
Latency, energy, and schedulability of real-time embedded systems
Liu, D.; Liu D.

Citation
Liu, D. (2017, September 6). Latency, energy, and schedulability of real-time embedded
systems. Retrieved from https://hdl.handle.net/1887/54951

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/54951

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/54951

Cover Page

The handle http://hdl.handle.net/1887/54951 holds various files of this Leiden University
dissertation

Author: Liu, D.
Title: Latency, energy, and schedulability of real-time embedded systems
Issue Date: 2017-09-06

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/54951
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 3

Resource Optimization for
Real-Time Streaming Application

Di Liu, Jelena Spasic, Jiali Teddy Zhai, Gang Chen, and Todor Stefanov,
"Resource optimization for CSDF-modeled streaming applications with latency constraints,"
2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, 2014, pp. 1-6.

Streaming applications, such as video/audio processing and digital signal process-
ing, contain ample amount of parallelism which perfectly matches the processing

power of Multi-Processor System-on-Chip (MPSoC) platforms. To efficiently pro-
gramMPSoC platforms, Models-of-Computation (MoCs) are used to specify stream-
ing applications. Prominent examples ofMoCs include SynchronousData Flow (SDF)
[LM87] and its generalization Cyclo-Static Dataflow (CSDF) [BELP96].

Traditionally, CSDF graphs are scheduled by self-timed scheduling [MB07], where
an actor starts to execute as soon as it receives enough tokens from its predecessors.
However, since the self-timed scheduling normally provides best-effort services, it is
difficult to provide a hard-real-time timing guarantee for every actor in a CSDF graph.
Bamakhrama and Stefanov in [BS11] proposed the hard-real-time (HRT) scheduling
framework to schedule acyclic CSDF graphs, explained in detail in Section 2.3. This
HRT scheduling framework provides HRT timing guarantee and fast admission con-
trol for an application modeled as a CSDF graph, at the expense of increasing the
graph latency [BS12]. The same authors in [BS12] identified this issue of the HRT
scheduling framework and proposed to reduce the graph latency by scaling down ac-
tors’ relative deadlines. In [BS12], Bamakhrama and Stefanov proposed to use a scal-
ing factor to uniformly reduce the deadlines of all actors/tasks. However, since the
deadlines of periodic tasks play a crucial role in determining the minimum number of

27

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

processors required to schedule the task set, this uniform scaling factor may unneces-
sarily increase the required number of processors.

In this chapter, we address this above-mentioned problem of minimizing the num-
ber of processors required to schedule a latency-constrained streaming application
modeled as a CSDF graph, which is scheduled by using the HRT scheduling frame-
work. We formalize this problem and prove that it is an integer convex programming
problem such that it can be solved effectivelly by an off-the-shelf convex programming
solver, e.g., CVX [GB14]. The novel contributions of our work can be summarized
as follows:

• We present a new method to compute the earliest starting time of actors in a
CSDF graph when the actors are scheduled under the HRT scheduling.

• Based on the above contribution, we formalize the problem of minimizing the
number of processors for a latency-constrained CSDF graph under the HRT
scheduling and prove that it is an integer convex programming (ICP) problem.

• We carry out experiments by solving the ICP problem on 13 real-life streaming
applications and demonstrate the effectiveness and efficiency of our solution
approach in comparison to the deadline selection approach [BS12] in terms
of the minimum number of processors required to schedule an application. By
applying our approach, we obtain reduction in the number of processors in more
than 48% of the conducted experiments.

Spasic et al. in [SLCS16] proposed a new approach to improve the HRT schedul-
ing framework. The proposed approach in this chapter is also applicable to the im-
proved HRT scheduling and more details can be found in [SLCS16].

3.1 Background

We have introduced the CSDF application model, real-time theories, and the HRT
scheduling framework in Chapter 2. Here, we present the system model considered
in this chapter. The platform, we target, is a homogeneous multiprocessor platform
which consists of identical processors. Since the global scheduling, explained in Sec-
tion 2.2.3, has been proven to be a theoretically optimal scheduling algorithm on
multiprocessor systems [DB11], we adopt a global optimal scheduling, such as PFair
[BCPV93b], to schedule periodic tasks generated from an acyclic CSDF graph.

To reduce the graph latency, we scale down the relative deadline of each actor and
thus a constrained deadline task set (i.e., deadline is smaller than or equal to period) is
derived. For the constrained deadline task model (i.e.,Di ≤ Ti), Baker and Baruah in

28

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

[BB07] gave the following sufficient schedulability for the global optimal scheduling:

δΓ ≤M (3.1)

δΓ is the total density of a real-time task set Γ, explained in Section 2.2.1. M de-
notes the number of processors. This sufficient test can be converted to compute the
minimum required number of processors for the global optimal scheduling as follows:

M = dδΓe (3.2)

For global optimal scheduling, we see from Equation (3.2) that the total density
δΓ plays a crucial role in computing the minimum number of processors needed to
schedule a task set. Therefore, we are able to minimize the number of processors
required to schedule a task set Γ by minimizing the value of the total density δΓ.

3.2 Related Work

In the context of real-time systems, several works deal with period and/or deadline se-
lection for periodic tasks in order to achieve certain goals. The authors in [DZDN+07]
optimize periods for dependent tasks on hard real-time distributed automotive systems
in order to meet a latency constraint. In [HCH11], Hong et al. propose a distributed
approach to assign local deadlines for each task on distributed systems to meet a la-
tency constraint. In contrast to [DZDN+07] and [HCH11], our work selects deadlines
for data dependent tasks in order to meet a latency constraint while minimizing the
number of processors required for scheduling the application. Such minimization is
not considered in [DZDN+07] and [HCH11]. Balbastre et al. [BRC06] propose an
analysis to select deadlines for periodic tasks on a uniprocessor to reduce the output
jitters. Comparing to [BRC06], our work differs in that we select deadlines in order
to reduce the required number of processors in a multiprocessor system while guar-
anteeing the latency constraint. Chantem et al. [CWLH08] optimize the periods and
deadlines simultaneously for an infeasible independent task set such that it can be
scheduled on a uniprocessor. Their work concentrates on the schedulability of a sys-
tem rather than optimizing the resources while meeting the latency constraint which
is the main goal of our work.

In another aspect, only a few works deal with latency of streaming applications
specified as dataflow/task graphs. Given latency or throughput constraints, Javaid et
al. [JHIP10] optimized the area of MPSoCs which are comprised of Application Spe-
cific Instruction set Processors (ASIP). The problem is formulated as an integer linear
programming (ILP) problem. In their work, the area is optimized by setting different
configurations for each ASIP. In contrast to their work, we consider to minimize the

29

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

number of processors and our objective function cannot be written in a linear form
and thus not amenable to an ILP formulation. The authors in [CGHJ09] proposed a
framework to synthesize homogeneous multiprocessor system for streaming applica-
tions with throughput constraints while optimizing latency and resources. However,
their framework can not take the latency as a constraint. As a result, the framework
in [CGHJ09] is not applicable to our problem. It is worth noting that the throughput
constraint in [JHIP10] and [CGHJ09] can be trivially added into our approach.

3.3 Motivational Example
In this section, we take the CSDF graph in Figure 2.1 as our motivational example to
demonstrate the deficiency of the approach in [BS12], where deadlines of actors are
computed by Equation (3.3) below with the global uniform deadline scaling factor df .

∀τj Dj = Cj + df × (Tj − Cj) 0 ≤ df ≤ 1 (3.3)

We use Equation (3.2) to compute the required number of processors. Given a latency
constraint of 20 clock cycles, if we use the approach in [BS12], it finds that the global
deadline scaling factor df should be set to 0 in order to meet the latency constraint.
By using Equation (3.3), we compute that Dj = Cj , and the parameters of the tasks
are given in Table 3.1. Using these parameters we obtain that the total density δA =
2
2 + 3

3 + 3
3 + 6

6 = 4. This means that 4 processors are needed to schedule the task set.
However, larger deadlines can be selected for some actors without violating the

latency constraint, thereby reducing the total density δA, which in turn can decrease
the number of processors. We select new deadlines D2 = 9 and D3 = 12 for actors
τ2 and τ3, respectively, and recompute the start time of the tasks using Lemma 2.3.1
in Section 2.3. We see that in this specific case shown in Table 3.2, although we have
changed two deadlines, the start times Sj have not changed. By using Equation (2.11)
in Section 2.3 to compute the latency, we see that the latency of 20 clock cycles can
be met with the new parameters, but the total density δA = 2

2 + 3
9 + 3

12 + 6
6 = 2.58

decreases. This means that 3 processors are sufficient to schedule the task set without
violating the latency constraint of 20 clock cycles. We can see from the motivational
example that the approach from [BS12] is not optimal in terms of the required number
of processors.

3.4 Proposed Approach
As we show in Section 3.3, although the deadline selection approach in [BS12] is able
to meet the latency constraint, it is not optimal in terms of the number of processors.
Hence, selecting deadlines in a proper way is a problem that should be solved in order

30

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

task Sj Cj Dj Tj
τ1 0 2 2 6
τ2 2 3 3 9
τ3 14 3 3 18
τ4 14 6 6 6

Table 3.1: Tasks Parameters 1

task Sj Cj Dj Tj
τ1 0 2 2 6
τ2 2 3 9 9
τ3 14 3 12 18
τ4 14 6 6 6

Table 3.2: Tasks Parameters 2

to minimize the number of processors while meeting the latency constraint. To se-
lect deadlines properly, we devise the solution approach presented in this section that
formalizes and formulates the problem as a mathematical programming problem.

According to Equation (2.11), the latency depends on the earliest start time and
deadline of the output actor, and the earliest start time of the input actor. The earliest
start time Sj of any actor depends on two conditions: 1) at the earliest start time, there
should be sufficient number of tokens on all input edges to enable the actor’s firing and
2) once an actor fires for the first firing, the consequent firings of the actor should be
possible to happen at time instant t = Sj+kTj for each k ∈ N+. The first condition is
imposed by the firing rule [BELP96] of the CSDFmodel which is a data-drivenmodel,
where a sufficient number of tokens is the requirement to trigger an actor firing. The
second condition makes sure that the CSDF graph is schedulable as a periodic task set.
Although Lemma 2.3.1 in Section 2.3 is able to find the earliest start time of an actor,
it is impossible to use its equations into any mathematical programming problem.
Hence, we present a new computation method to calculate the start time of actors in
a CSDF, in which the start times of actors can be represented as linear items and can
be integrated into a mathematical programming problem.

Lemma 3.4.1. For an acyclic CSDF graphG, the earliest start time of an actor τj ∈
A, denoted Sj , under HRT schedule is given by

Sj =

{
0 if Ω(τj) = ∅
maxτi∈Ω(τj){Si + (Smin

i→j − Smin
i − Ci) +Di} if Ω(τj) 6= ∅

(3.4)

where Ω(τj) is the set of predecessors of τj , Si, Ci, andDi are the earliest start time,
WCET, and deadline of the predecessor actor τi, respectively. Smin

i is the earliest start
time of τi given by Equation (2.9) when Dn = Cn,∀τn ∈ A, and Smin

i→j is given by
Equation (2.10) when Dn = Cn, ∀τn ∈ A.

Proof. Consider an arbitrary edge eu = (τi, τj) ∈ E . τj starts after τi has started
and fired a “certain” number of times. This number of firings is independent from the
execution speed of the actors and depends only on the production and consumption

31

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

rates of τi and τj on eu. The production and consumption functions are given by:

prd
[ts,t)

(τi) =

b(t−ts)/Tic∑
k=0

(xui (((k − 1) mod Ni) + 1) · u(t− kTi −Di))

cns
[ts,t]

(τj) =

d(t−ts)/Tje∑
k=0

(yui (((k − 1) mod Nj) + 1) · u(t− kTj))

where xui (k) is the kth element in the production sequence of actor τi, yuj (k) is the kth
element in the consumption sequence of actor τj ,Ni andNj are the execution lengths
of τi and τj , respectively, as defined in [BELP96]. u(t) is the unit step function. Sup-
pose thatDn = Cn,∀τn ∈ A. The curves that depict the production and consumption
functions of τi and τj are plotted in Figure 3.1. Interval ∆ in Figure 3.1 depends only
on the production and consumption rates of τi and τj on eu and can be calculated as:

∆ = Smin
i→j − Smin

i − Ci (3.5)

Now, suppose that Dn > Cn,∀τn ∈ A. The production curve will move to the
right for certain time units, and the new start time of τi is Si. If the consumption
curve does not move, the relation between the production and consumption given by
Equation (2.10) will be violated, i.e. it will happen in some point in time that the
cumulative consumption is greater than the cumulative production. This means that
we have to move the consumption curve to the right by the same number of time units
such that the new start time Si→j is minimum and the relation is preserved. Because
the production and consumption rates are unchanged, interval ∆ will stay the same,
and we can calculate it as follows:

∆ = Si→j − Si −Di (3.6)

We can re-write Equation (3.5) and Equation (3.6) as:

Si→j = Si + (Smin
i→j − Smin

i − Ci) +Di (3.7)

Now, we can derive from Equation (3.4) the following set of linear inequality con-
straints, where the number of the linear inequality constraints is equal to the number
of edges in the CSDF:

Si + (Smin
i→j − Smin

i − Ci) +Di ≤ Sj ∀eu ∈ E (3.8)

32

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

Smin
i Smin

i→j

tTi Tj

∆

Di = Ci

prd
cns

Figure 3.1: Production and consumption curves on edge eu = (τi, τj)

As we explain Since computing the required number of processors depends on the
total density δA of the task set (see Equation 3.2 Section 3.1), for a CSDF graphG =
(A, E), our objective is to minimize δA in order to minimize the number of processors.
Therefore, we formulate our density minimization (DM) problem as follows:

Minimize δA =
∑
τn∈A

Cn
Dn

(3.9a)

subject to:
Sout +Dout − Sin ≤ L+ gPinTin − gCoutTout

∀win→out ∈W
(3.9b)

Si +Di − Sj ≤ −(Smin
i→j − Smin

i − Ci) ∀eu ∈ E (3.9c)
−Dn ≤ −Cn, Dn ≤ Tn ∀τn ∈ A (3.9d)

where Equation (3.9a) is the objective function and Dn is an optimization variable.
We want the objective function (3.9a) with |A| optimization variables to be subject to
a latency constraint L. Therefore, Inequality (3.9b) comes from Equation (2.11). In
addition, inequality constraints (3.9c) are the constraints given by (3.8), and inequality
(3.9d) bounds all optimization variables in the objective function by the worst-case
execution time and period as explained in Section 2.3. Si and Sj (including Sin, Sout)
are implicit variables which are not in the objective function (3.9a), but still need to
be considered in the optimization procedure. L, gPinTin, g

C
outTout, Smin

i→j , Smin
i , Cn, and

Tn are constants.

Theorem 3.4.1. TheDMproblem (3.9) is an integer convex programming (ICP) prob-
lem.

Proof. First, we prove that the DM problem is a convex programming problem if the
values of D and S are continuous. In a convex programming problem, the objec-
tive function and the constraints both should be convex[BV04]. We first prove the
convexity of the objective function.

f(x) =
a

x
(3.10)

33

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

Function (3.10) has been proven to be convex for x ∈ (0,∞) and a > 0 [BV04].
SinceDn is always greater than 0, all δn(Dn) = Cn

Dn
are convex functions, whereDn

and Cn are the variable x and the constant a, respectively. Moreover, if f1 and f2 are
both convex, so is their sum f1 + f2. Hence, δA =

∑
τn∈A

Cn
Dn

is a convex function.
A closed halfspace which is convex is a set of the form {x|aTx ≤ b}[BV04],

where a 6= 0 and all entries in x are continuous. Since all constraints (3.9b), (3.9c),
and (3.9d) are in the form of the closed halfspace, all constraints are convex. Hence,
the DM problem (3.9) is a convex programming problem.

Given that all D and S in the DM problem (3.9) have to take only integer values
in practice, the DM problem is an ICP problem.

In mathematical programming, a convex programming problem can be solved ef-
ficiently to find a global optimum. If the variables have to only take integer values,
the problem becomes an integer convex programming problem. This integer problem
is an NP-hard problem that can not be solved efficiently using only the conventional
convex programming. Fortunately, the combination of the conventional convex pro-
gramming [BV04] and some algorithms for solvingmixed integer linear programming
can be used to find a global optimal solution for ICP. In Section 3.5.2, the evaluation
shows the efficiency of the existing CVX solver [GB14] to solve our DM problem.

3.5 Evaluation

In this section, we evaluate our DM approach and compare it with the Baseline Ap-
proach (BA) proposed in [BS12]. This baseline approach uses Binary Search to find
the maximum df (in Equation 3.3) which makes the latency constraint met. Finding
this maximum df reduces the required number of processors to schedule the CSDF
actors. Our DM problem is solved by using mixed integer disciplined convex pro-
gramming (MIDCP) in CVX [GB14]. All experiments are performed on an Intel i7
dual-core processor running at 2.7GHz with 4 GB RAM.

We have selected 13 real-life streaming applications modeled as CSDF graphs
from the StreamIt [TA10] benchmark suit. TheWCET of each actor in the application
benchmarks which we use in this evaluation is the same as specified in [BS11]. The
characteristics of these benchmarks are given in Table 3.3, including the number of
actors (|A|), the number of edges (|E|), themaximum latency (Lmax) and theminimum
latency (Lmin) in clock cycles. The maximum latency is the latency obtained by using
the implicit deadline periodic task model, i.e. df = 1, whereas the minimum latency
is the latency obtained when df = 0. To demonstrate the effectiveness of our DM
approach, the latency constraints of the graphs are varied during the experiments.
We evaluate our DM approach in terms of the number of processors needed for each

34

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

Realistic Applications |A| |E| Lmax Lmin

Beamformer 57 70 60912 14692
ChannelVocoder 55 70 284000 106755
DCT 8 7 380928 121672
Data Encryption Standard (DES) 53 60 46080 15602
FilterBank 85 99 158368 34638
MPEG2 23 26 138240 49452
Serpent 120 128 370296 122108
Time Delay Equalization (TDE) 29 28 1071840 628151
Vocoder 114 147 291360 21554
CD2DAT 6 5 829 258
H.263 4 3 996697 369508
Samplerate 6 5 3792 1531
Satelite 22 26 11746 5484

Table 3.3: Characteristics of application benchmarks

Constraint Latency
L0 Lmin

L1 0.4(Lmax − Lmin) + Lmin

L2 0.9(Lmax − Lmin) + Lmin

Table 3.4: Latency Constraints

benchmark and compare it to the BA for the three latency constraints per benchmark,
shown in Table 3.4, while the achieved throughput of each benchmark is the same in
both BA and DM approaches.

3.5.1 The effectiveness of our DM approach

First, we evaluate the effectiveness of our DM approach in terms of the number of
required processors. Figure 3.2 to 3.4 show the results under global scheduling. The
number of processors needed to schedule a task set is computed using Equation (3.2).

Figure 3.2 shows the results with latency constraint L0(Lmin). Under such strin-
gent latency constraint, the intervals in which deadlines of actors may vary are limited.
Our DM approach is still capable of reducing the number of processors compared to
the BA for 8 out of 13 benchmarks. The largest reduction is obtained for the Vocoder
benchmark, with a reduction of 66 processors. TheDCT,TDE andH.263 benchmarks
have only a single data path in the corresponding CSDF graphs. The Beamformer and

35

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

0

20

40

60

80

100

120

N
u

m
b

e
r

o
f

P
ro

c
e

s
s

o
rs

B
ea

m
fo

rm
er

C
han

nel
Voco

der

D
C
T

D
ES

Filt
er

B
an

k

M
PEG

2

Ser
pen

t
TD

E

Voco
der

C
D
2D

A
T

H
.2

63

Sam
ple

ra
te

sa
te

lit
e

BA

DM

Figure 3.2: Global scheduling with L0 constraint

Filterbank benchmarks have symmetric graph structures, i.e., multiple paths consist
of the same type of actors. Therefore, for all these benchmarks, small intervals in
which deadlines of actors may vary restrict the possibility to reduce the total density,
consequently the required number of processors is not reduced.

Figure 3.3 presents the results for a relaxed latency constraint for each bench-
mark. There are 6 benchmarks for which our DM approach reduces the number of
processors. In this case, the Beamformer benchmark with symmetric structure, also
benefits from the DM approach. That is because the redistribution of deadlines on
a path makes it possible to decrease the densities δi of some tasks/actors. For DCT,
TDE, and H.263, although we can see a reduction in the total density δA of the task
set, the reduction is smaller and insufficient to decrease the number of processors.
The Samplerate and ChannelVocoder benchmarks keep unchanged on the number of
processors because the total density is very close to the total utilization which is the
lower bound of δA. Figure 3.4 shows the results for a very relaxed latency constraint,
where only 5 benchmarks get reduction on the number of processors by using our DM
approach.

In summary, our DM approach obtains reduction in the number of processor in
more than 48% of the conducted experiments.

3.5.2 The time complexity of solving our DM problem

In this section, we evaluate the efficiency of our DMapproach in terms of the execution
time of CVX [GB14] for solving our DM problem. We set a maximum runtime of
4 hours for the solver, and all results are summarized in Table 3.5 where the time

36

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

P
ro

c
e
s
s
o

rs

B
ea

m
fo

rm
er

C
han

nel
Voco

der

D
C
T

D
ES

Filt
er

B
an

k

M
PEG

2

Ser
pen

t
TD

E

Voco
der

C
D
2D

A
T

H
.2

63

Sam
ple

ra
te

sa
te

lit
e

BA

DM

Figure 3.3: Global scheduling with L1 constraint

0

5

10

15

20

25

30

35

40

45

N
u

m
b

e
r

o
f

P
ro

c
e
s
s
o

rs

B
ea

m
fo

rm
er

C
han

nel
Voco

der

D
C
T

D
ES

Filt
er

B
an

k

M
PEG

2

Ser
pen

t
TD

E

Voco
der

C
D
2D

A
T

H
.2

63

Sam
ple

ra
te

sa
te

lit
e

BA

DM

Figure 3.4: Global scheduling with L2 constraint

37

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

Applications L0 L1 L2

Beamformer 0.05 0.18 0.11
ChannelVocoder 0.07 0.11 0.11
DCT 0.05 0.07 0.06
DES 5.9 14.7 0.23
FilterBank 0.1 0.32 0.17
MPEG2 12.9 0.13 0.07
Serpent 20.59 900.98 4751
TDE 0.13 0.1 0.24
Vocoder 1909 2256 0.31
CD2DAT 0.11 0.21 0.1
H.263 0.22 11.72 0.23
Samplerate 0.14 0.1 0.06
Satelite 0.14 0.08 0.24

Table 3.5: The execution time of our DM approach (in second)

unit is seconds. We can see that the runtime of CVX is not a function of the number
of actors and edges in the corresponding application CSDF graph. For example, the
FilterBank benchmark with more actors and edges than theDES benchmark just needs
0.32 second to find the optimal solution for L1, while the DES benchmark needs 14.7
seconds. Additionally, even for the same benchmarkwith different latency constraints,
the runtime for finding the optimal solution is fluctuating significantly. The execution
times of our DM approachwith theVocoder benchmark forL1 andL2 is 2256 seconds
and 0.31 second, respectively. According to Table 3.5 most of the problems can be
solved in a second. However, for the two very complex benchmarks, Serpent and
Vocoder which have the largest number of constraints, the solver spent a long time to
find the optimal solution. A method to speed up solving a very complex problem is to
set an initial solution for optimization variables which can be obtained from BA, but
unfortunately CVX does not support initialization of the optimization variables.

3.6 Discussion

In this work, we address the resource minimization problem of CSDF-model stream-
ing applications under the global optimal schedulingwhen considering theHRT frame-
work [BS11, BS12]. The proposed DM approach is also applicable to partitioned
scheduling. The approach given in [SLCS16] shows how our DM approach can be
extended to partitioned scheduling. In summary, since there exists no optimal parti-
tioned scheduling, we cannot directly build a convex objective function for it. There-

38

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

fore, in [SLCS16], our DM approach is first used to select optimal deadlines for actors
using the same objective function as in Equation (3.9a) and then a partitioned algo-
rithm, e.g., FFD, WFD, etc (explained in Section 2.2.3), is deployed to assign task to
processor. If the current number of processors cannot suffice the schedulability of the
new input task, the number of processors increments by one. The procedure repeats
until all tasks are successfully mapped to the system. It is worth to notice that when
our DM approach is applied in partitioned scheduling, as in [SLCS16], it only derives
a suboptimal result.

39

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

40

