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Abstract

High-throughput screening (HTS) campaigns are routinely performed in pharmaceutical companies to explore activity pro-
files of chemical libraries for the identification of promising candidates for further investigation. With the aim of improving
hit rates in these campaigns, data-driven approaches have been used to design relevant compound screening collections,
enable effective hit triage and perform activity modeling for compound prioritization. Remarkable progress has been made
in the activity modeling area since the recent introduction of large-scale bioactivity-based compound similarity metrics.
This is evidenced by increased hit rates in iterative screening strategies and novel insights into compound mode of action
obtained through activity modeling. Here, we provide an overview of the developments in data-driven approaches, elabor-
ate on novel activity modeling techniques and screening paradigms explored and outline their significance in HTS.
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Introduction

Traditionally, knowledge from the areas of pharmacology and
medicinal chemistry is combined to design potentially active
compounds for testing [1–3]. However, improvements in ro-
botics, automation and combinatorial chemistry led to the de-
velopment and increasing use of high-throughput screening

(HTS). HTS allowed rapid screening of large compound libra-
ries [3–6] and enabled pharmaceutical companies to explore
the bioactivity profiles of compounds covering a larger
amount of chemical space [7] with the intention to increase
the chances of identifying (diverse) hits for further
investigation.
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However, multiple nontrivial challenges still exist in HTS.
First, the effectiveness in HTS directly depends on the com-
pounds screened, and therefore the design of compound libra-
ries is of great importance [8]. Second, HTS at times cannot be
performed for certain assays (such as those involving complex
biological systems that do not allow for mass production), mak-
ing it an unviable option in such cases [3, 9]. Third, measure-
ment errors and artifacts related to both assay miniaturization
and screening technologies used can complicate the analysis of
screening results, making effective triage for follow-up screens
a prerequisite for successful campaigns [8]. Finally, despite im-
provements in screening technology, HTS campaigns are still
costly because of the large amount of resources required in rela-
tion to the number of active compounds discovered [6].
Moreover, Macarron et al. [10] describe that much of the cost
associated with HTS is because of the upfront investments in
HTS infrastructure and assay development, and that the cost
per campaign is estimated to be 10–20% higher relative to other
methods.

The above-mentioned drawbacks highlight the need for in-
telligent measures to increase efficiency in HTS. This need,
fueled by the increasing amount of bioactivity data available
[11] and advances in cheminformatics, has prompted numerous
data-driven and computational efforts to improve various as-
pects of HTS [12–15].

Approaches suggested for library design include focused de-
sign for target classes such as G Protein-Coupled Receptors
(GPCRs) or kinases with many known active chemotypes [2, 16,
17], and diversity-based design for target classes with few known
active chemotypes or for phenotypic assays. For the latter, struc-
tural diversity in screening libraries is preferred, as this can in-
crease the chances of finding multiple promising scaffolds for
further development across a wide range of assays [18, 19]. In add-
ition, much effort has been made to improve hit triage [20–24], as
the selection of actives from primary screens for follow-up screen-
ing is not trivial because of the low signal-to-noise ratio in HTS.
Finally, virtual HTS (vHTS) approaches are used to prioritize com-
pounds for testing, based on computational model predictions.
Recently, ample progress has been made in this area, which we
will discuss in detail below [23, 25–31].

In this review, we summarize the recent developments in
data-driven applications to improve effectiveness in HTS and
discuss the strengths and limitations of these methods. We
briefly discuss library design, experimental error management
and hit triage. Furthermore, we elaborate on recent develop-
ments in bioactivity modeling. Finally, we explore some re-
cently introduced new screening paradigms and highlight their
use in further improving efficiency.

Diversity-based library design for targets
with few known active chemotypes or
phenotypic assays

While over 1063 drug-like molecules possibly exist [32], likely
only a fraction of these molecules is therapeutically relevant
[33]. Therefore, efficient exploration of relevant chemical space
is important for targets with few known active chemotypes or
phenotypic assays [34]. Diversity-based library design addresses
this need by optimizing biological relevance and compound di-
versity to provide multiple starting points for further develop-
ment (Figure 1A) [18, 19]. However, diversity is an ambiguous
term [41, 42], as it can be based on a wide range of chemical de-
scriptors (fingerprint-based [43], shape-based [44, 45] or

pharmacophore-based [46]) or even biological descriptors (affin-
ity fingerprints [27, 29, 47] or high-throughput screening finger-
print, HTS-FP [25]), potentially yielding contrasting results [48].
Chemical descriptors characterize compounds in terms of struc-
tural and/or physicochemical properties. A comprehensive
study over 115 HTS assays by Martin et al. [49] showed that
while structural similarity correlates with similarity in bioactiv-
ity, the chance that a compound similar to an active compound
(Tanimoto similarity �0.85 based on Daylight fingerprints [50])
is itself active is only 30%. By contrast, biological descriptors
represent compound phenotypic effects and bioactivity against
the druggable proteome. Recent studies at Novartis have shown
that these biological descriptors often significantly outperform
chemical descriptors regarding hit rate and scaffold diversity in
HTS campaigns, and can even be used in conjunction with
chemical descriptors for augmented performance [14, 24, 25].
While biological descriptors have been used for selecting com-
pounds from an existing library with great success, they cannot
directly be used for design and purchase of new compounds
that lack biological data.

Focused library design for targets with many
known active chemotypes

Contrary to diversity-based libraries designed for targets with
few known active chemotypes, focused screening libraries are
often designed for well-studied targets, such as GPCRs, kinases
and, in some cases, ion channels. Focused libraries center
around active chemotypes found through diversity-based
screening (Figure 1B) [2, 37, 39, 40] and can be selected from
larger diversity-based libraries using structure-based and/or
ligand-centric similarity metrics as shown by Tan et al. [51]. The
knowledge of binding mode (such as hinge binding, DFG-out
binding and invariant lysine binding for kinases) is often used
during library design to develop ligands with desirable proper-
ties [37]. Overall, for target classes with known active chemo-
types or with additional information on structure–ligand
interaction, focused libraries lead to higher hit rates than
diversity-based libraries. This was evidenced in the study by
Harris et al. [37] where 89% (kinase-focused) and 65% (ion
channel-focused) of focused libraries led to an improved hit rate
compared with their diversity-based counterparts. However,
despite higher hit rates, focused approaches may not effectively
sample diverse chemical space. This could be problematic when
certain chemotypes are to be avoided because of off-target ef-
fects or intellectual property reasons. Hence, focused libraries
are not necessarily a replacement for diversity-based
approaches, even for well-studied target classes. Harper et al.
[52] described a quantitative method to design a suitable library
taking into account both compound diversity and the inclusion
of known active chemotypes. A deeper discussion of the design
of chemical libraries can be found in the following book
chapter [53].

Management of experimental error in HTS

As any experimental technique, HTS is not exempt of experimen-
tal errors, and the large amount of data obtained from these cam-
paigns make their detection challenging [54, 55]. In general, errors
in HTS can be classified as random or systematic. Random errors
are usually caused by noise and have a low impact on the overall
results, as no methodical bias is introduced. By contrast, system-
atic errors are associated with consistent over- or underestimated
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activity across the screening collection [56, 57] (Figure 2). Many
procedural, technical and environmental reasons exist for system-
atic errors, such as malfunctioning robots, readout interpretation
from plates, reagent evaporation, degradation of target protein or
cell decay [56, 58]. Awareness of these problems has prompted ef-
forts to find new ways of detecting and correcting these errors to
achieve a better selection of compounds.

Statistics plays an important role in the analysis and detec-
tion of errors in HTS [55, 59]. Dragiev et al. [56] described the use
of three statistical approaches to detect systematic errors in
HTS data: the Student’s t-test, the v2 goodness-of-fit and the dis-
crete Fourier transform (DFT) in conjunction with the
Kolmogorov–Smirnov test. More specifically, the Student’s t-test
can be used to find systematic errors in both hit distribution
surfaces (i.e. counts of hits in each particular well of the plate)
or across independent plates. As shown in Figure 2C, this test
compares the hit distribution of each row or column with the
rest of the plate. If the hit distribution of each row is similar to
the rest of the plate based on t statistics, H0 is true and there is
no systematic error. By contrast, if the hit distributions are dif-
ferent (H0 is false), a systematic error is detected.

The v2 goodness-of-fit follows a similar procedure to that of
the Student’s t-test, but it can be only applied when using hit

distribution surfaces. The v2 goodness-of-fit ensures that the
number of hits in each well is not significantly different from an
expected value, which is the total number of hits across the en-
tire surface divided by the number of wells. The third method
entails the use of DFT to detect frequencies of signals that re-
peat every fixed number of wells to generate a density spec-
trum. Subsequently, a null density spectrum corresponding to
randomly distributed hits across the plate is generated. Finally,
the DFT density spectrum is compared with the null density
spectrum using the Kolmogorov–Smirnov test to determine the
existence of systematic errors. Together, all these methods can
be used to measure the error in the hit distribution surface, to
measure errors for samples with different sizes and to analyze
signal frequency. In a more recent study, Dragiev et al. [58] pro-
posed two widely used methods, namely Matrix Error
Amendment and partial mean polish, for correcting errors in
HTS with improved results. A deeper discussion of statistical
methods for normalization and error correction can be found in
two informative reviews [55, 60].

A wide range of software packages [61–65] is available to fa-
cilitate analysis and error correction of HTS data (Table 1).
Earlier programs such as HTS-Corrector [61] enable the analysis
of background signals, data normalization and clustering.

Figure 1. Diverse libraries compared with focused libraries. Structurally diverse libraries are used to efficiently explore relevant chemical space for targets with few

known active chemotypes or for phenotypic assays [34] (A). This is performed to provide multiple starting points for further development. Example structures were

taken from the ZINC lead compounds library [35], and PAINS [36] were omitted. Owing to the diversity of the compounds tested, a wide range of activities can be

observed: from inactive (blue) through somewhat active (yellow) and moderately active (orange) to highly active (red). By contrast, focused libraries are often designed

for targets with many known active chemotypes, such as GPCRs, kinases and, in some cases, ion channels (B). Here, example structures were taken from Harris et al.

[37] and Fern�andez-de Gortari and Medina-Franco [38], and PAINS [36] were omitted. These libraries focus around active chemotypes found previously, for instance,

through diversity-based screening [2, 37, 39, 40]. Here, analogs often exhibit fewer differences in activity, as the presence of many more similar compounds will more

likely result in multiple actives compared with diverse libraries.
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Building on this foundation, more recent and advanced soft-
ware such as HTS navigator [64] provides features such as load-
ing multiple data sets, visualization and cheminformatics
analysis. The key benefit is that the user can perform a larger
part of the analysis on a single platform.

The importance of hit triage

The goal of HTS triage is to prioritize a subset of the large num-
ber of detected actives in the primary screen for further investi-
gation and optimization [8]. However, the analysis of HTS data
can be complicated by large library sizes and experimental

errors caused by artifacts related to assay miniaturization or
screening technologies used. A number of filters such as rapid
elimination of swill, pan-assay interference compounds
(PAINS), the rule of three and the rule of five are routinely used
to discard compounds with undesirable properties (e.g. promis-
cuity, poor physicochemical properties or presence of problem-
atic functional groups) [8, 66–69]. While ideally this should take
place at the library design stage, analysis of historical HTS data
requires that this filtering be applied at the triage stage as well,
as often historical assays contain undesirable compounds be-
cause of improper filtering at the time of design. This is fol-
lowed by the selection of diverse sets of actives for follow-up
testing based on potency and scaffold structure–activity rela-
tionships (SAR) [8, 69, 70].

Chemically diverse compound sets are preferred over sets
comprising many analogs, as the former allows multiple start-
ing points for compound optimization, increasing the overall
chances of success. Nevertheless, some analogs in the screen-
ing set are desired to enable SAR analysis. Nilakantan et al. [71]
and Lipkin et al. [72] suggested a middle-of-the-road approach
by designing diverse libraries with at least 50 or 200 analogs per
scaffold, respectively, with the intention of reducing the chan-
ces of missing an active scaffold series while still covering a sig-
nificant amount of chemical space. HTS data are used to
develop models for each chemical class (i.e. scaffold), and active
classes are identified based on the relative prevalence of (pri-
mary) hits within the class. Actives belonging to an active class
are prioritized over those belonging to poorly performing
classes, as the latter may more likely be false positives.
Additionally, rescuing false negatives is also important; a num-
ber of data mining approaches have been explored to this end

Figure 2. Graphical representation of the differences between systematic and random errors. Systematic errors are associated with consistent over- or underestimated

activity across the screening collection. By contrast, while random errors are usually caused by noise and have a low impact on the overall results, they do not present

any pattern, which makes their identification more difficult (A). We show an example of systematic error in the McMaster University experimental HTS assay [57] (B).

Here, the number of hits in each well across 1250 plates is shown. In general, wells located in rows A and B presented a higher hit rate than those at the center of the

plates, exemplifying how the well position can be associated with a systematic error. Systematic errors can be detected using the Student’s t-test [56], for example (C).

Here, measurements from one row or column (Sample 1) are compared with those of the remainder of the plate (Sample 2). When mean hit values of Sample 1 are sig-

nificantly different from mean values of Sample 2, a systematic error is detected.

Table 1. An overview of software available for HTS data analysis

Software
name

Description Reference
(year)

HTS-Corrector Analysis and error correction of
HTS data

[61] (2006)

HDAT Web-based HTS data analysis [62] (2013)
HCS-Analyzer Analysis and error correction of

high-content screening data
[63] (2012)

HTS navigator Cheminformatics analysis,
visualization and error cor-
rection of HTS data

[64] (2014)

WebFlow Analysis of HTS cytometry data [65] (2009)

Note Most software packages enable data analysis and error correction, and

more advanced software such as HTS navigator allows for both cheminfor-

matics analysis and visualization.
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[73]. Often, SAR analysis takes place after secondary screens,
and concentration–response curves have been performed on a
much smaller set of selected compounds. However, a study by
Varin et al. [70] demonstrated the benefit of including this ana-
lysis immediately after the primary HTS screen. Here, primary
screening data were preferred over secondary data because of
its size and completeness, despite the lower quality. Hit triage
results can be organized in a scaffold tree with well-defined
chemical entities, allowing for intuitive classification and
decision-making from a medicinal chemist’s point of view [74].

Developments in virtual HTS and new
screening paradigms

vHTS is used in parallel to intelligent library design, error man-
agement and hit triage. vHTS attempts to learn from existing
biochemical or phenotypic data and prioritizes subsets of much
larger screening libraries for experimental testing.

The wide range of techniques used in vHTS can mainly be
divided into two groups: structure-based and ligand-centric
vHTS. The former relies on three-dimensional structural infor-
mation (X-ray crystal or NMR structure) of the target protein to
study possible interactions with compounds in the screening li-
brary [75, 76]. The most common structure-based method is mo-
lecular docking, which predicts a binding pose for the
compound and assigns a score based on the interactions formed
in the protein–ligand complex, representing the suitability for
experimental testing. By contrast, ligand-centric approaches ex-
ploit structural information of known active compounds to
identify new actives. A number of ligand-centric approaches
exist: pharmacophore modeling [77, 78], quantitative structure–
activity relationship modeling [79] and similarity searching [80]
among others [75, 76].

The low cost and resources required for vHTS combined
with the introduction of large public bioactivity databases [11]
facilitate its application to many drug discovery campaigns.
This has resulted in numerous success stories: the discovery of
inhibitors/ligands of DNA methyltransferases (DNMTs) [81, 82],
kinases [83, 84], GPCRs [85, 86] and other relevant targets
(Table 2) [87, 88]. Nevertheless, the success of vHTS depends on
initial data quality and validation procedures.

With the recent advent of the ‘HTS-FP’, which describes
compound bioactivity across �200 biochemical and cell-based
assays at Novartis [25], the concept of bioactivity-based similar-
ity was taken to an unparalleled level. HTS-FP builds on the idea

of affinity fingerprints [27, 29, 90], allowing a bioactivity-based
comparison of compounds. Petrone et al. [25] demonstrated the
benefit of this descriptor over state-of-the-art chemical descrip-
tors in vHTS and scaffold hopping. This study formed the basis
for a body of work on using bioactivity-based similarity search-
ing for mode-of-action analyses [24, 26, 91, 92] and bioactivity
modeling, resulting in enhanced (scaffold) hit rates [3, 23, 24, 93]
(Figure 3). Building on this success, a public version of HTS-FP
was later designed based on PubChem bioactivity data [95].

Wassermann et al. [24] developed a method named ‘bioturbo
similarity searching’. For insufficiently profiled probe com-
pounds, bioactivity profiles of structural analogs were leveraged
to select subsets of compounds for virtual screening. Screening
these subsets led to higher (scaffold) hit rates compared with
when only structural similarity metrics for expansion around
probe compounds were used. Further work addressed the use
of bioactivity-based similarity searching for target prediction
[26, 91], detection of frequent hitters [26, 69] and iterative selec-
tion of activity-enriched subsets of the compound collection for
screening [3]. Driven by the gained momentum in machine
learning [96], a comprehensive benchmarking of machine learn-
ing classifiers in conjunction with chemical and biological de-
scriptors was performed, with the overall net result that fusing
both HTS-FP and chemical descriptors led to the best perform-
ance [23]. Moreover, a study by Paricharak et al. [94] described
the implementation of an active learning approach to derive ‘in-
former compound sets’ <10% of the entire screening collection.
Such sets were shown to provide improved predictivity over the
remainder of the screening collection compared with the ran-
domly selected training sets. Hence, the availability of these
sets enables routine exploratory screening in an assay-agnostic
manner for improved hit expansion [94]. The concept of
bioactivity-based similarity has also been inspected from the
(cellular or protein) target point of view: Liu and Campillos [97]
and Wassermann et al. [98] reported the comparison of 1640
ChemBank [99] assays and 150 HTS assays on the basis of their
activity profiles, respectively. Both studies led to the discovery
of biologically meaningful relationships between targets.
Further, in-depth investigation of activity correlations across in-
dependent biochemical and cell-based assays could lead to a
better understanding of similarities between proteins and could
potentially further improve bioactivity modeling efforts (e.g. by
expanding the applicability domain of proteochemometric
modeling [100]). In pursuit of increased efficiency over conven-
tional HTS campaigns, new screening paradigms have recently
been suggested [3, 93]. These approaches increase (scaffold) hit

Table 2. Successful applications of vHTS

Target Main contribution Method Reference
(year)

DNMT Olsalazine, an anti-inflammatory drug as DNMT
inhibitor

Ligand-centric [81] (2014)

DNMT Nanaomycin as selective DNMT3b inhibitor Structure-based [82] (2010)
Chk-1 kinase Thirty-six inhibitors with IC50 values between 68 nM

and 110 lM
Ligand-centric, pharmacophore-based and

structure-based
[83] (2003)

JAK3 Identification of a diazaindazole scaffold (IC50 ¼ 98 nM) Ligand-centric and structure-based [84] (2011)
NPY5 receptor Eleven antagonists (IC50 � 1 lM) Ligand-centric and pharmacophore-based [85] (2005)
Adenosine receptors Six high-affinity adenosine receptor ligands Ligand-centric and binding pocket-based [86] (2012)
Neurokinin-1 receptor One compound with IC50 ¼ 0.25 lM Pharmacophore-based and structure-based [87] (2004)
mGlu4 receptor Six agonists from a library of 720 000 compounds Structure-based [88] (2005)

Note Additional examples have been reviewed by Matter and Sotriffer [89].
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rates at the expense of scaffold coverage, requiring balanced
decision-making by the program team. Paricharak et al. [3] per-
formed a large-scale validation of iterative screening based on
Novartis HTS data. Herein, biological and chemical similarity
metrics were used in parallel to iteratively expand around hits
from multiple rounds of screening, resulting in significantly im-
proved efficiency. Overall, screening 1% of the entire screening
collection led to the retrieval of 7500 hits and a cumulative ac-
tive scaffold coverage of 40%, with efficiency gains realized
across a wide range of assay biology [3]. Maciejewski et al. [93]
suggested an experimental design strategy depending on assay
throughput and objective (e.g. hit retrieval or exploration of
chemical space for model building). For systems allowing high
throughput, conventional expansion around hits was sug-
gested. By contrast, an active learning approach was considered
best for iterative screening using smaller compound sets with
the explicit aim of developing a model for later use. Here, active
learning was preferred because of better sampling of chemical
space. Finally, when the objective was to optimize cumulative
(scaffold) hit rates in iterative screening, the ‘weak reinforce-
ment strategy’ was suggested, where expansion around hits
and exploration in under-sampled areas of chemical space were
performed simultaneously [93].

Conclusions

Although HTS has greatly gained momentum over the past dec-
ades, much profit can be realized by using intelligent measures

to improve efficiency at the library design, hit triage and activity
modeling stages. Data-driven approaches have consistently
been used for improving these aspects, with the aim of system-
atically prioritizing structurally diverse sets of compounds for
further interrogation. HTS-FP and the concept of bioactivity-
based similarity have formed the basis for numerous studies
showing remarkable improvements in hit retrieval and mode-
of-action analyses. Moreover, analyses of activity correlations
across independent biochemical and cell-based assays have re-
sulted in promising preliminary discoveries of biologically
meaningful relationships between targets. We believe that fur-
ther investigation could lead to more unmapped insights into
similarities between proteins and potentially improve bioactiv-
ity modeling efforts.

Key Points

• Consistently low hit rates and high upfront costs have
prompted efforts to improve various aspects of HTS
using heuristic measures, ranging from intelligent
compound library design, through effective hit triage
to bioactivity modeling to prioritize compounds for
testing.

• Rapid progress in the area of bioactivity modeling has
been made since the advent of the HTS fingerprint, a
method of comparing compounds solely based on
their bioactivity instead of chemical structure. Many
studies showed significantly improved hit rates and

Figure 3. Overview of recent studies improving (scaffold) hit rates and providing insights into compound mode of action. Describing compound bioactivity across �200

assays at Novartis, Petrone et al. [25] took the concept of bioactivity-based similarity to an unparalleled level. Here, biological analogs of hits were prioritized for testing

(A). Later studies leveraged bioactivity profiles of structural analogs of poorly characterized compounds to select subsets of compounds for virtual screening [24] (B), or

used a screening strategy using biological and chemical similarity metrics in parallel to iteratively expand around hits from multiple rounds of screening [3] (C).

Further improvements resulted from changes in experimental design strategy [93], machine learning methods for predicting actives [23] and informer sets for routine

exploratory screening [94] (D). Other studies used bioactivity-based similarity searching for mode-of-action analyses at Novartis [91], Roche [92] and in the public do-

main [26] (E).
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mode-of-action analyses in screening campaigns.
• Recently, a public version of the HTS fingerprint based

on PubChem data was released, which could be a
promising resource for significantly improving activity
modeling efforts in academic drug discovery.
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