Universiteit

4 Leiden
The Netherlands

Latency, energy, and schedulability of real-time embedded systems
Liu, D.; Liu D.

Citation
Liu, D. (2017, September 6). Latency, energy, and schedulability of real-time embedded
systems. Retrieved from https://hdl.handle.net/1887/54951

Version: Not Applicable (or Unknown)

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/54951

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/54951

Cover Page

The handle http://hdl.handle.net/1887/54951 holds various files of this Leiden University
dissertation

Author: Liu, D.
Title: Latency, energy, and schedulability of real-time embedded systems
Issue Date: 2017-09-06

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/54951
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 1

Introduction

Almost all computer systems of the future will utilize real-time scientific principles
and technology.

John Stankovic

MBEDDED systems are computer systems dedicated to a specific functionality. Usu-
E ally embedded systems are integrated into a large and complex system to control,
monitor and assist the operation of the whole system, safely and reliably. In some
cases, we may not be aware of the presence of embedded systems, but in our daily life
they are prevalent and almost everywhere, affecting and somehow changing our life.
From the ARTEMIS report [ART14], 98% of all computing chips are for embedded
systems. A smart watch which monitors our health situation is an embedded system;
A mouse which we use to control a computer is an embedded system; A thermostat
which senses the temperature and humidity of our apartment is also an embedded sys-
tem. We can give uncountable examples of such embedded systems which are playing
an important role in our daily life without notice.

Since embedded systems usually execute control applications which constantly
interact with the physical world via sensors and actuators, embedded systems are re-
quired to execute not only functionally correctly but also on time. This critical re-
quirement related to time is referred as real-time constraints [Butl1l]. Systems are
called real-time systems, if the correctness of the system does not only depend on
the correctness of the system output but also on whether the output is delivered on
time [Sta88]. Based on consequences of missing time deadlines by an application,
real-time systems are categorized into two types:

e Hard-real-time systems: missing deadlines will lead to failure of the system
which in turn causes catastrophic consequences, e.g., loss of human life. Exam-

CHAPTER 1. INTRODUCTION

ples of hard-real-time systems are safety control systems in cars and aircrafts,
pacemakers, etc;

o Soft-real-time systems: missing deadlines will not cause failure of the whole
system but will degrade the performance of the system. Examples of soft-real-
time systems are multimedia applications, on-line service applications, etc.

Embedded systems with real-time constraints are called real-time embedded systems.

Besides real-time constraints, many applications of real-time embedded systems
feature another important property, called criticality. The criticality is to denote
degrees of importance in guaranteeing the safety of a system. For example, un-
manned aerial vehicles (UAVs) have two types of applications, safety-critical appli-
cations, such as the flight control, and mission-critical applications, such as surveil-
lance and video streaming. The safety-critical applications (e.g., the flight control)
have higher criticality level because they are essentially crucial to the operational
safety of the whole system and failure (i.e., violating timing properties) of the safety-
critical applications will lead to a catastrophic consequence, such as loss of UAV
which may injure a human-being. On the other hand, the mission-critical applica-
tions have lower criticality level because they are not coupled to the operational safety
of the whole system, so failure of mission-critical applications will not threaten the
operational safety of the system but will only affect the system service quality. In
different industrial contexts, different standards are deployed to guide the design of
systems with different criticality-level applications, such as IEC61508 for electri-
cal/electronic/programmable electronic safety-related systems, 1SO26262 for auto-
motive systems, and DO-178B/C for avionic systems [ENNT15]. Table 1.1 defines
the classification of criticality levels in standard DO-178B/C [Nor], where 5 critical-
ity levels are present and the criticality levels are classified with respect to the failure
consequence on the system safety. Criticality level A is the most critical level and
failure of an A-level application leads to catastrophic consequences, whereas failure
of an E-level application does not have an effect on the system safety.

Up to this point, we have introduced embedded systems, real-time constraints
tightly coupled to embedded systems, and the criticality concept of real-time embed-
ded systems. In the next section, we will discuss three significant development trends
in designing real-time embedded systems.

1.1 Development Trends in Real-Time Embedded Systems

In the past decade, we have been witnessing some important development trends in the
computing world which have profound effects on the design of real-time embedded
systems.

CHAPTER I. INTRODUCTION

Level | Failure Condition | Failure Consequence

A Catastrophic Failure may cause multiple fatalities, usu-
ally with loss of the airplane.
B Hazardous Failure has a large negative impact on

safety or performance, or reduces the abil-
ity of the crew to operate the aircraft due to
physical distress or a higher workload, or
causes serious or fatal injuries among the
passengers.

C Major Failure significantly reduces the safety mar-
gin or significantly increases crew work-
load. May result in passenger discomfort
(or even minor injuries).

D Minor Failure slightly reduces the safety margin
or slightly increases crew workload. Ex-
amples might include causing passenger in-
convenience or a routine flight plan change.
E No Effect Failure has no impact on safety, aircraft op-
eration, or crew workload.

Table 1.1: Criticality levels in the DO-178B/C standard [Nor]

1.1.1 The Era of Multicore/Multiprocessor Systems

When single processor systems were dominating the chip market a decade ago, chip
manufacturers used to improve the performance of a processor by scaling up the oper-
ational clock frequency. Meanwhile, the fast development of the process technology
enables semiconductor manufacturers to produce thiner transistors, the fundamental
element to implement electronic circuits. Nowadays, some high-end processors, like
Samsung Exynos 7 Octa 7420, 7870 and 8890, are implemented with 14 nanometer
transistors [Sam16]. However, constantly scaling up the operational clock frequency
of thin transistors results in extremely high power consumption [EET04].

As a solution to such high power consumption, chip manufacturers have drasti-
cally changed their design scheme from a single processor chip with high operational
clock frequency to a chip with multiple cores/processors, but each with lower opera-
tional clock frequency. Fabricating more cores on a chip is able to enhance the peak
performance of the system and at the same time to reduce the total power consumption
in comparison to the single processor design. Throughout this dissertation, we may
use the term multicore and multiprocessor interchangeably.

The year 2004 marked the milestone of this significant change in industry, when
Intel canceled its single processor design, namely Tejas, and moved to a duel-core

CHAPTER 1. INTRODUCTION

design [EET04]. Since then, computing systems including embedded systems have
entered the multicore era. Nowadays, multicore systems are the mainstream in com-
puting systems. This trend can be seen on diverse computing systems such as mobile
phones, laptops, desktops, etc.

1.1.2 The Shift to Heterogeneous Multicore Systems

Multicore systems have been widely adopted to satisfy the increasing computational
demands of complicated applications and, in the meantime, to reduce energy con-
sumption. Among all multicore systems, homogeneous multicore systems that consist
of identical processing cores are most ubiquitous and widely-used in modern elec-
tronic systems spanning from mobile devices to supercomputing systems. However,
the rapid development of multicore systems brings a new problem, called the dark
silicon problem [EBSAT11]. In 1974, Dennard et al. [DGR*74] stated that as tran-
sistors decrease size, the power density still remains a constant, i.e., the transistors
become thinner, and the power consumption also scales down along with the reduced
size. This statement is wildly known as the "Dennard Scaling". However, when the
transistor manufacturing technology enters the era of nanometer, the Dennard Scal-
ing fails due to the dramatically increased static power consumption in nanometer-size
transistors. Static power is consumed by currents which leak through transistors even
when transistors are turned off [KABT03]. This significant increase in static power
consumption in turns leads to an overheating issue for the system. To avoid the over-
heating, some transistors on a chip have to be inactive (powered-oft), i.e., ‘dark’.

Several solutions [CZZ 115, HKPS15] have been proposed in recent years to mit-
igate the dark silicon problem. Heterogeneous multicore systems [Mit15] have been
considered to be one of the promising solutions for the dark silicon problem and a
good alternative to homogeneous multicore systems. In contrast to homogeneous
systems having identical cores, heterogeneous multicore systems consist of different
types of cores. Such variety of cores enable diverse applications to enhance the appli-
cation performance and/or reduce the power/energy consumption of the application
by means of selecting a proper core for execution.

Among all heterogeneous systems, the single-ISA heterogeneous multicore sys-
tem [KFJT03] is a special type of heterogeneous multicore system, where the cores
on the chip have the same instruction set architecture (ISA) but differentiate with
each other in terms of power consumption and performance. Typical single-ISA het-
erogeneous multicore systems usually consist of two types of cores; ‘big’ cores with
complex micro-architecture, e.g., a deep pipeline and wider issue width, designed for
high performance computing and ‘LITTLE’ cores with simple micro-architecture,
e.g., a shallow pipeline and narrower issue width, optimized for low power comput-
ing. Table 1.2 shows an example of cores implemented on a ‘big. LITTLE’ architecture

4

CHAPTER I. INTRODUCTION

Core type pipeline depth Out-of-order Decode big. LITTLE role
execution

ARM Cortex A57 15 Yes 3-wide-issue ‘big’

ARM Cortex AS3 8 No 2-wide-issue ‘LITTLE’

Table 1.2: Comparison between ARM Cortex A57 and ARM Cortex A53 [ARM16]

system and gives a comparison of the two types of ARM cores in terms of microar-
chitecture [ARM16]. Several leading semiconductor companies have mass-produced
their own single-ISA heterogeneous multicore systems for commodity products, e.g.,
Qualcomm Snapdargon 810 and 808, Samsung’s Exynos 5 Octa series [Sam16], and
Nvidia’s Tegra X1[Gill5]. In the remainder of this dissertation, when we refer to
heterogeneous multicore/multiprocessor systems, we mean single-ISA heterogeneous
multicore/multiprocessor systems.

1.1.3 The Emergence of Mixed-Criticality Systems

Real-time systems which execute applications with different criticality are becoming
prevalent, e.g, automotive vehicles, unmanned aerial vehicles, aircrafts, etc. To en-
sure the safety guarantee of systems with different critical-level applications, the old
paradigm of designing such safety-critical systems was to physically isolate applica-
tions with different criticality level, i.e., critical applications and non-critical appli-
cations are executed separately on different processing units. Such complete spatial
isolation enables critical applications to avoid the interference from non-critical appli-
cations, thereby guaranteeing system safety. However, with the rapid development of
complex and sophisticated real-time systems, increasing number of applications with
different criticality and complex functionality are incorporated into a system, leading
to a huge growing number of processing units. For instance, modern premium cars
typical contain around 70-100 computers, around 100 electronic motors and 2 km of
wire [Tho12]. This complicated and sometimes redundant hardware leads to a system
with large system size and very high power consumption. Therefore, to reduce Size,
Weight, and Power (SWaP), the emerging trend in the development of safety-critical
systems is to integrate applications with different criticality into a shared computing
platform. We call such systems mixed-criticality systems. A formal definition of a
mixed-criticality system is given as follows:

Definition 1.1.1 ([BBB109]). A mixed-criticality system is an integrated suite of
hardware, operating system and middleware services, and application software that
supports the execution of safety-critical, mission-critical, and non-critical software
within a single, secure compute platform.

CHAPTER 1. INTRODUCTION

1.2 Problem Statement

The important development trends, described in Section 1.1, bring new opportunities
to develop embedded systems, but they also arise several challenges when designing
real-time embedded systems. In this dissertation, we address challenges arisen by the
above-mentioned development trends in the contexts of system resource optimiza-
tion, system energy optimization, and system schedulability analysis. The specific
problems, we address in this dissertation, are formulated as follows.

Problem 1: Resource Optimization for hard-real-time streaming applications.

Streaming applications, such as video/audio processing and digital signal pro-
cessing, have become prevalent in embedded systems. These applications contain
ample amount of parallelism which perfectly matches the processing power of Multi-
Processor System-on-Chip (MPSoC) platforms. To efficiently program MPSoC plat-
forms, Models-of-Computation (MoCs) are usually used to specify streaming applica-
tions. Prominent examples of MoCs include Synchronous Data Flow (SDF) [LM87]
and its generalization Cyclo-Static Dataflow (CSDF) [BELP96], in which actors rep-
resenting computation are executed concurrently, thereby naturally exposing paral-
lelism.

Traditionally, self-timed scheduling [MBO07] is considered to be the most proper
scheduling paradigm to schedule Data-Flow modeled applications. However, hard-
real-time constraints are increasingly imposed to streaming applications and self-
timed scheduling cannot guarantee such rigorous constraints. In addition, self-timed
scheduling suffers from complex analysis techniques, making its design procedure re-
ally time-consuming. Recently, Bamakhrama and Stefanov in [BS11][BS12][BS13]
proposed a scheduling framework that schedules acyclic CSDF graphs by using hard-
real-time theories. In this scheduling framework, each CSDF actor executes strictly
periodically and meets a given deadline. The periodic execution of actors guarantees
a certain throughput and latency. Additionally the well-defined analytical techniques
of real-time theories significantly reduce the design time when designing embed-
ded multiprocessor streaming systems [BZNS12]. When CSDF actors are scheduled
as strictly periodic tasks, the deadline of each actor can be varied in a well-defined
bounded interval (see Section 2.3), thereby controlling the application latency and the
number of processors needed to schedule the application. This means that selecting
a proper deadline value for each actor is an important issue for reducing the latency
and minimizing the number of processors in this framework. Although, in [BS12], the
authors give a method to select deadlines of actors to reduce the application latency,
their method is not optimal in terms of the required number of processors. The prob-
lem, we address in the scheduling framework proposed in [BS11][BS12][BS13],
is how to select deadlines of actors of hard-real-time streaming applications in

6

CHAPTER I. INTRODUCTION

a proper way such that the resources (the number of processors) is minimized
while meeting their latency constraints.

Problem 2: Energy-efficient mapping and scheduling of hard-real-time applica-
tions on ''big. LITTLE" heterogeneous multicore systems.

Energy/power consumption has gradually become a critical design criterion for
a system, especially for embedded systems which are mostly battery-powered. Volt-
age/frequency scaling (VES) is the most common technique for power reduction and
can be seen on many modern processors. Due to its prevalence, VFS is also applied
to real-time embedded systems for energy minimization.

Basically, for energy-efficient real-time application mapping, an algorithm with
consideration of energy efficiency is deployed first to map real-time applications on
multicore systems and then the VFS technique is used on the system to scale down the
operational clock frequency/voltage to a proper level that is able to guarantee the time
deadlines of all real-time applications and to minimize the energy consumption at the
same time. However, the energy-efficient mapping and scheduling problem has been
proven to be NP-hard in the strong sense on homogeneous multiprocessor systems
[AYO03] as well as on heterogeneous multiprocessor systems [CTO8]. Thus, heuristic
or approximate algorithms are required to deal with the problem in a reasonable time.
Many approaches have been proposed to effectively and efficiently map real-time ap-
plications in an energy-efficient manner. Two surveys in [CK07, BMAB16] compre-
hensively review existing works concerning energy-efficient mapping and scheduling
of real-time applications.

However, the existing approaches cannot effectively handle the new heterogeneous
"big.LITTLE" multicore systems discussed in Section 1.1.2, because some impor-
tant features of these emerging heterogeneous multicore systems were not consid-
ered. Hence, this fact motivates us to revisit the existing mapping and scheduling ap-
proaches and consider the features of the new heterogeneous multicore systems. The
problem, we address, is how to map hard-real-time applications on the emerging
"big. LITTLE" heterogeneous multicore systems in an energy-efficient manner
while satisfying real-time constraints and performance requirement when con-
sidering hard-real-time streaming applications.

Problem 3: Schedulability of imprecise mixed-criticality systems.

To ensure the correctness of a mixed-criticality (MC) system, highly critical ap-
plications are subject to certification by Certification Authorities (CAs), such as the
Civil Aviation Authority [Civ16] and Federal Aviation Administration [Fed16], and
usually the certifications are done under extremely rigorous and pessimistic assump-
tions [VesO7]. As a consequence, this pessimism generally causes large worst-case
execution time (WCET) over-estimation for highly critical applications and in turn it

7

CHAPTER 1. INTRODUCTION

results in underutilization of the hardware resource.

To deal with this overestimation, Vestal proposed in [Ves07] to characterize a
highly critical application with different WCETs corresponding to different criticality
levels. Besides the large WCET determined by the CAs, each highly critical applica-
tion is specified with several smaller WCETs which are determined by system design-
ers at lower assurance levels, i.e., considering less pessimistic situations. Since CAs
only certify highly critical applications, all less critical applications are only validated
by system designers who generally do this under less pessimistic situations, thereby
having only lower assurance and smaller WCETs. When scheduling an MC system
modeled as described above, all applications (highly critical and lowly critical) are ini-
tially scheduled using their low assurance WCETs. This can better utilize hardware
resources, and in most cases all applications can be safely and successfully scheduled
with their low assurance WCETs. Then, if a rare case occurs, i.e., any highly critical
application cannot complete its execution within its low assurance WCET, the sys-
tem discards all less critical applications and dedicates the whole system to schedule
only highly critical applications with their certified (very pessimistic, large) WCETs.
Throughout this dissertation, we call the MC model discussed above the classical MC
model.

Although the classical MC model captures the core features of MC systems, it
also receives some criticisms from system engineers because completely discarding
less critical applications is too pessimistic and in some cases unacceptable [BB13]. To
address these criticisms, Burns and Baruah in [BB13] proposed a more general MC
model. In this general MC model, besides the normal WCET validated by system
designers, a reduced WCET is given to each less critical application. Then, if a rare
situation occurs, i.e., highly critical applications overrun their low assurance WCETs,
instead of discarding all less critical applications, this general MC model keeps less
critical applications running with their reduced WCETs. Reducing WCETs to keep
less critical applications running is conceptually similar to the imprecise computation
model [LLST91][LSLT94]. In the imprecise computation model, the output quality
of a real-time application depends on its execution time. The longer a task executes,
the better quality results it produces. Then, if there is an overload in the system, tasks
can trade off the quality of the produced results to ensure their timing correctness. In
[RKKK14a], Ravindran et al. give several real-life applications with this imprecise
feature in different domains, e.g., video encoding, robotic control, cyber-physical sys-
tems, and planetary rovers. Considering the conceptual analogy between the general
MC model proposed in [BB13] and the imprecise model, we call this general MC
model imprecise mixed-criticality IMC) model in this dissertation.

For MC real-time systems or even non-MC real-time systems (all applications
have the same criticality level), the most important problem is to analyze the schedu-

8

CHAPTER I. INTRODUCTION

lability (i.e., feasibility) of the system, i.e., whether under a certain scheduling al-
gorithm, a set of real-time applications can run on a platform without violating any
deadline, even in the worst case. To analyze the schedulability of a real-time system
under a certain scheduling algorithm, a schedulability test is needed.

Definition 1.2.1. Given a scheduling algorithm, a hardware platform and a real-time
application set, a schedulability test decides whether the application set is schedulable
by the scheduling algorithm on the hardware platform.

In [BB13], Burns and Baruah presented a test based on Adaptive Mixed-Criticality
(AMC) [BBD11] to check the schedulability of the IMC model under the fixed-priority
scheduling algorithm [LL73]. However, a schedulability test of the IMC model under
dynamic-priority scheduling algorithm, e.g., earliest deadline first (EDF) with virtual
deadline (EDF-VD) [BBD™12], has not been addressed. Here, the problem, we ad-
dress, is how to ensure and test the schedulability of an IMC system under the
EDF-VD scheduling algorithm.

1.3 Contributions of This Dissertation
Below, we summarize our novel contributions to the problems outlined in Section 1.2.

Contribution 1: Novel approach for Resource Optimization of CSDF-modeled
Streaming Applications with Latency Constraints

To address Problem 1 in Section 1.2, in the context of CSDF-modeled streaming ap-
plications and the hard-real-time scheduling framework proposed in [BS11][BS12]
[BS13], we propose a new method to optimally select the deadlines of actors in CSDF
graphs so that the required resources (i.e, the number of processors) are minimized
while the latency requirement is satisfied. Our novel contributions are twofold: 1) we
propose a new method to interpret the precedence relation between actors so that the
parameters of actors, i.e., starting times and deadlines, can be formalized in a mathe-
matical form; 2) based on our first contribution, we formulate our resource optimiza-
tion problem as an integer convex programing (ICP) problem. Convex programming
is a mathematical optimization problem which can be optimally solved in polynomial
time [BV04]. The formulated ICP problem enables us to use an off-the-shelf convex
programming solver, e.g., CVX [GB14][GBO08] to solve our problem and obtain the
optimal solution for our resource optimization problem. Compared to the existing ap-
proach [BS12], our ICP-based approach can effectively reduce the resource require-
ments for the hard-real-time streaming applications while guaranteeing the latency
constraints. This contribution and experimental results are presented in Chapter 3.

9

CHAPTER 1. INTRODUCTION

Contribution 2: Novel Algorithm for Energy-Efficient Mapping of Real-Time
Streaming Applications on Heterogeneous Multiprocessor System-on-Chip (MP-
SoC)

We address Problem 2 in Section 1.2 by proposing a novel polynomial time algorithm,
called Frequency Driven Mapping (FDM), to map real-time streaming applications
onto a heterogeneous multiprocessor system with the aim of reducing the energy con-
sumption and guaranteeing the latency and throughput constraints. The main novelty
in this algorithm is twofold: 1) By using the hard-real-time scheduling framework
for CSDF graphs in [BS11][BS12][BS13], we propose an efficient way to determine
a suitable processor type for each actor/task in the CSDF graph, where the energy
consumption is minimized and throughput and latency constraints are met; 2) Then,
based on the obtained processor type assignment, we propose a new approach to map
actors of the streaming application specified as a CSDF graph to the given platform
and then further reduce the energy consumption by using VFS. Experimental results
show the effectiveness of our proposed algorithm in terms of energy efficiency in com-
parison to the related work. This contribution and experimental results are presented
in Chapter 4.

Contribution 3: Novel Algorithm for Energy-Efficient Mapping of Real-Time
Tasks on Heterogeneous Multicores Using Task Splitting

To address Problem 2 in Section 1.2, in the context of independent real-time tasks (ap-
plications), we are inspired by the latest C=D task-splitting technique [BDWZ12] and
propose a novel algorithm, called Allocation and Split on Heterogeneous Multicore
systems (ASHM)), to energy-efficiently map real-time tasks on heterogeneous multi-
core systems by using the C=D task-splitting technique. To the best of our knowledge,
our ASHM algorithm is the first work to consider the C=D task-splitting technique on
heterogeneous multicore systems for energy efficiency. In this work, we investigate the
application of the C=D task-splitting on real-time heterogeneous multicore systems to
reduce energy consumption. The concepts regarding the task-splitting approach and
the C=D approach will be explained later in Section 5.2.4. We analyze the proper-
ties of the C=D task-splitting and extend it for heterogeneous multicore systems. The
analysis and extension of the C=D task-splitting on heterogeneous multicore systems
serves as the foundation of the proposed ASHM algorithm. Experimental results show
that our ASHM outperforms the existing approaches in terms of energy efficiency.
This contribution and experimental results are presented in Chapter 5.

Contribution 4: The first Schedulability Test for Imprecise Mixed-Criticality
Systems Under EDF-VD Scheduling

The last contribution in this dissertation addresses Problem 3 discussed in Section
1.2. We propose the first test to check the schedulability of the IMC model under the

10

CHAPTER I. INTRODUCTION

scheduling and prove the correctness of the proposed schedulability test. A brief intro-
duction of the EDF-VD scheduling algorithm is given in Section 6.2.3. Moreover, with
the proposed schedulability test, a special metric for scheduling algorithms, namely
speedup factor, is used to quantify the optimality of the IMC model under EDF-VD
scheduling algorithm. The experimental results show that EDF-VD can schedule more
IMC task sets than the existing approach AMC [BB13]. This contribution and its ex-
perimental results are presented in Chapter 6.

1.4 Dissertation Outline

The remainder of this dissertation is organized in a self-contained manner. Chapter 2
introduces some common, fundamental, and relevant knowledge about the data-flow
model, considered in this dissertation, and the real-time system models and their cor-
responding analysis techniques that are deployed in this dissertation are also presented
in order to facilitate the understanding of the contributions afterwards.

Chapter 3 - 6 present in details the dissertation contributions briefly introduced in
Section 1.3. Each chapter is organized in a self-contained way. That is, each chapter
has its specific

— brief introduction and detailed contributions;
— related work and a system model;

— proposed algorithm/approach; and

— experimental results.

Finally, Chapter 7 summarizes this dissertation and points out some directions
which deserve further investigation. The detailed organization of this dissertation is
as follows:

1. Chapter 2 presents some common background information pertaining to the
CSDF model, real-time systems, hard-real-time scheduling framework proposed
in [BS11][BS12][BS13].

2. Chapter 3 presents the new approach to optimize resource requirements of
hard-real-time streaming applications subject to latency constraints in the schedul-
ing framework proposed in [BS11][BS12][BS13].

3. Chapter 4 presents the FDM algorithm to energy-efficiently map hard-real-
time streaming applications onto cluster heterogeneous multicore systems.

11

CHAPTER 1. INTRODUCTION

4. Chapter 5 presents the ASHM algorithm to energy-efficiently map real-time
tasks onto heterogeneous multicore systems by using the task-splitting tech-
nique.

5. Chapter 6 presents the schedulability test for the IMC model under EDF-VD
and the proof of the speed-up factor.

6. Chapter 7 summarizes the dissertation and discusses possible future work.

12

