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Abstract 

The four adenosine receptors, A1, A2A, A2B and A3, constitute a subfamily of G protein-coupled 

receptors (GPCRs) with exceptional foundations for structure-based ligand design. The vast 

amount of mutagenesis data, accumulated in the literature since the 1990s, has been recently 

supplemented with structural information, currently consisting of several inactive and active 

structures of the A2A and inactive conformations of the A1 adenosine receptor. We provide the 

first integrated view of the pharmacological, biochemical and structural data available for this 

receptor family, by mapping onto the relevant crystal structures all site-directed mutagenesis 

data, curated and deposited at the GPCR database (available through http://www.gpcrdb.org). 

This analysis provides novel insights into ligand binding, allosteric modulation, and signaling of 

the adenosine receptor family. 

 

Adenosine receptors, a GPCR family with extensive structural information 

G protein-coupled receptors (GPCRs, see Glossary) are an important class of membrane 

proteins targeted by approximately one third of the drugs currently on the market [1,2]. They are 

activated by a wide variety of signaling molecules of very different nature: from proteins or 

peptides (i.e chemokine receptors), to small neurotransmitters and neuromodulators including 

nucleosides and nucleotides [3]. The latter group is where we find the four receptors activated by 

adenosine, consisting of the A1, A2A, A2B and A3 adenosine receptors (ARs) [4]. They mediate 

central nervous system (CNS) depressant, anticonvulsant, sleep-promoting, antidiuretic, negative 

inotropic, negative chronotropic, anti-inflammatory, immunosuppressive and angiogenic effects, 

and are involved in the pathophysiology of cardiovascular and neurodegenerative diseases, as 

well as in cancer growth and immune responses [5,6]. The tremendous interest from both 
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academia and industry in ARs is in stark contrast to the low success of drug candidates in 

reaching the market. To date only one selective AR ligand, the A2A agonist regadenoson, has 

gained FDA approval (as a coronary vasodilator used in cardiac imaging), while an antagonist 

of the same receptor, istradefylline, has been approved in Japan in combination with levodopa 

for the treatment of Parkinson’s disease [7].  

 

Since the cloning of ARs in the beginning of the 1990s, the tremendous efforts to characterize 

them has led to the accumulation of a substantial amount of experimental data. Decades of site-

directed mutagenesis (SDM; Box 1) studies, in combination with pharmacological data and 

computational modeling, have paved the way for understanding receptor-ligand binding and 

activation signaling pathways. More recently, advances in membrane protein engineering and 

crystallography have sparked a surge of experimental GPCR structures [8], among which ARs 

have emerged as one of the most thoroughly characterized families: several structures are 

available for the inactive conformation of the human A2AAR bound to different chemotypes of 

orthosteric antagonists (Box 2) [9–11]. Some of these reveal allosteric sites, like the binding site 

for the negative allosteric modulator (NAM) sodium (Na+) [12], or potential allosteric sites in 

the extracellular loop (EL) region [13]. Recently, the A1AR has been crystallized in complex 

with xanthine antagonists [14,15]. In addition, active-like (agonist-bound) structures of the 

A2AAR have been obtained with several adenosine derivatives [16–18], lately complemented 

with the first fully active conformation bound to an engineered G protein fragment [19].  

 

The current structural information is further supplemented by data obtained from additional, 

complementary techniques (Box 1). These include nuclear magnetic resonance (NMR) [20, 21] 
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or the mutagenesis/modeling combination known as biophysical mapping (BPM) [22], a 

technique recently employed to design A2AAR antagonists [23]. These different sources of 

experimental data can be integrated in computational models, which are used to elucidate the 

molecular determinants of ligand binding and receptor function [24]. In the ARs, protocols like 

proteochemometrics (PCM) [25] or free energy perturbation (FEP) [24,26] have successfully 

filled the gap between affinity and structural data (Box 1). 

 

We herein review all the available mutagenesis data on the light of the structural information 

available for ARs. To do so, the existing SDM data was systematically collected from 80 

individual publications and the resulting 2624 curated data points, of which 96% are from human 

receptors, were made available through the GPCRdb [27]. A comprehensive mapping of these 

data onto the available structural information provides an overview of ligand binding and 

activation events, which we present here in three sections: 1) Orthosteric ligand binding, 2) 

Allosteric modulation and 3) Receptor activation and G protein binding (Figure 1, Key Figure). 

 

Orthosteric ligand binding 

The common core scaffold of agonists and antagonists 

Classical AR agonists and antagonists share a number of interactions within the orthosteric 

binding pocket, since they are derived of a similar planar heterocycle (Box 2), from where 

modifications can confer high affinity, selectivity and/or intrinsic activity (i.e. the ribose moiety). 

The crystal structures of the A2AAR confirmed that the central heterocycle of both agonists and 

antagonists resides in the same binding pocket, dominated by hydrogen bonds (H-bonds) with 
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the completely conserved N2536x55(N/N/N/N) in all AR subtypes (see Box 3 for an explanation 

on residue numbering). The key role of this residue was suggested by early alanine scannings in 

different ARs, [22,28–32] in all cases abolishing ligand binding (Figure 2b) while retaining 

normal expression and basal activity levels [28]. The heterocyclic core is further stabilized by 

S�S stacking with F16845x52(F/F/F/F) in the second extracellular loop (EL2), which could be 

replaced by another aromatic residue (tryptophan) with no significant changes in ligand binding 

affinities [28,33]. The neighboring residue, E169EL2(E/E/E/V), is involved in ligand binding, 

through an H-bond in the scaffolds bearing an exocyclic amino group (Figure 2a and Box 2), 

while it can create a lid closing the binding site via a salt bridge interaction with 

H264EL3(H/H/N/-) [34]. This double role explains why mutation to alanine completely abolishes 

binding of the agonist CGS21680 [35] and the antagonist ZM241385 [36], while binding is 

preserved upon a more conservative mutation to glutamine. Interestingly, the A2AAR has been 

crystallized with and without this salt bridge linking EL2 and EL3, and in the A1AR 

K265EL3(K/A/G/P), might replace H264EL3 in this salt bridge. The role of this salt bridge in 

ligand binding kinetics is explained below. 

 

Selectivity hotspots: mutagenesis suggestions confirmed by crystal structures 

Deeper in the binding pocket, H2506x52 (H/H/H/S) stabilizes both agonists and antagonists, 

through interaction with the different modifications emerging from the core scaffold. This is in 

line with the abolished A2AAR binding observed in the H2506x52A mutant [30,32], while 

mutation to a bulky phenylalanine did not significantly affect antagonist binding (Figure 2b)  

[32,37]. The A3AR has a serine in this position, which might explain why it is more tolerant 

towards larger substituents binding deep in the pocket. Another selectivity hotspot was recently 
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confirmed for the A1AR, where T2707x34(T/M/M/L), a previously proposed hotspot for A1AR 

interspecies selectivity [38], accommodates cycloalkylic groups at the C8-position of xanthines, 

characteristic of A1-selective xanthine derivatives (Figure 2c) [14,15]. Consequently, a 

M270T7x34 mutant A2AAR showed increased affinity for A1 selective ligands, whose affinity was 

correspondingly reduced in the inverse mutant (T270M7x34 mutant of the  A1AR [14,15]). The 

comparison of A1AR and A2AAR inactive structures highlighted another difference leading to 

antagonist selectivity. The N1-substituent of the xanthine derivative PSB-36 occupies a narrow 

cavity between TM3, TM5 and TM6 in the A1AR, which is not present in the A2AAR. 

Consequently, PSB-36 is forced to sit in an alternative, less-favorable position [15]. 

 

Triggering receptor activation: residues involved in agonist recognition  

The triad formed by E131x39 (E/E/E/E) – S2777x42 (T/S/S/S) – H2787x43 (H/H/H/H), together with 

T883x36 (T/T/T/T) and H2506x52 (H/H/H/S), constitute the main binding site for the ribose moiety 

in (full) agonists (Figure 2d). This triad was proposed in the early nineties as an important 

structural feature for AR activation [39], further supported by experiments using a ‘neoceptor’ 

approach [40,41] (Box 3). The E131x39 – H2787x43 interaction is present in all agonist crystal 

structures, stabilizing the conformation of H2787x43 required to form an H-bond with the ribose 

moiety. Consequently, mutations of E13A1x39 reduce the potency of full agonists, but 

interestingly not of non-nucleoside partial agonists [28]. Using molecular dynamics (MD) 

simulations, Rodríguez et al. showed that this interaction was not only less stable in the absence 

of a ligand, but also dependent on the protonation state of the residues involved, which might be 

altered by the presence of full agonists [42]. Removal of either of the two histidine sidechains in 



7 
 

the binding site in the H250A6x52 [30,32] and H278A7x43 [32] mutants strongly decreased agonist 

potency and binding, and also reduced antagonist binding.  

 

Mutation of other polar sidechains coordinating the ribose in the A2AAR (S277A7x42 [32] and 

T88A3.36 [43]) reduced agonist potency, but increased antagonist binding and the potency of the 

partial agonist LUF5834 [28]. Crystal structures of agonist-bound A2AAR show a direct 

interaction between NECA and T883x36 through the amide in position 5’ of the ribose, which is 

not present in adenosine. This could explain why NECA is more sensitive to the T88A3.36 

mutation and has a higher affinity than adenosine for the A2AAR [43–45]. Mutations of the polar 

sidechain at position 7x42 have a drastic effect on agonist binding, as seen in alanine mutants in 

the A2BAR (S279A7x42) [46] and the A1AR (T277A7x42) [47–49]. Additionally, the inactive A2A 

StaR (‘stabilized receptors’; Box 1) contains alanine mutations of T883.36 and S2777x42 [50], 

while antagonists crystalized with the wild-type (wt) receptor do not show interactions with these 

residues, all of which points to a role of these polar sidechains in attaining a fully active 

conformation. Interestingly, the same mutants have negligible or even positive effects on the 

potency and/or efficacy of partial agonists at the A1 [47–49] and A2A ARs [28].  

 

Mutations on the orthosteric site, which represent 80% of the collected mutational data on ARs, 

have been characterized in more detail than the mutations on the allosteric or G protein sites 

described in the next sections. Indeed, In silico site-directed mutagenesis simulations of several 

A2AAR orthosteric-site mutants (Box 1) provided a nice complement to the structural analysis of 

static crystal structures discussed above, revealing non-evident effects like water-mediated 

interactions or the role of mutations which are not in direct contact with the ligand [24,26].  
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The extracellular region: Ligand kinetics and receptor architecture 

Mutations in the ELs do not only influence binding of orthosteric ligands, but may also play a 

role in ligand kinetics. In addition, this region plays a structural role through a series of cysteine 

bridges, and has been related to selectivity among certain receptor subtypes. Finally, mutational 

studies and lately crystal structures [11] suggest that this region might be the binding site of 

allosteric modulators, in analogy to other GPCRs [51]. Here we will discuss the mutational data 

of the EL region in ARs. 

 

Residues that govern the kinetics of ligand binding  

Ligand binding kinetics governs the residence time of a drug, which has deep implications on its 

clinical efficacy [52]. The kinetics of ligand binding in adenosine receptors has been 

demonstrated to be extremely variable, as recently examined by SDM and other methods [53]. 

Residues distant from the orthosteric site can influence the kinetics of ligand binding without 

altering the binding affinity constant (Ki). For instance, the kon and koff values ZM241385 on 

StaR versus wt receptors are significantly slower, but the binding affinity remains unaltered [54]. 

Other point mutations located in the binding site [L85A3x33(L/L/L/L), Y271A7x35(Y/Y/N/Y), and 

N181A5x43(N/N/N/S)], on the other hand, simultaneously increased the koff and decreased the 

binding affinity of the antagonist ZM241385 [22]. Mutations of residues located in the EL region 

of the A2AAR, either increased [E169QEL2 (E/E/E/V), H264AEL3(H/H/Q/V), and 

T256A6x58(T/T/T/I)] or decreased [I66A2x63(I/I/I/V), S67A2x64(N/S/S/S), K153AEL2(W/K/C/R), 

and L267A7x31(S/L/K/Q)] the koff of ZM241385 [36], while its affinity was minimally affected. 
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This led to the conclusion that these residues should play a role in the dissociation pathway of 

ZM241385. Recent mutagenesis, crystal structures and MD simulations confirmed that breaking 

the salt bridge between E169EL2, H264EL3 (supported by polar interactions with T2566x58) is 

crucial in the dissociation of ZM241385 [36,55], as previously indicated by MD simulations of 

A2A and A2B receptors [42]. The stabilization of the salt bridge between E169EL2 and the 

positively charged H264EL3 should be considered in the design of A2AR antagonists with long 

residence time.  

 

Architecture and stability of the variable EL2 region 

The extracellular region - especially EL2 - differs within the AR family in terms of sequence 

length, composition and even tertiary structure (Figure 3b) [14,15]. The existence of cysteine 

bridges, which play an important role in the architecture and stability of the EL2, is variable 

between ARs. The cysteine bridge formed between C773x25(C/C/C/C) - C16645x50 (C/C/C/C) is a 

highly conserved motif in class A GPCRs (87%) shared amongst all ARs [27] (Figure 3b). Serine 

mutations of one of these cysteines abolished ligand binding in the A1 [56] and A2B ARs [57], 

but in the A2AAR only resulted in reduced potency or affinity of small agonists (e.g. NECA, 

adenosine), whilst having no effect on larger 2-substituted adenosine derivatives (e.g. 

CGS21680) [51]. The reduced effect on this receptor could be understood with the first A2AAR 

crystal structures, revealing additional disulfide bridges that reinforce the architecture of EL2 

due to two extra cysteines in this loop. Serine mutations of these cysteine residues 

[C146EL2(L/C/K/K) and C159EL2(M/C/G/S)] resulted in a lower potency of adenosine, but did 

not alter the potency of NECA and CGS21680. On the contrary, serine mutations in the A2BAR 

of the three cysteine residues present in EL2 [C154EL2(W/K/C/R), C166EL2 (K/A/C/-), C167EL2 (-
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/-/C/-)] did not affect ligand binding, indicating that they are not involved in disulfide bond 

formation [57]. Finally, the dynamics of the EL region might play a role in the allosteric 

modulation of ARs, which we will explain in the next section. 

 

Sites for allosteric modulation in ARs 

Allosteric modulation of GPCRs is gaining acceptance as a new approach for drug development, 

since allosteric ligands typically display higher target selectivity compared to orthosteric ligands 

[3,58]. In ARs, two distinct receptor regions have been revealed as sites for allosteric modulation 

(Figure 3): the EL2 region and the sodium binding pocket. 

 

The EL2 as an allosteric region 

The role of the extracellular loops in receptor structure and dynamics might explain why this 

region has been identified as a site for the binding of both positive (PAM) and negative (NAM) 

allosteric modulators. The A2A-selective agonist CGS21680, as well as other non-selective 

agonists, showed an increased efficacy in a chimeric A2BAR receptor containing the EL2 of the 

A2AAR in comparison to the wt A2BAR [59,60]. These results suggest an allosteric control of 

EL2, since the increased agonist efficacies can be explained by the role of this loop in stabilizing 

agonist-bound receptor conformations [59]. Moreover, ligand selectivity may be achieved - 

probably by an indirect effect - in extracellular regions far away from the ligand binding pocket 

[61–63]. Recent results on the A1AR provide additional evidence to the idea that ARs can be 

activated by positive allosteric modulators binding to the EL regions [64,65]. These insights have 
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been recently complemented by the observation of a potential allosteric pocket in a recently 

published antagonist-bound A2AAR structure [13]. 

 

Allosteric modulation by sodium ions and amilorides 

Sodium ions down-regulate the pharmacological response of GPCRs, including the A2AAR [66]. 

The 1.8 Å resolution crystal structure of the inactive A2AAR in complex with ZM241385 proved 

the presence of a previously predicted sodium ion binding site formed by several GPCR-

conserved residues, namely D522x50 (D/D/D/D), S913x39 (S/S/S/S), W2466x48 (W/W/W/W), 

N2807x45 (N/N/N/N) and N2847x49 (N/N/N/N) (Figure 3d) [12]. This finding was followed by 

SDM and biophysical characterization of this pocket, combined with MD simulations, which 

revealed a mechanism of allosteric control where sodium specifically stabilizes the inactive 

conformation of the receptor [67,68]. Upon agonist binding, the sodium binding site collapses 

due to a concerted movement of several residues situated in TM3, TM6 and TM7. In particular, 

an H-bond is formed between the backbone oxygen in N2847x49, part of the highly conserved 

NPxxY motif, and D522x50, which is one of the highest conserved residues amongst the entire 

family of GPCRs [27,69]. Accordingly, alanine mutations of both N2847x49 [67,70] and D522x50 

[67,71] had little effect on antagonist or agonist binding but completely abolished receptor 

activation. A series of MD simulations of the E2-adrenergic receptor, mapped onto the A2AAR 

crystal structures, concluded that the protonation state of D522x50 changes during the activation 

pathway from an inactive, deprotonated, to an active, protonated state. In this scenario, S913x39 

would play a regulatory role in the protonation of D522x50, as mutations to alanine in A1 and A2A 

ARs increase their basal activities [44,67,69]. In the active-like state, the backbone interaction 
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between D522x50 and N2847x49 causes a helix bulge in TM7, leading to conformational 

rearrangements related to receptor activation as discussed in the next section.  

 

Another conformational change is initiated by the movement of residues W2466x48 and F2426x44, 

which propagates to an outward shift of TM6 as observed in agonist-bound and fully activated 

structures (Figure 3c). This movement might be blocked by amiloride and derivatives, which are 

NAMs predicted to bind to the sodium site [67], which is in line with data showing that 

F242A6x44 mutations increase the thermostability of agonist-bound A2AAR [50]. Tryptophan 

W2466x48, previously coined as the ‘toggle switch’ [9], forms a bulky lining separating the 

orthosteric site from the sodium binding site. Mutation to alanine did not alter agonist binding to 

the A3AR, but receptor function was completely lost [30,71,72]. Similarly, on the A2AAR the 

corresponding W2466x48A mutant reduced the efficacy of full agonists, whereas the activity of 

partial agonists was slightly increased [28,46,67,73].  

 

Mutations in the sodium pocket affect amilorides in a different way compared to sodium. 

Allosteric modulation by sodium was completely abolished in D52A2x50 and N284A7x49 receptor 

mutants, but the latter showed increased affinity for amilorides. The interpretation, supported by 

MD simulations, was that the positively charged guanidinium group of amiloride would form a 

salt bridge with D522x50, while N2847x49, N2807x45, and W2466x48 would make suboptimal 

interactions with amilorides. Additionally, W246A6x48 has been shown to increase the 

competitive behavior of amilorides in radioligand binding assays with ZM241385, due to an 

increased penetration of 5’-substituted amilorides into the orthosteric binding site in the mutant 

receptor [74]. 
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Receptor signaling and G protein binding  

The intracellular side of the TM bundle is more conserved within the GPCR superfamily than the 

extracellular domain [2]. This region undergoes the most pronounced conformational changes 

upon receptor activation and is implicated in the binding of the intracellular G-protein. Four 

motifs play a major role here (Figure 4): NPxxY in TM7, the DRY motif (TM3), the ionic lock 

and the TDY triad, as observed in the G protein-bound crystal structure [19].  

 

The TM7 NPxxY motif 

This motif is located in TM7 and contains N2847x49, which has been discussed above as part of 

the sodium binding site, and is the center of the helix bulge observed in A2AAR active-like 

structures (Figure 3d). Residue Y2887x53 experiences an upward movement and undergoes an H-

bond interaction with Y1975x58 (Y/Y/Y/Y) in the G protein-bound structure (Figure 4b). These 

pair of tyrosines is considered as a possible activation switch, based on their high conservation in 

class A GPCRs [27] and their specific interaction in the G protein-bound state, while the 

sidechain of Y1975x58 was shown to flip out into the membrane in A2AAR agonist-bound crystal 

structures [16–18] (Figure 4b). The Y282F7x53 mutation in the A3AR resulted in a nearly 30-fold 

reduction in potency for Cl-IB-MECA, but did not alter basal activities [75]. In the A2BAR, the 

Y197S/N5x58 mutations, which maintain the polarity of the wt tyrosine, led to an increase in 

constitutive activity [62]. To fully understand the role of the Y1975x58 - Y2887x53 switch in AR 

activation, mutations to alanine and phenylalanine would be of particular interest. 
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The TM3 DRY motif 

The GPCR conserved DRY (D1013.49 (D/D/D/D) - R1023.50 (R/R/R/R) – Y1033.51 (Y/Y/Y/Y)) 

motif in TM3 binds the C-terminus of the G protein in the fully activated A2AAR. R102A3.50 

moves towards Y1975x58, in analogy to the fully-active β2 structure, to allow the G protein to 

move in, and undergoes intensive van der Waals interactions with Y391 in the mini Gs- A2AAR 

bound structure [19]. In a mutational study on the A2BAR addressed to investigate its selectivity 

for G proteins, it was found that R102A3.50 maintained potency and maximum response close to 

the wt receptor for the Gαs subtype, but lost potency for seven other subtypes [76]. In the A3AR, 

mutations R102A3.50 and R102K3.50 led to constitutively active receptors [75]. Interestingly, two 

structural motifs, the ionic lock (Figure 4c) and the TDY triad (Figure 4d), keep R1023.50 locked 

in the conformation observed in inactive and agonist-bound structures of A2AAR, as opposed to 

the corresponding fully-active, mini Gs- A2AAR crystal structure.  

 

The ionic lock 

The salt bridge formed between E2286x30 (E/E/E/E) and R1023x50 (R/R/R/R), also called the ionic 

lock, is proposed to be an important factor in the deactivation of the receptor. It is present in 

several but not all A2AAR inactive crystal structures [10]. No mutation data is available for 

residue E2286x30 in ARs, but other experimental work points towards a regulatory role of this 

salt-bridge in receptor activation. In particular, NMR based studies of the A2AAR show a rapid 

interchange (low millisecond timescale) of two antagonist states, associated with ionic lock 

formation [20]. In analogy to the case of the E2 adrenergic receptor, MD simulations of the 

A2AAR, starting from a conformation where the ionic lock was not present, showed a rapid 

formation (10 - 15 ns timescale) and highly stable (100ns) ionic lock interaction [42,77]. A 
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recent A2AAR crystal structure revealed an interaction between E2286x30 and R1073x55 (K/R/C/K) 

[13], which together with the thermostabilizing effect of the R107A3x55 mutant [10], suggests a 

role of this residue against the formation of the ionic lock. 

 

The TDY triad 

Residues T412x39 (T/T/T/T) – D1013x49 (D/D/D/D) (DRY) – Y11234x53 (Y/Y/Y/Y) form a triad 

fully conserved amongst all AR subtypes and some other class A families (e.g. β-adrenergic and 

dopamine receptors) [27]. This triad has previously been suggested to be involved in a network 

of polar interactions stabilizing the ionic lock [42]. The T412x39A mutation has been shown to 

produce constitutively active A2BARs [29,78]. In the A3AR, mutations of D1073x49 to asparagine, 

lysine and arginine did not significantly alter the basal activities of the receptor or the potency of 

agonists [75]. No mutational data for Y11234x53 is available for ARs. Notably, the structural 

differences of the corresponding TDY triad in the different conformations of the β2 adrenergic 

receptor are more pronounced than in the A2AAR. In all β2 structures the IL2 is disordered except 

for the fully activated structure, where the region forms an-alpha helix. This results in a H-bond 

between Y34x53 and D3x49, possibly altering the salt bridge strength between R3x50 and D3x49. In 

the A2AAR, the IL2 is consistently found in an alpha helical conformation, and the shape of the 

TDY triad remains the same. Additional mutagenesis experiments are needed to confirm a 

possible regulatory role of this triad in the activation of ARs and other class A GPCRs. 

 

Concluding Remarks 

The effects of point mutations of the four ARs on ligand binding affinities, functional potencies 

and efficacies constitute a valuable source of pharmacological information. We analyzed the 
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existing data and mapped it on the collection of available AR crystal structures, allowing for a 

comprehension of receptor-ligand interactions and receptor activation outstanding within the 

GPCR families. A majority of the mutational data collected refers to orthosteric ligand binding, 

where combinations of SDM and crystal structures led to the design of AR antagonists [79], and 

novel computational protocols have provided with detailed energetic descriptions of ligand 

binding. Still, some issues remain unsolved with regard to ligand optimization, such as achieving 

better selectivity ratios or attaining an agonist functional response on ligands lacking a ribose 

moiety, though recent advances in this regard are promising [80]. Allosteric modulation is a 

promising pharmacological strategy to overcome some of these issues, but while there is indirect 

evidence pointing to the location of allosteric sites on the EL region, a crystal structure with an 

allosteric modulator is still lacking. The kinetic characterization of ligand binding is an emerging 

area, though not yet fully understood, where new mutational and structural data could be 

particularly helpful. Finally, the crystal structures of A2AAR provide a complete landscape of 

end-point receptor conformational states, complemented with mutational data that points to 

specific activation switches, but additional mutations and ligands that stabilize intermediate 

conformational states are needed to fully understand the activation mechanism. These and other 

key issues in the field are collected in the Outstanding Questions. Our analysis shows that the 

ARs constitute a family of GPCRs with an exceptional knowledge base of structural, 

biochemical and pharmacological data, which configures a useful and dynamic map to design 

orthosteric and allosteric modulators, and envisage molecular switches involved in receptor 

activation and signaling.  
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Box 1: Experimental and computational methods to investigate binding and signaling events in 

ARs.  

x Site-directed mutagenesis: A classical molecular biology method, where a single mutation is 

engineered in the DNA sequence codifying the receptor, to further investigate receptor 

structural or biological properties. Ligand binding affinities are measured in terms of their 

ability to competitively displace the radioligand, yielding ligand affinity ratios between the 

receptor mutant and wild-type (wt) variants. An analogous comparison can be made in 

functional assays to evaluate the effect on the potency or efficacy of agonists. 

x Neoceptor: An approach to investigate the (direct) role of residues in ligand binding, where 

the (fractional) charges of both ligand and protein are simultaneously reversed to investigate 

the (direct) role of residues in ligand binding. It was first introduced by Jacobson et al. into 

the AR field and has since been used in several examples [40,41]. 

x Thermostabilization: A mutagenesis strategy to increase the thermostability of GPCRs, 

leading to the so-called Stabilized Receptors (StaRs). This method has been patented and 

applied on the A2AAR, resulting in A2A-StaR2 that contained 8 mutations, which stabilized 

the antagonist state of the receptor: A54L2x52(A/A/A/A), T88A3x36(T/T/T/T), 

R107A3x55(K/R/C/K), K122A4x43(A/K/R/W), N154AEL2(A/N/T/N), L235A6x37(L/L/L/L) 

V239A6x41(L/V/V/L), and S277A7x42(T/S/S/S)[54]. Similarly, the inactive A1-StaR was 

constructed containing 6 mutations: A57L2x52, T91A3x36, Y205A5x63(Y/L/L/Y), L236A6x37, 

L240A6x41 and T277A7x42. 

x Biophysical mapping: Starting from a StaR (see above), additional single mutations are 

added at positions that could be involved in small molecule interactions. The StaR and a 

panel of  binding site mutants are captured onto Biacore chips to enable  characterization of 
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ligand binding using  surface plasmon resonance (SPR) measurement. A matrix of binding 

data for a set of ligands versus each active site mutation is then generated, providing specific 

affinity and kinetic information (Kd, kon, and koff) of receptor-ligand interactions. This 

proprietary method has been used in the discovery of A2AAR antagonists [11,22]. 

x NMR: Classical NMR experiments recently revealed the conformational selection of ligands 

for certain receptor states [20], while the NMR determination of interligand NOEs for 

pharmacophore mapping (INPHARMA) was employed to obtain information on ligand 

poses inside the binding site of the A2AAR reconstituted into nanodiscs [52] 

x In silico site-directed mutagenesis. This protocol, based on free energy perturbation of 

residue sidechains, can be used to identify the molecular interactions that are gained or lost 

as a result of the point mutation. Since the corresponding shifts in ligand binding free energy 

are related to molecular interactions, as demonstrated on 34 of the A2AAR mutants described 

in this review [24,26]. 
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Box 2: Ligands co-crystallized with adenosine receptors  

x The chemical nature and functional behavior of the ligands co-crystallized with the A2A 

and A1 ARs is variable. Still, most of the agonists and antagonists are derivatives or 

analogs of purine, a planar heterocycle (imidazo[4,5-d]pyrimidine, blue sub-structure in 

Figure I), present in the endogenous agonist adenosine. This allows some conserved 

interactions between receptor and both agonist and antagonist, like the hydrogen bonds 

with N2536.55 (N/N/N/N) (Box 3 explains residue nomenclature), due to the chemical 

motif denoted with a red square on each structure. 

x Full agonists (upper row, Figure I) are clearly differentiated by bearing a sugar moiety at 

position 9, some of which contain an ethylamido modification at C4’ of the ribose instead 

of a hydroxymethylene group (NECA, UK432097 and CGS21680). The amino group at 

position 6 of the purine ring may bear a bulky substituent (UK432097), while different 

substituents are allowed at position 2 (UK432097 and CGS21680).  

x Most antagonists (Figure I, second row) also contain a purine core or an analogous 

heterobicycle (blue) as is the case for xanthine derivatives (caffeine, XAC, DU172 and 

PSB-36, the last two co-crystallized with the A1AR) or the azapurine present in the 

triazolotriazine ZM241385. The triazine derivatives T4G, T4E and the aminotriazole 8D1 

are exceptions bearing structurally simple, monocyclic cores. Other antagonists have 

been described for ARs, but we here focus on those for which there is mutational and 

structural data. 
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Box 3: Generic residue numbering 

All residues and their mutations have been numbered according to the following scheme:  

A000BTx00(C/D/E/F) 

Where: 

x A = the wild-type residue. 

x 000 = the residue number of the mutated residue, this number corresponds with the 

residue numbering of the receptor under investigation. 

x B = the mutated residue, if no mutation is given this entry is left blank. 

x Tx00 = the GPCRdb numbering scheme, which is a structure-based update of the 

Ballesteros-Weinstein (B-W) numbering scheme. T represents the transmembrane helix 

number and 00 the correlative residue number. The latter starts at the most conserved 

topological position in each helix, which is numbered 50. Here we adopt the last 

modifications to this numbering scheme, accounting for structural kinks and bulges in the 

alignment and numbering [81]. Residues in an inter- or extracellular domain of the 

receptor are represented using 00x00, where the first two numbers depict the two trans-

membrane domains before and after the inter- or extracellular domain. If the residue 

position is not conserved, which is mostly the case in extra and intracellular loops and 

termini, no number is assigned and instead it is indicated the loop region where it belongs 

(EL1-IL3). 

x C/D/E/F = the residue type in adenosine A1, A2A, A2B and A3 respectively, which will be 

given once in a paragraph. 
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The topological domains were classified as TM1-7 for the seven transmembrane helices, H8 (the 

C-terminal α helix), EL1-3 for the extracellular and IL1-3 to the intracellular loops. 
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FIGURES LEGENDS 

Figure 1: Overview of the structural sections of an adenosine receptor. Each section, further illustrated in 

panels I-III, is focus of a dedicate chapter within the text, describing key structural features of the 

adenosine receptor family: (I) The orthosteric binding site. (IIA) Allosteric modulation in the loop regions. 

(IIB) Allosteric modulation by sodium and amilorides. (III) The G protein binding site. The key residues 

in each section are shown according to a pseudo-sequence alignment of human adenosine receptor 

subtypes. 

 

Figure 2. Orthosteric ligand binding (a) Topological overview of adenosine receptors, with the different 

regions of the orthosteric ligand binding site depicted and amplified in panels b-d. (b) The purine-

derivative scaffold common to agonists and antagonists superimposes in the same binding region, as 

shown for agonist NECA in the active-like A2AAR structure (blue) and the antagonist ZM241385 in 

complex to the inactive A2AAR (orange). (c) Crystal structures of antagonist PSB-36 bound to A2AAR 

(orange) and to A1AR (magenta), highlighting residue 2707x34 (T/M/M/L), which has been identified as a 

key position involved in ligand selectivity. (d) Residues involved in agonist binding, shown for the 

agonist-bound A2AAR structure in complex with NECA (blue, hydrogen bonds in dashed lines) and 

superimposed to the corresponding inactive structure of the same receptor (orange). An inward movement 

of helices in TM1, TM5, and TM7 is observed, resulting in a collapse of the sodium-binding pocket (see 

Figure 3). The table shows the effect of selected alanine mutations of the A2AAR on binding (and 

potency) of the different pharmacological classes of orthosteric ligands. A detrimental effect is shown in 

red, while blue denotes an increasing effect. 
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Figure 3. Sites for allosteric modulation. (a) Topological overview of adenosine receptors, with the 

different regions involved in binding of allosteric ligands depicted and amplified in panels b-d. (b) 

Extracellular loops 1 and 2 from A1AR (pink) and A2AAR (orange) crystal structures. The conserved 

disulfide bridge between TM3 – EL2 (positions C3x25 – C45x50) and the A2AAR specific disulfide bridges in 

EL2 (C7123x51– C159 and C743x22– C146) are shown in sticks. (c) The downward movement of residues 

W2466x48 and F2426x44, observed in agonist-bound structures of A2AAR (orange) and the fully active 

conformation in complex with a G protein mimic (green). This conformational change, which is related to 

the outward movement of TM6 characteristic of GPCR activation, is proposed to be hindered upon 

binding of the NAM amiloride and derivatives. (d) The sodium binding pocket, shown in complex with 

Na+ as revealed in the A2AAR inactive structure (orange, hydrogen bonds in dashed lines). In agonist-

bound structures, this pocket is collapsed because of a bulge in TM7 around residue N2847.49, which is 

incompatible with the binding of Na+, explaining the mechanism of sodium as NAM. This also applies for 

the fully-active, G-Protein mimic bound A2AAR structure (green). The table shows the effect of selected 

alanine mutations of the A2AAR on binding (and potency) of the different pharmacological classes of 

orthosteric ligands. A detrimental effect is shown in red, while blue denotes an increasing effect. In both 

cases a high intensity of such effect (>30 fold) is depicted by a darker color. a There is only 

thermostability data available for F2426x44. b No measurable activation by agonists due to high basal 

activities. NE = no effect. 
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Figure 4. Receptor signaling and G protein binding. (a) Topological overview of adenosine receptors, 

with the different regions involved in receptor signaling and G protein binding depicted and amplified in 

panels b-d (color code as in figures 2 and 3). (b) Residues Y1975x58 and Y2887x53 form a possible 

activation switch, interacting in the G protein bound state (green), an interaction that is lacking in the 

inactive structures (orange), even if their orientation is somehow similar, while in agonist-bound 

structures without the G protein (blue) Y1975x58 flips outwards in the membrane. (c) The interaction 

between E2286x30 and the sidechain (ionic lock) or backbone or of R1023x50 is observed in inactive A2AAR 

structures, in one case replaced by interaction of E2286x30 with R1073x55. (d) The TDY triad (T412x39-

D1013x49-Y11234x53) form a ‘cage’ around R1023x50 in inactive (orange) and agonist bound (blue) A2AAR 

crystal structures, blocking the access of the G Protein. Conversely, in the G protein-bound crystal 

structure (green), R1023x50 is free and, according to the low density observed in the corresponding crystal 

structure (5g53), can be modeled to form a hydrogen bond to Y1975x58 as shown in the panel. The table 

shows the effect of selected alanine mutations of the A2AAR on binding (and potency) of the different 

pharmacological classes of orthosteric ligands. (Color code as in Figures 2 and 3. a No data for A2AAR, 

data from A2BAR (T2x39, Y5x58)/A3AR(Y7x53, D3x49). b No mutations to alanine, (-) no data, (NE) = no 

effect. c No A2AAR data, increased basal activities (E6x30) or decreased potency (Y34x53) in β2 

 

Figure I (for Box 2) Ligands co-crystallized with adenosine receptors. Chemical structures of agonists 

(upper row) and antagonists (middle and lower rows) co-crystallized with the ARs. Conserved 

interactions between receptor and both agonist and antagonist are attributable to the chemical motif 

denoted with a red square on each structure. Most antagonists also contain a purine core or an 

analogous heterobicycle, which are shown in blue. 

 



36 
 

 



Outstanding Questions Box  
 

x Ligand selectivity between receptor subtypes can be achieved by exploiting 

sequence differences within the binding site (selectivity hotspots), but it also can 

be due to residues in the loop regions distal from the binding site. Additionally, 

the latest crystal structures revealed large conformational differences in both 

regions between adenosine receptors. To what extend do these structural 

properties contribute to ligand selectivity? 

 

x The stereospecific ribose moiety is a characteristic feature of full agonists, while 

partial agonists have a mimic that is predicted to sit in the same binding site. Why 

do the same mutations in the ribose pocket have a different effect on full and 

partial agonists? Do these different classes of agonists maybe stabilize different 

intermediate receptor states?  

 

x The activation pathway in class-A GPCRs seems to be quite conserved. Still, 

adenosine receptors present specific structural signatures related to agonist 

specific interactions and receptor activation: Is the TDY-triad a regulatory motif 

in the activation of adenosine receptors? How does the ribose trigger receptor 

activation?  

 

x The residence time for a ligand can be quite different between receptor subtypes, 

and the mutagenesis and structural data suggest that ligand binding kinetics is 

controlled to a big extent by the extracellular loop region. What are the structural 

and dynamic determinants behind this control mechanism?  

 

x There is direct structural evidence for a sodium binding site for allosteric 

modulation, and indirect (mutagenesis) evidence for a second site in the EL 

region. Will future crystal structures confirm the existence of this allosteric site? 

Can allosteric ligands modulate loop dynamics, thus affecting the residence time 

of orthosteric ligands? 

 

 

Outstanding Questions
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