
Latency, energy, and schedulability of real-time embedded systems
Liu, D.; Liu D.

Citation
Liu, D. (2017, September 6). Latency, energy, and schedulability of real-time embedded
systems. Retrieved from https://hdl.handle.net/1887/54951

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/54951

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/54951

Cover Page

The handle http://hdl.handle.net/1887/54951 holds various files of this Leiden University
dissertation

Author: Liu, D.
Title: Latency, energy, and schedulability of real-time embedded systems
Issue Date: 2017-09-06

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/54951
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 2

Background

Predictability, not speed, is the foremost goal in real-time system design.

John Stankovic [Sta88]

In this chapter, to better understand this dissertation, we introduce some common
preliminaries which we use in the subsequent chapters, such as the cyclo-static

dataflow (CSDF) model, the real-time theories, and the hard-real-time scheduling of
CSDF.

2.1 Cyclo-Static Dataflow (CSDF) Model

In this dissertation, we use the cyclo-static dataflow (CSDF)model tomodel streaming
applications. In this section, we introduce this model and its properties.

In [BELP96], Bilsen et al. proposed the cyclo-static dataflow (CSDF) model to
model signal processing applications. CSDF generalizes the well-known synchronous
dataflow (SDF) model [LM87]. A CSDF graph is defined as a directed graph G =
(A, E), where A is a set of actors and E is a set of edges. Actor τj ∈ A represents a
piece of computation in an application and edge ei ∈ E represents the communica-
tion between two actors, where an atomic data object that is transferred via an edge
is called a token. In a CSDF graph, every actor τi ∈ A has an execution sequence
[Fi(1), Fi(2), · · · , Fi(Ni)] of length Ni, meaning that the nth execution/firing of ac-
tor τi executes the code of function Fi(((n − 1) mod Ni) + 1). Similarly, each
CSDF actor may produce/consume a variable but predefined number of data tokens
in consecutive executions, called production/consumption sequence. The produc-
tion/consumption sequence has the same length of Ni as the execution sequence. An
edge eu ∈ E is a first-in, first-out (FIFO) queue defined as pair eu = (τi, τj), denot-

13

CHAPTER 2. BACKGROUND

ing that actor τi produces data tokens on edge eu and actor τj consumes data tokens
from edge eu. Let [xui (1), xui (2), · · · , xui (Ni)] denote the production sequence of
actor τi on edge eu, meaning that at the nth execution actor τi produces xui (((n− 1)
mod Ni)+1) data tokens on edge eu. Xu

i (n) =
∑n

l=1 x
u
i (l) denotes the total amount

of data tokens which actor τi produces on edge eu after its first n executions. Let
[yuj (1), yuj (2), · · · , yuj (Nj)] denote the consumption sequence of actor τj on edge
eu. Similarly, at the nth execution actor τj consumes yuj (((n − 1) mod Nj) + 1)
data tokens from edge eu and Y u

j (n) =
∑n

l=1 y
u
j (l) denotes the total amount of data

tokens which actor τj consumes from edge eu after its first n executions.
A compelling and important property of CSDF is its decidability, i.e., a schedule

for all actors in a CSDF graphG can be derived at design time. To derive a valid static
schedule of a CSDF graph at design-time, the graph needs to be consistent and live.

Definition 2.1.1 ([BELP96]). ACSDF graphG is said to be consistent if a non-trivial
solution exists for a repetition vector ~q = [q1, q2, · · · , q|A|]T .

The repetition vector ~q is defined as follows:

Definition 2.1.2 ([BELP96]). Given a connected CSDF graphG, a vector ~q = [q1, q2,
· · · , q|A|]T representing the number of invocations of the actors of G in a valid static
schedule is called a repetition vector of G.

And the repetition vector ~q is computed by using the following theorem,

Theorem 2.1.1 ([BELP96]). For a connected CSDF graph G, a repetition vector
~q = [q1, q2, · · · , q|A|]T is given by

~q = Θ · ~r, with Θik =

{
Ni if i = k

0 otherwise
(2.1)

where ~r = [r1, r2, · · · , r|A|]T is a positive integer solution of the balance equation

O · ~r = ~0 (2.2)

and where the topology matrix O ∈ Z|E|×|A| is defined by

Ouj =


Xu
j (Nj) if τj produces on channel eu
−Y u

j (Nj) if τj consumes from channel eu
0 Otherwise.

(2.3)

Definition 2.1.3 ([BELP96]). A CSDF graph G is said to be live if a deadlock-free
schedule can be found.

14

CHAPTER 2. BACKGROUND

τ1

τ2

τ3

τ4

e1

e2

e3

e4

[1, 1, 0]

[0, 0, 1]

[1] [1]

[1] [1]

[1, 1, 0]

[0, 0, 1]

Figure 2.1: CSDF graph G

Definition 2.1.4. For a consistent and live CSDF graph, the graph completes one
iteration, if every actor τi ∈ A executes for qi times.

Below, we use an illustrative example to facilitate the understanding of the theories
and definitions of CSDF presented above.
Example 2.1.1. Consider the CSDF depicted in Figure 2.1. There are four actors
{τ1, τ2, τ3, τ4} and four edges {e1, e2, e3, e4}. Each actor has different production/
consumption sequences on different edges. For example, actor τ1 has a production
sequence of [1, 1, 0] on edge e1 and actor τ2 has a consumption sequence of [1] on
edge e1 and a production sequence of [1] on edge e3. Then, according to Equation
(2.1),(2.2), (2.3) in Theorem 2.1.1, we obtain

O =


2 −1 0 0
1 0 −1 0
0 1 0 −2
0 0 1 −1

 , ~r =


1
2
1
1

 ,Θ =


3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

 , ~̆q =


3
2
1
3


In this dissertation, we consider streaming applications which are modeled as

acyclic CSDF graphs. From empirical studies in [TA10], Thies and Amarasinghe
showed that 90% of streaming applications can be modeled as acyclic SDF graphs,
where SDF graphs are a subset of CSDF graphs. For acyclic CSDF graphs, we have
the following lemma,

Lemma 2.1.1 ([BS11]). Any acyclic consistent CSDF graph is live.

2.2 Real-Time Theories
This section introduces the real-time task models, real-time scheduling algorithms,
the schedulability analysis techniques and the multiprocessor real-time scheduling

15

CHAPTER 2. BACKGROUND

algorithms.

2.2.1 Real-Time Task Models

A real-time system is comprised of a collection of real-time applications. To ensure
the system’s timing correctness, each application in the application set is modeled as a
real-time task τi and all tasks form a real-time task setΓ. A real-time task τi that might
generate an infinite sequence of task instances, also called jobs, is usually specified
by a parameter tuple {Si, Ci, Di, Ti} and the interpretations of the parameters are as
follows:

• Si denotes the start time of τi;

• Ci denotes the estimated Worst-Case Execution Time (WCET) of τi;

• Di denotes the relative deadline of τi; and

• Ti denotes the period of τi or the minimal arrival interval of two subsequent
jobs generated by τi.

The different interpretations of Ti define two widely-used real-time task models: pe-
riodic task model and sporadic task model. In the periodic task model, Ti denotes
the period of task τi, i.e., task τi releases its jobs strictly periodically at time instants
t = {t|Si+kTi, k ∈ Z+}. In the sporadic task model, Ti denotes the minimal arrival
interval of two subsequent jobs generated by τi, i.e., task τi can release its next job
anytime once the minimal arrival interval Ti elapses.

The task model also features another characeristic related to the tasks’ start times.
If all tasks in a task set Γ have the same start time, i.e., S1 = S2 = · · · = Sn, task
set Γ is said to be a synchronous task set. Otherwise, it is called an asynchronous
task set. Moreover, considering the relation between deadline Di and period Ti, a
periodic/sporadic task set can be defined as either implicit deadline task set or con-
strained deadline task set. The implicit deadline task set indicates that every task
τi ∈ Γ has Di = Ti, whereas the constrained deadline task set means that every task
τi ∈ Γ hasDi ≤ Ti. In real-time systems, the utilization is used to denote the ratio of
WCET over a period. For a task set Γ, the utilization ui of task τi ∈ Γ is ui = Ci/Ti
and thus the total utilization UΓ of task set Γ is the sum of the utilizations of all tasks,
i.e., UΓ =

∑n
i=1 ui. In addition, we have another term, called density, which denotes

the ratio of task’s WCET over the lesser of a task’s relative deadline and period , i.e.,
the density δi of task τi ∈ Γ is δi = Ci/min(Di, Ti) and the total density δΓ of task
set Γ is computed by δΓ =

∑n
i=1 δi.

Table 2.1 lists the corresponding task models used in different chapters. Note that
in this section we only introduce the basic task model. The exact task model used

16

CHAPTER 2. BACKGROUND

Task Model
synchronous/ constrained/ periodic/
asynchronous implicit sporadic

Chapter 3 asynchronous constrained deadline periodic
Chapter 4 asynchronous implicit deadline periodic
Chapter 5 synchronous constrained deadline periodic
Chapter 6 synchronous implicit deadline sporadic

Table 2.1: Task models considered in the dissertation’ chapters

in each chapter might be slightly different from the basic task model, and we will
elaborate the difference in each chapter.

2.2.2 Real-Time Scheduling

When a system and a set of real-time tasks are given, a real-time scheduling algorithm
is required to schedule the task set on the specified system. A scheduling algorithm
schedules tasks based on their priority and there are three ways to assign priority to
each task [DB11].

• Fixed task priority: all jobs from a task have a single fixed priority. An exam-
ple of this is the rate-monotonic scheduling [LL73];

• Task-level priority: the jobs of a task might have different priorities, but each
job has a single static priority. An example of this is the earliest deadline first
(EDF) scheduling [LL73];

• Dynamic priority: a job of a task might have different priorities at different
times. An example of this is the least laxity first (LLF) scheduling [Leu89].

Preemption is another important feature pertaining to scheduling algorithms.

• If tasks can be preempted by a task with higher priority at any time, the schedul-
ing algorithm is said to be a preemptive scheduling algorithm;

• If tasks start to execute and they cannot be suspended at runtime until their com-
pletions, then the scheduling algorithm is said to be a non-preemptive schedul-
ing algorithm.

Since the optimal scheduling algorithms for uniprocessor or multiprocessor sys-
tems are both preemptive [LL73][BCPV93a], we in this dissertation focus our study
on preemptive scheduling algorithms.

17

CHAPTER 2. BACKGROUND

Schedulability Tests and Scheduling Algorithms

As we discussed in Chapter 1, the key problem of real-time systems is to decide
whether real-time tasks are schedulable on a specific platform under a certain real-
time scheduling algorithm, i.e., to guarantee the system’s timing constraint. Schedu-
lability tests are the formal and veryfing tools to help us check the schedulability. The
formal definition of Schedulability tests can be found in Definition 1.2.1 on page 9.
In this section, we introduce the schedulability tests used in this dissertation.

Generally, schedulability tests can be classified as follows [DB11]:

• Sufficient test: If a real-time task set which is schedulable according to a
schedulability test is indeed schedulable, the schedulability test is said to be
sufficient.

• Necessary test: If a real-time task set which is unschedulable according to a
schedulability test is indeed unschedulable, the schedulability test is said to be
necessary.

• Exact test: If a schedulability test is both sufficient and necessary, the schedu-
lability test is said to be exact.

In some cases, it is highly difficult to derive an exact test, so we would like to derive
a sufficient test to ensure the schedulability of a real-time task set.

The preemptive earliest deadline first (EDF) scheduling algorithm [LL73] is the
most studied dynamic-priority scheduling algorithm. In this dissertation, we use EDF
as the scheduling algorithm in Chapter 5 and 6. The seminal paper [LL73] proved
the exact schedulability test for an implicit deadline periodic task set under EDF on
a uniprocessor system.

Theorem 2.2.1 ([LL73]). For an implicit deadline periodic task set Γ, it is schedula-
ble by EDF if and only if

UΓ = C1/T1 + C2/T2 + · · ·+ Cn/Tn =
n∑
i=1

Ci/Ti ≤ 1. (2.4)

On a uniprocessor system, EDF has been proven to be the optimal scheduling
algorithm for implicit deadline tasks [Der74].

Theorem 2.2.2 ([Der74]). If a job set J is schedulable by an algorithm A, then it is
schedulable by EDF.

Corollary 2.2.1. EDF is an optimal scheduling algorithm on a uniprocessor system.

18

CHAPTER 2. BACKGROUND

However, for constrained deadline task set, Equation (2.4) only serves as a nec-
essary test. Barauh et al. in [BMR90] proposed an exact schedulability test for
constrained deadline task set under EDF on a uniprocessor system, where the exact
schedulability test is derived based on the concept of demand bound function (dbf).

dbf(τi, t0, tf) = max

{
0,

⌊
(tf − t0)−Di

Ti

⌋
+ 1

}
Ci (2.5)

where tf − t0 denotes a time interval, t0 and tf are the start time and the end time
of the interval, respectively. dbf computes the maximum cumulative execution time
which a task demands within time interval [t0, tf]. If the total maximum execution
time of task set Γ within the time interval does not exceed the time interval, the task
set is schedulable. Otherwise, it is unschedulable for the task set.

Theorem 2.2.3 ([BMR90]). A task set Γ is schedulable if and only if UΓ ≤ 1 and

∀t < La, dbf(Γ, t0, tf) =
n∑
i=1

max

{
0,

⌊
(tf − t0)−Di

Ti

⌋
+ 1

}
Ci (2.6)

where La is defined as follows:

La = max

{
D1, · · · , Dn, max

1≤i≤n
{Ti −Di}

UΓ

1− UΓ

}
(2.7)

Theorem 2.2.3 is the exact test to check the schedulability of a task set under EDF
scheduling. However, the exact test shown in Theorem 2.2.3 is computationally expen-
sive because this exact test needs to test all absolute deadlines within the time interval
and there can be a large number of absolute deadlines which need to be checked. To
improve the efficacy of the EDF exact test, Zhang and Burns [ZB09] proposed a new
exact test for the EDF scheduling, referred as Quick convergence Processor-demand
Analysis (QPA).

Theorem 2.2.4 ([ZB09]). A task set Γ is schedulable if and only if UΓ ≤ 1 and the
result of the QPA iterative algorithm shown in Algorithm 1 is dbf(Γ, to, tf) ≤ dmin,
where dmin = min{Di}.

The extensive experimental results in [ZB09] demonstrate the efficiency of QPA
in terms of reducing the time complexity of testing the schedulability. Therefore, in
our work, we use QPA to test the schedulability of a task set when the utilization-based
test is not applicable.

19

CHAPTER 2. BACKGROUND

Algorithm 1: QPA
1 t← max{di|di < L};
2 while (dbf(Γ, t) ≤ t ∧ dbf(Γ, t) > dmin)
3 {if (dbf(Γ, t) < t) t← dbf(Γ, t);
4 else t← max{di|di < L};
5 }

2.2.3 Multiprocessor Real-Time Scheduling

Nowadays, the increasing number of real-time systems is implemented on multipro-
cessor platforms. The prevalence of these real-time multiprocessor systems rises a
new problem, namely the assignment problem, i.e., deciding which processor to ex-
ecute which task. Multiprocessor scheduling algorithms can be classified as follows
based on the tasks’ assignment:

• Partitioned scheduling: tasks are only permitted to execute on their assigned
processors and task migration is prohibited. On each processor, a uniprocessor
scheduling algorithm is deployed to schedule the tasks assigned to the proces-
sor;

• Global scheduling: tasks are permitted to migrate to any processor at anytime
and a global scheduling algorithm assigns tasks to proper processors at runtime;

• Cluster Scheduling: the system is comprised of several clusters where each
cluster consists of a number of processors. Tasks are statically assigned to a
fixed cluster and within a cluster tasks are permitted to migrate to the processors
in the same cluster, i.e., a global scheduling algorithm is deployed within a
cluster, but task migration between clusters is prohibited;

• Semi-partitioned scheduling/Task-splitting: the majority of tasks are statically
assigned to processors and only a few tasks are permitted to migrate among
processors. Usually, the assignment of migrative tasks is also known at design
time, i.e., a migrative task executes partially on one processor and then migrates
to another processor to complete its execution.

Assignment Algorithms

When partition scheduling is deployed to schedule tasks on a multiprocessor system,
a key problem is to efficiently decide how to assign a task to a proper processor so

20

CHAPTER 2. BACKGROUND

that a certain metric, e.g., schedulability, energy-efficiency, etc, is satisfied1.
The assignment problem of real-time tasks on a multiprocessor system is inher-

ently analogous to the well-known bin-packing problem [GJ79]. In the bin-packing
problem, objects of different volumes are packed into a finite number of bins with
fixed capacity such that the number of bins used is minimized. The bin-packing prob-
lem has been proven to be a NP-complete problem [GJ79], so an optimal solution
cannot be obtained in a polynominal time unless P=NP. Therefore, many heuris-
tic algorithms are developed to efficiently solve the bin-packing problem and to ob-
tain a suboptimal result in a reasonable time. The close similarity between these two
problems allows us to directly utilize the well-established heuristic algorithms for the
bin-packing problem to assign real-time tasks on a multiprocessor system. Below, we
introduce the most used heuristic algorithms [CGJ97, Joh74].

• First-Fit (FF) algorithm: the FF algorithm always tries to place an item Ii to
the first bin Bj (i.e., lowest index). That is

j = min{k : size(Ii) + capacity(Bk) ≤ 1}

If no exsiting bin can accomodate the item, a new bin is opened and the item is
placed in the new bin;

• Worst-Fit (WF) algorithm: theWF algorithm always tries to assign an item Ii
to the bin Bj which has the most residual capacity after placing item Ii. That
is

j = min{k : size(Ii) + capacity(Bk) minimized}

If no exsiting bin can accomodate the item, a new bin is opened and the item is
placed in the new bin;

• Best-Fit (BF) algorithm: the BF algorithm always tries to assign an item Ii to
the bin Bj which has the least residual capacity after placing item Ii. That is

j = min{k : size(Ii)+capacity(Bk) maximized & not exceed the bin volume.}

If no exsiting bin can accomodate the item, a new bin is opened and the item is
placed in the new bin.

Performance of these heuristic algorithms can be improved by sorting tasks in order
of decreasing utilization or density. Then, we have:

1Throughout this dissertation, we may use the term “assign”, “map”, and “partition” interchangeably
to denote the procedure that statically decides a processor for a task to complete its execution.

21

CHAPTER 2. BACKGROUND

Priority Platform Multiprocessor Scheduling

Chapter 3 task-level/dynamic multiprocessor global scheduling
Chapter 4 dynamic multiprocessor cluster scheduling
Chapter 5 task-level multiprocessor task-splitting
Chapter 6 dynamic 2 uniprocessor None

Table 2.2: Scheduling algorithms considered in each chapter

• First-Fit-Decreasing (FFD): all tasks are sorted in decreasing order of their
utilization or density (see Section 2.2.1) and then tasks are assigned using the
FF algorithm;

• Worst-Fit-Decreasing (WFD): all tasks are sorted in decreasing order of their
utilization or density and then tasks are assigned using the WF algorithm;

Although partitioned scheduling has no migration cost and can directly apply a
wealth of well-developed uniprocessor real-time theories, it suffers from low resource
utilization due to the capacity loss during the assignment procedure [DB11]. The
rest of the multiprocessor real-time scheduling algorithms can achieve better resource
utilization and additionally the research on them is an increasingly hot topic in the real-
time community. Therefore, in this dissertation, we consider the global scheduling,
cluster scheduling, and task-splitting approach.

In the cluster scheduling, the inital step is to assign tasks to a cluster such that
a global scheduling can be applied to the tasks assigned to the cluster. Similarly, in
the task-splitting approach, a subset of tasks are statically assigned to processors and
the rest of the tasks are splitted among the processors. The assignment procedures in
both the cluster scheduling and the task-splitting aproach are similar to the assignment
procedure in partitioned scheduling. Therefore, all heuristic assignment algorithms
introduced aboven can be applied to the cluster scheduling and the task-splitting ap-
proach.

Table 2.2 summarizes the priority assignment schemes, platforms, and multipro-
cessor scheduling algorithms considered in each chapter.

2Although the original EDF is a task-level priority scheduling algorithm, EDF-VDmay change dead-
lines of some tasks during runtime. As a result, the priority of these tasks will be changed upon their
execution. Thus, we here consider EDF-VD as a dynamic priority scheduling.

22

CHAPTER 2. BACKGROUND

2.3 Hard-Real-Time (HRT) Scheduling of CSDF graphs

Throughout this dissertation, instead of traditional dataflow scheduling techniques
[MB07], we use a new scheduling framework [BS11, BS12, BS13] to schedule CSDF
graphs. In this section, we give a brief introduction about this new scheduling frame-
work.

Traditionally, CSDF graphs are scheduled by self-timed scheduling [MB07], where
an actor starts to execute as soon as it receives enough tokens from its predecessors.
However, since the self-timed scheduling normally provides best-effort services, it
is difficult to provide a hard-real-time timing guarantee for every task in an applica-
tion. Bamakhrama and Stefanov in [BS11, BS12, BS13] proposed a Hard-Real-Time
(HRT) scheduling framework in which an acyclic CSDF graph is converted into an
independent periodic task set. This conversion effectively bridges the gap between
data-flow models and real-time theories and enables us to apply a plethora of well-
developed real-time theories to CSDF graphs. The advantage of this framework is
the direct application of real-time theories on dataflow models, such as schedulabil-
ity tests and assignment algorithms, and the designers are able to accomplish fast
admission control and temporal isolation and provide hard-real-time guarantees. A
good example of the application of theHRT scheduling framework is demonstrated in
[BZNS12], where the merit of the HRT scheduling framework helps to significantly
reduce the complexity of the design space exploration when designing a real-time
streaming multiprocessor system.

TheHRT scheduling framework takes as an input a CSDF graph where theWCET
of each actor in the CSDF graph is known in a priori, and finally it outputs a periodic
task sets which can be scheduled by a real-time scheduler. Note that the WCETs
considered in the HRT scheduling framework also account for the worst-case com-
munication overhead because the HRT scheduling framework strives to ensure the
feasibility of this approach regardless of the variance of different task assignments.
The basic concept behind this framework is to derive the real-time parameters, i.e.,
period, start time, and deadline, for each actor according to actors’ WCETs and the
CSDF graph properties, e.g., the repetition vector explained in Section 2.1. The pro-
cedure goes through the following steps: 1) it computes a period for each actor in the
input CSDF graph according to its repetition values and WCETs; 2) it computes the
actors’ start times such that the precedence constraints between actors are respected
and thus the deadlock in execution is avoided; and 3) it determines the deadline of
each actor.

Computing Periods
To compute the period of an actor in a CSDF graph, we first define the workload

of an actor and the maximum actor workload of a graph as follows:

23

CHAPTER 2. BACKGROUND

Definition 2.3.1. The workload of an actor τi isWi = qiCi and themaximum actor
workload of the graph is Ŵ = maxτi∈G{Wi}

Then, we can use themaximum actor workload and the repetition value qi of actor
τi to compute the minimum period T̆i of actor τi as follows [BS11]:

T̆i =
lcm(~q)

qi

⌈
Ŵ

lcm(~q)

⌉
(2.8)

where lcm(~q) is the least common multiple of the repetition vector ~q (explained in
Section 2.1). The minimum periods deliver the maximal throughput for the CSDF
graph under the HRT scheduling. Based on this minimum period, a period scaling
technique can be applied to uniformly scale up the period of each actor under theHRT
scheduling framework, thereby adjusting the throughput of the CSDF graph [ZBS13,
SLS16] .

Computing Start Times
Once the periods of all actors are computed, we need to deal with the precedence

constraints between actors. The execution semantics of a dataflow model requires an
actor to receive sufficient data from its predecessors in order to trigger its execution,
thus the existence of precedence constraints prohibits all actors to start their execution
at the same time. To resolve the precedence constraints, the converting procedure
in the HRT scheduling framework offsets the start times of actors such that by its
start time every actor is capable of obtaining sufficient data on its input edges and
its subsequently periodic executions are free from deadlock. The following lemma is
used to compute the earliest start time for each actor in a CSDF graph

Lemma 2.3.1 (From [BS11]). For an acyclic CSDF graph G, the earliest start time
of an actor τj ∈ A, denoted Sj , under HRT scheduling is given by

Sj =

{
0 if Ω(τj) = ∅
maxτi∈Ω(τj) (Si→j) if Ω(τj) 6= ∅

(2.9)

where Ω(τj) is the set of predecessors of τj , and Si→j is given by

Si→j = min
t∈[0,Si+α]

{t : prd
[Si,max(Si,t)+k)

(τi) ≥ cns
[t,max(Si,t)+k]

(τj) ∀k ∈ [0, α]} (2.10)

where α = qiTi = qjTj , prd[ts,te)(τi) is the number of tokens produced by τi during
the time interval [ts, te), and cns[ts,te](τj) is the number of tokens consumed by τj
during the time interval [ts, te].

24

CHAPTER 2. BACKGROUND

Determing Deadlines
After the step of computing the start times, we have three parameters to specify

an actor τi as a periodic task: the given WCET Ci, the period Ti, and the start time
Si computed by using Equation (2.8) and Equation (2.9), respectively. Recall that a
periodic task is specified by a tuple of 4 parameters {Si, Ci, Di, Ti}, so we need to
determine a deadline for each actor. In the HRT scheduling framework, the deadline
Di of actor τi can be selected within a well-defined range [Ci, Ti], i.e.,Di ∈ [Ci, Ti].
The deadline selection is a highly relevant problem for the HRT scheduling frame-
work because the deadline selection is able to influence both the performance (mainly
the latency) of the CSDF graph and the number of processors required to schedule
the CSDF graph. Later in Chapter 3, we propose a novel approach to optimally se-
lect deadlines in the HRT scheduling framework such that the latency requirement is
ensured and the number of processors required is minimized.

Latency and Throughput
After the periodic tasks’ parameters are computed, as explained above, the latency

and throughput of the CSDF graph scheduled in the HRT scheduling framework can
be computed. Equation (2.11) is used to compute the minimum latency of the CSDF
graph,

L(G) = max
w∈W

(Sout + (gCout + 1)Tout − (Sin + gPinTin)) (2.11)

where w is one path of set W which consists of all paths from the input actor to the
output actor. Here, Sout and Tout are the start time and period, respectively, of output
actor τout, while Sin and Tin denote the start time and period, respectively, of input
actor τin. gCout and gPin are two constants which denote the number of invocations the
actor waits for the non-zero consumption/production of tokens on a path w ∈ W.
Note that whenDi = Ci,∀i, the graph can reach the minimum latency achievable by
the HRT scheduling framework. The throughput of the CSDF graph is computed as
follows:

R = 1/Tout (2.12)

Note that when all actors have the minimum periods T̆i, the graph can reach the max-
imum throughput achievable by the HRT scheduling framework.

25

CHAPTER 2. BACKGROUND

26

