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3
Parametric Amplification of the Motion of an

Optomechanical Resonator

The interaction between light and a mechanical oscillator influences the phase of the
light and the motion of the oscillator. Whether the oscillator is damped or driven
depends on the phase of the force introduced by the light relative to the phase of the
mechanical motion. The oscillator can be damped by differentiating the motion read-
out signal and then feeding back this signal by modulating the light, comparable to
pushing a child on a swing. This interaction not only damps the motion, but due
to the low noise of the light source also effectively cools the oscillator. This method
is therefore known as active feedback cooling. Active feedback cooling was already
demonstrated by using electronic read-out [66, 67] or by optical read-out [7, 68, 69].

When the light used to read out the motion of the oscillator is contained in an
optomechanical cavity, the interaction between the light and mechanical oscillator
enters a vicious circle where the light influences the mechanical motion, which influ-
ence the phase of the light, which influences the mechanical motion again, etcetera.
The system is now described as a parametric oscillator, where the mechanical res-
onator is driven or damped by varying one of the parameters of the system. This
can be compared to a child that pushes itself on a swing by varying the swing’s mo-
ment of inertia [70]. This passive cavity cooling of a mechanical oscillator has also
been demonstrated multiple times [25, 71, 72]. Instead of monitoring and altering
the phase of the light, cooling is now possible by changing the frequency of the laser
light with respect to the cavity resonance. Optical cooling occurs when the laser is
detuned to the red side of the resonance, below the cavity frequency.

At the blue side-band, the oscillator is driven which can lead to parametric in-
stabilities [73], self-induced oscillations [74] and even chaos [75, 76]. The theoretical
framework for this behaviour has also been developed [77, 78] and introduces an at-
tractor diagram [79] that gives an overview of the optomechanical gain of the system

This chapter is based on: F. M. Buters, H. J. Eerkens, K. Heeck, M. J. Weaver, B. Pepper, P. Sonin, S.
de Man and D. Bouwmeester, ”Large parametric amplification in an optomechanical system,” Phys. Scr.,
T165, 014003, (2015).
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as a function of the mirror amplitude and the laser detuning. This attractor diagram
can be explored experimentally [80] and shows that at higher oscillator amplitude
driving (cooling) is not restricted to the blue (red) side of the cavity resonance. In
this chapter we will show large parametric amplification of our mirror motion, lead-
ing to self-induced oscillations without the appearance of chaotic motion even at
large amplitudes [81].

3.1 Parametric oscillations

When the frequency of a laser is scanned across the resonance of an optomechanical
cavity, the resonance peak shows up in the transmission signal read out by a pho-
todetector. However, when the laser power is large enough and the frequency scan
rate slow enough, not only the main resonance is visible, but also several side-bands
appear at multiples of the mechanical resonance frequency Ωm. An example of this
transmission signal is shown in Figure 3.1, which shows the transmitted intensity as
a function of the laser detuning ∆ = ωlaser − ωcav, normalized to the mechanical fre-
quency. Here we introduce the angular frequencies ωlaser and ωcav for the laser and
cavity respectively.
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Figure 3.1: Transmission signal of a linear frequency sweep across an optomechanical
cavity, the main cavity resonance is visible as well as side-bands spaced at the mechanical
frequency. These side-bands are a result of parametric driving of the mechanical oscillator,
while its increased amplitude creates stronger modulation of the amplitude field, which in
turn allows even more driving of the oscillator.

We can understand the appearance of the side-bands with the following expla-
nation. As the laser is scanned across the cavity resonance at ωcav, the resonance
peak is visible in transmission. The interaction with the mirror results in Stokes and
anti-Stokes side-bands located at ωcav ± Ωm. Here we assume that the amplitude of
the mirror oscillation is small, such that no higher order side-bands are formed. The
cavity light interferes with the incoming laser light, which creates a force at Ωm act-
ing on the mirror. However, since the side-bands appear at both sides of the cavity,
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this force both damps and drives the mirror, such that in effect the mirror motion
remains unaltered. The laser is then scanned slowly towards the blue side-band,
at which point the interaction with the mirror results in side-bands at ωcav and at
ωcav + 2Ωm. The first side-bands is resonant with the cavity field and is enhanced,
while the second is suppressed. Since the interference of the laser light with the cav-
ity field now only results in a driving force, the mirror amplitude is increased. This
leads to a stronger optical field modulation, which in turn increases the amplitude
even further, leading to an even stronger modulation, until a balance is reached. This
is known as limit cycle behaviour. The laser is then detuned even further, while the
larger mechanical amplitude allows the creation of increasingly more side-bands.
During the sweep, the Stokes side-bands are enhanced, while the anti-Stokes side-
bands remain suppressed, driving the mirror when the detuning is at multiples of
the mechanical frequency.

This whole process is known as parametric amplification of the resonator, since it
is induced by a change in the parameters of the system. It continues until the power
loss due to friction in the system is no longer balanced by the power put into the
system via the laser light. The mirror amplitude is then no longer increased and
reduces to its original value given by the thermal motion of the mirror. When the
laser is set back to a frequency below the cavity resonance frequency, the sweep can
be repeated, leading to the same output field. Note that this parametric amplifica-
tion, despite similar appearances, should not be confused with optical ringing in a
high-finesse Fabry-Perot cavity [82].

3.2 Description of the set-up

Our optomechanical system is an L = 5 cm long confocal optical cavity where a
trampoline resonator forms one of the end mirrors. The trampoline resonator con-
sists of a Bragg mirror with diameter 60µm attached via four Si3N4 wires to a silicon
substrate [63]. The motion of interest is the fundamental mechanical mode with a
resonance frequency of Ωm/2π = 300 kHz. A schematic of the set-up is given in
Figure 3.2.

The light from a CW Nd:YAG laser (Coherent Mephisto) with a wavelength λ =
1064 nm passes through an optical isolator to avoid back reflections and an electro-
optic phase modulator (EOM) tuned at 9.5 MHz that is used for calibration of the
detuning. The light is coupled into an optical fiber that transports it into a vacuum
chamber which contains the optomechanical cavity. Most of the experiments were
done at a background pressure of 10−6 mbar. To avoid mechanical noise, a vibration
isolation system containing several Eddy-current dampers decouples the optome-
chanical cavity from the outside world.

The laser frequency can be tuned via a piezo on the laser crystal, with a typical
scan speed of 100− 400 MHz/s, which is slow compared to the cavity life time. The
light from the cavity, imprinted with the motion of the trampoline resonator, is de-
tected by two photodetectors placed in transmission and, via an optical circulator, in
reflection. The data is acquired by a digital oscilloscope (Agilent DSO-X 2004A).

The experimental parameters of our optomechanical cavity were determined sep-
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Figure 3.2: Schematic of the experimental set-up; the light of a Nd:YAG laser operating
around 1064 nm is coupled into a single mode optical fiber and propagates via an optical
circulator to our optomechanical cavity, which is placed inside a vacuum chamber. The
transmitted light falls onto a photodetector and the reflected light is detected after passing
the circulator again. The electro-optic modulator (EOM) tuned at 9.5 MHz is used to
calibrate the detuning of the laser frequency with respect to the cavity. The inset shows
an optical image of the trampoline resonator.

arately. The cavity linewidth κ/2π = 300 kHz was obtained from an optical ring-
down measurement and from the thermal mechanical noise spectrum we could de-
termine a mechanical linewidth of Γm/2π = 8.8 Hz at the background pressure of
10−6 mbar. This corresponds to a mechanical quality factor of Qm = 34000. The in-
trinsic linewidth can be altered by changing the background pressure in the vacuum
chamber.

3.3 Comparison to simulations

To better understand our experimental results, we compare it with simulations based
on the equations of the system. There are two coupled equations of motion for our
optomechanical cavity, the first describes the optical field in the cavity α and the sec-
ond the displacement x of the oscillator. We have neglected thermal and mechanical
noise sources.

α̇(t) = −κ
2
α(t) + i(∆ +Gx(t))α(t) +

√
κexαin, (3.1)

ẍ(t) = −Ω2
mx(t)− Γmẋ(t) +

~G
meff
|α(t)2|, (3.2)

here the dot indicates the time-derivative. The other parameters are as follows: G =
ωcav/L the optical frequency shift per displacement, the cavity coupling loss rate
κex/2π = 50 kHz, αin the laser field, ~ the reduced Planck constant and meff = 110×
10−12 kg the effective mass of the mechanical mode. By solving these equations of
motion, we can give a more quantitative understanding of our parametric oscillator.
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The motion of the mechanical oscillator is partly determined by its effective damp-
ing rate which is a sum of the intrinsic linewidth and the optomechanical damping
rate Γeff = Γm + Γopt. An expression for Γopt in terms of the optical field and the
amplitude A of the oscillator is deduced from the equation above [83]:

Γopt(A) =
2~Gκexα

2
in

meffΩmA
Im

(∑
n

α∗n+1αn

)
, (3.3)

αn =
Jn(−GA/Ωm)

κ/2− i∆̃ + inΩm
, (3.4)

where Jn(x) is the Bessel function of the first kind and ∆̃ = ωlaser − ωcav + Gx̄ is
the effective laser detuning which also accounts for the static displacement x̄ of the
mirror due to radiation pressure. This static displacement is small enough that we
can neglect it, such that ∆̃ ≈ ∆.

The harmonics in the optical field are indicated by αn for the nth harmonic. They
are created by the mirror motion, which phase modulates the incoming laser light
via the term Gx(t)α(t) in Eq. 3.1. The modulation depth is given by the argument of
the Bessel function, φ0 = −GA/Ωm, and determines the number of side-bands that
appear at frequencies ω = ωlaser ± nΩm. Note that the thermally excited mirror am-
plitude at 300 K is already sufficient to create a side-band, but more side-bands are
created as the amplitude increases and more harmonics of the mechanical frequency
Ωm are imprinted on the cavity field. These side-bands are scaled by the cavity line
shape as the denominator in Eq. 3.4 indicates. The modulated cavity field interacts
again with the mirror, via the radiation pressure proportional to the cavity intensity
|α2|, see Eq. 3.2. But the mirror only reacts to components of the force at the me-
chanical frequency, which are formed by the mixing at the moving mirror of two
consecutive side-bands,

∑
n α
∗
n+1αn. The real part of this sum is responsible for the

optical spring effect. But we are interested in optical damping or driving, which is
described by the imaginary part of the sum, as is shown in Eq. 3.3.

When the optomechanical damping rate Γopt is larger than zero, the mechanical
oscillator is damped and effectively cooled. But the optomechanical damping rate
can also be negative. When the optomechanical damping rate overcomes the intrin-
sic mechanical linewidth, such that the effective linewidth is negative, self-induced
oscillations occur. This is better expressed in terms of the optomechanical gain [83]:

ζopt = −
Γopt

Γm
=
Prad

Pfric
(3.5)

with Prad the power in the radiation pressure acting on the mirror motion, that can
either be extracted from the oscillator or delivered to it. Pfric is the power lost from
the oscillator via friction. From the ratio in Γopt and Γm we see that damping and
cooling occurs when the optomechanical gain is smaller than zero, in this case the
radiation pressure extracts power from the oscillator. Parametric oscillations occur
when more power is added to the resonator than can be drained via friction, so
when ζopt > 1. In this situation Γopt is negative and has a larger magnitude than
Γm, in accordance with what was mentioned before. In the intermediate regime
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Figure 3.3: Linear frequency sweep across an optomechanical cavity resonance: (a)
Experimental results below (red line) and above (blue line) the power threshold, with a
mechanical quality factor Qm = 7300 and scan speed 400 MHz/s; (b) Simulation based
on the equations of motion of the system, with input the thermal amplitude of the mirror
motion at 300 K.

0 ≤ ζopt < 1 the linewidth of the oscillator is reduced, but not enough for parametric
oscillations to occur.

Parametric oscillations occur only above a certain power threshold, when Prad >
Pfric. Self-induced oscillations are therefore also known as mechanical or phonon las-
ing [25]. The effect of the power threshold is visible in Figure 3.3(a), which shows the
experimental results of two linear frequency sweeps with a scan speed of 400 MHz/s.
The two sweeps were obtained at different laser powers. No parametric oscillations
occur below the power threshold, while above the power threshold oscillations con-
tinue to a detuning of ∆ = 19Ωm. The numerical simulations in Figure 3.3(b) are ob-
tained by solving the two equations of motion, Eqs. 3.1 and 3.2. As input parameters
we used α(0) = 0, α̇(0) = 0, x(0) = x0 and ẋ(0) = 0, with x0 the thermally excited
mirror amplitude at 300 K. In the simulations, the laser detuning is varied linearly
across the cavity resonance while the laser power was kept constant. The simulations
show excellent agreement with our experimental results above the power threshold.

When we zoom in at the optical side-bands, we should see the harmonics of the
mechanical frequency imprinted on the cavity field [79]. Since our photodetector in
transmission is not fast enough to see these fast modulations, we use the reflection
detector. The numerical simulations are also computed in reflection. Both the nu-
merical and experimental results are shown in Figure 3.4, for different values of the
detuning. As we can see, the number of harmonics increases with larger detuning
and therefore with larger amplitude of the mirror. The striking resemblance between
simulations and experiment is another indication of the quality of the experimental
set-up.

The self-induced oscillations occur as long as the optomechanical gain defined in
Eq. 3.5 is larger than one. An indicator of the duration of the parametric oscillations
is the amount of side-bands that are created. According to the definition of the op-
tomechanical gain, this plateau length should be linear in the laser power, above a
certain threshold, and inversely proportional to the mechanical linewidth. The effect
of laser power is shown in Figure 3.5(a), where we have plotted the plateau length
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Figure 3.4: Imprint of the mechanical motion as harmonics of the mechanical frequency
Ωm on the reflected cavity field. Simulations based on solving Eqs. 3.1 and 3.2 are shown
in the left column at different detunings, the experimental results at the same detuning
are shown in the right column.
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for different laser input powers (blue dots). There are no parametric oscillations until
the power is increased enough, after which the plateau length increases linear with
power. The red line is a fit to the expression in Eq. 3.5.
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Figure 3.5: Plateau length as an indication of the optomechanical gain, the blue dots
mark the amount of side-bands under different experimental conditions, the red line is a
fit of the optomechanical gain: (a) Above a certain power threshold, the optomechanical
gain is linear in the laser power; (b) The optomechanical gain is inversely proportional to
the intrinsic mechanical linewidth.

To measure the influence of the mechanical linewidth, we have increased the
background pressure in the vacuum chamber. For four different pressures, result-
ing in four different values of Γm, but at constant laser power, we have determined
the plateau length, see Figure 3.5(b). The fit to ζopt shows that it is indeed inversely
proportional to the mechanical linewidth. We can therefore conclude that the op-
tomechanical gain shows the expected behaviour.

3.4 No transition to chaotic motion

We have shown that the two equation of motions introduced in Eqs. 3.1 and 3.2 are
sufficient to describe the observed self-induced oscillations. When we take another
look at Figure 3.1, we see parametric oscillations up to a detuning of ∆ = 32Ωm. The
amplitude of the mirror at this point is found, by solving ζopt(∆ = 32Ωm, A) < 1, to
be 450 times larger than the thermally excited mirror amplitude at 300 K.

In other systems, such high increase in amplitude is often not reached due to the
transition to chaotic motion [75, 76], induced either by an extra photothermal force
due to heating induced expansion of the mirror, or by the influence of outside vi-
brations. The absence of chaos in our system is a result of our high-quality mirror
coatings with low absorption and of our good mechanical isolation from the envi-
ronment. This opens the possibility of optical stabilization of the mirror at large am-
plitudes to greatly enhance the sensitivity when the optomechanical set-up is used
for force detection [84].


