en-
ergy efficiency in the state-of-the-art chips and commercial products, e.g., Samsung
Exynos 5422 [Sam16], Samsung Galaxy S7, Iphone 7 and 7Plus, etc., there has been
no sufficient effort by the design community to devise a systematic approach for map-
ping real-time streaming applications onto a cluster heterogeneous MPSoC. Thus,
motivated by this fact, in this chapter, we present our new algorithm to map streaming
applications onto a cluster heterogeneous MPSoC, where the streaming applications
are modeled as CSDF graphs and scheduled using the HRT scheduling framework
in Section 2.3. The proposed novel algorithm is called Frequency Driven Mapping
(FDM) and its main novelty is twofold:

1. By using the HRT scheduling framework for CSDF graphs, explained in Section
2.3, we propose an efficient way to determine a suitable processor type for each

41

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

actor/task in a CSDF graph, where the energy consumption is minimized and
throughput and latency constraints are met;

2. According to an initial mapping derived by the first-fit-decreasing (FFD) heuris-
tic and the properties of cluster MPSoCs, we remap some tasks to unused clus-
ters in order to further reduce the energy consumption by using VFS.

We have performed various experiments on real-life streaming applications. The
experimental results show that compared to the existing approaches in [CKR14] and
[KYD11], the proposed FDM algorithm can achieve more energy saving.

4.1 Related Work

The energy-efficient design issue has been addressed extensively in the past decade.
Voltage/frequency scaling (VFS) and dynamic power management (DPM) are the two
major techniques used to achieve energy efficiency. In particular, in real-time systems,
a considerable amount of work has been done to deploy VFS to schedule real-time
tasks in an energy-efficient way. [CK07] surveys most of the papers dealing with
energy efficient scheduling of real-time tasks by using VFS. All papers reported in
[CK07] assume per-core VFS platforms. Regardless of the properties of cluster MP-
SoCs, directly adopting these per-core VFS approaches onto cluster MPSoCs may
lead to an energy inefficient design/mapping [KYD11]. In contrast, the algorithm
proposed in this chapter is specifically devised for cluster heterogeneous MPSoCs and
effectively deals with the mapping problem on the cluster heterogeneous MPSoCs in
terms of energy efficiency.

Although the works in [CKR14] and [KYD11] have addressed real-time taskmap-
ping on cluster-based MPSoC systems, they are different from our work in several
aspects. The differences are summarized in Table 4.1. First, [CKR14] and [KYD11]
only consider tomeet deadlines for each task, but do not consider the applications’ per-
formance constraints, e.g., throughput and latency, which streaming applications usu-
ally are subject to. Applying their techniques directly onto the considered streaming
applications will not guarantee the performance constraints, i.e., throughput and la-
tency. Second, they consider partitioned scheduling in their work, whereas motivated
by the state-of-the-art hardware, i.e., ARM big.LITTLE heterogeneous MPSoCs, we
consider a cluster scheduling which provides a good trade-off between global schedul-
ing and partitioned scheduling with respect to schedulability and scalability [BBA10].
Thus, the cluster scheduling can achieve a better system utilization than partitioned
scheduling. Finally, the work in [KYD11] only considers homogeneous MPSoCs,
whereas we consider heterogeneous MPSoCs which provide better energy efficiency.

42

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

heterogeneous performance scheduling

Colin et al. [CKR14] Yes No Partitioned
Kong et al. [KYD11] No No Partitioned
Our FDM approach Yes Yes Cluster

Table 4.1: The difference from [KYD11] and [CKR14]

Some works have been done to reduce the energy consumption of streaming ap-
plications onMPSoCs [SDK13], [XMM07], [WLL+11] and [CHBK13], where some
performance metrics are taken into account. The works in [SDK13], [XMM07],
[WLL+11] and [CHBK13] use per-core VFS on homogeneous MPSoCs to reduce
the energy consumption. In contrast, we consider cluster heterogeneous MPSoCs in
our work. Heterogeneous MPSoCs are known to be more energy efficient than ho-
mogeneous MPSoCs [KFJ+03]. Since finding a suitable type of processor for each
actor/task is really important with respect to energy reduction and guaranteed per-
formance, mapping tasks to heterogeneous MPSoCs is a more challenging job than
mapping tasks to homogeneous MPSoCs. Moreover, adopting the per-core VFS ap-
proaches without considering the properties of cluster MPSoCs may result in an en-
ergy inefficient mapping [KYD11].

4.2 Background

In this section, we elaborate the system model and present the power/energy model
considered throughout this chapter.

4.2.1 System Model

We consider a cluster heterogeneous MPSoC which has two types of clusters, namely
performance-efficient (PE) clusters and energy-efficient (EE) clusters, which refer to
the ARM’s big.LITTLE architecture [ARM16]. Each cluster has a number of identi-
cal processors, PE processor or EE processor. In total, the cluster heterogeneous MP-
SoC consists of NPE

c ×MPE
p PE processors andMEE

c ×MEE
p EE processors, where

NPE
c andMPE

p represent the total number of PE clusters and the number of processors
per PE cluster, respectively. MEE

c and MEE
p are the total number of EE clusters and

the number of processors per EE cluster, respectively. Figure 4.1 shows an example of
a cluster heterogeneous MPSoC, where there are two PE clusters and two EE clusters,
each cluster with four identical processors. The processors within one cluster share
some resources, e.g, the last level cache, the memory controller, etc. A cluster in the
system can be switched off, thereby consuming no power. In this chapter, we only con-
sider symmetric clusters, i.e., all clusters have the same number of processors, but our

43

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Figure 4.1: An example of a cluster heterogeneous MPSoC

approach can be easily adapted to asymmetric clusters. Since application tasks/actors
may run on different processor types, theWCETCi of a task/actor varies according to
the performance of the assigned processor type. Hence, we first extend the task model
described in Section 2.3 to support this WCET variation due to the heterogeneity of
the systems. We replace the scalar Ci with a vector ~Ci which consists of two WCETs,
CEE
i and CPE

i , corresponding to the WCET of a task running on an EE processor and
on a PE processor, respectively. CEE

i andCPE
i are theWCETswhen EE and PE proces-

sors run at their maximum operating frequencies supported by the hardware platform.
A real-time task τi then is specified by a tuple of τi = {Si, Di, Ti, C

EE
i , CPE

i }.
As we mentioned in Section 4.1, we adopt cluster scheduling in this chapter. With

cluster scheduling, we compute the minimum voltage/frequency level offline and con-
figure the cluster with the computed voltage/frequency level. On each cluster, an opti-
mal global scheduling algorithm, e.g., PFair [AS00] or LLREF [CRJ06], is deployed
to schedule actors. A periodic taskset is schedulable on a homogeneous multiproces-
sor system by an optimal global scheduling algorithm, if U =

∑
∀τi∈ΓCi/Ti ≤ M

[BCPV93a], whereU is the total utilization of the taskset andM is the number of pro-
cessors. Since in our work we consider an optimal global scheduling algorithm for

44

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

each cluster, tasks mapped onto a PE cluster are schedulable if UPEk ≤ MPE
p , while

tasks mapped onto an EE cluster are schedulable if UEEj ≤MEE
p . UPEk and UEEj are

the utilization of PE cluster k and EE cluster j, respectively. They are computed by
the following equations:

UEE
j =

∑
∀τi∈AEE

j

CEE
i

T̆i
, UPE

k =
∑
∀τi∈APE

k

CPE
i

T̆i
(4.1)

whereAEE
j andAPE

k represent the set of actors assigned to EE cluster j and PE cluster
k, respectively.

4.2.2 Energy Model

In this chapter, we use real measurements from the ODROID XU-3 [ODR16] board
to build our power and energy models. The ODROID XU-3 has an Exynos 5422 chip
[Sam16], where there are two clusters on the chip, one quad core Cortex A15 (big)
and one quad core Cortex A7 (LITTLE). The power consumption of a cluster consists
of two parts, ‘processor’ and ’uncore’ [GBK+12]. The ’processor’ power consump-
tion is power dissipated by the processors, while the ’uncore’ power consumption is
the power consumption from some components not pertaining to a processor, e.g., a
shared cache, an integrated memory controller, etc. The ‘uncore’ power consumption
of the ODROID XU-3 is shown in Table 4.2, where the ‘uncore’ power consumption
for the PE (big) cluster and EE (LITTLE) cluster, at different operating frequencies,
are given. We can see that for the PE (big) cluster the ‘uncore’ power consumption
P PE
s (f) scales along with the cluster operating frequency. We find that the ‘uncore’

power consumption P PE
s (f) contributes approximately 20% to the total power con-

sumption of the big cluster. For the EE (LITTLE) cluster, with the on-chip power
sensor, we can not see the variation of the ’uncore’ power consumption P EE

s (f) at dif-
ferent frequency levels. Hence, in Table 4.2, the ‘uncore’ power consumption P EE

s (f)
is the same for each frequency level. Note that since one core on the LITTLE cluster
has to be active for the operating system, we are not able to measure the pure ‘uncore’
power consumption P EE

s (f) for the LITTLE cluster. The values of P EE
s (f) given in

Table 4.2 include some power consumption from the active core running the OS.
Although the ‘uncore’ power consumption may be related to the frequency as

shown in Table 4.2, it is different from the dynamic power consumption which also
relates to the frequency. Dynamic power is only consumed when there is a workload
on the processors, whereas the ‘uncore’ power consumption always exists as long as
the cluster is on. Based on the above discussion, we use the following power model
for each cluster,

P (f) = αf b +Mpβ + Ps(f) (4.2)

45

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

f (GHz) 2 1.8 1.6 1.4 1.2 1 0.8
P PE
s (f) (W) 0.8 0.528 0.39 0.309 0.244 0.182 0.134

f (GHz) 1.4 1.2 1 0.8 0.6 0.4 0.2
P EE
s (f) (W) 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Table 4.2: The ’uncore’ power consumption

where the first term is the dynamic power consumption, β is the static power con-
sumption of one processor andMp is the number of processors on the cluster. Ps(f)
is the ’uncore’ power consumption and f is the frequency level. In this chapter, we use
power parameters from ODROID XU-3 as our reference, so parameters α, b, and β
are estimated by using curve fitting with real power measurements from the ODROID
XU-3 board. The estimated parameters for each processor type are shown in Table
4.3.

processor type α (W/MHzb) b β (W)

PE (big) 3.03× 10−9 2.621 0.155
EE (LITTLE) 2.62× 10−9 2.12 0.0278

Table 4.3: The estimated parameters

To validate our power model, described above, we measure the power consump-
tion from the board and compare it with the estimations obtained from our model.
We keep one core on and run a computation-intensive job on the core. Then, we mea-
sure the power consumption at different frequency levels for each cluster through the
on-chip power sensors. Figure 4.2 plots two curves for the PE (big) cluster, one for
the measured power consumption and another for the estimated power consumption,
while Figure 4.3 plots two curves for the EE (LITTLE) cluster, one for the measured
power consumption and another for the estimated power consumption. In the two fig-
ures, the y-axis shows the power consumption, while the x-axis shows the different
operating frequency levels. From the figures, we can see that the estimated curves are
close to the measured curves, so our power model is sufficiently accurate.

To compute the total system energy consumption, we need to introduce the con-
cept of a hyper-period (hp),

hp = lcm(T̆1, T̆2, , . . . , T̆i) (4.3)

where the lcm is the least common multiple and T̆1, T̆2, . . . , T̆i are the minimum
periods of application actors/tasks computed using Equation (2.8). For periodic tasks,

46

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

 0

 500

 1000

 1500

 2000

 2500

 3000

800
1000

1200
1400

1600
1800

2000

Po
w

er
 (

m
W

)

Frequency (MHz)

Big_Measurement
Big_Estimation

Figure 4.2: Power model validation of PE (big) cluster

every hyper-period has the same workload, i.e, all tasks will execute for a certain
number of times. Hence, with the definition of the hyper-period, we can build the
energy model of an MPSoC within one hyper-period as follows:

E = Es + Ed (4.4)

where Es is the total static energy consumption and the total ‘uncore’ energy con-
sumption which is computed as:

Es = hp
(MEE

ac∑
j=1

Ps
EE(fj) +

MPE
ac∑

k=1

P PE
s (fk) +MEE

ac M
EE
p βEE +MPE

ac M
PE
p βPE

)
(4.5)

MEE
ac is the number of active EE clusters andMPE

ac denotes the number of active PE
clusters. MPE

p andMEE
p denote the number of processor per PE cluster and EE cluster,

respectively. fj and fk are the operating frequency levels for the corresponding EE
cluster and PE cluster, respectively. βEE and βPE are the power parameters shown in
the last column of Table 4.3.

47

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

 68

 70

 72

 74

 76

 78

 80

 82

200
400

600
800

1000
1200

1400

Po
w

er
 (

m
W

)

Frequency (MHz)

Little_measurement
Little_estimation

Figure 4.3: Power model validation of EE (LITTLE) cluster

The total dynamic energy consumption Ed in Equation (4.4) is computed as:

Ed = hp
(MEE

ac∑
j=1

∑
∀τi∈AEE

j

CEE
i

Ti
αEEf bEEj

fmax
j

fj
+

MPE
ac∑

k=1

∑
∀τi∈APE

k

CPE
i

Ti
αPEf bPEk

fmax
k

fk

)

= hp

MEE
ac∑

j=1

UEE
j αEEf

(bEE−1)
j fmax

j + hp

MPE
ac∑

k=1

UPE
k αPEf

(bPE−1)
k fmax

k

(4.6)

where fj and fk are the operating frequencies of the corresponding EE cluster and PE
cluster, respectively. Correspondingly, fmax

j and fmax
k are the maximum operating

frequencies of the EE and PE cluster, respectively. αEE, bEE, αPE and bPE are the
estimated power parameters for an EE cluster and a PE cluster, shown in Table 4.3.

4.3 Proposed Mapping Algorithm

In this section, we present our mapping algorithm, called Frequency Driven Map-
ping (FDM), which is able to energy-efficiently map real-time streaming applications,
modeled as CSDF graphs, to cluster heterogeneous MPSoCs while guaranteeing the

48

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

vld iq idct mce1 e3 e4

[594] [1] [1] [1] [1] [594]

Figure 4.4: H.263 Decoder

throughput and latency constraints. The complete FDM algorithm is given in Algo-
rithm 5 in Section 4.3.4. Before we explain FDM in details, we would like to introduce
the three foundations of FDM which are described in Section 4.3.1, 4.3.2, 4.3.36.

4.3.1 Processor Type Assignment

In a heterogeneous MPSoC, choosing the type of processor for each task in an ap-
plication is crucial. To support this statement, we show an example with a real-life
streaming application, H.263 decoder, which is modeled as an SDF graph which is a
subset of CSDF. Hence, the HRT scheduling explained in Section 2.3 is applicable to
the SDF. The SDF-modeled H.263 decoder consists of 4 tasks/actors and 3 edges, as
shown in Figure 4.4. The parameters of each actor in the H.263 decoder are shown in
Table 4.4, where CPE

i and CEE
i denote the WCETs in clock cycles (cc) of the actor on

the PE cluster and EE cluster, respectively. qi is the repetition value which is used to
compute the workload explained in Definition 2.3.1.

CPE
i (cc) CEE

i (cc) qi

vld 26018 52036 1
iq 559 1118 594
idct 500 1000 594
mc 10958 21916 1

Table 4.4: The parameters of H.263

In Table 4.5, different processor type assignments for all actors are presented.
Column 1 shows the number identifying processor type assignments, and column 2 to
5 show which type of processor each actor is assigned to where we highlight the EE
processor type. The last two columns show the latency and the throughput of these
processor type assignments, which are computed by using Equation (2.11) and Equa-
tion (2.12) and the parameters in Table 4.4. In these two columns, we highlight the
values which satisfy the latency and throughput constraints. Intuitively, we want to
have more actors running on EE processors as long as the latency and throughput con-
straints are met. According to the figures in Table 4.5, we can see that an inappropriate
processor type assignment significantly degrades the system performance and violates

49

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Processor Type Assignment L R(token/
vld iq idct mc (cycles) cycles)

1 EE PE PE PE 996697 1/332046
2 PE EE PE PE 1993394 1/664092
3 PE PE EE PE 1783000 1/594000
4 PE PE PE EE 996697 1/332046
5 EE PE PE EE 996697 1/332046

Table 4.5: Different processor type assignments for the H.263 decoder

the constraints. Looking at processor type assignments 2 and 3, assigning either task
iq or idct to the EE type of processor leads to a violation of the performance con-
straints. On the other hands, processor type assignment 5 assigns both tasks vld and
mc to the EE type of processor while the performance constraints are met. Thus, de-
termining a good processor type assignment is essential for heterogeneous MPSoCs.

From the example given above, in order to efficiently assign actors to proces-
sor types, it is important to identify those tasks which will violate the performance
constraints if assigning them to the EE type of processor. By considering the charac-
teristics of the HRT scheduling of CSDF, we propose an efficient way to split tasks
into two categories, bottleneck and non-bottleneck tasks. The bottleneck actors/tasks
should be assigned to PE processors in order to guarantee the performance, while
the non-bottleneck actors/tasks can be assigned to EE processors for the purpose of
energy saving. We introduce the following proposition:

Proposition 1. For a CSDF graph scheduled using hard-real-time scheduling, in-
creasing WCET Ci of task τi will not increase the latency and reduce the throughput,
if the maximum workload Ŵ remains the same.

Proof. By looking at Equation (2.11), we can see that the latency is only determined
by the start times and periods of the input and output actors. On the one hand, from
Equation (2.8), it is not difficult to see that Ŵ is the variable part to compute period T̆i,
because qi and lcm(−→q) are both constants. Hence, as long as the maximumworkload
Ŵ does not increase, increasing other actors’ WCETs will not change any actor’s
period. As a result, the throughput will not be reduced. On the other hand, start time
Si depends on the data-dependency and the deadlines of precedent actors. The data-
dependency will not change in any case, whileDi = T̆i and period T̆i does not change.
Hence, Si remains the same as well. As a result, the latency does not increase.

It follows from Proposition 1 that some actors in the graph can execute slowly,
while not degrading the application performance. Thus, Proposition 1 can help us to

50

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Algorithm 2: Processor Type Assignment
Input: G = (A, E)
Output: AEE and APE

1 A← Sort ∀τi ∈ A in increasing order ofW EE
i of τi

2 b← Binary search to find the position in A with the biggest index , where
actor τi can meetW EE

i ≤ Ŵ PE.
3 AEE ← A[0 : b]
4 APE ← A−AEE

5 return AEE and APE

classify the actors into the two categories mentioned above. If an actor is assumed
to be executed on an EE processor (longer WCET) and its new workload Wi does
not change the maximum workload Ŵ , then it is a non-bottleneck actor and can be
assigned to an EE cluster without degrading the application performance. Otherwise,
the actor should be assigned to a PE cluster in order to guarantee the performance.
We look back at the example of the H.263 decoder. From Table 4.5, since executing
vld and mc on the EE type of processor does not lead to an increase of Ŵ , this as-
signment does not violate the performance constraints. Therefore, we can use Ŵ PE

as a threshold to determine which type of processor an actor should be run on, where
Ŵ PE is themaximum actor workload assuming that all actors run on PE processors.
Algorithm 2 presents a pseudo-code showing how to classify the actors, where AEE

and APE denote the set of actors assigned to EE type and PE type of processors, re-
spectively. To reduce the complexity of the processor type assignment, first we sort
the actors in order of increasing workload assuming all of them are assigned to EE
processors - see Line 1 in Algorithm 2. Then, with the sorted actors, we use Ŵ PE as a
threshold and deploy a binary search algorithm to find the pivotal point by which we
can split the sorted actors into two sets, one for the EE type of processor and another
for the PE type of processor. Since it is impossible to guarantee that the binary search
can always find one actor whoseW EE

i is equal to Ŵ PE, we pick up the one with the
biggest index as the pivotal point, where the condition W EE

i ≤ Ŵ PE is met. Since
the sorting algorithm has a complexity of O(|A| log |A|) and the complexity of the
binary search is O(log |A|), the complexity of Algorithm 2 is O(|A| log |A|).

The processor type assignment can: (1) assign actors of an application CSDF
graph to two different types of processors and (2) allow to initially decide whether
the system has enough resources to schedule this application. Suppose that UEE and
UPE are the total utilization of AEE and APE returned by Algorithm 2, respectively. If
UEE > MEE

c ×MEE
p , the tasks from AEE are not schedulable on EE clusters. If tasks

on the EE clusters are not schedulable, we can move some of them to PE clusters such

51

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

PE Clusters Actor Mapping Energy Consumption
vld iq idct mc (µJ)

WFD 2 PE1 PE2 PE1 PE1 1378
FFD 1 PE1 PE1 PE1 PE1 1226

Table 4.6: Different mappings for H.263 decoder

that the tasks can run on the system. Based on Proposition 1, it is trivial to observe
that reassigning some of the tasks in set AEE to set APE, i.e., assigning these tasks to
the PE type of cluster, is still able to guarantee the performance constraints. However,
if tasks on the PE clusters are not schedulable, i.e., UPE > MPE

c ×MPE
p , that means

that with the throughput and latency constraints the application is not schedulable on
the system.

4.3.2 Task mapping

When the processor type assignment is determined as described in Section 4.3.1, tasks
need to be mapped onto clusters. The task mapping is analogous to a bin-packing
problem which is known to be an NP-hard problem [GJ79]. Several well-known
heuristic algorithms for the bin-packing problem, e.g., first-fit, best-fit, etc, have been
proposed see Section 2.2.3. In terms of energy efficiency, the worst-fit-decreasing
(WFD) algorithm is evaluated as the best mapping heuristic [AY03] for the parti-
tioned scheduling. [KYD11] also uses an WFD-like approach. However, by using the
following example, we will show that WFD does not work very well in the context of
a cluster MPSoC with cluster scheduling.

Here, we use a cluster homogeneous MPSoC to illustrate this problem, where the
homogeneousMPSoC has two PE clusters, eachwith four identical PE processors. Ta-
ble 4.6 shows twomappings for the H.263 decoder in Figure 4.4 by using two different
mapping algorithms, worst-fit-decreasing (WFD) and first-fit-decreasing (FFD). The
mapping derived byWFD consumes more energy than the mapping obtained by FFD.
The reason is that WFD tries to distribute the heavy tasks to different clusters, where
these heavy tasks have large utilization and need a high operating frequency in order
to meet their deadlines. In the context of a cluster MPSoC, these heavy tasks constrain
the minimum operating frequency of the cluster. On the contrary, FFD always strives
to find the first available cluster to map, where this strategy is more likely to map the
heavy tasks with the same or close utilization to the same cluster. Then, the system
can efficientlly utilize cluster VFS to reduce the energy consumption. Hence, in our
approach we use FFD to map tasks to clusters in order to obtain an initial mapping.
Given this initial mapping from FFD, we can compute the minimum operating fre-
quency of a cluster. However, the frequency of a cluster is not only determined by

52

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

the task with the largest utilization, but also the total utilization of the tasks has to be
taken into account. The following example shows the effect of the total utilization.
Example 4.3.1. Consider a cluster with two processors and three tasks with utiliza-
tion {0.5, 0.5, 0.5}. The three tasks can be mapped to the cluster because the total
utilization of the tasks is 0.5 + 0.5 + 0.5 < 2. The frequency of this cluster however
can not be set according to the task’s maximum utilization which is 0.5, because the
total utilization is 1.5 and the utilization bound (the number of processor) is 2. If the
frequency is scaled with 0.5, then the total utilization of this task set becomes 1.5

0.5 > 2
which means the task set is not schedulable on the cluster.

Considering the example above, the frequency of a cluster should be computed as
follows:

fj = max

(
max
∀τi∈Aj

{ui},
Uj
Mp

)
× fmax (4.7)

where ui is the utilization of task τi ∈ Aj and Aj is the set of tasks mapped to cluster
j. fmax is the maximum frequency of the type of processor used in the cluster. Uj is
the total utilization of Aj andMp is the number of processors in the cluster. Usually,
a cluster only supports a set of finite discrete frequency levels. Hence, we select the
minimum frequency from the frequency set which is greater than or equal to frequency
fj in Equation (4.7).

With Equation (4.7), we classify the clusters into two categories, namely U-cluster
and T-cluster, which later will be used in our remapping phase described in Section
4.3.3.

Definition 4.3.1. An U-cluster is a cluster where max
∀τi∈Aj

{ui} < Uj

Mp
.

U-cluster means that the operating frequency of the cluster is determined by the
total utilization.

Definition 4.3.2. A T-cluster is a cluster where max
∀τi∈Aj

{ui} ≥ Uj

Mp
.

T-cluster means that the operating frequency of the cluster is determined by the
task which has the largest utilization. Hence, we call such task a constrained task.

Definition 4.3.3. In a T-cluster, a constrained task is the task which has the largest
utilization.

4.3.3 Remapping

The FFD algorithm mentioned in Section 4.3.2 enables to quickly map tasks to clus-
ters. On a given MPSoC platform, FFD might just use a few clusters to run the ap-
plication tasks and leave the rest of the available clusters unused. This would lead to

53

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

a few used clusters with high utilization whose frequency can not be scaled down by
using VFS. Hence, based on the FFD mapping, we propose a remapping approach to
explore the possibility to energy-efficiently utilize the unused clusters on the system
such that we can balance or offload the workload of some clusters to the unused clus-
ters in order to further scale down the clusters’ operating frequencies to reduce the
total system energy consumption.

Our remapping approach is based on analysis for the U-cluster and T-cluster cate-
gories introduced and defined in Section 4.3.2. Below, we discuss how to remap tasks
for both categories of clusters in order to reduce the energy consumption.

U-cluster

According to Definition 4.3.1, in an U-cluster, the frequency of the cluster is deter-
mined by the total utilization. Hence, we strive to remap some tasks to an unused
cluster to reduce the total utilization, which in turn allows to scale down the frequency
further. In order to minimize the energy consumption, we need to find howmany tasks
should be remapped and what the optimal frequencies are for the initial cluster and
the new cluster to be used.

Consider that we have an initial U-cluster onto which a task set with utilization U
is mapped. We split the task set into two subsets, one with utilization U1 and another
with U2. We remap the task set with U2 to an unused cluster, and keep the task set
with U1 on the initial cluster. Then the energy consumption of the new mapping can
be computed as follows:

E = hp
(
U1αf

(b−1)
1 fmax

1 +Mpβ+Ps(f1)+U2αf
(b−1)
2 fmax

2 +Mpβ+Ps(f2)
)
(4.8)

where f1 is the operating frequency of the initial cluster, and f2 is the operating fre-
quency of the new cluster. In Equation (4.8), there are four variables, U1, U2, f1, and
f2. Since frequencies f1 and f2 depend on U1 and U2, respectively, and U1 is related
to U2, these interrelationship between them makes it difficult to find optimal values
for all variables in order to minimize Equation (4.8). Hence, with the consideration
of simplifying the procedure, we use a load balancing approach to split tasks on an
U-cluster into two tasksets. The split tasksets have close total utilizations. Algorithm
3 presents the pseudo-code of splitting the tasks for an U-cluster. We first sort tasks
in order of decreasing utilization. Then, we assign the tasks one by one to the taskset
Γ2. As soon as the utilization U2 of Γ2 is greater than or equal to the utilization U1

of Γ1, the algorithm terminates and returns Γ1 and Γ2. Due to the sorting algorithm
used in Line 1, the complexity of Algorithm 3 is O(|Γ| log(|Γ|)).

The remapping will switch on a new cluster, so the remapping should provide
enough energy reduction to compensate the static and ‘uncore’ power consumption
of the new cluster. In order to test whether it is worthwhile remapping tasks to an

54

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Algorithm 3: Split tasks for U cluster
Input: A task set Γ
Output: two tasksets Γ1 and Γ2

1 Sort tasks in Γ in order of decreasing utilization;
2 Γ1 ← Γ, Γ2 ← ∅;
3 for i = 1 to |Γ| do
4 if U2 ≤ U1 then
5 Γ1 ← Γ1 − τi;
6 Γ2 ← Γ2 + τi;

7 else
8 Break;

9 return Γ1 and Γ2;

unused cluster, we provide the following proposition to validate the efficiency of the
remapping.

Proposition 2. Given a taskset Γ and its subsets Γ1 and Γ2, their utilizations are U ,
U1, andU2, respectively, whereU1+U2 = U , and taskset Γ is assigned to one cluster.
The cluster is an U-cluster. Then, moving taskset Γ2 to an unused cluster can reduce
the energy consumption, if the following condition is met:(

U1α(f (b−1) − f (b−1)
1) + U2α(f (b−1) − f (b−1)

2)

)
fmax

>Ps(f1) + Ps(f2) +Mpβ − Ps(f)

(4.9)

where f is the operating frequency of the initial cluster before remapping, and f1

and f2 are the operating frequencies of the initial cluster and the new cluster after
remapping, respectively. fmax is the maximum operating frequency of the cluster.1

Proof. Before the remapping, the energy consumption of the initial cluster is as fol-
lows:

E = hp
(
Uαf (b−1)fmax +Mpβ + Ps(f)

)
(4.10)

After the remapping, the energy consumption of the two clusters is:

En = hp
(
U1αf

(b−1)
1 fmax +Mpβ + Ps(f1) + U2αf

(b−1)
2 fmax +Mpβ + Ps(f2)

)
(4.11)

1Since we only do remapping on the same type of cluster, the maximum operating frequency is the
same.

55

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

To guarantee that the remapping leads to less energy consumption, we need the fol-
lowing inequality satisfied:

E > En

Since we consider symmetric clusters, by substituting Equation (4.10) and (4.11) in
the inequality and eliminating the same terms on both sides, we obtain the following
condition: (

U1α(f (b−1) − f (b−1)
1) + U2α(f (b−1) − f (b−1)

2)

)
fmax

>Ps(f1) + Ps(f2) +Mpβ − Ps(f)

(4.12)

T-cluster

According to Definition 4.3.2, in a T-cluster, the frequency of the cluster is determined
by the constrained task (Definition 4.3.3). However, within one cluster, the FFD
discussed in Section 4.3.2 might map some other tasks which have lower utilization
and could operate at a lower frequency. In this case, remapping these tasks to an
unused cluster operated at a lower frequency may result in an overall reduced energy
consumption.

Example 4.3.2. Given two clusters with two processors each and a task set with three
tasks where the utilizations are {0.9, 0.3, 0.3}, the FFD maps all tasks to one cluster,
and the cluster is a T-cluster. The frequency is determined by the task with utilization
0.9. However, if we map the two tasks with utilization 0.3 to the unused cluster, the
frequency of the initial cluster is not changed, but the new cluster operates at a lower
frequency which can significantly reduce the overall energy consumption.

Example 4.3.2 illustrates howwe can remap tasks of a T-cluster. We find the actors
which can run at a frequency lower than the current cluster frequency and remap them
to an unused cluster. Algorithm 4 presents the pseudo-code of splitting tasks of a T-
cluster. The complexity of Algorithm 4 is O(|Γ| log |Γ|) due to the sorting algorithm
used in Line 1. The remapping will need more static power consumption and ‘uncore’
power consumption due to the new cluster switched on. Thus, the efficiency of the
remapping should be verified. The following proposition presents an efficient way to
check this.

Proposition 3. Given a taskset Γ and its subsets Γ1 and Γ2, their utilizations are U ,
U1, and U2 respectively, where U = U1 +U2, and taskset Γ is assigned to one cluster.
The cluster is a T-cluster and the constrained actor is in subset Γ2. Then, moving

56

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Algorithm 4: Split tasks for T-cluster
Input: A task set Γ
Output: two tasksets Γ1 and Γ2

1 Sort tasks in Γ in order of decreasing utilization;
2 Γ1 ← ∅, Γ2 ← ∅;
3 for i = 1 to |Γ| do
4 if τi can run at a lower frequency then
5 for j = i to |Γ| do
6 Γ1 ← Γ1 + τj ;

7 Γ2 ← Γ− Γ1;
8 Break;

9 return Γ1 and Γ2;

taskset Γ1 to an unused cluster can reduce the energy consumption, if the following
condition is met:

U1 · α · f (b−1)fmax > U1 · α · f (b−1)
1 fmax +Mpβ + Ps(f1) (4.13)

where f and f1 are the operating frequencies of the initial and new cluster, respec-
tively. fmax is the maximum operating frequency of the cluster. 2

Proof. Assume that taskset Γ is assigned to one cluster and its operating frequency
is f . Before the remapping, the energy consumption of the initial cluster can be com-
puted as follows:

E = hp
(
U · α · f (b−1)fmax +Mpβ + Ps(f)

)
(4.14)

If taskset Γ1 which is a subset of Γ is remapped to an unused cluster, the operating fre-
quency of the new cluster is f1. Since the constrained task is in taskset Γ2 and taskset
Γ2 remains on the initial cluster, the frequency of the initial cluster does not change.
After the remapping, the energy consumption of the two clusters is the following:

En = hp
(
U2 ·α ·f (b−1)fmax +Mpβ+Ps(f)+U1 ·α ·f (b−1)

1 fmax +Mpβ+Ps(f1)
)

(4.15)
The assignment with two clusters is more energy-efficient, if E > En. Since U =
U1 + U2, we replace U2 with U − U1 in Equation (4.15). By substituting Equation
(4.14) and (4.15) and eliminating the same terms on both sides of inequalityE > En,
we obtain:

U1 · α · f (b−1)fmax > U1 · α · f (b−1)
1 fmax +Mpβ + Ps(f1) (4.16)

2Same type of clusters has the same maximum operating frequency.

57

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

4.3.4 The FDM Algorithm

In this section, we present our overall mapping algorithm, called Frequency Driven
Mapping (FDM). The inputs to FDM are a CSDF graph G = (A, E) and a cluster
heterogeneous MPSoC, and the outputs are the task mapping to clusters and the min-
imum operating frequency for each cluster which is active. Algorithm 5 shows the
pseudo-code of FDM. In Line 1, FDM applies Algorithm 2 explained in Section 4.3.1
to split tasks into two sets APE and AEE which denote set of the tasks assigned to
PE type and EE type of processors, respectively. In Algorithm 2, the processor type
assignment completes the assignment procedure with the guarantees of meeting the
performance constraints. Hence, if the task setsAEE andAPE derived by Algorithm 2
are schedulable on the given MPSoC, the throughput and latency constraints are met
for the application. From Line 2 to 5, we check whether the input MPSoC has enough
resources to schedule the real-time streaming application. If there is no enough EE
type of processors, we select some tasks from set AEE and assign them to set APE

such that we have enough EE processors to schedule the tasks in set AEE. The tasks
are selected in order of decreasing utilization, and the selection is terminated as soon
as the tasks in set AEE are schedulable on the EE processors. However, if there is
no enough PE type of processors, this means the application is not schedulable on
the input MPSoC. The algorithm terminates and signals failure at Line 5. After this
schedulability check, we use the FFD heuristic discussed in Section 4.3.2 on PE clus-
ters and EE clusters to map tasks to clusters in Line 6. After this phase, we obtain the
initial mapping and the corresponding set of active clusters, i.e., Φac shown in Line
6. An element in set Φac is a cluster which includes the tasks mapped to the cluster
and the operating frequency of the cluster computed by Equation (4.7).

With the obtained initial mapping, a remapping procedure starts from Line 7. In
this procedure, we go through every cluster in set Φac to check what category the
cluster falls into, U-cluster or T-cluster. From Line 8 to 14, we do remapping for an
U-cluster. At Line 8 and 9, if a cluster is an U-cluster of type EE or PE and there
is an unused cluster of the same type available (PE or EE), we split the tasks into
two sets by using Algorithm 3 and we use Proposition 2 to validate the remapping
in Line 10. If the remapping leads to energy reduction, we complete the remapping.
Otherwise, the mapping remains unchanged. From Line 15 to 21, we do remapping
for a T-cluster. For a T-cluster, we use Algorithm 4 to split tasks in Line 16 and we use
Proposition 3 to validate the remapping in Line 17. Note that after we do a remapping
the new cluster φunused is added to the active cluster set Φac shown in Line 12 and
19. Then later the new cluster also will undertake the remapping procedure as long as
there is an unused cluster of the same type and it can meet the remapping conditions.

58

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Finally, FDM updates the operating frequencies of each cluster in set Φac in Line 22
by using Equation (4.7). At Line 23, FDM outputs the final mapping and the operating
frequency of each active cluster. Since the complexity of Algorithm 3 and 4 are both
O(|A| log(|A|)), in the worst case the complexity of FDM is O(N × |A| log(|A|)),
whereN is the total number of clusters in the inputMPSoC and |A| is the total number
of actors in the input CSDF graph.

4.4 Evaluation

In this section, we present three experiments to demonstrate the efficiency of the pro-
posed FDM algorithm compared to the existing approaches proposed in [CKR14]
and [KYD11]. We apply our FDM and the mapping approaches from [CKR14] and
[KYD11] on cluster heterogeneous and homogeneous MPSoCs. We choose [CKR14]
and [KYD11] to compare with, because the mapping approaches in [CKR14] and
[KYD11] are specifically devised for cluster MPSoCs as considered in our work.
Therefore, their work is the most related and relevant to our approach.

We select 11 real-life streaming applications from the StreamIt [TA10] benchmark
suite and the MP3 decoder [SGB06], where all streaming applications are modeled
as CSDF graphs. We use the same parameters, i.e., WCETs of application tasks, as
specified in [BS11]. An overview of all streaming applications is given in Table 4.7.
|A| denotes the number of tasks/actors in a CSDF graph, while |E| denotes the num-
ber of edges. L is the minimum achievable latency and R is the maximum achiev-
able throughput which are computed by using Equation (2.11) and Equation (2.12)
in Section 2.3, when the applications are scheduled by the HRT scheduling. In our
experiments, for each application, we set as constraints the corresponding minimum
achievable latency and the maximum achievable throughput (L andR given in Table
4.7) when we map the applications to the target platforms.

As target platforms, we consider three heterogeneousMPSoCswith different num-
ber of clusters and cluster granularities. We use ’MPSoC_x_pe_ee’ to denote a cluster
heterogeneous MPSoC, where ‘x’ denotes the number of processors per cluster, ‘pe’
and ‘ee’ denote the number of PE clusters and EE clusters, respectively. The three
consideredMPSoCs are described in Table 4.8. Column ‘granularity’ shows the num-
ber of processors per cluster, while column ‘PE clusters’ and ’EE clusters’ show the
number of PE clusters and EE clusters in the MPSoC, respectively.

For a cluster heterogeneous MPSoC, we use the energy model described in Sec-
tion 4.2.2, where the model parameters are given in Table 4.3 and Table 4.2. In our
experiments, we use our FDM approach and the reference mapping approaches de-
scribed in [CKR14] and [KYD11] to map the tasks of the streaming applications to
the three MPSoCs and we compute the energy consumption of each application to

59

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Algorithm 5: Frequency Driven Mapping
Input: A CSDF graph G = (A, E) and a cluster heterogeneous MPSoC
Output: A task mapping for each cluster and the minimum operating frequency for

each active cluster
1 APE, AEE ←Apply Algorithm 2 to split all actors τi ∈ A to two parts;
2 if dUEEe > MEE

c ×MEE
p then

3 Map some actors τi to PE clusters in order of decreasing utilization such that
dUEEe ≤MEE

c ×MEE
p ;

4 if dUPEe > MPE
c ×MPE

p then
5 return Unschedulable;

6 Φac ←Apply FFD on PE clusters and EE clusters to generate an initial task mapping
and compute the frequency of each active cluster by using Equation (4.7);

/* Remapping procedure */
7 for j=1 to |φac| do
8 if max∀τi∈Aj{ui} <

Uj

Mp
& an unused cluster of the same type is available then

// U-cluster
9 Aj,1, Aj,2 ← Apply Algorithm 3 to split tasks;

10 if Aj,1 and Aj,2 can meet the condition in Proposition 2 then
11 Keep ∀τi ∈ Aj,1 on the initial cluster and remap ∀τi ∈ Aj,2 to unused

cluster φunused;
12 Φac ← Φac + φunused;

13 else
14 Keep the initial mapping;

15 if max∀τi∈Aj
{ui} ≥ Uj

Mp
& an unused cluster of the same type is available then

// T-cluster
16 Aj,1, Aj,2 ← Apply Algorithm 4 to split tasks;
17 if Aj,1 can meet the condition in Proposition 3 then
18 Keep ∀τi ∈ Aj,2 on the initial cluster and remap ∀τi ∈ Aj,1 to unused

cluster φunused;
19 Φac ← Φac + φunused;

20 else
21 Keep the initial mapping;

22 Update the operating frequencies of clusters in set Φac by using Equation (4.7);
23 return Φac;

MPSoC mapping configuration using Equation (4.4), (4.5) and (4.6). The metric for
the evaluation of each configuration is the energy reduction achieved by our proposed
FDMapproach over the different referencemapping approaches. We use the following

60

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

APP |A| |E| L R(token/
(cycles) cycles)

Beamformer 57 70 61152 1/5076
BitonicSort 40 46 2280 1/95
CHVocoder 55 70 28400 1/35550
DCT 8 7 380928 1/47616
DES 53 60 46080 1/1024
FFT 17 16 204544 1/12032
FMRadio 43 53 17208 1/1434
MP3 14 18 16795242 1/1866138
MPEG 23 26 138240 1/7680
Serpent 120 128 370296 1/3336
TDE 29 28 1071840 1/36960
Vocoder 114 147 291360 1/9105

Table 4.7: The Streaming Applications

Configuration Granularity PE clusters EE clusters

MPSoC_2_20_28 2 procs 20 28
MPSoC_4_10_14 4 procs 10 14
MPSoC_8_5_7 8 procs 5 7

Table 4.8: Cluster Heterogeneous MPSoC configurations

equation to compute the energy reduction:

r =
Eref − EFDM

Eref
(4.17)

where Eref is the energy consumption of an application to MPSoC mapping configu-
ration obtained by a reference mapping approach and EFDM denotes the energy con-
sumption achieved by our proposed FDM with cluster VFS.

Comparison with [CKR14] on Heterogeneous MPSoCs
In this section, we compare our proposed FDM approach to the mapping approach

proposed in [CKR14]. In [CKR14], the authors proposed several mapping approaches
for cluster heterogeneousMPSoCs, and in our experiments we select the best mapping
approach evaluated in [CKR14] and refer to it as CKR. In this experiment, the CKR
is considered as the reference point and the energy reduction for each application

61

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Beamformer

BitonicSort

CHVocoder

DCT
DES

FFT
FMRadio

MP3
MPEG

Serpent

TDE
Vocoder

E
ne

rg
y

R
ed

uc
tio

n
MPSoC_2_20_28
MPSoC_4_10_14

MPSoC_8_5_7

Figure 4.5: Comparison between FDM and CKR

2 procs 4 procs 8 procs

FDM average 7% 7.7% 8.9%
Max energy reduction 25% 27% 29%

Table 4.9: Summary of Figure 4.5

benchmark is computed by using Equation (4.17). Figure 4.5 depicts the energy
reduction for each benchmark mapped on the three different MPSoCs, where the x-
axis shows the benchmarks and the y-axis shows the energy reduction. For 7 out of 12
benchmarks, our proposed FDM approach finds a mapping that consumes less energy
compared to the one obtained by the CRK approach. The main reason is that the
CKR approach is similar to the FFD algorithm but it does not consider remapping to
efficiently utilize the unused clusters. Hence, for the 7 benchmarks, the remapping
approach in our FDM algorithm outperforms the CKR. For the other 5 benchmarks,
the remapping is not beneficial for them, so our proposed FDM approach achieves the
same results as the CKR approach.

The energy reduction results are summarized in Table 4.9. We see that the average
energy reduction is 7%, 7.7%, and 8.9% for the three MPSoCs with 2, 4 and 8 proces-
sors per cluster, respectively. Among all experiments, the maximum energy reduction
occurs to benchmark DES which is 25%, 27%, and 29% for the three MPSoCs with
2, 4, and 8 processors per cluster, respectively.

62

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Beamformer

BitonicSort

CHVocoder

DCT
DES

FFT
FMRadio

MP3
MPEG

Serpent

TDE
Vocoder

E
ne

rg
y

R
ed

uc
tio

n

MPSoC_2_20_28
MPSoC_4_10_14

MPSoC_8_5_7

Figure 4.6: FDM vs. Algorithm 2+KYD

2 procs 4 procs 8 procs

FDM average 6.3% 8.5% 9.4%
Max energy reduction 19% 21% 34%

Table 4.10: Summary of Figure 4.6

Comparison with [KYD11] on Heterogeneous MPSoCs
In this experiment, we compare our FDM approach with the approach proposed

in [KYD11] which we refer to as KYD. Since [KYD11] only considers cluster homo-
geneous MPSoCs, we apply our processor type assignment proposed in Section 4.3.1,
i.e., Algorithm 2, to determine the processor type for each actor and then utilize the
KYD approach to map the actors to clusters. Thus, in this experiment, ‘Algorithm
2+KYD’ is used as the reference mapping approach in Equation (4.17).

The energy reduction for the different benchmarks mapped on the different MP-
SoCs is depicted in Figure 4.6. For 7 out of 12 benchmarks, our FDM finds a mapping
which consumes less energy than the mapping approach ’Algorithm 2+KYD’. For the
rest of the benchmarks, our proposed approach finds a mapping that consumes the
same energy as the reference mapping approach. For benchmarks CHVocoder, DCT,
MP3 and FMRadio, their actors which are assigned to PE type of clusters have very
similar workload, hence evenly distributing heavy tasks by the KYD approach can find
the energy efficient mapping as our FDM approach does. For benchmark Vocoder,

63

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Beamformer

BitonicSort

CHVocoder

DCT
DES

FFT
FMRadio

MP3
MPEG

Serpent

TDE
Vocoder

E
ne

rg
y

R
ed

uc
tio

n
MPSoC_2_20_28
MPSoC_4_10_14

MPSoC_8_5_7

Figure 4.7: FDM vs. KYD on homogeneous MPSoCs

2 procs 4 procs 8 procs

FDM average 10% 16.6% 18.5%
Max energy reduction 31% 34% 38%

Table 4.11: Summary of Figure 4.7

only two heavy tasks are assigned to PE clusters and running them on different clus-
ters leads to energy efficiency, so the KYD approach can find the best mapping by
mapping these two tasks to two different clusters as our FDM approach does.

The results are summarized in Table 4.10. We can see that the average energy
reduction of the three MPSoCs is 6.3% for the MPSoC with 2 processors per cluster,
8.5% for the MPSoC with 4 processors per cluster, and 9.4% for the MPSoC with 8
processors per clusters. The maximum energy reduction is 19% in benchmark Beam-
former for 2 processors per cluster, 21% and 34% in benchmark DES for 4 processors
per cluster and 8 processors per cluster, respectively.

Comparison with [KYD11] on Homogeneous MPSoCs
TheKYD approach [KYD11] is originally proposed for cluster homogeneousMP-

SoCs. In order to have a fair comparison, we apply our FDM approach to homoge-
neous MPSoCs and compare it with the KYD approach to show the efficiency of our
FDM approach. Since we need to guarantee the throughput and latency constraints

64

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

shown in Table 4.7, running the benchmarks on a cluster homogeneous MPSoC com-
prised of EE clusters will violate the performance constraints. Thus, we only map
the applications to the PE clusters available in the cluster MPSoCs described in Table
4.8, thereby considering cluster homogeneousMPSoCs that canmeet the performance
constraints for every application.

Figure 4.7 depicts the energy reduction of each benchmark mapped on the three
different MPSoCs by only using the PE clusters. In Figure 4.7, we see that for bench-
mark Vocoder on platform ’MPSoC_2_20_28’, the mapping derived by our FDM ap-
proach consumes 3%more energy than the KYD approach. With this fine granularity
of the cluster size, i.e, the small number of processors per cluster, benchmark Vocoder
has a lot of mapping possibilities. Since the KYD has a design space exploration step
which enables to explore more mappings and our FDM only improves the mapping
generated by the FFD heuristic, in the case of benchmark Vocoder our FDM does not
find a more energy efficient mapping compared to KYD. However, except benchmark
Vocoder on platform ’MPSoC_2_20_28’, our FDM approach outperforms the KYD
in all other cases by finding more energy efficient mappings.

The results of this experiment are summarized in Table 4.11. We see that for dif-
ferent MPSoCs our FDM approach can reduce the energy consumption by an average
of 10%, 16.6% and 18.5%. The maximum reduction occurs for benchmark Serpent
which is 31% and 34% for the MPSoCs with 2 and 4 processors per cluster, respec-
tively. For the MPSoC with 8 processors per cluster, benchmark BitonicSort has the
maximum energy reduction which is 38%.

65

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

66

