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7
Simultaneous Calibration Scheme for Casimir Force

Measurements

In 1948 Casimir predicted the attractive force between two perfectly conducting
plates in a vacuum. But experimental confirmation of this force proved to be dif-
ficult due to several factors. The challenge of positioning the two plates perfectly
parallel [44, 135] is often circumvented by measuring the force between a plate and
a sphere. But two other challenges remain, namely the calibration of the set-up and
sphere-plate separation and the presence of the electrostatic force caused by a differ-
ence in surface potential between the two materials.

Calibration of the set-up and the distance is often done prior to the Casimir force
measurements. Compensation of the electrostatic force is achieved at the start of a
measurement run by setting a voltage over the sphere and plate such that the de-
tected force is minimized. The disadvantage of these methods is that it is still sen-
sitive to time-related drifts and distance-dependent contributions to the electrostatic
force. That is why we use a method that runs simultaneously with our measure-
ment run [144, 160]. We modulate the electrostatic force at a certain frequency by
applying an AC voltage between the sphere and the plate. Based on the modulated
force signal we can create a feedback loop that sets the distance at a desired value by
adjusting the amplitude of the AC voltage.

In this chapter we will describe this measurement method. We show Casimir
force measurements between a gold coated microsphere with radius R = 100µm
and a gold coated sapphire plate. We compare our results with calculations of the
Casimir force between two gold surfaces to show that our set-up can reliable mea-
sure the Casimir force.
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7.1 Detection of the plate motion

The set-up is designed to measure forces at submicron distances in a sphere-plate
geometry. The gold-coated sphere is attached to an atomic force microscope can-
tilever that acts as a force sensor. Read-out of the cantilever motion is done using a
fiber-optic interferometer. The technique behind fiber interferometry, as well as our
sample characterization is described in chapter 6. The cantilever is placed above a
gold coated sapphire plate. The measurements were done at room temperature at a
background pressure of 2.2× 10−1 mbar and the whole set-up was placed on an iso-
lated foundation separating it from vibrations from the outside world. A schematic
image of the main components of our set-up is shown in Figure 7.1.

The plate is coated with a 150 nm thick layer of gold. It is mounted on a mechani-
cal translation stage consisting of a stick-slip stepper motor (Attocube ANPz101) for
coarse approach and a piezo-electric transducer for accurately varying the distance
d between the sphere and plate. In this section we will describe the detection of
the motion of the plate. In a later section we will show how the electrostatic force
is used to relate this motion to the actual sphere-plate distance and to calibrate our
force sensitivity.

Figure 7.1: Schematic image of the set-up. During a measurement run, the distance d
is varied by setting dpz by a translation stage under the gold plate. A force between the
gold sphere and plate results in a change in cantilever motion. The motion of both the
cantilever and the plate is read out with fiber-optic interferometers. The interferometric
signal depends on the interference of light reflected at the fiber end facet (r1) and at the
plate surface (r2).

During a measurement run, the plate moves towards the sphere in steps. The
distance between the sphere and the plate changes with dpz compared to the initial
separation d0, such that the actual sphere-plate distance is equal to d = d0− dpz. The
distance change dpz, or plate motion, is recorded with a fiber-based common path
interferometer [92]. The interferometer is fed by a tunable continuous wave dis-
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tributed feedback (CW DFB) laser module (Thorlabs LS5-C-24A-20-NM) operating
around λ = 1550 nm. The light is transported via a 90/10 fiber coupler to a cleaved
fiber end positioned above the plate. Light reflected at the fiber end (r1) interferes
with light reflected from the plate (r2) when it passes through the fiber coupler again
and falls onto a detector. The interference signal at the detector is given by

WDC = W0 −W0V cos

(
4πdpz

λ

)
(7.1)

where W0 is the midpoint interference signal and V the interferometric visibility.
The interferometer is most sensitive for values of dpz where the phases from both
reflections are in quadrature. This requirement can only be met for small changes in
the distance (dpz � λ/4π). This is not feasible for a typical measurement run, where
we want to measure over a distance of several hundred nanometers.

To overcome this issue, the plate motion dpz is modulated at ω/2π = 119 Hz,
with amplitude ∆d of roughly 0.5 nm. Following a Taylor expansion, the interfer-
ence signal now also contains an oscillating component in phase quadrature with
the original signal, with amplitude

Wω =
4πW0V∆d

λ
sin

(
4πdpz

λ

)
. (7.2)

A point with low sensitivity in one term is now compensated by a high sensitivity
in the other term. The distance change dpz can be deduced from the phase-angle
between the two terms:

dpz =
λ

4π
arctan

(
λ

4π∆d

Wω

W0 −WDC

)
. (7.3)
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Figure 7.2: Lissajous plot of the two components of the plate interferometer signal, Wω

and WDC (blue dots). The resulting ellipse is fitted (purple line) to find the distance
change dpz.
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During a measurement run, the DC level of the detector signal from the plate
interferometer, WDC, is low-pass filtered and recorded with an ADC and the modu-
lated signal Wω with a lock-in amplifier with time constant 30 ms. To determine the
values for W0 and ∆d, it is possible to fit WDC and Wω separately. But a more con-
venient choice is to display the two signals in a Lissajous plot and fit the resulting
ellipse. Both the data and the fit are shown in Figure 7.2.

The correspondence between the fit and data tells us that the plate interferome-
ter is well able to follow the plate motion and that disturbing effects such as external
vibrations or piezo creep do not affect our measurements. From the axes and the cen-
ter position we can deduce W0 = 1.35 V, ∆d = 0.61 nm and the plate interferometric
visibility V = 0.67. Using these values and Eq. 7.3 we can then determine dpz. To
calibrate the offset distance d0 and therefore the actual distance between the sphere
and the plate, we use the electrostatic force. In the next section we will explain the
calibration method.

7.2 Calibration with the electrostatic force

The force sensor is based on a doped silicon micromechanical cantilever with nom-
inal spring constant k = 0.9 N/m (Bruker RESP-20). A polystyrene sphere (Thermo
Scientific 4320A) with radius R = 100µm is attached at the end of it. Both the sphere
and the cantilever are covered with a 200 nm conductive gold coating. The cantilever
motion and resonance frequency (f0 = 2.3 kHz) are read out by a second fiber-optic
interferometer, positioned 200µm from the cantilever and fed by a second, similar
laser source. The laser frequency is tuned to quadrature point corresponding to the
fiber-cantilever distance. A self oscillating circuit [161] drives the cantilever at its res-
onance frequency to ensure a constant cantilever amplitude of roughly 1 nm RMS.

With this force sensor we wish to detect the Casimir force FC , but there also exists
an electrostatic force caused by a voltage across the plate and the sphere. Even when
there is no external voltage applied, there exists a contact potential difference V0

caused by a difference in the materials’ work functions. This difference can also exist
between two surfaces of the same material, since different application circumstances
may lead to variations in crystal face or in possible contamination. Although the
electrostatic force can easily overcome the Casimir force in magnitude, it allows us
to calibrate our force sensor and the actual distance between the sphere and plate as
well as to detect and compensate V0.

Because the electrostatic force depends on the potential difference between the
sphere and the plate, it can be altered we apply an additional voltage. More specif-
ically, since the Casimir force does not depend on the voltage across the sphere
and the plate, modulating this voltage at a known frequency allows us to sepa-
rate the two forces. The signal from the force sensor at the modulation frequency
ω1/2π = 72.2 Hz only shows the electrostatic contribution. The total voltage across
the sphere and plate consists of an applied AC and DC voltage, plus the naturally
present contact potential difference V0:

V = V0 + VDC + VAC cos(ω1t). (7.4)
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We use the expression FES = −πε0RV
2/d for the electrostatic force in a sphere-plate

geometry, with ε0 the vacuum permittivity. This expression is an approximation that
holds in the limit of small distance compared to the sphere radius [138]. Later in this
section we will check its validity. The total electrostatic force acting on the cantilever
has multiple frequency components as well as a static component:

FES = −ε0πR

d

[
(V0 + VDC)2 + 2(V0 + VDC)VAC cos(ω1t) +

1

2
V 2

AC +
1

2
V 2

AC cos(2ω1t)

]
.

(7.5)
The total force between the sphere and plate is detected as a change in the can-

tilever motion, where the cantilever’s static deflection, oscillation amplitude and
resonance frequency are influenced. The cantilever is deflected in accordance to
Hooke’s law, which results in a interferometer signal S given by

S =
γ(FC + FES)

k
, (7.6)

with γ the sensitivity of the interferometric read-out in units of V/m. When the force
oscillates slowly compared to the cantilever’s resonance frequency, the cantilever can
easily move in phase with the force. We will call this method of detection the quasi-
static (QS) detection.

Since the electrostatic force has different frequency components, the signal can
also be divided into different parts:

S = Ss + Sω1 cos(ω1t) + S2ω1 cos(2ω1t), (7.7)

with static deviation and oscillation amplitudes given by

Ss =
γFC

k
− γπε0R

kd
(V0 + VDC)2 − γπε0R

2kd
V 2

AC (7.8)

Sω1
= −2γπε0R

kd
(V0 + VDC)VAC (7.9)

S2ω1 = −γπε0R

2kd
V 2

AC = − κ

2d
V 2

AC, (7.10)

with κ = γπε0R/k the force sensitivity. The amplitudes are detected with lock-in
amplifiers (time constant 300 ms) set directly on the cantilever interferometer sig-
nal. The static deviation can be influenced by drifts, which makes it an unreliable
measure for the Casimir force. It is possible to modulate the Casimir force as well
[160] by slightly oscillating the plate, thereby modulating the distance. But since
our cantilever interferometer is very sensitive to spurious reflections from the plate
(see chapter 6), we cannot separate the modulated Casimir force from the modulated
plate motion. That is why we use a different detection method.

Since the force between the sphere and plate depends on separation, there exists
a force gradient that changes the cantilever’s resonance frequency according to [161]

∆f = − f0

2k

∂(FC + FES)

∂d
. (7.11)
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A static force gradient leads to a frequency shift, while an oscillating force gradi-
ent results in a frequency modulation. We will refer to this force gradient detection
method as the frequency modulation (FM) detection. There are also different com-
ponents in the cantilever frequency change

∆f = ∆fs + ∆fω1
cos(ω1t) + ∆f2ω1

cos(2ω1t). (7.12)

with static frequency shift and frequency deviations given by

∆fs = f − f0 = − f0

2k

∂FC

∂d
− f0πε0R

2kd2
(V0 + VDC)2 − f0πε0R

4kd2
V 2

AC (7.13)

∆fω1 = −f0πε0R

kd2
(V0 + VDC)VAC (7.14)

∆f2ω1 = −f0πε0R

4kd2
V 2

AC = − µ

2d2
V 2

AC, (7.15)

where we assign the system parameter µ = f0πε0R/2k. Since a lock-in amplifier
doesn’t detect frequencies, we send the cantilever interferometer signal through a
frequency-to-voltage converter that detects the cantilever frequency and translates
it linearly to a DC voltage. Frequency modulations translate to modulations of the
voltage, with the frequency deviation equal to the amplitude of the signal at the
modulation frequency. The static frequency shift can be used to extract the Casimir
force gradient. We detect the instantaneous cantilever frequency using a home-built
software radio and a frequency counter (Agilent 53131A) on the (filtered) cantilever
interferometer signal. We also use the phase-locked loop option of our lock-in am-
plifier (Zurich Instruments HF2LI). To obtain the frequency shift, we determine f0

from data points far away enough that the Casimir force has an undetectable influ-
ence. The instantaneous frequency there is only affected by the known electrostatic
force, which we can subtract to obtain f0.

DC
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Figure 7.3: Frequency components in the cantilever interferometer signal. The quasi-
static signals are at the low-frequency range of the spectrum, at ω1 and 2ω1. The
frequency modulation signals appear as double side-bands around the resonator frequency.
The signals at ω1 are used to correct for the contact potential difference, via a feedback
loop that minimizes these signals by applying a compensating DC voltage. The signals
at 2ω1 are used to calibrate the system. The Casimir force is detected as a shift in the
cantilever resonance frequency.
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An overview of the frequency components of our cantilever interferometer signal
is shown in Figure 7.3. The quasi-static signals are located near DC and the frequency
modulation signals appear as double sidebands around the resonance frequency of
the cantilever. Both QS and FM signals can be used to calibrate the system and
correct for the contact potential difference. The static shift of the resonance frequency
is used to measure the Casimir force gradient.

We will first discuss how the influence of the contact potential difference is com-
pensated using a technique similar to what is used in Kelvin probe force microscopy
[162]. Note that the QS amplitude Sω1

as well as the frequency deviation ∆fω1
are

proportional to the sum of the contact potential difference and our applied DC volt-
age. Both terms are linear in VDC and are zero when VDC = −V0, i.e. when the contact
potential difference is compensated. We have checked that this is true by sweeping
the DC voltage while measuring Sω1 and ∆fω1 . Both lines should be linear and cross
zero at the same point. The result is shown in Figure 7.4. These data were obtained
at room temperature between the gold sphere and plate separated by roughly 1µm.
During the sweep we applied an AC voltage of 1 Vpp. The results are indeed lin-
ear in VDC and both signals are zero around the same DC voltage, although a slight
offset exists. The FM signal decreases faster with distance than the QS signal. At
the relative large distance of 1µm, it is therefore not surprising that it is more influ-
enced by noise. Note that even between two gold surfaces at room temperature, we
detect a contact potential difference of 61 mV. This is probably caused by different
circumstances in the coating process and/or the different substrates.
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Figure 7.4: The QS and FM signals at ω1 as a function of the DC voltage; Sω1
(blue)

and ∆fω1 (purple). Both signals are linear in VDC and cross zero at the same DC voltage,
indicating a contact potential difference of 61 mV between two gold surfaces.

Knowing V0, we can simply set VDC at the start of a measurement. But since
V0 can change over time during a measurement, we create a feedback loop keeping
either Sω1

or ∆fω1
zero. In Figure 7.5 we show the output DC voltage from the feed-

back loop during a measurement run, as well as the remaining potential difference
calculated from Sω1 .

The contact potential difference is fed back up to only a few millivolts during the
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Figure 7.5: Result of the electrostatic compensation scheme. From the quasi-static
signal Sω1

can be calculated that the surface potential V0 is successfully reduced. The
remaining potential as a function of distance is shown in blue. The output DC voltage
(purple), equal to −V0, changes as a function of distance.

whole measurement run. However, there is a clear distance-dependence of the out-
put DC voltage. This would suggest that the mean surface potential V0 is distance-
dependent, but it is only determined by the material properties. There are several
possible explanations for the behaviour in our measurements. One is the presence of
another conductor, for example the cantilever or the sample mount, that is gradually
shielded during approach [163]. Another explanation is the influence of variations in
the surface potential, which leads to an electrostatic force with a different distance-
dependence than following from the mean surface potential [164, 165]. The presence
of this extra force shows that compensating for V0 only at a far away distance is not
sufficient and that a real-time compensation scheme is clearly needed.

Apart from compensation, the electrostatic force is used to calibrate the force
sensitivity of the set-up and the distance between the sphere and the plate. As de-
scribed in the previous section, we use a fiber interferometer positioned above the
plate to determine the distance the plate moves during one measurement run, dpz.
The sphere-plate distance is equal to d = d0 − dpz. The initial separation d0 is ob-
tained from a fit to the electrostatic signals at 2ω1. Instead of fitting S2ω1 directly, we
rewrite Eq. 7.10 as V 2

AC/(2S2ω1
) = (d0 − dpz)/κ, which is linearly dependent on dpz.

Similarly, we can rewrite Eq. 7.15 as VAC/
√

2∆f2ω1
= (d0 − dpz)/

√
µ. The data from

a typical measurement run based on the QS signals is shown in Figure 7.6(a), and
based on the FM signals in Figure 7.6(b). The fits follow the data, especially at large
dpz where the distance between the sphere and the plate is smallest and the electro-
static force is largest. From the fit we can determine an offset distance d0 = 832 nm
which we can use to deduce the actual sphere-plate distance.

From the slope of the fit in Figure 7.6(a) we can determine the force sensitivity κ =
1.69 × 10−8 m V−1. This value is close to the expected value of κ = 2 × 10−8 m V−1

based on the values k = 0.9 N/m, R = 100µm and γ = 7 MV/m. The difference is
caused in uncertainties in the spring constant and/or sphere radius. The interfero-
metric sensitivity γ can be determined separately from the cantilever interferometer
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Figure 7.6: Data (blue dots) and fit (purple line) used to find the offset distance d0 from
the modulated electrostatic force: (a) V 2

AC/(2S2ω1
) as a function of the distance change

dpz; (b) VAC/
√

2∆f2ω1
as a function of the distance change dpz.

signal as a function of the laser frequency. The system parameter µ is found from
the fit in Figure 7.6(b), µ = 1.98 × 10−12 Hz m2 V−2, close to the calculated value of
3.55× 10−12 Hz m2 V−2.

Once we know these parameters, we can determine the distance from the ratio
between either S2ω1 or ∆f2ω1 and the AC voltage VAC:

d =
κV 2

AC

2S2ω1

=

√
µV 2

AC

2∆f2ω1

. (7.16)

This approach is preferable, because it is less sensitive to noise in our plate inter-
ferometer. It also allows us to set the distance by applying a certain AC voltage
and creating a feedback loop that moves the piezo-electric transducer until the cor-
responding electrostatic force signal (either S2ω1

or ∆f2ω1
) is reached. This way it is

possible to reach a certain distance by simply setting the AC bias voltage. We typ-
ically do one measurement run with an educated guess for either κ or µ, then we
determine the correct values for κ and µ from the fits such that we can set the de-
sired distances for the following runs. It is even possible to do a measurement run
where we keep the distance fixed at one value. This allows us to directly measure
the effect of the superconducting transition by sweeping the temperature across the
critical temperature, without the influence of drift or thermal expansion.

7.2.1 Validity of the proximity force approximation
As mentioned before, our calibration scheme is based on an approximation of the
electrostatic force. Here we will check the validity of this approximation by compar-
ing it to the full electrostatic force. From the self-capacitance of the sphere and plate
and their mutual capacitance it is possible to find a complete expression [166]:

FES = 2πε0V
2
∞∑
n=1

coth(α)− n coth(nα)

sinh(nα)
(7.17)
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with α = arccosh(1 + d/R). We approximated the infinite sum by taking the first
100.000 terms. Within the precision of our calculations, we could see no change
when more terms were taken into consideration.

It is possible to calculate the sum at several distances and calibrate our measure-
ment with (an interpolation of) the full electrostatic theory. But this is may be an
unnecessarily complex method if a more simple expression is also valid. For prac-
tical purposes, we use the expression given in Eq. 7.5. This expression is obtained
via the Proximity Force Approximation (PFA) [136–138] that relates the force in a
sphere-plate geometry (Fsp) to the free energy per unit area in a parallel-plate geom-
etry (Upp):

Fsp(d,R) ≈ 2πRUpp(d). (7.18)

From the energy per unit area of two infinite parallel conducting plates, Upp(d) =
ε0V

2/2d, we deduce the expression given in Eq. 7.5. It must be noted, however, that
the PFA only holds under two conditions: the interaction energy must be localized
and the distance of closest approach must be small compared to the sphere radius
(d � R). In our set-up we have a 100µm radius sphere at a distance of less than
1µm from the plate. So the condition is only met up to 1%. To see if this indeed
leads to errors in our measurements, we look at the QS electrostatic signal S2ω1

as a
function of distance. During a typical measurement run we keep this signal constant
in a feedback loop that adjusts the distance to match a given AC voltage. There
should therefore be a linear dependence between V 2

AC and the distance as long as
the electrostatic approximation holds. In Figure 7.7 we show data obtained during a
typical Casimir force measurement run. The black dots show the applied AC voltage
as a function of distance. The two lines indicate the calculated AC voltage based
on experimental parameters, either using the approximation or the full theory. The
purple line is derived from the approximation according to

V 2
AC,approx =

2kdS2ω1

γε0πR
. (7.19)

The distance here is derived with our calibration method based on the approximated
expression for the electrostatic force. The blue line is obtained using the full electro-
static force and is given by

V 2
AC,full =

kS2ω1

γπε0

(
100.000∑
n=1

coth(α)− n coth(nα)

sinh(nα)

)−1

. (7.20)

In both calculations we have used the measured value of S2ω1
. The ratio k/γ is

derived from the calibration of κ, with the value R = 100µm. The sum is calculated
for 2000 distances between d = 100 nm and 10µm and then interpolated with the
distances from our measurement.

From the overlap in Figure 7.7(a) it is clear that both the full electrostatic force
and the approximation describe our data well within the measurement fluctuations.
This is even better visible in the residuals between the data and the two calculations
shown in Figure 7.7(b). The two calculations start to deviate from each other at a
distance larger than 700 nm, which shows the limits of the PFA. But it is clear that
we can safely use the approximated electrostatic force for our calibration scheme.
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Figure 7.7: Comparison of electrostatic force approximation with full theory: (a) V 2
AC as a

function of distance, both measured experimentally (black dots) and calculated from either
the full electrostatic force (blue line) or its approximation (purple line). Any deviation
from linear dependence shows that the approximation no longer holds; (b) Residuals of
the measurements in (a) show negligible deviation compared to the fluctuations in the
measurement.

7.3 Casimir force measurements

In the previous section we described how we use the electrostatic force to compen-
sate the contact potential difference and to set the distance at a fixed value. We
mentioned that this calibration scheme operates simultaneously with our Casimir
force measurements. The Casimir force gradient itself is obtained from the static fre-
quency shift ∆fs given by Eq. 7.13. When V0 is compensated, the middle term on
the right hand side in this equation is zero. The other terms can be rewritten to give
the Casimir force gradient, normalized to the sphere radius:

1

R

∂FC
∂d

=
ε0π

µ
[∆f2ω1

−∆fs]. (7.21)

Via the proximity force approximation we can compare this to theoretical computa-
tions of the Casimir force in the parallel-plate geometry, since the measured, normal-
ized, Casimir force gradient only differs a factor 2π from the calculated pressure.

The result of one of our measurement runs between two gold surfaces at room
temperature is shown in Figure 7.8. During this run the distance feedback was active,
setting the distance at 200 logarithmically distributed values between 800 nm and
56 nm. The feedback was set on the quasi-static signal S2ω1

, with set-point 0.5 mVrms
and based on a force sensitivity κ = 1.69 × 10−8 m V−1. This set-point corresponds
to a force amplitude at 2ω1 of 0.1 nN. A second feedback loop was set to minimize
Sω1 by applying a DC voltage of about 80 mV, this value changed with distance.

The calculation shown in the same plot is done according to the Lifshitz theory
using the Drude model for the reflectivity of the gold surfaces [112]. For an explana-
tion of these calculations we refer to chapter 5. There may be slight deviations due
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Figure 7.8: Casimir force gradient, normalized to the sphere radius, between a sapphire
plate coated with 150 nm gold and a 100µm radius sphere with a 200 nm gold coating.
The measurement was performed at room temperature with a background pressure of
2.2 × 10−1 mbar. The good overlap between calculations and measurements shows that
we can reliably measure the Casimir force with a method based on simultaneous calibration
with the electrostatic force.

to surface roughness or the specific optical properties of our samples. Also the calcu-
lated Casimir force would be somewhat larger if it was based on the plasma model.
However, these deviations will be less than a percent compared to the calculations
shown in the figure. This is still within the precision of our measurements which is
of the order of several percent.

From the good overlap between experiment and theory it is clear that our set-up
is capable of detecting the Casimir force gradient between two gold surfaces in a
sphere-plate geometry. It is also clear that there persist no systematic errors in our
set-up, at least no errors larger than the measurement fluctuations of order 1 N/m2.
This means that with our electrostatic force calibration scheme, we can reliably mea-
sure the Casimir force gradient in the range 50 − 200 nm. This scheme also allows
us to measure the temperature dependence directly by setting the distance at a cer-
tain value and keeping it fixed while we sweep the temperature. The next step is to
exchange the gold coated plate for a plate coated with a superconductor.


