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6
Details of the Experimental Techniques

In the past, measurements of the Casimir force were performed using different kinds
of experimental set-ups. The first measurements relied on macroscopic objects, such
as two metallic parallel plates [44] or a lens and a plate [45, 46]. Technological
progress allowed an enhanced force sensitivity and sensor read-out, as well as force
measurements between microscopic surfaces. Modern set-ups for Casimir force mea-
surements include torsion pendulums [47, 50], atomic force microscopes [51, 52, 54,
142–144], microelectromechanical systems [145], micromechanical cantilevers [135]
and micromechanical torsional oscillators [11, 146, 147]. For an overview of Casimir
force experiments, see for example Refs. [98, 148].

In this thesis we will use a set-up based on atomic force microscopy. We have at-
tached a polystyrene sphere with 200µm diameter on a micromechanical cantilever,
such that the cantilever and sphere act as a force sensor [149]. When the sphere is
positioned above a plate, any force between the sphere and plate causes changes in
the cantilever motion. We read out this motion using fiber interferometry [92, 150].
The first part of this chapter will describe fiber interferometry in more detail and its
possibilities and limits when applied to our set-up. We also investigate the use of
graded index (GRIN) lenses to focus the light onto the cantilever.

Since surface roughness influences Casimir force measurements, it is important
that the surfaces can still be considered flat at the smallest sphere-plate separation.
We will show topography images of our gold coated sphere as well as of the two
plate coatings that are used for Casimir force measurements in this thesis: gold and
the superconductor niobium titanium nitride. We will also show that cooling has no
effect on the gold coating of the sphere.

A description of our measurement method will follow in chapter 7. There we
will explain that it depends on the potential we set on the plate. We simultaneously
want to perform a conductance measurement of the superconducting plate to check
whether it is in its normal or superconducting state. These two measurements may
not interfere. In the final part of this chapter we will explain our plate resistance
detection scheme that can run simultaneously with our Casimir force measurement.
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6.1 Fiber interferometry

Fiber interferometry [92, 150] is based on the interference between light reflected
at the end facet of a single-mode fiber and light that is reflected at a surface some
distance d in front of the fiber end facet. Since the light originates from the same
laser source and follows the same path through the fiber, the interference signal is
in principle only sensitive to changes between the fiber end and reflective surface.
In order to deduce a general formula for the interferometer signal, we need to know
the amplitudes of the two reflected beams, which are indicated in Figure 6.1.
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Figure 6.1: Schematic image of a fiber end in front of a reflective surface, separated by
a distance d. Also shown are the reflection and transmission coefficients and the paths of
the two interfering beams with amplitudes E1 and E2.

Light propagates through the fiber and encounters a 4% intensity reflection at the
fiber-to-air interface. The normalized amplitude of the Gaussian beam reflected at
this surface is given by [151]:
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where r2 = x2 + y2, −r1 is the reflection coefficient at the fiber-to-air interface1, w0 is
the beam waist at z = 0 and ω is the angular frequency of the light.

The second beam is coupled out of the fiber, reflected at the second surface a
distance d away and coupled back into the fiber. In the first step, the amplitude
is multiplied by the transmission coefficient t1. The light then travels a distance z
where the beam waist w and radius of curvature R are altered according to:
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R(z) = z +
z2
R

z
(6.3)

1Note the minus sign, which is due to time-reversal invariance. The Stokes relations dictate a phase
difference of 180◦ between internally and externally reflected light [152].
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with the Rayleigh length zR = πw2
0/λ and λ the wavelength of the light. At the

second surface, the light picks up a reflection coefficient r2. The light then travels
back to the fiber end facet; the total travel distance is equal to 2d. Since both the beam
waist and radius of curvature have changed, the beam no longer overlaps with the
fiber core. We need to find the coupling coefficient that describes how much light
couples back into the fiber. The effect of the radius of curvature can be ignored,
however, regardless of the travel distance. For small distances, the curvature hasn’t
changed much and the beam is still effectively flat. At large distances the beam is
curved significantly, but since the beam has expanded as well, we can assume that
the beam is locally flat at the fiber core3. So we just look at the coupling coefficient
between a beam with waist w(z) and the fiber mode with waist w0. Since the beams
are normalized, the coupling coefficient is given by the overlap integral:
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Considering this coupling coefficient and an extra factor t1 to account for the
transmission back into the fiber, the amplitude of the second beam in the fiber is
given by

E2(r, t+ τ) = ηct
2
1r2

√
2

π

1

w0
e
− r2

w2
0 e−iω(t+τ), (6.5)

where τ = 2d/c is the time delay resulting from the extra path length. The detector
signal W follows from the autocorrelation function of the sum of the two beams
[153], multiplied by the detector responsivity ρ:

W (d, f) = ρ〈{E1(r, t) + E2(r, t+ τ)}∗{E1(r, t) + E2(r, t+ τ)}〉 (6.6)
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The first (second) term can be recognized as the intensity of the first (second) beam,
while the last term is the interference term. In this term one can recognize the inter-
ferometric visibility
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3Mathematically, the condition holds if we can ignore the contribution e
iπr2

λR(z) of the radius of curva-

ture to the Gaussian beam, which is true if πr2
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If we call W0 = ρ(I1 + I2) the midpoint signal, we can rewrite the previous equation
in a more compact form

W (d, f) = W0 −W0V cos

(
4πfd

c

)
. (6.9)

A fiber interferometer is often used to detect small fluctuations (∆d� λ) on top
of a large gap distance (d� λ). The sensitivity to detect these fluctuations is maxi-
mum at the quadrature point, which can be achieved by either tuning the gap dis-
tance or the laser frequency. In our set-up, we fix the gap distance and tune the
laser frequency to quadrature. Since the visibility decreases at large distance, this
gap distance cannot be too large. But if the gap distance is small, the frequency
scan range of the laser can be insufficient to find the quadrature point. To overcome
the requirement to operate the interferometer at quadrature point, the signal can be
modulated. The modulated term in the interference signal is at phase quadrature
with the original term, therefore always warranting maximal sensitivity. Since dis-
tance modulation is often not feasible, commercial interferometers tend to modulate
the laser frequency, which may result in added noise to the signal. In chapter 7 we
will describe this method in more detail.

The gap distance in the interferometer that reads out the cantilever motion is
fixed at 200 − 300µm, which is small enough to obtain a high visibility and large
enough for our laser to scan almost half a period of the cosine in the interferometer
signal. We therefore do not use any modulation techniques in this read-out.

The interferometers are fed by a 1550 nm, 20 mW laser module with a frequency
scan range of 250 GHz. We use two distributed feedback (DWDM DFB) lasers with
adjacent frequency ranges (Thorlabs LS5-C-24A-20-NM and LS5-C-22A-20-NM) to
increase the scan range even further. The laser module where the frequency is in
quadrature point is used for the cantilever interferometer, the other is used to read
out the motion of the plate under the cantilever. The light of each laser first passes
through an optical isolator (Thorlabs IO-H-1550APC) to protect the laser from back-
reflected light. The light then goes through a 90/10 fiber coupler (Thorlabs 10202A-
90-APC) of which the 90% port is terminated and the 10% port is connected to a fiber
with a cleaved fiber end. The reflected light passes the coupler again, now 90% falls
onto a detector (Thorlabs PDA10CS).

With the cantilever interferometer we want to detect small forces that are man-
ifested as small deviations in the cantilever motion. A question that arises is what
the smallest detectable motion, or noise floor, is. The noise floor is mostly influenced
by mechanical noise from vibrations from the outside world. But even when the set-
up is mechanically stable, there is an intrinsic noise floor caused by the laser phase
noise. This noise floor can be calculated from the laser linewidth using the interfer-
ometer signal. We want to know the influence of the laser linewidth ∆f on the signal
linewidth ∆W when the laser is tuned at quadrature (sin(4πfd/c) = 1):

∆W = W0V
4πd

c
sin

(
4πfd

c

)
∆f = W0V

4πd

c
∆f. (6.10)

To obtain the signal noise floor in meters, we divide the signal linewidth by the
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sensitivity 4πW0V/λ and the square root of the bandwidth B:

∆dmin =
dλ

c

∆f√
B
. (6.11)

With a fiber-to-cantilever distance d = 200µm, laser wavelength λ = 1550 nm and
linewidth ∆f < 10 MHz we find a noise floor of ∆dmin < 327 fm/

√
Hz for a band-

width of 1 kHz. To check this value, we measured the spectrum of the cantilever
interferometer signal, shown in Figure 6.2. The cantilever motion is clearly visible
around 2.3 kHz. From a fit through the data, we could obtain a resonance frequency
of 2306 Hz and mechanical quality factorQ = 4.85×103. These are reasonable values
for a cantilever in vacuum at room temperature. This tells us that the fit is reason-
able, despite the fact that the spectrum analyzer’s low frequency noise has not been
taken into account in the fit. From the fit we determine a noise floor of 103 fm/

√
Hz.

This is somewhat lower than the calculated value, but differences can be explained
by a smaller fiber-to-cantilever distance and lower laser linewidth.
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Figure 6.2: Noise spectrum from the cantilever interferometer signal. The cantilever
motion at 2.3 kHz is clearly visible. From a fit (red line) through the data we could
determine a noise floor of 103 fm/

√
Hz. This value is somewhat lower than the calculated

value of 327 fm/
√

Hz, which may be explained by a lower laser linewidth or smaller fiber-
to-cantilever distance. The low frequency range of the spectrum is dominated by pink
noise from our spectrum analyzer, which is not taken into account in the fit.

We have compared our home build fiber interferometer with several commer-
cially available interferometers from Optics11 (OP1550) and Attocube (IDS3010). The
OP1550 came in two versions, standard with a sampled grating distributed Bragg re-
flector (SG-DBR) laser diode or upgraded with an external-cavity diode laser (ECL).
The interferometers of Optics11 could be directly connected to our set-up, such that
the measurements could be obtained under similar circumstances. The Attocube
interferometers can only be combined with their sensor heads, that require a large
distance between the reflective surfaces of at least several millimeters. All interfer-
ometers showed a higher noise floor. The noise floor of the OP1550 was 3 pm/

√
Hz



72 Details of the Experimental Techniques

for the SG-DBR laser and 300 fm/
√

Hz for the ECL. With the IDS3010 we measured
a noise floor between 22 and 33 pm/

√
Hz depending on the sensor head. This shows

that the flexible use of commercial interferometers limits their achievable sensitivity
and that our noise floor of 100 fm/

√
Hz is very reasonable. It is especially advan-

tageous that our interferometer can operate at very small distances, since the noise
floor depends linearly on the fiber-to-cantilever distance when the dominant noise
source is laser phase noise. Note that this requires a laser with a reasonably large
frequency scan range, such that the laser can always be set at the quadrature point.

When the distance can no longer be decreased, the noise floor can be lowered
by using a laser with a smaller linewidth. But this effect is not limitless. Interfer-
ence occurs between all reflected light beams, not just between light reflected at the
fiber end facet and at the cantilever. Reflections at for example fiber connectors may
result in unwanted interferences. Due to small changes in the fiber length caused
by temperature fluctuations in the cryostat, or changes in the amount of the light
reflected at the connectors, the unwanted interferences do not just add a static back-
ground. All vibrations in the system now show up in the interferometer signal. Since
interference can only occur between coherent beams, a solution to avoid this effect
is to lower the coherence length of the laser to the fiber-to-cantilever distance. This
however also enlarges the laser linewidth, so a compromise has to be made. Our
lasers allow for coherence control via a small signal modulation on the laser current.
The effect of this modulation is depicted in the noise spectrum of our cantilever in-
terferometer signal in Figure 6.3. The laser current was modulated at 18.5 kHz at
different modulation depths. The laser linewidth can be increased from less than
10 MHz with no modulation to more than 1 GHz at full modulation. The red line
in Figure 6.3 displays the noise spectrum without any modulation, which results in
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Figure 6.3: Noise spectrum from the cantilever interferometer, without modulation (red
line) and with 5 percent (orange line) and 10 percent (black line) modulation. The
modulation decreases the noise floor by a factor of three, but a modulation depth of more
than a few percent has no further effect. The noise peaks are caused by noise in our
electronics and by mechanical vibrations in our cryostat.
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a noise floor of about 300 fm/
√

Hz. A modulation depth of five percent lowers the
noise floor roughly three times, but further reduction of the coherence length has no
more influence on the noise floor. We therefore kept the modulation at a modulation
depth of five percent during our measurements.

6.1.1 GRIN lenses to focus light

Our measurement scheme based on interferometric read-out of the cantilever mo-
tion assumes only interference between the light reflected at the fiber end facet and
cantilever. Spurious reflections will result in parasitic interferences in our signal.
Especially harmful is light reflected at the plate underneath the cantilever, because
that results in a parasitic interference that changes during a measurement run while
the cantilever-plate distance is varied. To prevent this, several options are available.
Decreasing the laser coherence length to only several hundred micrometers is tech-
nically not achievable. The plate can be made from an absorptive material, but this
will severely limit the choice of materials for the Casimir measurements. Another
option is to position the fiber under an angle, to prevent light reflected at the plate
from coupling back into the fiber (compare with the read-out in atomic force mi-
croscopes via a quadrature detector), but this will also influence the read-out of the
cantilever motion. The best option is to use the cantilever to block the light from the
fiber before it reaches the plate. Especially since a relatively large sphere is attached
to the cantilever, this proofs to be a practical solution. It is not completely reliable,
however, because during our sample fabrication we have no way to check that all
the light is blocked.

The possibility of stray light to couple back into the fiber is significant since the
light from the fiber is divergent. We therefore investigated the option to focus the
light onto the cantilever, using graded index lenses because of their size and com-
patibility with fibers. A graded index (GRIN) lens is a cylindrical rod where the
index of refraction varies radially [152] according to

n(r) = n0

(
1− ζ2r

2

)
, (6.12)

where n0 is the index of refraction at the center and ζ a positive constant indicating
the variation towards the curved edge. How the light is propagated through the lens
is determined by the change in refraction index and by its length. A common use of
GRIN lenses is to collimate light from a fiber by placing a lens with the correct length
directly behind it. The collimated light then has a beam waist (radius) of roughly
40 to 200µm for commercial GRIN lenses. This is still too large compared to our
cantilever width of 50µm. By increasing the distance between the fiber and GRIN
lens (distance v in Figure 6.4), it is possible to focus the beam onto the cantilever.

The resulting beam waist and the required distances depend on the GRIN lens
and can be calculated via ray matrices [154, 155], with the ray matrix describing the
propagation through a GRIN lens given by [151]

MGRIN =

[
cos(ζz) sin(ζz)/n0ζ

−n0ζ sin(ζz) cos(ζz)

]
, (6.13)
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v b 

Figure 6.4: Diagram of the single mode fiber (left), graded index (GRIN) lens (middle)
and cantilever (right). The light beam path is indicated, as well as the fiber-to-lens
distance v and lens-to-cantilever distance b. By focusing the beam onto the cantilever
via a GRIN lens, it is less likely that light reflects on the plate under the cantilever and is
coupled back into the fiber to cause unwanted interference.

where z is the length of the lens. To block the light completely with the cantilever,
a beam waist of less than 25µm is required. This can be achieved with distances v
and b of several millimeters. Combined with the GRIN lens length of several mil-
limeters, this results in a distance of at least 8 mm between the cantilever and the
fiber end facet. These are the only reflective surfaces in the set-up, since GRIN lenses
are AR coated to suppress extra reflections on the facets. However, a gap of 8 mm
significantly increases the noise floor of the interferometer, such that the cantilever
motion can no longer be detected. A technically challenging solution would be to ap-
ply anti-reflection coatings on the fiber end and on one facet of the GRIN lens, such
that the reflective surface is now the facet of the GRIN lens positioned closest to the
cantilever. But even then the minimum gap distance is of the order of a millimeter.

Therefore, a reliable way to focus the beam onto the cantilever using GRIN lenses
could not be obtained with commercially available lenses. A custom-made GRIN
lens designed for a small gap between the reflective surfaces may still be a solution,
but this would have to be investigated further.

6.2 Sample characterization

As a second step in our set-up characterization, we take a closer look at our samples.
Our force probe is a polystyrene sphere (Thermo Scientific 4320A, radius 100µm)
that is attached to a micromechanical cantilever (Bruker RESP-20) with UV-curable
adhesive (NOA 81), using a micropositioning system. The sphere and cantilever are
then coated with a 4 nm titanium adhesion layer and a 200 nm conductive layer of
gold in a sputtering machine (Leybold Z400).

A larger sphere radius increases the strength of the force. Also, in our data analy-
sis we use several approximations that become more valid with larger sphere radius,
as will be discussed in chapter 7. The largest commercially available spheres that we
could find which still have an acceptable surface roughness [156], have a radius of
100 µm.
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Surface roughness influences the strength of the Casimir and electrostatic forces
at small distances and can even influence the effective separation [157, 158]. There-
fore, the surface roughness limits the smallest distance at which the Casimir force can
be reliably measured. Figure 6.5 shows an investigation of the large and small scale
surface roughness of our spheres. The scanning electron microscope (SEM) image
in Figure 6.5(a) shows that there are some flakes on the sphere. These may prevent
an approach closer than several micrometers if they are located in the area of closest
approach. There are, however, no other larger scale irregularities. Note that even
though the SEM image is taken with a beam energy of 15 kV, no charging effects are
shown on the sphere surface. This means that the gold layer is indeed conductive.

(a)

600 nm

0

15

30

45

60

75

90

105

H
e
ig

h
t 

[n
m

]

(b)

Figure 6.5: Characterization of the surface roughness of our force sensor, a 100µm
radius sphere attached to a cantilever and coated with a 200 nm conductive layer of gold:
(a) SEM image, except for some micrometer sized flakes, there is no large scale surface
roughness; (b) AFM topography image (3µm by 3µm) of the sphere surface, the surface
roughness has an RMS value of 16.8 nm.

A tapping-mode atomic force microscopy (AFM) topography image of the sphere
surface is shown in Figure 6.5(b). The surface roughness has an RMS value of 16.8 nm,
mostly due to the surface roughness of the polystyrene sphere. Therefore, an ap-
proach of several tens of nanometers is in principle possible without a significant
effect of surface roughness.

These force probes are meant to be operated at a base temperature of 4 K. But it
is unknown whether the difference in thermal contraction between the polystyrene
sphere and gold layer will cause the gold layer to flake. The SEM images in Figure 6.6
show the effect of cooling a gold coated sphere to 4 K and warming up again. There
is no difference visible before (Figure 6.6(a)) and after (Figure 6.6(b)) cool-down. This
means that effects like peeling do not occur and that the force probes can safely be
used at low temperatures.
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(a) (b)

Figure 6.6: SEM images of the gold coated sphere surface (a) before and (b) after
cooling the sphere down to 4 K. The absence of notable differences shows that cooling
does not affect the coating on the spheres.

The distance of closest approach is not only determined by the surface roughness
of the sphere, but also by that of the plate. The plate’s surface roughness is deter-
mined with tapping-mode AFM topography scans. The scans are shown in Figure
6.7 for the different plate materials that were used: 150 nm gold on sapphire and
200 nm niobium titanium nitride (NbTiN) on SiO2 respectively. From these scans
we can determine the RMS surface roughness as 0.75 nm for gold and 1.13 nm for
NbTiN. For all materials it should be possible to approach the sphere up to several
tens of nanometers and we consider the plates to be perfectly flat for all practical
purposes.
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Figure 6.7: AFM topography images of the plates used for Casimir force measurements:
(a) 150 nm gold on sapphire, with a surface roughness of 0.75 nm RMS; (b) 200 nm NbTiN
on SiO2, with a surface roughness of 1.13 nm RMS
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6.3 Plate resistance

Even though the NbTiN plate is made of a superconducting material, we want to
be sure that the plate is superconducting at the time of a Casimir force measure-
ment. Therefore we designed a resistance bridge that constantly compares the cur-
rent through the plate with that through a reference resistance. We do not want this
measurement to interfere with the Casimir measurements, where the calibration is
based on the voltage V = VDC + VAC between the sphere and the plate. This means
we do not want our resistance detection scheme to cause any high voltages at the
center of the plate, where the sphere is positioned. So we keep the potential of the
plate’s center at the voltage VDC + VAC with respect to the sphere and then lift and
lower the potential at the edges of the plate, each with a voltage Vb/2 with respect to
the center. As is shown in Figure 6.8, the total voltage over the plate is then Vb and
the current through the plate is detected by comparing it to an adjustable resistance
at room temperature. When the plate resistance is equal to the adjustable resistance,
the output of the resistance bridge is zero. Since a DC measurement is susceptible to
drifts, we alternate the voltage Vb at 63 Hz with an amplitude of 0.5 V. The bridge
imbalance output can then be monitored with a lock-in amplifier.
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Figure 6.8: Schematic of the implementation of an extra plate resistance measurement
while keeping the center of the plate at the desired potential for the electrostatic calibra-
tion.

At room temperature, we set the reference resistance to be equal to the plate’s
resistance. During cool-down we monitor the bridge output and the temperature of
the plate. At the superconducting transition of the plate we observe a sudden jump
in the bridge output, as shown in Figure 6.9. This jump is visible every time we
heat or cool the plate through the superconducting transition. Since this detection
method does not interfere with our other voltages, we can apply it during a Casimir
measurement run and tell for each data point whether the plate was superconduct-
ing or not.

A real-time monitoring of the plate’s resistance is necessary, since the critical tem-
perature depends not only on the parameters of the NbTiN coating, but also on set-
up parameters that may differ per measurement run. This is demonstrated in Fig-
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ure 6.9. Using a heater in the cryostat, we have swept the temperature of the plate
through its superconducting transition as measured by the bridge imbalance output.
During this sweep we have switched off the lasers and all unnecessary voltages. The
sphere was retracted to a distance of several millimeters. Under these conditions, we
measured a critical temperature of 13.7 K for the NbTiN coating (see yellow dots in
Figure 6.9). Next we repeated these sweeps, but now we switched the laser feeding
the plate interferometer on at different laser powers.
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Figure 6.9: Output of the resistance bridge as a function of plate temperature. A sudden
jump in the output is caused by the superconducting transition of the plate. The critical
temperature of the NbTiN is found to be 13.7 K, but depends on the power of the laser
light incident on the plate. The inset shows a linear dependence of the measured transition
temperature on the laser power.

It is clear from the plot that the measured transition temperature is lowered when
light shines on the plate. The inset shows a linear dependence on laser power, with
the critical temperature being lowered to 13.4 K at 1.8 mW laser power. At low tem-
perature, we use a laser power of 0.4 mW at the plate. There are several explanations
for this behaviour. Since the laser light heats the plate from above and the thermome-
ter is placed underneath, the plate may be warmer than the thermometer monitors,
such that the actual critical temperature remains unaltered. It is also likely that the
light negatively influences the superconducting state, thus lowering its critical tem-
perature [159]. More precise measurement can find the actual reason behind this
phenomenon, but lie outside the scope of this thesis.


