
Investigations of radiation pressure : optical side-band cooling of a
trampoline resonator and the effect of superconductivity on the Casimir
force
Eerkens, H.J.

Citation
Eerkens, H. J. (2017, December 21). Investigations of radiation pressure : optical side-band
cooling of a trampoline resonator and the effect of superconductivity on the Casimir force.
Retrieved from https://hdl.handle.net/1887/59506
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/59506
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/59506


 
Cover Page 

 
 

 
 
 

 
 
 

The following handle holds various files of this Leiden University dissertation: 
http://hdl.handle.net/1887/59506 
 
 
Author: Eerkens, H.J. 
Title: Investigations of radiation pressure : optical side-band cooling of a trampoline 
resonator and the effect of superconductivity on the Casimir force 
Issue Date: 2017-12-21 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/59506
https://openaccess.leidenuniv.nl/handle/1887/1�


Investigations of Radiation Pressure

Optical side-band cooling of a trampoline resonator
and the effect of superconductivity on the Casimir force

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op donderdag 21 december 2017

klokke 13.45 uur

door

Hedwig Julia Eerkens

geboren te Diemen
in 1987



Promotor:
Prof. dr. D. Bouwmeester (Universiteit Leiden en

UC Santa Barbara, Santa Barbara, VS)

Promotiecommissie:
Dr. E. van Heumen (Universiteit van Amsterdam)
Prof. dr. D. Iannuzzi (Vrije Universiteit)
Dr. F. Intravaia (Humboldt Universität zu Berlin,

Berlijn, Duitsland)
Prof. dr. E. R. Eliel
Prof. dr. M. P. van Exter
Prof. dr. ir. T. H. Oosterkamp

The research reported in this thesis was conducted at the Leiden Institute of Physics
(LION), Leiden University. This research is supported by the NWO VICI research
program, which is part of the Netherlands Organization for Scientific Research
(NWO).

An electronic version of this dissertation is available at the Leiden University
Repository (https://openaccess.leidenuniv.nl).

Typesetting and cover design by H.J. Eerkens.

Casimir PhD series, Delft-Leiden 2017-40
ISBN 978-90-8593-324-3



to reason

to love



4



Contents

1 Introduction 7
1.1 Cavity optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Casimir effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Cavity optomechanics 13

2 Optical Side-band Cooling of a Low Frequency Optomechanical System 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Parametric Amplification of the Motion of an Optomechanical Resonator 23
3.1 Parametric oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Description of the set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Comparison to simulations . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 No transition to chaotic motion . . . . . . . . . . . . . . . . . . . . . . . 30

4 Exploring Nested Resonators for Optomechanical Cooling 31
4.1 Optomechanical cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Influence of the outer resonator motion . . . . . . . . . . . . . . . . . . 34
4.3 Damping of outer resonator motion . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Capacitative control of the resonator motion . . . . . . . . . . . 37
4.3.2 Dielectric force control of the resonator motion . . . . . . . . . . 41

4.4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



6 Contents

II Casimir effect 45

5 Thermal Casimir Force and Superconductors 47
5.1 Casimir force between perfect conductors . . . . . . . . . . . . . . . . . 48
5.2 Lifshitz theory for the force between real conductors . . . . . . . . . . . 49
5.3 Models for the dielectric permittivity . . . . . . . . . . . . . . . . . . . . 52
5.4 The effect of the different models on the Casimir force . . . . . . . . . . 56
5.5 Casimir force between superconductors . . . . . . . . . . . . . . . . . . 58
5.6 Casimir force with experimental parameters . . . . . . . . . . . . . . . 63
5.7 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Details of the Experimental Techniques 67
6.1 Fiber interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.1 GRIN lenses to focus light . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Sample characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Plate resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Simultaneous Calibration Scheme for Casimir Force Measurements 79
7.1 Detection of the plate motion . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Calibration with the electrostatic force . . . . . . . . . . . . . . . . . . . 82

7.2.1 Validity of the proximity force approximation . . . . . . . . . . 87
7.3 Casimir force measurements . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 Dependence of the Casimir Force on the Dielectric Permittivity of NbTiN 91
8.1 Casimir force computed from the measured optical spectrum of NbTiN 92

8.1.1 Comparison to room temperature measurements . . . . . . . . 93
8.2 Low temperature measurements . . . . . . . . . . . . . . . . . . . . . . 96

8.2.1 The effect of superconductivity . . . . . . . . . . . . . . . . . . . 98
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9 Increased Read-Out Sensitivity with an Optomechanical Cavity 103
9.1 Considerations for Further Improvements . . . . . . . . . . . . . . . . . 104
9.2 A New Measurement Set-up . . . . . . . . . . . . . . . . . . . . . . . . . 106

A Casimir force in terms of reflection coefficients 109

Bibliography 111

Samenvatting 123

Curriculum Vitae 127

List of Publications 129

Acknowledgements 131

Index 133



1
Introduction

The interaction between electromagnetic radiation and an object results in a pressure
exerted on its surface. This is known as radiation pressure. The interaction can be (a
combination of) reflection, absorption or emission of the electromagnetic radiation.
Under normal, everyday circumstances, this pressure is too small to be detected. But
when the amount of radiation is increased, or when the reflective or absorbing object
is sufficiently small or well isolated, radiation pressure can become significant.

It was Kepler who first put forward the notion of radiation pressure [1], observing
that a comet’s tail always points away from the sun. It was later put in the frame of
electromagnetism by Maxwell [2]. The first experiments detecting radiation pressure
were conducted by Lebedev [3] and Nichols and Hull [4] around 1900. It took many
years until radiation pressure could be used to influence the Brownian motion of a
mechanical resonator [5–7]. Since then, research in radiation pressure has increased
enormously, with applications reaching as far as gravitational wave detectors [8].

In this thesis we will investigate two separate manifestations of radiation pres-
sure. The interaction of electromagnetic radiation with a micromechanical resonator
is studied in the field of optomechanics. The possibility to couple quantum mechan-
ical photon states to the motion of a macroscopic mirror allows the experimental
investigation of macroscopic quantum superpositions and novel decoherence mech-
anisms. In this thesis we will investigate the first steps necessary to achieve a macro-
scopic superposition, namely optical cooling of the mirror. Our results will be dis-
cussed in the first three chapters of this thesis.

The radiation pressure exerted by vacuum fluctuations is more generally known
as the Casimir force. As it is based on electromagnetism, which is well under-
stood, the occurrence of new physics can be excluded as long as measurements of
the Casimir force overlap with theoretical calculations. This has inspired Casimir
force measurements as tests in the search of new physics [9–11]. But the Casimir
force also finds applications, mainly in the design of nano- and microelectromechan-
ical systems (NEMS and MEMS). These systems operate in the regime where the
Casimir force is significant and good understanding of the force may lead to new
possibilities to tune their properties. We will measure the Casimir force between
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superconducting materials, in order to better understand its dependency on the re-
flectivity of the surfaces. The last five chapters of this thesis are dedicated to the
Casimir effect.

1.1 Cavity optomechanics

Macroscopic quantum states could be created via entanglement of a microscopic
quantum state with a macroscopic state. A famous example of a macroscopic su-
perposition created in such a way is Schrödinger’s cat [12]. This thought experiment
posed the question where the boundary between the quantum and classical world
could be found, if such a boundary indeed exists.

A more realistic method of creating entanglement between micro- and macro-
scopic states, that does not endanger cats, is via radiation pressure. When light is
trapped inside an optical cavity, it exerts an enhanced pressure on the end mirrors.
Coupling between the cavity light and the macroscopic mirror motion can be ob-
tained if one of the end mirrors is free to move. When the coupling is strong enough,
even a single photon can exert enough pressure to significantly influence the mirror
motion. This enables the transfer of the quantum mechanical properties of the pho-
ton to the macroscopic mirror [13, 14] and the investigation of the mechanism behind
the decoherence of the macroscopic quantum state.

Figure 1.1: Artist impression of a set-up to create and investigate macroscopic superpo-
sitions. A single photon is brought into a superposition between two optical paths via a
beam splitter (BS). In the lower path of the interferometer the photon interacts with a
mechanical resonator that is represented by the yellow cross supporting a small mirror at
its center. Note that this small mirror forms a cavity with a larger stable mirror to enhance
the light-matter interaction. In the other arm a matching rigid cavity is inserted to make
the two arms symmetric. If the radiation pressure exerted on the small mirror is strong
enough, the photon can significantly displace the resonator. Entanglement between the
photon and the resonator can be demonstrated by the interference signal at the single
photon detectors (SPD).
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The strong coupling of the macroscopic state to its environment generally causes
a rapid decay, an effect known as environment-induced decoherence [15]. When this
coupling is reduced significantly, novel decoherence mechanisms may occur [16],
such as gravitationally induced decoherence [17, 18]. Several proposals investigate
the possibilities to explore the foundations of quantum mechanics [19] and these
novel decoherence mechanisms [20–24]. These proposals form the long-term moti-
vation of our research and the basic idea of some of them can be described using
Figure 1.1. A Mach Zehnder interferometer contains an optical cavity in each arm.
The end mirror of one of these cavities is free to oscillate and can interact with a sin-
gle photon that has entered the interferometer. Since this photon is in a superposition
of being in either arm of the interferometer, the mirror is in a superposition of being
moved by the photon and still being in the unperturbed state. This macroscopic su-
perposition can be detected by looking at the interference signal of the single photon
leaving the interferometer.

The distinguishability of the macroscopic superposition is largest when the mir-
ror is cooled to its quantum mechanical ground state. The ground state of a harmonic
oscillator is defined as its lowest energy state. Its motion is then equal to the zero-
point fluctuations, with amplitude given by

xzpf =

√
~

2meffΩm
, (1.1)

with ~ the reduced Planck constant, meff the effective mass of the oscillator and Ωm
its angular resonance frequency. A classical resonator is in a thermal state, which is
described by the Boltzmann distribution of the harmonic oscillator eigenstates. We
therefore define that a resonator is in the quantum ground state when its thermal
motion is less than the zero-point fluctuations defined for its mode.

Note that only the motion of a single mode of the resonator is addressed. The
difference between optical cooling and changing the temperature of the bath (e.g. by
placing the set-up in a cryostat), is that the other modes remain at the background
temperature. It is therefore not correct to say that the resonator is cooled to a certain
temperature, we can only say that the mode has an effective temperature, linked to
the motion via the equipartition theorem.

The research field investigating the interaction between light in an optical cavity
and the motion of a (nano- or microscopic) resonator is known as cavity optomechan-
ics [25]. Apart from optical cooling a mechanical resonator to the quantum regime
[26–30], optomechanical systems were proven to be useful for many more purposes,
such as electromagnetically induced transparency (EIT) [31–33] and coherent state
transfer [34, 35].

Our optomechanical system consist of an optical cavity with one large, fixed mir-
ror with diameter 1.25 cm and radius of curvature 5 cm and one tiny mirror (diam-
eter 60 − 130µm) attached to four silicon nitride wires, which enable it to oscillate.
The mechanical mode can be cooled optically, but also driven. Our results on cool-
ing and driving will be discussed in chapters 2 and 3 respectively. These trampoline
resonators operate at relative low frequencies of order 105 Hz, which makes them
susceptible to external mechanical vibrations. We have therefore surrounded the
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trampoline resonator with another mass-spring resonator that serves as a low-pass
filter. The performance of these so-called nested resonators is discussed in chapter 4.

Figure 1.2: Photograph of a nested trampoline resonator that has been broken from its
surrounding wafer. The small mirror is located in the center, suspended on four silicon
nitride wires. The large silicon block forms the mass of the outer resonator, several of the
silicon nitride arms connecting it to the wafer are still visible.

1.2 Casimir effect

Even when there is no light source available, radiation pressure can be exerted by
the electromagnetic vacuum field. The vacuum is not empty, but filled with short-
lived virtual particles. These particles can be of any type, depending on the vacuum
field that they constitute. The electromagnetic vacuum field is made up of virtual
photons, which can also be viewed as electromagnetic waves fluctuating around an
expectation value of zero [36].

The vacuum state can also have an effect on macroscopic bodies. When two par-
allel plates are brought in each other’s vicinity, the radiation pressure of the vacuum
in between pushes them apart, while the vacuum outside the plates pushes them to-
gether. This is imaged in Figure 1.3 for the experimentally more accessible situation
of a sphere near a plate. The surfaces set boundary conditions on the vacuum field,
such that there are less modes possible between the plates than there are outside.
This difference increases as the plates are brought closer together, since the density
of states between the plates depends on their separation. Therefore the radiation
pressure pushing the plates together is greater than the pressure exerted to keep
them apart, which results in a attractive force between the plates, caused solely by
the vacuum fluctuations and the boundary conditions of the plates. This effect was
named after it’s discoverer Hendrik Casimir [37]. Casimir was interested in the van
der Waals interaction between particles and had already discovered, together with
Polder, that the interaction between an atom and a plate at relative large distances
is influenced by retardation effects caused by the finite speed of light. A different
approach to the Casimir force is that it is caused by the van der Waals interaction
between the atoms of the plates under the influence of retardation.

The Casimir force is best known as a result of the zero-point fluctuations of
the electromagnetic field. But other quantized fields with a vacuum state, like the
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Dirac field [36], can also give rise to a Casimir effect, as long as suitable mirrors ex-
ists for that field. According to some proposals, superconductors form mirrors for
gravitational waves, such that two parallel superconducting plates may give rise to
a Casimir force caused by quantum fluctuations in the gravitational field [38, 39].
Analogies of the Casimir force can also be found in the classical world, as the force
between parallel plates in a liquid [40] or between beads on a string [41, 42].

Figure 1.3: Artist impression of the Casimir force between a sphere and a plate. The
electromagnetic waves of the vacuum exert radiation pressure on the surfaces. Since there
are less waves between the sphere and plate, a result of their boundary conditions, the
net pressure, as indicated by the arrows, is inwards.

The first experiments of the Casimir force were conducted soon after its discov-
ery. Although they could not lead to a perfect comparison to theory due to a lack of
optical data of the materials, they at least showed a qualitative agreement [43, 44] or
even a good quantitative agreement [45, 46]. With the rise of nanotechnology, new
methods for precision force measurements have become available, such that conclu-
sive demonstration of the Casimir force became possible [47].

Casimir’s calculation assumed that the plates were made of perfect conductors,
which reflect all electromagnetic waves at all frequencies. The resulting force per
area A for two plates at a distance d is given by

FC = − π~cA
120d4

, (1.2)

with ~ the reduced Planck constant and c the speed of light. Normal conductors,
metals and dielectrics aren’t perfect conductors, and their reflectivity is determined
by the frequency dependent dielectric permittivity, which lowers the Casimir force
compared to perfect conductors. Calculation of the force between real conductors is
possible via the formulation developed by Lifshitz. But how exactly the dielectric
permittivity affects the Casimir remains open to debate [48, 49]. The low frequency
contribution needs to be extrapolated via models, but it is an open question whether
to use to the Drude or the plasma model. The difference is that the Drude model
accounts for dissipation in the material and the plasma model does not. Precision
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measurements of the Casimir force, both at room temperature and at low tempera-
ture [11, 50–54], so far have not given a satisfactory answer.

Since the dielectric permittivity is different in superconductors, comparison of
the Casimir force between normal conductors and superconductors may give more
insight in the exact influence of the dielectric permittivity [55]. In this thesis we in-
vestigate how the Casimir force between gold and niobium titanium nitride (NbTiN)
changes as the NbTiN crosses the superconducting transition. Our set-up uses a mi-
crosphere (radius 100µm) attached to an atomic force microscopy cantilever as a
force sensor. A force gradient experienced by the cantilever changes its resonance
frequency, which can be detected by a fiber-based interferometer. A photograph of
the sphere, cantilever and fiber interferometer is shown in Figure 1.4. The plate is
positioned underneath the sphere, on top of a translation stage used to set the dis-
tance.

Figure 1.4: Photograph of the microsphere attached to a micromechanical cantilever.
A single mode fiber is positioned above the cantilever for interferometric read-out of the
cantilever motion. The plate (not shown in the image) is located below the sphere and
can be positioned near it by a translation stage.

Measurements of the Casimir force are hindered by three technical aspects. The
measurement apparatus needs to be calibrated, the actual distance between the sur-
faces has to be determined and compensation of the electrostatic force caused by
the difference in work function of the materials is required. People therefore pre-
cede their force measurements by extensive calibrations. However, the system can
drift between the calibrations and the measurements, causing discrepancies between
the measured forces and calculations. Our set-up employs a real-time calibration
scheme, based on modulation of the electrostatic force. Our Casimir force measure-
ments now run simultaneously with our calibration, thereby practically eliminating
the chance of discrepancies.

The second part of this thesis is dedicated to the Casimir effect. The theoretical
background is described in chapter 5, chapter 6 gives details of some of the experi-
mental techniques and the experimental set-up and method are explained in chapter
6. With this set-up we were able to measure the Casimir force between gold and a
superconductor, the results will be discussed in chapter 8. The final chapter, chapter
9, contains some proposals to improve the force sensitivity.
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Cavity optomechanics





2
Optical Side-band Cooling of a Low Frequency

Optomechanical System

For experimental investigations of macroscopic quantum superpositions and the
possible role of gravitational effects on the reduction of the corresponding quan-
tum wave function it is beneficial to consider large mass, low frequency optome-
chanical systems. We report optical side-band cooling from room temperature for a
1.5×10−10 kg (mode mass), low frequency side-band resolved optomechanical sys-
tem based on a 5 cm long Fabry-Perot cavity. By using high-quality Bragg mirrors
for both the stationary and the micromechanical mirror we are able to construct an
optomechanical cavity with an optical linewidth of 23 kHz. This, together with a res-
onator frequency of 315 kHz, makes the system operate firmly in the side-band re-
solved regime. With the presented optomechanical system parameters cooling close
to the ground state is possible. This brings us one step closer to creating and verify-
ing macroscopic quantum superpositions.

This chapter has previously been published: H. J. Eerkens, F. M. Buters, M. J. Weaver, B. Pepper, G.
Welker, K. Heeck, P. Sonin, S. de Man, and D. Bouwmeester, ”Optical side-band cooling of a low frequency
optomechanical system,” Opt. Express, 23, 8014-8020, (2015).
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2.1 Introduction

In optomechanics, interesting phenomena occur when the photon-phonon coupling
is sufficiently large. Amongst other things side-band cooling to the quantum me-
chanical ground state [27, 28], electromagnetically induced transparency (EIT) [31,
32] and coherent state transfer [34, 35] have been demonstrated. For all these exper-
iments good optical and mechanical quality of the set-up is required.

To use side-band cooling to reach the quantum mechanical ground state of a
mechanical resonator, the cavity linewidth κ needs to be smaller than the mechan-
ical resonator frequency Ωm (side-band resolved regime) [56, 57]. This condition is
not sufficient, since it does not specify the number of photons required, the maxi-
mum environmental temperature and the requirements for the mechanical damp-
ing rate Γm. A more suitable parameter is the multi-photon cooperativity: C =

4g2
0n̄cav/(κΓm) with g0 = (ωcav/L)

√
~/2mΩm the optomechanical coupling rate,

ωcav the cavity resonance frequency, L the cavity length, m the mode mass and n̄cav
the mean cavity photon number. When C + 1 � n̄th, with n̄th the mean phonon
number of the environment, optical cooling to the ground state is possible [25].

From the cooperativity it is clear that indeed a good mechanical (small Γm) and
optical quality factor (small κ) are needed. It also follows that when the mode mass
of the mechanical resonator becomes larger, the requirements on the other parame-
ters become more strict. Therefore most of the optomechanical devices investigated
so far operate in the small mass (below∼1×10−12 kg), high frequency (above 1 MHz)
range [27, 28, 58–62]. However, to investigate the possible involvement of gravity in
the quantum to classical transition of macroscopic superpositions, large mass res-
onators are essential [21–24]. Another difficulty in using large mass resonators for
these purposes is the low mechanical frequency, which makes reaching the side-band
resolved regime difficult.

Here we present a 315 kHz optomechanical system that is sufficiently side-band
resolved for ground state cooling. We have constructed an optomechanical system
based on a Fabry-Perot cavity with a trampoline resonator as moving end mirror
[63]. The trampoline resonator consists of a circular mirror (diameter 70 µm) hang-
ing from four 200 µm long Si3N4 arms. High-quality Bragg mirrors (alternating
Ta2O5/SiO2 layers with 22 ppm transmission loss and order ppm absorption) on
both the stationary and the micromechanical mirror allow us to construct a side-
band resolved cavity with Ωm/κ ≈ 13.5.

To demonstrate the capabilities of our system, we perform a side-band cooling
experiment where we have ∼kHz resolution of the pump laser frequency with re-
spect to the cavity resonance. We match the experimental results to theory and find
excellent agreement. The system parameters found with the side-band cooling ex-
periment are in good agreement with parameters found from characterization mea-
surements. These results show that with a lower base temperature, ground state
cooling should be achievable. This brings investigation of the quantum to classical
transition with large mass resonators one step closer.
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2.2 Experiment

Our system consists of a 5 cm long Fabry-Perot cavity, operating around 1064 nm,
with a trampoline resonator as the moving end mirror [63]. The trampoline res-
onator used in the experiments presented here has a mirror diameter of 70 µm, a
resonance frequency of 315 kHz, and a mode mass of 1.5×10−10 kg (determined
using COMSOL). The optical quality of the cavity is obtained by measuring an opti-
cal cavity ring-down. For this, a resonant laser beam is quickly shut down with an
acousto-optical modulator (AOM) and the decaying intensity of the transmitted light
is recorded. Characterization of the mechanical resonator is done by measuring its
mechanical thermal noise spectrum with a laser locked to a cavity resonance using
the Pound-Drever-Hall (PDH) technique [64]. The laser power is kept sufficiently
low to avoid optomechanical effects on the mechanical linewidth.

Optical side-band cooling occurs when a laser is placed precisely one mechani-
cal frequency below a cavity resonance (see inset in Figure 2.1). Interaction of the
laser with the mechanical resonator leads to up- and down-conversion of the laser
frequency, creating an upper and lower side-band. The upper side-band is resonant
with the cavity and the up-conversion process is therefore enhanced compared to
the down-conversion process. The net effect is the extraction of energy (phonons)
from the mechanical mode of the resonator.

La
se

r 2

FSR

Ωm-Ωm

ω offset

La
se

r 1
La

se
r 2

ω optical

ω optical

Figure 2.1: The laser scheme used for side-band cooling. Laser 1 is locked to a cavity
resonance and laser 2 is locked to the first laser with a variable offset. Inset: Laser 2 is
placed precisely one mechanical frequency below a cavity resonance for optimal cooling.

Since the experiment is carried out at room temperature, thermal drift and low
frequency mechanical noise can potentially limit the measurement time. To compen-
sate for these, a measurement scheme containing two lasers is used. The frequency
of one laser, laser 1 in Figure 2.1, is locked to a cavity resonance using the PDH tech-
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Figure 2.2: Simplified schematic of the optical set-up. The frequency of laser 1 is locked
to the optomechanical cavity using the Pound-Drever-Hall (PDH) technique. Laser 2
is locked to laser 1 via an optical phase-locked loop (OPLL). Laser 2 is tuned one free
spectral range (FSR) apart from laser 1 to avoid interference at frequencies relevant to
the experiment. The components displayed are: LO: local oscillator, BS: beam splitter,
PBS: polarizing beam splitter, EOM: electro-optical modulator, OI: optical isolator and PI:
proportional-integral feedback controller. Inset: optical image of the trampoline resonator.

nique. This laser follows slow changes in the cavity length and provides a frequency
reference for the second laser, laser 2 in Figure 2.1. This second laser is locked with
a tunable frequency difference to the first laser with an optical phase-locked loop
(OPLL) operating around 3 GHz. The frequency offset is chosen such that the sec-
ond laser is close to the next cavity resonance, one free spectral range (FSR) away, to
avoid unwanted interference of the two lasers at frequencies relevant to the experi-
ment.

Figure 2.2 shows a simplified schematic of the optical set-up. For clarity, the op-
tical components needed for the optical cavity ring-down measurement are omitted.
The optomechanical cavity is placed inside a vacuum chamber (p < 10−5 mbar)
with several eddy current dampers and springs. Two∼kHz linewidth piezo-tunable
Nd:YAG lasers operating at 1064 nm are used. To realize the PDH locking scheme,
laser 1 is sent through an electro-optical modulator (EOM) [64]. The light reflected
from the cavity is, via a fiber circulator, picked up with an avalanche photodiode
(APD). The electrical signal is mixed with the local oscillator (LO) at 40 MHz that
also drives the EOM. The low-frequency part is routed to a PI controller (∼30 kHz
bandwidth) to lock the frequency of laser 1 to a cavity resonance. The high-frequency
part is sent to a spectrum analyzer to record the mechanical thermal noise spectrum
of the mechanical resonator, both for the mechanical characterization and for the
side-band cooling experiment.

To lock laser 2 with a variable frequency difference to laser 1 via an OPLL, the
beat signal of laser 1 and 2 is continuously monitored using a fast PIN diode. This
signal is mixed with a local oscillator around 3 GHz to provide the error signal for
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the OPLL, which is directed to a fast PI-controller. By adjusting the frequency of the
OPLL LO, laser 2 can be set to a specific cavity detuning.

By using a cavity resonance as frequency reference, any thermal drift is com-
pensated for. The frequency tunable range of the lasers via the piezos is limited to
approximately 10 MHz. However, both lasers are also temperature tunable over a
broader frequency range (∼1 GHz), although with < 1 Hz bandwidth. We have
therefore implemented a slow temperature feedback loop for each laser that enables
us to measure for many hours with a fully automated measurement protocol.

2.3 Results and discussion

First we show the results of the optical and mechanical characterization. This pro-
vides information about the mechanical frequency Ωm, mechanical linewidth Γm and
optical linewidth κ. From the optical cavity ring-down measurement in Figure 2.3(a)
we obtain a cavity linewidth κ of 2π×23.2±0.1 kHz, which corresponds to a finesse
of 129000. Given the small diameter of the mirror and the multiple clean room fabri-
cation steps it went through, it is remarkable that the optical finesse almost reaches
the theoretical maximum of 140000 set by the coating of our Bragg mirrors. For
the mechanical characterization, the mechanical thermal noise spectrum is recorded
and a Lorentzian is fitted to it, as is shown in Figure 2.3(b). From the fit we find
Γm = 2π × 3.3 ± 0.14 Hz, corresponding to a mechanical quality factor of 95000.
From the optical and mechanical characterization alone it is clear that our optome-
chanical system is in the side-band resolved regime with Ωm/κ ≈ 13.5. The small
linewidth of the optical cavity allows for a large intracavity laser power with only
modest input. Since the light is circulating in vacuum, rather than for example silica,
secondary effects due to absorption do not play a role, as in [60]. These two ingre-
dients contribute to a large intracavity photon number and therefore also to a large
multi-photon cooperativity. We estimate, using the current system parameters, that
a cooperativity of 105 − 106 is possible depending on laser input power.

To demonstrate the “side-band resolvedness” of our system, we perform a side-
band cooling experiment. We change the laser detuning of the strong pump beam
(laser 2) in small steps of 5 kHz by varying the OPLL LO and measure the mechanical
thermal noise spectrum. The laser power of the pump beam is about 50 times higher
than the power of the read-out laser. In Figure 2.4(a) the mechanical thermal noise
spectrum together with a Lorentzian fit is shown for two specific detunings. The
top curve shows the spectrum for ∆ = ωlaser − ωcav = −2Ωm and the bottom curve
shows the spectrum for ∆ = −Ωm.

Clearly the linewidth is larger and the integrated area smaller for the bottom
mechanical thermal noise spectrum, indicating both damping and cooling. The in-
tegrated area can be related to an effective temperature via the equipartition theo-
rem since

〈
x2
〉

= kBT
mΩ2

m
. When the pump laser is off, the mechanical resonator is

not cooled, so its effective temperature is equal to the environmental temperature of
300 K, assuming good thermalization with the environment. Therefore we set the
related integrated area to correspond to an effective temperature of 300 K. When the
pump laser is on, the effective temperature for each specific detuning is obtained
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Figure 2.3: Characterization of the optomechanical system: (a) Optical cavity ring-down
measurement with an exponential fit; (b) Mechanical thermal noise spectrum at 300 K
with a Lorentzian fit.

by compairing the integrated area of each mechanical thermal noise spectrum to the
integrated area of the mechanical thermal noise spectrum at 300 K. The effective op-
tomechanical linewidth Γeff , which is broadened due to optical damping according
to Γeff = Γm + Γopt, and the frequency shift due to the optical spring effect are
also obtained from the Lorentzian fit. The results are shown in Figure 2.4(b)–2.4(d)
together with a fit according to the equations (see for example [25]):

Teff =
~Ωm
kB

n̄thΓm + n̄minΓopt
Γm + Γopt

, (2.1)

Γeff = Γm +
Pinκexωcav

2L2mΩm(∆2 + κ2/4)

[
κ

(∆ + Ωm)2 + κ2/4
− κ

(∆− Ωm)2 + κ2/4

]
,

(2.2)

δΩm =
Pinκexωcav

2L2mΩm(∆2 + κ2/4)

[
∆ + Ωm

(∆ + Ωm)2 + κ2/4
+

∆− Ωm
(∆− Ωm)2 + κ2/4

]
, (2.3)

with n̄min = (κ/4Ωm)
2 the theoretical minimum phonon number in the side-band

resolved regime, Pin the input power and κex the input coupling loss rate. The fit
is done simultaneously for all three curves with only the input power and cavity
linewidth as free parameters. The parameters obtained from the fit are 3.07±0.04 µW
for the input power of the cooling laser and 2π×23.7±2 kHz for the cavity linewidth.

This value for the cavity linewidth is consistent with the value obtained from the
optical cavity ring-down measurement. The excellent agreement between experi-
ment and theory, as indicated by Figure 2.4(b)–2.4(d), and the good match between
the two different methods for obtaining the cavity linewidth, shows the level of pre-
cision and control we have over the system.

We would like to stress that the sharp features resulting from the optical spring
effect in Figure 2.4(d) around ∆ = −Ωm can only be visible with a high-finesse cavity
and a narrow-linewidth laser, in combination with optimal performance of the entire
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Figure 2.4: Optical side-band cooling: (a) Thermal mechanical noise spectra for
∆ = ωlaser − ωcav = −2Ωm (top curve) and ∆ = −Ωm (bottom curve); (b) Effec-
tive temperature; (c) Effective linewidth as a result of optical damping; (d) Mechanical
frequency shift due to the optical spring effect.
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set-up and locking schemes. Although two narrow-linewidth lasers are used, excess
laser phase noise could easily be introduced by e.g. an improper laser lock, which
would blur out any sharp features such as in Figure 2.4(d) [65] and could potentially
prevent ground state cooling. Observing these sharp features therefore demonstrates
the cleanliness of the whole measurement chain consisting of lasers, photodetectors
and feedback loops.

Although the goal of this paper is not to demonstrate large optical cooling fac-
tors, we are able to cool from room temperature to 4 K using modest laser power, as
indicated in Figure 2.4(b). By increasing the laser power further, lower effective tem-
peratures are achieved (not shown here). However, to reach the quantum mechani-
cal ground state, the environmental temperature should be lowered significantly by
placing the optomechanical cavity in a cryostat. Note that even in a cryogenic envi-
ronment we can still use relatively high laser powers due to the low absorption of
the mirrors. From the experimental parameters presented in this letter, we estimate
that a multi-photon cooperativity of more than 105 is possible, indicating that a base
temperature of 1 K is sufficient for ground state cooling. This is easily achievable in
a variety of cryostats, bringing investigation of quantum to classical transition with
low frequency resonators one step closer.

2.4 Conclusion

In this paper we have reported experiments with a high-finesse optomechanical
Fabry-Perot cavity. By using high-quality Bragg mirrors for both cavity mirrors,
we are able to demonstrate optical side-band cooling of a large mass, low frequency
side-band resolved system (Ωm/κ ≈ 13.5). By locking a pump laser via an optical
phase-locked loop to a probe laser, we are able to achieve ∼kHz resolution laser
detuning. Not only do we find a good agreement between the experiment and the-
ory, the obtained value for the cavity linewidth from the optical cooling experiment
also matches the value obtained by a separate cavity ring-down measurement. With
this we demonstrate the precision of our experiment. By lowering the environmen-
tal temperature significantly, optical cooling to the quantum ground state should be
possible.



3
Parametric Amplification of the Motion of an

Optomechanical Resonator

The interaction between light and a mechanical oscillator influences the phase of the
light and the motion of the oscillator. Whether the oscillator is damped or driven
depends on the phase of the force introduced by the light relative to the phase of the
mechanical motion. The oscillator can be damped by differentiating the motion read-
out signal and then feeding back this signal by modulating the light, comparable to
pushing a child on a swing. This interaction not only damps the motion, but due
to the low noise of the light source also effectively cools the oscillator. This method
is therefore known as active feedback cooling. Active feedback cooling was already
demonstrated by using electronic read-out [66, 67] or by optical read-out [7, 68, 69].

When the light used to read out the motion of the oscillator is contained in an
optomechanical cavity, the interaction between the light and mechanical oscillator
enters a vicious circle where the light influences the mechanical motion, which influ-
ence the phase of the light, which influences the mechanical motion again, etcetera.
The system is now described as a parametric oscillator, where the mechanical res-
onator is driven or damped by varying one of the parameters of the system. This
can be compared to a child that pushes itself on a swing by varying the swing’s mo-
ment of inertia [70]. This passive cavity cooling of a mechanical oscillator has also
been demonstrated multiple times [25, 71, 72]. Instead of monitoring and altering
the phase of the light, cooling is now possible by changing the frequency of the laser
light with respect to the cavity resonance. Optical cooling occurs when the laser is
detuned to the red side of the resonance, below the cavity frequency.

At the blue side-band, the oscillator is driven which can lead to parametric in-
stabilities [73], self-induced oscillations [74] and even chaos [75, 76]. The theoretical
framework for this behaviour has also been developed [77, 78] and introduces an at-
tractor diagram [79] that gives an overview of the optomechanical gain of the system

This chapter is based on: F. M. Buters, H. J. Eerkens, K. Heeck, M. J. Weaver, B. Pepper, P. Sonin, S.
de Man and D. Bouwmeester, ”Large parametric amplification in an optomechanical system,” Phys. Scr.,
T165, 014003, (2015).
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as a function of the mirror amplitude and the laser detuning. This attractor diagram
can be explored experimentally [80] and shows that at higher oscillator amplitude
driving (cooling) is not restricted to the blue (red) side of the cavity resonance. In
this chapter we will show large parametric amplification of our mirror motion, lead-
ing to self-induced oscillations without the appearance of chaotic motion even at
large amplitudes [81].

3.1 Parametric oscillations

When the frequency of a laser is scanned across the resonance of an optomechanical
cavity, the resonance peak shows up in the transmission signal read out by a pho-
todetector. However, when the laser power is large enough and the frequency scan
rate slow enough, not only the main resonance is visible, but also several side-bands
appear at multiples of the mechanical resonance frequency Ωm. An example of this
transmission signal is shown in Figure 3.1, which shows the transmitted intensity as
a function of the laser detuning ∆ = ωlaser − ωcav, normalized to the mechanical fre-
quency. Here we introduce the angular frequencies ωlaser and ωcav for the laser and
cavity respectively.
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Figure 3.1: Transmission signal of a linear frequency sweep across an optomechanical
cavity, the main cavity resonance is visible as well as side-bands spaced at the mechanical
frequency. These side-bands are a result of parametric driving of the mechanical oscillator,
while its increased amplitude creates stronger modulation of the amplitude field, which in
turn allows even more driving of the oscillator.

We can understand the appearance of the side-bands with the following expla-
nation. As the laser is scanned across the cavity resonance at ωcav, the resonance
peak is visible in transmission. The interaction with the mirror results in Stokes and
anti-Stokes side-bands located at ωcav ± Ωm. Here we assume that the amplitude of
the mirror oscillation is small, such that no higher order side-bands are formed. The
cavity light interferes with the incoming laser light, which creates a force at Ωm act-
ing on the mirror. However, since the side-bands appear at both sides of the cavity,
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this force both damps and drives the mirror, such that in effect the mirror motion
remains unaltered. The laser is then scanned slowly towards the blue side-band,
at which point the interaction with the mirror results in side-bands at ωcav and at
ωcav + 2Ωm. The first side-bands is resonant with the cavity field and is enhanced,
while the second is suppressed. Since the interference of the laser light with the cav-
ity field now only results in a driving force, the mirror amplitude is increased. This
leads to a stronger optical field modulation, which in turn increases the amplitude
even further, leading to an even stronger modulation, until a balance is reached. This
is known as limit cycle behaviour. The laser is then detuned even further, while the
larger mechanical amplitude allows the creation of increasingly more side-bands.
During the sweep, the Stokes side-bands are enhanced, while the anti-Stokes side-
bands remain suppressed, driving the mirror when the detuning is at multiples of
the mechanical frequency.

This whole process is known as parametric amplification of the resonator, since it
is induced by a change in the parameters of the system. It continues until the power
loss due to friction in the system is no longer balanced by the power put into the
system via the laser light. The mirror amplitude is then no longer increased and
reduces to its original value given by the thermal motion of the mirror. When the
laser is set back to a frequency below the cavity resonance frequency, the sweep can
be repeated, leading to the same output field. Note that this parametric amplifica-
tion, despite similar appearances, should not be confused with optical ringing in a
high-finesse Fabry-Perot cavity [82].

3.2 Description of the set-up

Our optomechanical system is an L = 5 cm long confocal optical cavity where a
trampoline resonator forms one of the end mirrors. The trampoline resonator con-
sists of a Bragg mirror with diameter 60µm attached via four Si3N4 wires to a silicon
substrate [63]. The motion of interest is the fundamental mechanical mode with a
resonance frequency of Ωm/2π = 300 kHz. A schematic of the set-up is given in
Figure 3.2.

The light from a CW Nd:YAG laser (Coherent Mephisto) with a wavelength λ =
1064 nm passes through an optical isolator to avoid back reflections and an electro-
optic phase modulator (EOM) tuned at 9.5 MHz that is used for calibration of the
detuning. The light is coupled into an optical fiber that transports it into a vacuum
chamber which contains the optomechanical cavity. Most of the experiments were
done at a background pressure of 10−6 mbar. To avoid mechanical noise, a vibration
isolation system containing several Eddy-current dampers decouples the optome-
chanical cavity from the outside world.

The laser frequency can be tuned via a piezo on the laser crystal, with a typical
scan speed of 100− 400 MHz/s, which is slow compared to the cavity life time. The
light from the cavity, imprinted with the motion of the trampoline resonator, is de-
tected by two photodetectors placed in transmission and, via an optical circulator, in
reflection. The data is acquired by a digital oscilloscope (Agilent DSO-X 2004A).

The experimental parameters of our optomechanical cavity were determined sep-
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Figure 3.2: Schematic of the experimental set-up; the light of a Nd:YAG laser operating
around 1064 nm is coupled into a single mode optical fiber and propagates via an optical
circulator to our optomechanical cavity, which is placed inside a vacuum chamber. The
transmitted light falls onto a photodetector and the reflected light is detected after passing
the circulator again. The electro-optic modulator (EOM) tuned at 9.5 MHz is used to
calibrate the detuning of the laser frequency with respect to the cavity. The inset shows
an optical image of the trampoline resonator.

arately. The cavity linewidth κ/2π = 300 kHz was obtained from an optical ring-
down measurement and from the thermal mechanical noise spectrum we could de-
termine a mechanical linewidth of Γm/2π = 8.8 Hz at the background pressure of
10−6 mbar. This corresponds to a mechanical quality factor of Qm = 34000. The in-
trinsic linewidth can be altered by changing the background pressure in the vacuum
chamber.

3.3 Comparison to simulations

To better understand our experimental results, we compare it with simulations based
on the equations of the system. There are two coupled equations of motion for our
optomechanical cavity, the first describes the optical field in the cavity α and the sec-
ond the displacement x of the oscillator. We have neglected thermal and mechanical
noise sources.

α̇(t) = −κ
2
α(t) + i(∆ +Gx(t))α(t) +

√
κexαin, (3.1)

ẍ(t) = −Ω2
mx(t)− Γmẋ(t) +

~G
meff
|α(t)2|, (3.2)

here the dot indicates the time-derivative. The other parameters are as follows: G =
ωcav/L the optical frequency shift per displacement, the cavity coupling loss rate
κex/2π = 50 kHz, αin the laser field, ~ the reduced Planck constant and meff = 110×
10−12 kg the effective mass of the mechanical mode. By solving these equations of
motion, we can give a more quantitative understanding of our parametric oscillator.
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The motion of the mechanical oscillator is partly determined by its effective damp-
ing rate which is a sum of the intrinsic linewidth and the optomechanical damping
rate Γeff = Γm + Γopt. An expression for Γopt in terms of the optical field and the
amplitude A of the oscillator is deduced from the equation above [83]:

Γopt(A) =
2~Gκexα

2
in

meffΩmA
Im

(∑
n

α∗n+1αn

)
, (3.3)

αn =
Jn(−GA/Ωm)

κ/2− i∆̃ + inΩm
, (3.4)

where Jn(x) is the Bessel function of the first kind and ∆̃ = ωlaser − ωcav + Gx̄ is
the effective laser detuning which also accounts for the static displacement x̄ of the
mirror due to radiation pressure. This static displacement is small enough that we
can neglect it, such that ∆̃ ≈ ∆.

The harmonics in the optical field are indicated by αn for the nth harmonic. They
are created by the mirror motion, which phase modulates the incoming laser light
via the term Gx(t)α(t) in Eq. 3.1. The modulation depth is given by the argument of
the Bessel function, φ0 = −GA/Ωm, and determines the number of side-bands that
appear at frequencies ω = ωlaser ± nΩm. Note that the thermally excited mirror am-
plitude at 300 K is already sufficient to create a side-band, but more side-bands are
created as the amplitude increases and more harmonics of the mechanical frequency
Ωm are imprinted on the cavity field. These side-bands are scaled by the cavity line
shape as the denominator in Eq. 3.4 indicates. The modulated cavity field interacts
again with the mirror, via the radiation pressure proportional to the cavity intensity
|α2|, see Eq. 3.2. But the mirror only reacts to components of the force at the me-
chanical frequency, which are formed by the mixing at the moving mirror of two
consecutive side-bands,

∑
n α
∗
n+1αn. The real part of this sum is responsible for the

optical spring effect. But we are interested in optical damping or driving, which is
described by the imaginary part of the sum, as is shown in Eq. 3.3.

When the optomechanical damping rate Γopt is larger than zero, the mechanical
oscillator is damped and effectively cooled. But the optomechanical damping rate
can also be negative. When the optomechanical damping rate overcomes the intrin-
sic mechanical linewidth, such that the effective linewidth is negative, self-induced
oscillations occur. This is better expressed in terms of the optomechanical gain [83]:

ζopt = −
Γopt

Γm
=
Prad

Pfric
(3.5)

with Prad the power in the radiation pressure acting on the mirror motion, that can
either be extracted from the oscillator or delivered to it. Pfric is the power lost from
the oscillator via friction. From the ratio in Γopt and Γm we see that damping and
cooling occurs when the optomechanical gain is smaller than zero, in this case the
radiation pressure extracts power from the oscillator. Parametric oscillations occur
when more power is added to the resonator than can be drained via friction, so
when ζopt > 1. In this situation Γopt is negative and has a larger magnitude than
Γm, in accordance with what was mentioned before. In the intermediate regime
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Figure 3.3: Linear frequency sweep across an optomechanical cavity resonance: (a)
Experimental results below (red line) and above (blue line) the power threshold, with a
mechanical quality factor Qm = 7300 and scan speed 400 MHz/s; (b) Simulation based
on the equations of motion of the system, with input the thermal amplitude of the mirror
motion at 300 K.

0 ≤ ζopt < 1 the linewidth of the oscillator is reduced, but not enough for parametric
oscillations to occur.

Parametric oscillations occur only above a certain power threshold, when Prad >
Pfric. Self-induced oscillations are therefore also known as mechanical or phonon las-
ing [25]. The effect of the power threshold is visible in Figure 3.3(a), which shows the
experimental results of two linear frequency sweeps with a scan speed of 400 MHz/s.
The two sweeps were obtained at different laser powers. No parametric oscillations
occur below the power threshold, while above the power threshold oscillations con-
tinue to a detuning of ∆ = 19Ωm. The numerical simulations in Figure 3.3(b) are ob-
tained by solving the two equations of motion, Eqs. 3.1 and 3.2. As input parameters
we used α(0) = 0, α̇(0) = 0, x(0) = x0 and ẋ(0) = 0, with x0 the thermally excited
mirror amplitude at 300 K. In the simulations, the laser detuning is varied linearly
across the cavity resonance while the laser power was kept constant. The simulations
show excellent agreement with our experimental results above the power threshold.

When we zoom in at the optical side-bands, we should see the harmonics of the
mechanical frequency imprinted on the cavity field [79]. Since our photodetector in
transmission is not fast enough to see these fast modulations, we use the reflection
detector. The numerical simulations are also computed in reflection. Both the nu-
merical and experimental results are shown in Figure 3.4, for different values of the
detuning. As we can see, the number of harmonics increases with larger detuning
and therefore with larger amplitude of the mirror. The striking resemblance between
simulations and experiment is another indication of the quality of the experimental
set-up.

The self-induced oscillations occur as long as the optomechanical gain defined in
Eq. 3.5 is larger than one. An indicator of the duration of the parametric oscillations
is the amount of side-bands that are created. According to the definition of the op-
tomechanical gain, this plateau length should be linear in the laser power, above a
certain threshold, and inversely proportional to the mechanical linewidth. The effect
of laser power is shown in Figure 3.5(a), where we have plotted the plateau length
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Figure 3.4: Imprint of the mechanical motion as harmonics of the mechanical frequency
Ωm on the reflected cavity field. Simulations based on solving Eqs. 3.1 and 3.2 are shown
in the left column at different detunings, the experimental results at the same detuning
are shown in the right column.
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for different laser input powers (blue dots). There are no parametric oscillations until
the power is increased enough, after which the plateau length increases linear with
power. The red line is a fit to the expression in Eq. 3.5.
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Figure 3.5: Plateau length as an indication of the optomechanical gain, the blue dots
mark the amount of side-bands under different experimental conditions, the red line is a
fit of the optomechanical gain: (a) Above a certain power threshold, the optomechanical
gain is linear in the laser power; (b) The optomechanical gain is inversely proportional to
the intrinsic mechanical linewidth.

To measure the influence of the mechanical linewidth, we have increased the
background pressure in the vacuum chamber. For four different pressures, result-
ing in four different values of Γm, but at constant laser power, we have determined
the plateau length, see Figure 3.5(b). The fit to ζopt shows that it is indeed inversely
proportional to the mechanical linewidth. We can therefore conclude that the op-
tomechanical gain shows the expected behaviour.

3.4 No transition to chaotic motion

We have shown that the two equation of motions introduced in Eqs. 3.1 and 3.2 are
sufficient to describe the observed self-induced oscillations. When we take another
look at Figure 3.1, we see parametric oscillations up to a detuning of ∆ = 32Ωm. The
amplitude of the mirror at this point is found, by solving ζopt(∆ = 32Ωm, A) < 1, to
be 450 times larger than the thermally excited mirror amplitude at 300 K.

In other systems, such high increase in amplitude is often not reached due to the
transition to chaotic motion [75, 76], induced either by an extra photothermal force
due to heating induced expansion of the mirror, or by the influence of outside vi-
brations. The absence of chaos in our system is a result of our high-quality mirror
coatings with low absorption and of our good mechanical isolation from the envi-
ronment. This opens the possibility of optical stabilization of the mirror at large am-
plitudes to greatly enhance the sensitivity when the optomechanical set-up is used
for force detection [84].
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Cooling

Optomechanical systems have gained increasing popularity over the past years for
their promising possibilities to explore quantum mechanical behaviour in macro-
scopic objects. By coupling an optical field to a mechanical resonator, it may be
possible to transfer the quantum mechanical properties of the photons to massive
objects. This process is counteracted by influences from the outside world and by
the thermal occupancy of the mechanical resonator. It is therefore beneficial to op-
erate the resonator close to its quantum mechanical ground state. Several systems
involving a mechanical mode with a relatively high resonance frequency have al-
ready been cooled to a phonon occupation less than one [26–30]. For lower frequency
resonators the effective temperature associated with the quantum ground state lies
lower, increasing the need for cryostats with lower base temperature. Since the base
temperature of cryostats is limited in practice, optical side-band cooling is needed
to reach lower effective mode temperatures. A higher possible optical cooling factor
lowers the demand for the cryostat base temperature. In addition, low frequency
resonators are more sensitive to surrounding vibrational noise. This means that the
system should mechanically be better isolated from the environment.

In this chapter we will show mechanical isolation of a trampoline resonator in
the form of a second resonator acting as a mechanical low-pass filter. Although this
outer resonator successfully isolates the inner resonator from mechanical vibrations,
its motion also influences the optomechanical response of the system.

This chapter is partially based on: M. J. Weaver, B. Pepper, F. M. Buters, H. J. Eerkens, G. Welker, B.
Perock, K. Heeck, S. de Man, and D. Bouwmeester, ”Nested trampoline resonators for optomechanics,”
Appl. Phys. Lett., 108, 033501, (2016).
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4.1 Optomechanical cooling

In chapter 2 we presented optical cooling of a low frequency mechanical resonator
[72]. Using a two laser scheme operating at different frequencies, it was possible to
reach an effective temperature of 4 K starting from room temperature. Lower effec-
tive temperatures could not be detected due to mechanical noise in our system. This
is visualized in Figure 4.1, which shows the mechanical power spectral density of
a cooled resonator buried under mechanical noise peaks. This puts a limit on the
observable cooling factor and therefore on the lowest effective temperature that can
be measured when the optical cooling is started from a certain base temperature.

The possible cooling factor and the effect of the mechanical noise peaks depends
on the intrinsic quality factor of the resonator. When the intrinsic linewidth is smaller,
it can be damped more until it disappears in the background. Since the single res-
onators are dominated by clamping losses [85], a high quality factor cannot be guar-
anteed. Not only can it change every time a sample is remounted, it may also change
drastically when the resonator is cooled in a cryostat.
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Teff= 200 mK

Figure 4.1: Power spectral density of a single resonator cooled to an effective temper-
ature of 200 mK, the Lorentzian peak describing the mechanical motion is buried under
mechanical noise peaks.

The exact source of the mechanical noise peaks is unknown, but it is likely that
they originate from the multiple components of our set-up. With a cavity length of
5 cm it is difficult to create a monolithic system that is less prone to internal vibra-
tions. We therefore need to isolate the trampoline resonator from the vibrations of the
set-up and the cryostat. Since the noise may arise from anywhere in the set-up, we
designed an on-chip isolation to be as close to the resonator as possible. An extra low
frequency resonator is fabricated around the inner resonator and acts as a low-pass
filter [86–90]. An optical image of this nested resonator is shown in Figure 4.2(a).
The inner resonator has a mirror diameter of 80µm and a resonance frequency of
240 kHz. The outer resonator consists of a ring of 500µm thick silicon hanging from
four Si3N4 arms. Due to the relatively large mass it has a resonance frequency of
2.4 kHz. A description of the fabrication process is given in [91].



4.1 Optomechanical cooling 33

(a)
220 230 240 250 260

Frequency [kHz]

10-11

10-10

P
S
D

 [
a
.u

.]

Teff= 210 mK

(b)

Figure 4.2: Nested resonators: (a) Optical image of a nested resonator consisting of an
inner resonator with mirror diameter of 80µm and resonance frequency 240 kHz and an
outer resonator with resonance frequency 2.4 kHz; (b) Power spectral density of the motion
of the inner resonator cooled to an effective temperature of 210 mK, the mechanical noise
peaks are no longer visible.

To check the influence of clamping on the quality factor, the sample was mounted
and remounted several times while the quality factor of both the inner and outer
resonator was measured. For the outer resonator values changed by an order of
magnitude, while the inner resonator quality factors varied less than ten percent
[91]. So the outer resonator guarantees a consistent good quality factor of the inner
resonator.

Optical cooling of the inner resonator was performed next to check the isolation
provided by the outer resonator. Using the set-up described in chapter 2, the pump
laser was fixed at a detuning of ∆ = − 1

2Ωm with respect to the cavity resonance. The
laser power was then increased in steps while at each step the mode temperature
was determined from the area under the mechanical power spectral density. At an
effective temperature of 210 mK, the resonator is still clearly distinguishable and no
other noise peaks are visible, see Figure 4.2(b). The outer resonator successfully
isolates the inner resonator from mechanical noise, which means that we are able
to detect lower effective temperatures than with a single resonator.

We increase the laser power even further to find the lowest effective temperature
we can reach. The effective mode temperature as a function of pump laser power is
shown in Figure 4.3(a). The effective temperature is linear in laser power, showing
that we are not yet limited by phase noise in our cavity light [65]. The lowest mode
temperature that could be determined is 23 mK. Starting from room temperature,
this means a cooling power factor of 13.000. Note again that the power spectral den-
sities in Figure 4.3(b), taken at different laser powers, show no influence of mechani-
cal noise, even at the lowest effective temperatures. Further cooling is limited by the
intrinsic linewidth of the resonator and by the stability of the system. The resonance
at 23 mK is barely distinguishable from the background. Further remarks on the sys-
tem stability shall be given in the following sections. Still, a cooling factor of 13.000
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Figure 4.3: Optical cooling of a nested trampoline resonator from room temperature:
(a) Effective mode temperature of the inner resonator as a function of pump laser power,
a mode temperature of 23 mK is reached; (b) Power spectral densities at several effective
temperatures, even at 23 mK the motion of the inner resonator can be clearly distinguished.

means that ground state cooling should be possible starting from a base temperature
of 100 mK. This is an easily achievable temperature for a dilution refrigerator.

4.2 Influence of the outer resonator motion

Adding an outer resonator solves several problems, but the mechanical properties
of this extra resonator also influence the cavity length and therefore also couple to
the optical field. To investigate the effect of the outer resonator, we performed a
sweep of the pump laser detuning with respect to the cavity resonance. The detuning
was altered in steps of 5 kHz and at each step the mechanical spectrum of the inner
resonator was recorded. From each spectrum we determined three parameters, the
effective damping, frequency shift and effective temperature. The dependence of
these parameters on the pump laser detuning is shown in Figure 4.4. The red line
through the data shows a fit to the optomechanics theory. From the fits we could
determine an intracavity power of 3.01 ± 0.04µW and a cavity linewidth of κ =
52 ± 1 kHz. This parameter coincides well with the previously determined value of
κ = 53 kHz obtained from an optical cavity ring-down.

The theory fits well to the data, so it seems that the effect of the outer resonator
is indeed minimal. However, when a detuning of ∆ = − 1

2Ωm is reached, the system
becomes unstable and the laser locks, on which our measurement scheme depends,
can no longer longer follow the cavity length changes. The value of ∆ where this ef-
fect occurs is not fixed, but depends on laser power and happens sooner with higher
laser power. Therefore the system also becomes unstable when the detuning is fixed
at ∆ = −Ωm and the power is increased. To fully understand this effect and the in-
fluence of the outer resonator on the system, we need to look at the schematic shown
in Figure 4.5. The masses of the mirror and the silicon ring of the outer resonator are
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Figure 4.4: Sweep of the pump laser detuning with respect to the cavity resonance and
the response of the mechanical motion of the inner resonator: (a) Effective damping; (b)
frequency shift and (c) effective temperature. The blue dots show data, the red line is a
fit with theory.

indicated, as well as the optical field and the big mirror at the opposite end of the
cavity. The Si3N4 arms of both resonators are represented as a spring parallel to a
damper.

The optical field interacts directly with the inner resonator. However, at frequen-
cies below the resonance of the outer resonator, the transfer of motion between the
two resonators is equal to one. This means that the resonators effectively move as
a single resonator and the optical field interacts with the outer resonator as well.
For clarity, we will separate the optomechanical response into two frequency ranges.
For the high frequency range, the outer resonator hardly moves and the optical field
only couples to the inner resonator motion. The ratio between the cavity linewidth
and the mechanical frequency makes the optomechanical interaction side-band re-
solved, which means large optical damping and relatively small optical spring effect
when the laser is detuned at ∆ = −Ωm. At low frequencies, the optical field couples
effectively to both resonators, but due to a different mechanical frequency to cavity
linewidth ratio, this interaction is not side-band resolved. The result is a relatively
low damping effect and a large optical spring. The spring effect drives the mechan-
ical frequency of the outer resonator down, which increases the sensitivity for low
frequency noise and makes the system unstable.

Figure 4.5: Schematic of the inner and outer resonator coupled to an optical field. The
Si3N4 arms can be represented as a spring and a damper, with the masses coming from
the mirror and the silicon ring.
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Note that at positive detunings, the optical spring effect drives the resonator to-
wards higher frequencies. The static response of the system decreases, which in-
creases the possibility to measure at positive detunings. This is almost not possible
for single resonators. Since we are ultimately only interested in cooling the outer
resonator, we have not investigated this effect further.

4.3 Damping of outer resonator motion

The stability of the system is also influenced by the amplitude of the outer resonator
motion. The outer resonator has a mode mass ofmeff = 160×10−9 kg and a resonance
frequency of Ωm/2π = 2.4 kHz, which means that at room temperature it has an RMS
motion of

xrms =
√
〈x2〉 =

√
kBT

meffΩ2
m

= 10.6 pm, (4.1)

where kB is the Boltzmann constant. Compared to the cavity length of L = 5 cm, the
change of the cavity resonance frequency at 2.4 kHz is

∆ωcav = ωcav
∆L

L
= 2π × 59.2 kHz. (4.2)

This is not a significant portion of the range of 16 MHz of our Pound-Drever-Hall
(PDH) cavity frequency lock [64, 72]. But under the influence of external vibrations
the outer resonator can easily be driven to an amplitude of several nanometers, be-
yond the reach of the lock. One solution is to prevent these vibrations, but since they
can come from within the set-up, this may require yet another on-chip resonator.

It is clear that the motion of the outer resonator needs to be controlled. Since
reading out the motion via the intracavity light might interfere with the already ex-
isting PDH lock, we have chosen to read out the motion using fiber interferometry
[92]. A cleaved single mode fiber end is positioned behind the cavity at a distance of
several hundred micrometers from the outer resonator. Light from a telecom laser
(λ = 1550 nm) travels via a fiber coupler to the cleaved fiber end. The light reflected
at the outer resonator surface couples back into the fiber and passes the fiber coupler
again. It exits the coupler via a different portal than where the laser light originally
entered and falls onto a detector. The resonator motion translates linearly to detector
signal when the laser frequency is tuned at quadrature. The sensitivity of the read-
out in Volts per meter can be determined from a single laser frequency scan at the
start of each measurement [92]. We can therefore directly determine the resonator
motion in meters.

To control the motion, we need to apply a force. There are many ways to do this,
but we have chosen to investigate two different methods, which will be described
and compared in this section. First we made the outer resonator one half of a parallel-
plate capacitor, by coating it with a conductive aluminium layer. The other half of
the capacitor is created by positioning an aluminium coated plate in its vicinity. The
capacitative energy causes an electrostatic force that can be adjusted by setting the
voltage across the two surfaces.
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Another method to influence the resonator motion is by applying an electrostatic
field gradient around the resonator [93]. This is achieved by positioning a small wire
near the resonator and setting its potential with respect to the sample mount. The
dielectric material of the outer resonator (silicon) polarizes in this electrostatic field
and is pulled towards the wire. We are able to drive or damp the motion, depending
on the phase of the feedback signal compared to the motion of the resonator.

4.3.1 Capacitative control of the resonator motion
A capacitor consists of two parallel conductive plates close together. The energy
stored in the electric field between the two plates is given by

E =
1

2
CV 2, (4.3)

with V the voltage across the capacitor and C the capacitance, which is equal to
C = εA

d . Here ε is the electric permittivity of the material between the plates (in our
set-up this is usually vacuum or air, so we can take ε = ε0), A is the overlap area and
d is the distance between the plates (both unknown in our set-up). When one of the
plates is free to move, the distance changes and therefore the capacitance. The force
experienced by the movable plate is given by

Fc = −1

2

∂C

∂d
V 2 =

ε0AV
2

2d2
. (4.4)

This force can be used to control the motion of the outer resonator, when it is part
of a parallel plate capacitor. Since the resonator is originally not made of conductive
materials, it is coated with a conductive layer of aluminium. A second silicon wafer,
pressed against the sample wafer and also coated with aluminium, serves as the sec-
ond capacitor plate. If we would press the two wafers directly on top of each other,
the aluminium coating would make contact, thereby eliminating the capacitance. So
part of the wafer is recessed prior to coating, and the recessed part is aligned to the
outer resonator. A schematic of the sample package is shown in Figure 4.6. To al-
low optical access for the fiber interferometric read-out, a hole is etched in the center
of the recessed area. Since we are only interested in the general behaviour of this
sample, we have performed the measurements at room temperature and ambient
pressure without any vibration isolation.

To control the motion of the outer resonator, we apply a voltage across the two
coated surfaces via wires attached at the edge of the wafers1. Since the force depends
quadratically on the voltage, it is always attractive. Applying a DC voltage would
only pull on the resonator and an AC voltage would result in a force at twice the
chosen frequency. When the applied voltage is a sum of these voltages, V = VDC +
VAC cos(ωt), the force on the resonator contains a cross-term that is linear in VDC and
at the same frequency as the applied AC voltage:

Fc =
ε0A

2d2

[(
V 2

DC +
1

2
V 2

AC

)
+ 2VDCVAC cos(ωt) +

1

2
V 2

AC cos(2ωt)

]
. (4.5)

1Only the recessed part of the silicon wafer was electrically connected.
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Figure 4.6: Schematic of the sample package allowing capacitative control of the outer
resonator. The nested resonator is coated with a conductive aluminium layer. An alu-
minium coated silicon wafer is pressed against the resonator wafer. Part of the silicon
wafer is recessed to prevent direct contact between the coating layers. A single mode
(SM) fiber and hole for optical access are also indicated.

We verify whether this force can indeed be used to drive the outer resonator by
looking at the response of the system to the 1f-component of the force, the second
term on the RHS in Eq. 4.5. The DC voltage and the amplitude of the AC voltage are
both set to 1 V, while the frequency of the AC voltage is scanned across the resonance
frequency of 940 Hz. The signal from the fiber interferometer at each frequency step
is detected and demodulated by a lock-in amplifier. The signal can be converted to
nanometers by a separately performed calibration of the interferometer signal. The
result is shown in Figure 4.7. For comparison the red line in the same figure shows
the thermal motion of the resonator at room temperature obtained from a Fourier
transform of the detector signal without drive.
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Figure 4.7: Frequency scan of the response of the outer resonator to the capacitative
force: (a) Amplitude of the resonator motion (blue line) compared to the undriven thermal
motion (red line); (b) Phase of the driven resonator motion.

It is clear that the capacitative drive of the outer resonator works and can easily
increase the resonator motion by more than an order of magnitude. So it should
in principle be possible to create a feedback loop to damp the motion, instead of
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Figure 4.8: Scans of the (a,c) DC and (b,d) AC voltage while monitoring the response
(a,b) at the applied frequency and (c,d) at twice the applied frequency. The points show
data while the red lines show fits of the expected response.

driving it. But before we investigate this further, we want to be sure that the system
responds as expected. We therefore performed sweeps of the DC and AC voltages
while monitoring the 1f- and 2f-components of the force response (the second and
third terms in Equation 4.5 respectively).

When the AC voltage is applied at the resonance frequency, with the signal de-
modulated at the same frequency, the response should be linear in both VAC and VDC.
Figures 4.8(a) and 4.8(b) demonstrate indeed roughly a linear increase in resonator
motion. Note that since we measure the RMS motion, the response is also positive at
negative voltages.

When we apply the AC voltage at half the resonance frequency, we still expect
response at the resonance frequency due to the third term in Equation 4.5. This term
is independent of the DC voltage, as indeed shown in Figure 4.8(c). The average
RMS motion increases with AC voltage, which we expect, and Figure 4.8(d) shows
that this response is indeed quadratic.

In general, the voltage sweep show the expected trends. However, the linear re-
sponse shows some small deviations. Figure 4.8(a) shows a tiny offset in DC voltage
where the response is minimal, which should be at zero voltage. This is due to a
small background voltage caused by a difference in work function between the two
aluminium coatings.

A closer look at the linear response in Figure 4.8(b) shows some nonlinear be-
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haviour. This deviation may be caused by measurement imprecisions, but it is also
likely that other aluminium coated areas in the vicinity of the outer resonator form
stray capacitors, which influence the resonator response.

Preventing the formation of stray capacitors is challenging, since it depends on a
combination of sample fabrication techniques and manually aligning the two wafers.
Minimizing the effect of unwanted capacitors generally also lowers the capacitance
used to control the outer resonator. The aligning process is already quite cumber-
some and requires a sample mount flexible enough for manipulation while being
able to fix the wafers when aligned. Another disadvantage of the capacitative drive
is that coating the nested resonator with a conductive aluminium layer is likely to
negatively affect the mechanical quality factor of the inner resonator. So investigat-
ing another method for controlling the outer resonator motion seems beneficial.

But before we completely switch to another method, we use the constructed sam-
ple to demonstrate the amount of mechanical isolation it provides. The amount of
isolation is proportional to the transferred energy, which again is proportional to the
squared amplitude of the outer resonator motion [94], which we can measure di-
rectly. We drive the outer resonator capacitatively with a DC voltage of −2 V and an
AC voltage amplitude of 1 V. The frequency of the drive is swept between 100 Hz
and 100 kHz, and the interferometer signal, demodulated at the drive frequency, is
squared. This method is similar to the measurement already shown in Figure 4.7.
The resulting transfer function, normalized to one at low frequencies, is given in
Figure 4.9. The blue points are the results from the sweep, while the red line is a fit
with the theoretical transfer function. The resonances at frequencies above 10 kHz
are caused by other vibrational modes of the nested resonator.
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Figure 4.9: Frequency scan of the outer resonator motion (blue dots), converted to
the power transferred by the outer resonator. This indicates the amount of vibrational
isolation provided by the outer resonator. From the fit to the expected transfer function
(red line) we can deduce an isolation of 40 dB/decade, resulting in an expected isolation
of 80 dB at the inner resonance frequency of around 300 kHz.
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From the slope of the transfer function above resonance we can infer a mechan-
ical isolation of 40 dB/decade. Since the resonance frequency of the outer resonator
is designed to be two orders of magnitude below that of the inner resonator, the me-
chanical isolation at the inner resonator frequency is expected to be 80 dB. Because
of this large isolation, the motion of the resonator at the inner resonator frequency
was no longer distinguishable with the sensitivity of the fiber interferometer, so the
80 dB of isolation could not be measured directly. It is clear, however, that the outer
resonator provides significant isolation.

4.3.2 Dielectric force control of the resonator motion

An electric field induces polarization in a dielectric material. The formed dipoles are
then attracted towards the point of maximum field strength. If the electric field is ho-
mogeneous, the dipoles are attracted equally to the positive and negative electrode
and the net effect is zero. In order to create a force to attract the resonator, a strong
gradient in the electric field is needed. If we describe the whole dielectric by a single
dipole p, the force on it is given by [95]:

Fd = (p · ∇)E. (4.6)

In our system the dielectric is the silicon outer resonator attracted to a 100µm diam-
eter wire positioned in the vicinity. The other electrode is the copper sample mount
located far from the resonator, such that the electric field is strongest near the wire.
All the data showed in this section are obtained with this wire in the vicinity. How-
ever, it turned out that a wire pulls unevenly on the resonator, so in later designs
we replaced the wire by a ring electrode with a diameter of 600µm. The relative
positions of the ring electrode, SM fiber and nested resonator are indicated in Figure
4.10. The dotted lines represent the electric field lines between the ring electrode and
sample mount.

Figure 4.10: Schematic of the the nested resonator surrounded by the sample mount
which is electrically connected to a ring electrode positioned near the outer resonator.
A single mode (SM) fiber points towards the outer resonator for read-out of its motion.
The electric field lines between the ring electrode and sample mount are indicated by the
dotted lines.
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If we set the direction of the field lines near the ring electrode and through the
resonator in the z-direction and ignore the contribution of other directions, the force
is equal to

Fd,z = ε0χeEz
∂Ez
∂z

, (4.7)

with the outer resonator polarized in the z-direction, pz = ε0χeEz with χe the electric
susceptibility of the silicon. The electric field distribution is not trivial and we are
ultimately not interested in the exact magnitude of the force. So we further simplify
the expression above by observing that the electric field (and its derivative) between
the two electrodes is proportional to the applied voltage. It follows that the force
depends quadratically on the voltage, just as in the case of a capacitative drive. We
can therefore repeat the measurements presented in the previous section by applying
similar voltages, namely the sum of a DC voltage to polarize the outer resonator and
an AC modulation to influence its motion. The force is then proportional to

Fd,z ∝ [VDC + VAC cos(ωt)]
2

=

(
V 2

DC +
1

2
V 2

AC

)
+ 2VDCVAC cos(ωt) +

1

2
V 2

AC cos(2ωt).

(4.8)
Similar to the result in Figure 4.7 we first check that we can drive the outer resonator
by sweeping the AC voltage across the outer resonator frequency, while demodulat-
ing the interferometric read-out signal at the same frequency as the drive. Signifi-
cantly higher voltages are needed than with the capacitative drive: the DC voltage is
set to −40 V and the AC amplitude is 8 V. Again, the driven motion in Figure 4.11 is
compared to the undriven thermal motion obtained from a Fourier transform of the
interferometer signal.
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Figure 4.11: Frequency scan of the response of the outer resonator to the dielectric
force: (a) Amplitude of the resonator motion (blue line) compared to the undriven thermal
motion (red line); (b) Phase of the driven resonator motion.

The outer resonator clearly reacts to the dielectric force, its amplitude increases
by more than an order of magnitude. This is a similar response to that observed
with the capacitative drive. However, the sample preparation is more convenient,
since it only requires positioning a SM fiber and an electrode in the vicinity of the
outer resonator. Another disadvantage of the capacitative control was the presence
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Figure 4.12: Sweeps of the (a) DC and (b) AC voltage while monitoring the response at
the applied frequency. The red lines are fits of the expected response through the data
points.

of spurious capacitors, influencing the linear response of the resonator on the voltage
sweeps in Figure 4.8. These sweeps are repeated in Figure 4.12 with the dielectric
drive. The response is now clearly linear, which means that the dielectric force as
described by Eq. 4.7 is the only source that drives the resonator and that we can
safely create a feedback loop that minimizes the resonator motion without being
affected by other effects.

In such a feedback loop the phase-shifted interferometer signal is send back to
the positive electrode with an adjustable gain. If the feedback is set correctly, the
damping rate of the outer resonator should increase with loop gain. This is veri-
fied via amplitude ring-down measurements, where the resonator was first driven
to a certain high amplitude before the feedback was switched on. The amplitude of
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Figure 4.13: Resonator amplitude ring-down measurements with different loop gain. The
arrow indicates the direction of increasing gain and, related, increasing damping rate of
the outer resonator. From exponential decay fits (red lines, only shown for the outermost
ring-downs) the mechanical quality factor is determined.
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the outer resonator was measured as a function of time and followed an exponen-
tial decay. The quality factor is determined from the time constant. The ring-down
measurements are displayed in Figure 4.13 for different values of the loop gain, with
increasing gain indicated by the arrow.

With this method, the quality factor of the outer resonator is decreased signifi-
cantly. Figure 4.13 shows that the quality factor, which starts at 13.500 without feed-
back, can be reduced to 16. This helps significantly in controlling the outer resonator
motion. Even when external vibrations drive the outer resonator, which is likely to
happen when the system is placed in a cryostat, this damping system is capable of
damping the resonator motion to manageable amplitudes.

4.4 Conclusions and outlook

Adding a resonator around the original trampoline resonator is a good solution to
prevent high-frequency vibrational noise from coupling to the trampoline resonator
motion. As the single resonator is cooled optically, its signal becomes concealed by
these vibrational noise peaks, which limits the achievable observable optical cooling
factor. With the nested resonator, the resonator can be cooled further, reaching an
effective temperature of 23 mK from room temperature before the signal disappears
under the measurement noise floor.

But adding the outer resonator is not solely beneficial. Its mechanical proper-
ties influence the stability of the system, making it very sensitive to low-frequency
vibrational noise. To damp this motion, two methods of applying a force were in-
vestigated: capacitively and dielectrically. Both methods are successful in driving
the outer resonator motion and can also be used to damp it. However, using the
dielectric force profits from an easier set-up design.

With our control of the outer resonator motion, we have added the possibility to
not only lock the laser frequency to follow changes in the cavity length, but also to
adjust the cavity length to follow the laser frequency [96]. Instead of letting the laser
be influenced by the vibrational noise, the length variations are now eliminated by
actively stabilizing the position of the nested resonator.

The mechanical quality factor determines the optical cooling factor that can be
achieved before the signal disappears in the background. With the current optical
cooling factor, it should in principle be possible to achieve a phonon occupancy of
less than one starting at a base temperature of 100 mK. Placing the set-up in a dilu-
tion refrigerator is therefore the next logical step.



PART II

Casimir effect





5
Thermal Casimir Force and Superconductors

The van der Waals force is carried by virtual photons that are exchanged by two
interacting atoms or molecules. As their separation increases, the interaction is no
longer instantaneous due to the finite speed of light. The result is a faster decay
of the force with distance. Two macroscopic conducting plates at small separation
are attracted to each other by the van der Waals interactions of the individual atoms,
although the interactions cannot simply be added pairwise and one has to correct for
the presence of the other atoms. When the plate separation becomes larger, one has
to account again for the retardation of the interaction photons. This retarded van der
Waals force between macroscopic bodies is better known as the Casimir force. The
retarded van der Waals force is one interpretation of the origin of the Casimir force
and several other methods exist to calculate this force [36]. One of these methods
will be explored in this chapter..

In 1948, Hendrik Casimir calculated the interaction between two parallel plates
due to the existence of the vacuum fluctuations of the electromagnetic field [37]. In
his approach he considered perfectly reflecting, uncharged and nonmagnetic plates,
having a reflectivity equal to one at all frequencies. Lifshitz later found that for real
materials the force is determined by the values of the complex dielectric constant of
the media involved [97]. However, one needs to know these values at all frequencies
to compute the force. And this poses problems, since experimental characterization
of the material is currently only accessible at certain frequency ranges. Extrapolating
the data to all frequencies is possible via two different models. One model, the Drude
model, accounts for frictional dissipation in the material, while in the other model,
the plasma model, dissipation is not included. At room temperature, the difference
appears only at the DC contribution to the Casimir force. To this day there remains
controversy on which model is more appropriate.

Although the Casimir force is determined by the dielectric permittivity at all fre-
quencies, not all frequency ranges contribute equally. It is possible to set the mea-
surement conditions in a way that especially the low frequencies contribute, such

This chapter is written in collaboration with Francesco Intravaia.
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that the difference between the models is most distinct. One solution is to measure
the Casimir force at larger distances [50]. However, these measurements seem to
conflict with precision measurements at smaller distances [11]. So measurements of
this type have not given a decisive answer yet. Another solution is to measure the
Casimir force at higher temperatures, but this is limited by experimental require-
ments, such as the maximum working temperature of piezo-electric transducers.

The solution we will explore is the use of superconducting materials [49]. Su-
perconductors repel a static magnetic field due to the Meissner effect. Below the
critical temperature, the contribution of this field to the total Casimir force is there-
fore known and can be used as a reference when the material is brought into a non-
superconducting state.

In this chapter we will give the theoretical background of the Casimir force be-
tween real conductors. Since accurate derivations can be found in literature [36, 97,
98], we will only outline the main steps and focus on the important components. The
influence of the models is shown and how the difference becomes apparent at larger
distances and higher temperature. Finally we will introduce a simple model for the
Casimir force between superconductors

5.1 Casimir force between perfect conductors

There are several ways to find an expression for the Casimir force between two
parallel plates [36, 98–101]. Some of these methods calculate the electromagnetic
modes that can exist between the plates and assign to each mode a zero-point energy
E0 = 1

2~ω, with ~ the reduced Planck constant and ω = ck the angular frequency of
the mode, with c the speed of light and k the wave vector. The total Casimir energy
of the system can then be approached as the sum over all modes between the plates,
minus the continuum of modes outside the plates:

EC =
∑
ω

1

2
~ω −

∫
~c
2
k dk. (5.1)

At first glance, this seems to result in an infinite energy. It is however reasonable to
set a cut-off frequency that corresponds to a wavelength smaller than the size of the
atoms of the plates. For waves at these frequencies, the plates form no obstacle and
their zero-point energy is not influenced.

In his original paper [37] Casimir assumed that the plates are made of perfect
conductors. Perfect conductivity means that the reflection coefficient of the plates
is equal to plus or minus one (depending on the polarization). The possible waves
in the direction normal to the plates therefore have wave numbers kz = π

dnz , with
d the plate separation. For infinite plates the parallel wave vectors, kx and ky , are
continuous, and so is kz when the plate separation is infinite. Casimir calculated the
energy difference between plates at infinite and finite separation and derived from
that the following expression for the force per area A

FC = −π
2~cA

240d4
. (5.2)
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An interpretation of this force is that the discrete number of modes between the
plates exert less radiation pressure than the continuous spectrum of modes outside
the plates.

5.2 Lifshitz theory for the force between real conduc-
tors

The calculations to obtain the Casimir force become more elaborated when we no
longer assume perfect reflectors. In this section we will outline the steps followed by
Lifshitz to find an expression for the Casimir force. We will comment on its limita-
tions and how they can be circumvented.

For real conductors, the boundary conditions of the plates are related to the com-
plex dielectric permittivity

ε(ω) = ε′(ω) + iε′′(ω), (5.3)

where ε′(ω) accounts for the dispersion in the material and ε′′(ω) for the absorption.
Furthermore, at finite temperatures T , the interacting photons have a distribu-

tion not only given by the zero-point fluctuations, but also by their Bose-Einstein
statistics, with the number of photons in a mode with frequency ω given by

n(ω) =
1

2
+

1

e~ω/kBT − 1
=

1

2
coth

~ω
2kBT

, (5.4)

with kB Boltzmann’s constant. Note that the presence of these finite temperature
fluctuations is directly linked to the absorption term ε′′(ω) in the dielectric permit-
tivity by the fluctuation-dissipation theorem. Absorption of radiation in the plates
transforms the radiation energy into heat, which in turn causes thermal fluctuations
in the plates.

Consider now two half spaces filled with two media (representing the parallel
plates) separated by a distance d. This situation is depicted in Figure 5.1, where we
have indicated the dielectric permittivities of the media with ε1 and ε2, these mate-
rials are taken to be nonmagnetic. Since in our measurements the space between the
two plates is vacuum, we set ε3 = 1. It is of course possible to extend the calcula-
tions by filling this space with some other medium (gas or fluid), which would alter
the strength of the Casimir force, or even change its sign from attractive to repulsive
[102–104].

Figure 5.1: The parallel plates can be represented as two half spaces filled with media 1
and 2, separated by a distance d. The space in between (medium 3) is vacuum.
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The force is derived [97] from the electric and magnetic fields between the plates,
which in turn can be found by solving Maxwell’s equations with the appropriate
boundary conditions. For monochromatic electric and magnetic fields, in the form
E0e

−iωt and B0e
−iωt, we seek solutions of

∇×E0 = i
ω

c
B0, (5.5)

∇×B0 = −i
ω

c
ε(ω)E0 − i

ω

c
K. (5.6)

An extra fluctuating, random field K is added to account for the thermal and quan-
tum fluctuations of the material’s microscopic constituents [97, 105], and determined
by its correlation function

〈Ki(r)Kj(r
′)〉 = 2~ coth

(
~ω

2kBT

)
ε′′(ω)δijδ(r− r′), (5.7)

where the use of the δ-function means that the fluctuations are only locally corre-
lated. We assume nonmagnetic materials, therefore only electric noise is added. This
additional random field K is zero in the vacuum between the plates.

Solutions of Maxwell’s equations are found in the two media and in the vacuum
between them after demanding continuity of the normal and tangential components
of the fields and transversality of the waves. These solutions are given in momentum
space in terms of the wave vector k, where we separate the component perpendicular
to the plane of the gap kz from the tangential components k‖ such that k2 = k2

‖ + k2
z .

The Casimir force is derived from the zz-component of the Maxwell stress tensor,
based only on the electric and magnetic fields in the vacuum between the plates. The
fields in the plates still have influence on the force, because they shape the vacuum
fields via the continuity conditions. The calculated fields are monochromatic, so the
total force is obtained after an integration over all frequencies ω. The expressions for
the fields contain another integration, over the tangential wave vector component
k‖. To make the final expression more compact, this integration is transformed to an
integration over a parameter p defined as

p =

√
1− c2

ω2
k2
‖. (5.8)

The paths of integration for both p and ω are shown in Figure 5.2(a). The integration
over ω is purely over the real axis, but the path of integration for p lies both on the
real and imaginary axis, due to the integration over k‖ from zero to infinity. This
means that part of the integration is along a path where both p and ω are real. This is
problematic because the integrand contains an expression e−2ipωd/c, which oscillates
along this part, especially at large distances d. This can be solved by transforming
the paths of integration via contour integration. Note that part of the contour is
a semicircle with infinite radius, which does not depend on distance such that the
contribution along this path goes to zero. The new paths of integration are depicted
in Figure 5.2(b). The variable p is now purely real, but the frequencies ω have become
purely imaginary.
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Figure 5.2: Integration paths for the integrals in the expression of the Casimir force: (a)
As originally calculated, the integrand becomes highly oscillatory at the real part of the
path of integration for p; (b) After transformation of the integration paths, the integrand
no longer oscillates but the integration over ω is now over purely imaginary values.

At zero temperature, we can then replace ω = iξ, with ξ real. At finite tempera-
ture, however, the integrand contains a term coth(~ω/2kBT ), which has poles along
the imaginary frequency axis. According to Cauchy’s residue theorem, the integral
over the imaginary frequencies can be replaced by a sum over the residues at the
poles. These poles are positioned at points where the argument of the cotangent is
equal to a multiple of pi, so at frequencies

ωn = iξn = i
2πkBT

~
n, (5.9)

with n an integer. These frequencies are known as the Matsubara frequencies. Note
that because of the residue theorem only these frequencies contribute to the force.

The total force per unit area is therefore described by a sum over these Matsubara
frequencies and an integral over the parameter p, which represents the tangential
wave vector component:

PC = −kBT
πc3

∞∑
n=0

′
∞∫

1

p2ξ3
n

{[
(s1 + p)

(s1 − p)
(s2 + p)

(s2 − p)
e2pξnd/c − 1

]−1

+

[
(s1 + ε1p)

(s1 − ε1p)

(s2 + ε2p)

(s2 − ε2p)
e2pξnd/c − 1

]−1
}

dp, (5.10)

where εj = εj(iξn) and where the parameter sj =
√
εj(iξn)− 1 + p2, with j = 1, 2,

is introduced for compactness. The prime on the summation mark indicates that
the n = 0 term is multiplied with an extra factor 1

2 . At zero frequency only half
the residue is taken into the summation. Physically, this can be understood since
zero-order modes only have one polarization while higher order modes have two
polarizations.

This expression describes the Casimir force between two media 1 and 2 at nonzero
temperature and holds for nonmagnetic media. For magnetic materials, the force can
be derived with the magnetic permeability µ(ω) included [102, 106, 107]. We will
only consider nonmagnetic materials in this thesis. For spatially dispersive media,
like superconductors, there is interaction among different parts of the system with
a response that depends on their separation r − r′. In this situation the dielectric
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permittivity is also influenced by contributions at this separation and depends, after
a Fourier transform, on the wave vector: ε = ε(k, ω) [108]. Note that the presence
of the gap violates the translational invariance in the direction perpendicular to the
plates required for the Fourier transform. It is therefore only a phenomenological
approach to repeat the calculations leading to the Lifshitz expression while includ-
ing the wave vector dependence [109], another possibility is to directly rewrite Eq.
5.10 in terms of the reflection coefficients of the plates [110]. If the parameters p and
s1,2 are written out, it is possible to recognize the Fresnel equations in Eq. 5.10. The
full calculation is shown in Appendix A and leads to

PC = −kBT
π

∞∑
n=0

′
∞∫

0

qnk‖

{[(
r

(1)
TE r

(2)
TE

)−1

e2qnd − 1

]−1

+

[(
r

(1)
TMr

(2)
TM

)−1

e2qnd − 1

]−1
}

dk‖, (5.11)

where q2
n =

ξ2n
c2 +k2

‖ and r(1,2)
TE and r(1,2)

TM denote the reflection coefficients for the trans-
verse electric and transverse magnetic modes respectively, the superscript indicates
the corresponding medium. When the appropriate reflection coefficients are used,
this equation for the Casimir force can also be used for spatially dispersive media.

5.3 Models for the dielectric permittivity

The Casimir force is determined by the reflectivity of the surfaces, which in turn
depends on the dielectric permittivity of the materials. However, due to the trans-
formation described in the previous section, the dielectric permittivity needs to be
expressed in terms of imaginary frequencies. This expression is obtained via the
Kramers-Kronig relation

ε(iξ) = 1 +
2

π

∞∫
0

ωε′′(ω)

ω2 + ξ2
dω. (5.12)

The integration over all real frequencies means that full knowledge of the dielectric
permittivity is necessary to compare experimental data with theoretical calculations.
For high frequencies, such data can be obtained from optical measurements and tab-
ulated optical data are available for several materials1 [112]. For the low frequency
range where the dielectric permittivity is not determined experimentally, the data
has to be extrapolated. One model that can be used for extrapolation [113, 114] is the
Drude model for electrical conduction [115, 116]:

εD(ω) = 1−
Ω2
p

ω(ω + iγ)
, (5.13)

1Note that the dielectric function depends on the sample preparation and therefore the best agreement
between theory and experiment is achieved when the optical data is obtained from the actual sample that
is used for the Casimir force measurements [111].
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where Ωp is the plasma frequency, which is given by

Ω2
p =

4πnee
2

m∗
(5.14)

with ne the electron density, e the electron charge and m∗ the effective mass of the
electrons, and where γ is the relaxation frequency that accounts for Ohmic conduc-
tivity

γ =
Ω2
pε0

σ0
, (5.15)

with σ0 the static conductivity. It is therefore possible to obtain values for Ωp and γ
from measurements of the resistance in the material. The dielectric permittivity at
imaginary frequencies according to the Drude model is given by

εD(iξ) = 1 +
Ω2
p

ξ(ξ + γ)
, (5.16)

which can be used if no extensive optical data are available. However, due to some
theoretical discrepancies that have been argued, but also refuted [48, 117–123], some
prefer to use the plasma model of infrared optics:

εp(ω) = 1−
Ω2
p

ω2
. (5.17)

In this model the dielectric permittivity is purely real, therefore the model does not
account for Ohmic dissipation. This is contradictory with the fact that metals are
resistive at low frequencies and the use of the plasma model would seem incorrect,
except that certain Casimir force experiments have shown better agreement with this
model than with the Drude model [11, 52, 107, 124]. Since the plasma model is purely
real, using it to extrapolate the imaginary dielectric permittivity is not feasible. A
solution is to use the plasma model at imaginary frequencies,

εp(iξ) = 1 +
Ω2
p

ξ2
, (5.18)

but this does not take the measured optical data into account. Optical spectra of
real materials often contain extra resonances that are not modeled by the Drude and
plasma models. These extra resonances are a result of a restoring force binding the
core electrons to the nuclei [116]. To describe the optical spectrum including these
resonances, the Drude model for metals is extended with Lorentz oscillators to the
Drude-Lorentz model

εDL(ω) = 1−
Ω2
p

ω(ω + iγ)
+
∑
j

fj
ω2

0j − ω2 − iβjω
, (5.19)

where each oscillator j is described by an oscillator strength fj , oscillator frequency
ω0j and damping rate βj . Values for these parameters are obtained from fits to the
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optical spectra. The dielectric permittivity at imaginary frequencies is more correctly
described by the Drude-Lorentz model

εDL(iξ) = 1 +
Ω2
p

ξ(ξ + γ)
+
∑
j

fj
ω2

0j + ξ2 + βjξ
, (5.20)

or by the generalized plasma model [98]

εgp(iξ) = 1 +
Ω2
p

ξ2
+
∑
j

fj
ω2

0j + ξ2 + βjξ
. (5.21)

These models do account correctly for the resonances in the material, although reso-
nances lying outside the range of the optical reflection measurements are not taken
into account. In principle, the transformation of the optical data extrapolated via the
Drude model to imaginary frequencies should result in the same dielectric permit-
tivity as described by the Drude-Lorentz model. Note that by maintaining the reso-
nances but setting γ = 0, the generalized plasma model does describe the relaxation
of the core electrons, but not of the conduction electrons [98]. For the calculations
presented in this chapter we use these Drude-Lorentz and generalized plasma mod-
els, although we may refer to them as the Drude and plasma models for simplicity.

To this day a controversy exists how to deal with the low frequency range of
the dielectric permittivity. Both models can be used to calculate the Casimir force,
such that comparison to precision measurements can give more insight in this is-
sue. Figure 5.3 indicates how the dielectric permittivity of gold depends on the
imaginary frequency ξ. Optical data are available [112] for frequencies higher than
1.9×1014 rad/s, for lower frequencies the dielectric permittivity is computed accord-
ing to the Drude-Lorentz and generalized plasma models and the values Ωp = 9.0 eV
and γ = 35 meV [114]. The deviation between the two models is clearly visible.

At finite temperature, the Casimir force is computed only at a finite set of fre-
quencies, the Matsubara frequencies, since the contribution at other frequencies goes
to zero2. It turns out that at room temperature, all except the zero-order frequency
lie above 1.9 × 1014 rad/s, the lowest frequency at which optical data is available,
the position of ξ1 = 2.4 × 1014 rad/s is indicated in Figure 5.3. This means that
the contribution of these frequencies can not reveal a difference between the Drude
and plasma models. The difference only shows up in the zero-order Matsubara fre-
quency, which represents a static field. Because the expressions for the dielectric
permittivities diverge at zero frequency, we will continue our discussion in terms of
the reflection coefficients mentioned in Eq. 5.11. The reflection coefficients are dif-
ferent for the TM and TE modes, which, at zero frequency, represent a static electric
and static magnetic field respectively. The reflection coefficient can be determined by
substituting the dielectric permittivities into the Fresnel equations (the expressions
are given in Appendix A). For the zeroth order TM mode, which has only electric
fields in the direction of propagation, the reflection coefficient becomes

r
(D,p)
TM (ξ0) = 1. (5.22)

2Although the theory is developed at finite temperature, it is important to note that the problem how to
extrapolate the dielectric permittivity to lower frequencies is not temperature dependent and also occurs
at zero temperature.



5.3 Models for the dielectric permittivity 55

1010 1011 1012 1013 1014 1015 1016

ξ [rad/s]

100

101

102

103

104

105

106

107

108

109

1010

1011

1012

1013

ε(
iξ

)

Drude
plasma
ξ1  at 294 K

Figure 5.3: Dielectric permittivity of gold at imaginary frequencies iξ as a function of
ξ. For frequencies above 1.9 × 1014 rad/s optical data are available, the extrapolation
to lower frequencies was obtained with the values Ωp = 9.0 eV and γ = 0.035 eV. It
is clear that the Drude and plasma models deviate at lower frequencies. The first order
Matsubara frequency at room temperature is also indicated.

Note that this does not depend on the material and is also independent of tempera-
ture. More importantly, both Drude and plasma models predict the same coefficient.
Physically, this value also makes sense, since metals reflect static electric fields.

The remaining term is the reflection coefficient of the static magnetic field, the
zeroth order TE mode. This does have a different value for each model. The Drude
model predicts

r
(D)
TE (ξ0) = 0, (5.23)

which physically can be understood since nonmagnetic materials form no obstacles
for static magnetic fields. When substituted into the Lifshitz expression, this term
results in a zero contribution to the Casimir force. This value is independent of Ωp
and γ and is purely a consequence of this model. According to the Drude model,
therefore, only the static electric term contributes to the force at zero frequency.

The plasma model predicts a different coefficient:

r
(p)
TE (ξ0) =

k‖c−
√
k2
‖c

2 + Ω2
p

k‖c+
√
k2
‖c

2 + Ω2
p

. (5.24)

This leads to a nonzero contribution to the Casimir force, which is somewhat smaller
than the contribution of the zeroth order TM mode. For large distances, d� c

2Ωp
, and

large temperatures the contribution approximates to the value at the zeroth order TM
mode, which makes the total zeroth order contribution of the plasma model twice as
large as the Drude model in this limit.
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5.4 The effect of the different models on the Casimir
force

Since a controversy exists on how to deal with the low frequency contribution of the
dielectric permittivity to the Casimir force, experimental data are necessary to give
a final verdict. Since only the zeroth order TE mode differs for both models, it is
important to minimize the effect of the higher order modes. If we take a closer look
at Eq. 5.11, we notice the factors

e−2qnd = e
−2

√
ξ2n/c

2+k2‖d. (5.25)

The result of this term is that the Casimir force quickly reduces with distance and
with ξn. Recall that the Casimir force is a sum of the contributions at the Matsubara
frequencies. For larger distances, less Matsubara frequencies contribute to the force.
This influence is visualized in Figure 5.4. The Casimir pressure as a function of dis-
tance, for two gold coated plates at room temperature, is shown in Figure 5.4(a). The
difference between the two models only becomes visible at distances approaching
1µm or larger. The Matsubara frequencies that contribute to the force are shown in
Figures 5.4(b) and 5.4(c), for a distance of 100 nm and 1µm respectively. Note that
the contributions of both models overlap for the frequencies ξn with n > 0. At a dis-
tance of 100 nm, many frequencies have to be considered, whereas at 1µm only the
input of the first couple of frequencies is significant. Therefore, the relative contri-
bution of the zeroth order Matsubara frequency is larger and the effect of the zeroth
order TE mode is more likely to be detected.
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Figure 5.4: Distance dependence: (a) Casimir pressure as a function of distance at room
temperature, the two models give diverging contributions only at larger distances; (b)
Contribution of the different Matsubara frequencies for the two models at a distance of
100 nm; (c) At a distance of 1µm less Matsubara frequencies contribute to the force.

There is a lot of interest to resolve the difference between the models via precise
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measurements at large distances [11, 47, 50, 98]. But since the Casimir force reduces
rapidly with distance, the signal quickly becomes too small to detect. So far, mea-
surements of the distance dependence of the force have not resulted in a conclusive
answer yet.

Another approach may be more successful. Since the Matsubara frequencies
depend linearly on temperature, raising the temperature has a similar effect as in-
creasing the distance without reducing the force. Measurements of the Casimir force
at higher temperatures therefore should also show the difference between the two
models [125]. In Figure 5.5(a) we have plotted the temperature dependence of the
Casimir force for the two models. The distance between the plates is set at 100 nm,
where the force can easily be detected.

While evaluating the temperature dependence, we must be careful to note that
not only the force itself is a function of temperature (due to the interacting thermal
photons), but that also the dielectric permittivity as described by the Drude model
changes with temperature. The relaxation frequency γ is temperature dependent
because it is related to the conductance of the material. If no impurities are present,
the material’s resistivity can be described with the Bloch-Grüneisen formula, such
that for gold [48]

γ(T ) = 0.087

(
T

Θ

)5
Θ/T∫
0

x5ex

(ex − 1)2
dx, (5.26)

with Θ = 175 K the Debye temperature for gold. Of course, this is only a model. It
would be better to use measurements of the dielectric permittivity of the material at
all temperatures of interest. Since these data are only sporadically available, we have
to revert to the model. The temperature-dependent dielectric permittivity is calcu-
lated using a plasma frequency of Ωp = 9.0 eV and a relaxation frequency given by
Eq. 5.26. Note that compared to the dielectric permittivity obtained from optical
reflection measurements this model underestimates the permittivity at higher fre-
quencies. For comparison, the graph in Figure 5.5(a) shows two calculations for the
Drude model, one based on the optical data of gold with the relaxation frequency
kept constant at the room temperature value of 35 meV (green line) and one with the
permittivity calculated via the model only (yellow line). Note that since the model
underestimates the permittivity, the Casimir force is also estimated lower than in re-
ality. Without the availability of optical data at a large temperature range, we will
continue our calculations with the temperature-independent relaxation frequency.

The relative difference between the two models, normalized to the plasma model,
is shown in Figure 5.5(b). As expected, the difference increases with temperature.
A significant difference, of more than a few percent, arises at temperatures above
1000 K, which is technically unrealistic to achieve. This requirement can be relieved
by using a combination of larger distance and a temperature lower than 1000 K, but
higher than room temperature. At a distance of 400 nm, there is a significant dif-
ference of more than 10 percent at a temperature of 600 K. The effect might also
be investigated by varying the temperature over a large range. Figure 5.5(a) shows
that in the plasma model, the Casimir force is monotonically increasing with tem-
perature, while the Drude model predicts a slight decrease in a certain temperature
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Figure 5.5: Temperature dependence of the Casimir force, for a distance of 100 nm
between the plates: (a) At higher temperatures the two models diverge. The green line
shows the influence of the Drude model with γ kept at the room temperature value of
35 meV, while for the yellow line the relaxation rate is calculated according to Eq. 5.26;
(b) Difference between the Drude and plasma models, normalized to the plasma model,
for the temperature independent dielectric permittivity.

range. From a temperature scan at a fixed distance, the model can be deduced from
the sign of the force’s rate of change. This does, however, require a large achievable
temperature range.

So, by increasing the distance or the temperature the influence of higher order
Matsubara frequencies is decreased, and therefore the relative influence of the zeroth
order modes is increased. This allows investigation of the effect of these terms at the
cost of the necessity of very accurate measurements.

5.5 Casimir force between superconductors

There is another approach to specifically investigate the effect of the zeroth order TE
mode. Recalling that this mode represents a static magnetic field, and that supercon-
ductors expel such a field, measuring the Casimir force between superconductors is
a logical and more direct step to approach the issue [49, 55, 126]. A disadvantage
of using superconductors is that measurements can only be performed at low tem-
peratures, where the amount of higher order frequencies contributing to the force
is increased significantly compared to room temperature. This lessens the relative
effect of the zero-order frequency.

Just as with normal conductors, to calculate the Casimir force between super-
conductors full knowledge of the dielectric permittivity of the material is required.
There are several models describing the conductivity of superconductors, from which
the dielectric permittivity at imaginary frequencies can be deduced. Two of these
models will be discussed below. Both models operate in the local limit, where the di-
electric permittivity only depends on the frequency and not on the wave vector or on
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position. A model for the dielectric permittivity in the non-local limit, which would
be more correct for spatially dispersive superconductors, can be deduced from Ref.
[127].

The macroscopic two-fluid model [128] describes superconductivity on the basics
of thermodynamics. It states that only part of the conduction electrons contribute to
the supercurrent, while the other conduction electrons remain normal. The core elec-
trons remain unaltered, their contribution to the dielectric permittivity is described
by the Lorentz oscillations. The superconducting electrons have no dissipation, so
they are best described by the plasma model. For the normal electrons it is gener-
ally accepted that they are dissipative and can therefore be described by the Drude
model. We will first follow this description, later in this section we will explain the
results if we apply the plasma model description for the normal electrons as well.
The ratio of superconducting electrons to normal electrons is temperature depen-
dent and follows the Gorter-Casimir order parameter η(T ):

η(T ) =

[
1−

(
T

Tc

)4
]

Θ(Tc − T ), (5.27)

Θ(x) =

{
0, x < 0
1, x > 0

Above the critical temperature there are no superconducting electrons, which is en-
sured in the model by the Heaviside step function Θ(x). The conductivity of a su-
perconductor, and therefore its dielectric permittivity, is a sum of the supercurrent
permittivity and the permittivity of the normal electrons [129], with the Lorentz os-
cillators also included:

ε2F(iξ) = 1 +
Ω2
p

ξ2
η(T ) +

Ω2
p

ξ(ξ + γ)
(1− η(T )) +

∑
j

fj
ω2

0j + ξ2 + βjξ
, (5.28)

where Ωp and γ are the plasma and relaxation frequencies of the superconducting
material in the normal state. Note that due to the character of the order parameter,
the permittivity behaves plasma-like at zero temperature and Drude-like close to the
critical temperature. As the temperature decreases, more electrons contribute to the
supercurrent and the system is less influenced by Ohmic dissipation. Since the two-
fluid model assumes that the normal electrons in the superconductor are described
by the Drude model, this assumption should be continued above the critical tem-
perature in order to warrant a continuous transition across the critical temperature.
The Casimir force gradually changes from the value predicted by the Drude model
above the critical temperature to a value predicted by the plasma model as the tem-
perature approaches 0 K. For simplicity, we will call the combination of the two-fluid
model for superconductors and the Drude model for the normal state, including the
Lorentz oscillators, the Drude-two-fluid model.

In the plasma model description, the situation is different. The normal electrons
above the critical temperature are described by the generalized plasma model. Be-
low the critical temperature the resistivity of the normal electrons would not change,
such that in the superconductor both the normal electrons and the superconducting
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electrons follow the plasma model. The change in their ratio with temperature there-
fore does not alter the dielectric permittivity of the material and the superconducting
transition has no effect at all on the Casimir force. In the following, we will refer to
the two-fluid model combined with the generalized plasma model description for
the normal electrons simply as the plasma model.

The absence or presence of an effect of the superconducting transition is directly
measurable as the temperature is changed across the critical temperature. Since it
is a relative measurement, it requires a less strict calibration of the set-up than with
measurements at large distances. Compared to the high temperature measurements,
it has the advantage of a relative small temperature change between 0 K and the
critical temperature. In this chapter we will estimate the magnitude of the change in
the Casimir force, measurements of the force will be discussed in chapter 8.

To arrive at an expression for the Casimir force, we can follow the same proce-
dure as with normal conductors. The expression is given by Eq. 5.11, where the re-
flectivity of the superconductor is deduced via the Fresnel equations. The zero-order
terms are based on a reflectivity of one for the TM mode for both the Drude-two-fluid
model and the plasma model. As with normal conductors, the static electric field is
repelled. The reflectivity of the zero order TE mode in the plasma model is the same
as given by Eq. 5.24, in the Drude-two-fluid model we insert the two-fluid dielectric
permittivity at imaginary frequencies in the Fresnel equations and then take the limit
ξ → 0, the resulting term is given by

r
(2F)
TE (ξ0) =

k‖ −
√
k2
‖ + η(T )Ω2

p/c
2

k‖ +
√
k2
‖ + η(T )Ω2

p/c
2
. (5.29)

At T = Tc, this correctly leads to the Drude reflectivity r(D)
TE = 0, while at T � Tc the

plasma zero-order reflectivity is recovered. Note that for ideal metals (Ωp → ∞) the
plasma zero-order reflectivity goes to −1, i.e. perfect reflection of the static magnetic
field due to the Meissner effect.

The two-fluid model is only a phenomenological model, a more complete de-
scription for superconductors is given by the microscopic BCS-theory [130, 131].
From the current density in a superconductor [132], it is possible to deduce the con-
ductivity [133]:

σ(ω) = −i
2nee

2γ

m∗ω

∞∫
−∞

∞∫
−∞

{
L(ω, ε, ε′)− f(ε)− f(ε′)

ε′ − ε

}
1

(ε′ − ε)2 + γ2
dεdε′ (5.30)

where ε is the energy measured from the Fermi surface, f(ε) the Fermi-Dirac func-
tion and the spectral function L(ω, ε, ε′) is a function of the quasi-particle energy
E =

√
ε2 + ∆(T )2 and the BCS gap ∆(T ). Note that the BCS theory also assumes dis-

sipative normal electrons, and should therefore only be used in combination with the
Drude model description. The integration over ε and ε′ is computationally consum-
ing, and via the Kramers-Kronig relations another integration over the frequency is
needed to arrive at the desired expression of the dielectric permittivity at imaginary
frequencies. A less consuming calculation is offered in Ref. [134]. There it was found
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that impurity scattering lowers the dielectric permittivity and therefore the Casimir
force compared to the two-fluid model. This means that according to BCS theory, at
T � Tc the Casimir force will not reach the value predicted by the plasma model.
The calculations in this chapter, obtained with the two-fluid model, therefore give
an overestimation of the Casimir force and therefore of the expected influence of
superconductivity on the Casimir force.

The calculated Casimir pressure between two plates of niobium titanium nitride
(NbTiN) is shown in Figure 5.6(a) as a function of temperature. NbTiN is the mate-
rial we use in our experiments and has a critical temperature (Tc) of 13.6 K. In the
calculations, the plates are separated by 100 nm. The Casimir pressure according to
the plasma model is indicated by the orange line. The green line shows the Casimir
pressure as calculated by the Drude-two-fluid model.
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Figure 5.6: Casimir pressure between two niobium titanium nitride plates at a distance
of 100 nm: (a) Total pressure described by the Drude model plus two-fluid model (green
line) and plasma model (orange line). The Lorentz oscillations accounting for the core
electrons are included in the calculations. According to the Drude model description, the
pressure between the two superconductors transitions from the Drude model value above
the critical value of 13.6 K towards the plasma value at 0 K. The plasma model description
predicts no significant changes over temperature. The calculations are based on a plasma
frequency of Ωp = 5.33 eV and relaxation rate γ = 0.42 eV; (b) Contribution of the zero
order TE mode only, the calculation is based on the reflectivity given in Eq. 5.29.

Below the critical temperature, the magnitude of the pressure increases towards
the pressure calculated by the plasma model. For comparison, the calculation based
on the Drude model only is extended by the dashed green line below the critical tem-
perature, as if no superconducting transition occurs. All the calculations are based
on a plasma frequency of Ωp = 5.33 eV and relaxation frequency of γ = 0.42 eV. The
contributions of four Lorentz oscillators are included as well. We refer to chapter 8
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for a more detailed description of how these values are obtained from optical spectra
of NbTiN.

As predicted, the plasma model shows no change with temperature. The Drude-
two-fluid model shows a gradual transition in the Casimir pressure from the Drude
model value above the critical temperature to the plasma model value at T � Tc.
The superconducting transition should therefore only show a significant change in
Casimir pressure with temperature for the Drude model. If we compare the ex-
pected Casimir pressure at low temperature with the pressure just above the critical
temperature, we find a difference of 8.8% compared to the pressure around Tc. A
temperature-dependent measurement of the Casimir force can therefore distinguish
between the two models as the absence or presence of a change of the order of 8.8%,
which should be detectable with our current measurement accuracy.

The contribution of the zero-order TE mode in the Drude-two-fluid model is plot-
ted in Figure 5.6(b). Above the critical temperature it is equal to zero, as the Drude
model describes. Below the critical temperature, the contribution increases as the re-
flectivity increases according to Eq. 5.29. Due to the prefactor kBT/π in Eq. 5.11, this
zero-order contribution also decreases eventually as the temperature is decreased.
Note that the zero-order contribution is very small compared to the total Casimir
pressure, the change in this term is too small to explain the total effect of 8.8% change
with temperature.
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Figure 5.7: Dielectric permittivity of niobium titanium nitride at imaginary frequencies iξ
as function of frequency. The plot is based on actual optical data of our NbTiN sample,
extrapolated to lower frequencies either via the Drude-Lorentz model (green line) or gen-
eralized plasma model (orange line). The position of the first order Matsubara frequency
at 10 K is indicated and shows that the two models predict different contributions at this
frequency as well. Even at the hundredth Matsubara frequency, also indicated, the two
models differ.

To better understand this seeming discrepancy, we take a closer look at the di-
electric permittivity of niobium titanium nitride at imaginary frequencies, which is
plotted in Figure 5.7. This plot is similar to the graph in Figure 5.3. In chapter 8 we
will explain how the optical data were obtained that lead to values for the plasma
and relaxation frequencies as well as the parameters describing the Lorentz oscil-
lators, which are used either for the Drude-Lorentz model (green line) or for the
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generalized plasma model (orange line).
Compared to the dielectric permittivity of gold, the two models coincide at a

much higher frequency, this is caused by the higher resistivity of NbTiN (we mea-
sured a resistivity of 1.1 ± 0.6 × 10−6 Ω m, two orders of magnitude higher than
reported values of gold). The vertical dashed line indicates the position of the first
order Matsubara frequency at 10 K. Note that in contrast to the situation with gold,
both models lead to a different dielectric permittivity at this frequency, which means
that both models contribute differently to the Casimir force at this frequency. Even
up to the hundredth Matsubara frequency, differences could be observed between
the models. Although the total number of contributing Matsubara frequencies is
larger at low temperatures (at 10 K, this is about 2500), there still are relatively more
frequencies at which the contribution is different for the two models than in the case
of gold at room temperature. These added contributions at the first hundred Mat-
subara frequencies can explain a much larger total difference in the Casimir force
than can be explained by the zero-order TE mode only.

5.6 Casimir force with experimental parameters

The calculations so far are based on an idealized situation. In an experimental set-
up, certain parameters differ from this situation, which may influence the effect of
the superconducting transition. Although the calculations all express the Casimir
force in the plate-plate geometry, actually measuring the force between two plates is
technically challenging [135]. Most experiments, as well as the experiments in this
thesis, are set up in a sphere-plate geometry. A theoretical prediction about the force
between a sphere and a plate, can be derived from the parallel-plate pressure via
the proximity force approximation (PFA) [136–138], which relates the parallel-plate
pressure to the sphere-plate force gradient:

∂Fsp
∂d
≈ 2πRPpp, (5.31)

where R is the sphere radius. The error in the approximation is estimated [139] to
be of the order of d/R, which for significantly large spheres with a radius around
100µm, at distances around 100 nm is around a tenth of a percent. Since we are ul-
timately only interested in a relative difference below and above the critical temper-
ature, this error falls away. In our experimental set-up we measure the sphere-plate
force gradient divided by the sphere radius, which is equal to 2π times the parallel-
plate pressure.

The choice of which superconductor to use is motivated by several arguments.
As mentioned in section 5.4, less higher order Matsubara frequencies contribute to
the force when the temperature increases. If we want to investigate specifically the
effect of the 0-frequency contribution, we want to do the measurements preferably at
a high temperature. Superconductors with a high critical temperature exist, but can
be prone to oxidation, which may result in surface charges. These charges hinder
the calibration of our set-up. We have therefore chosen niobium titanium nitride
(NbTiN) as our superconductor. Thin film NbTiN has a critical temperature near
15 K [140] and the presence of the nitrogen atoms prevents oxidation.
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Figure 5.8: Casimir force gradient, normalized to the sphere radius, between a gold
sphere and a niobium titanium nitride plate as a function of temperature. The green line
shows the situation where the gold sphere and the normal electrons in the NbTiN plate
are described by the Drude model, while the orange line shows a description by the plasma
model.

During the measurements we want to be sure that the superconductors are in-
deed in the superconducting state. For the plate, this can be done by monitoring
the plate’s resistance. But for the sphere, this is technically more challenging since
attaching wires to a microsphere is not very feasible. A more feasible method would
be to position the sphere in a magnetic field and read out the change in this field
by a SQUID as the sphere transitions to its superconducting state [141]. But this re-
quired a significant alteration to our initial set-up. We have therefore chosen to pair
the superconducting plate with a gold sphere. Note that this is far from ideal if we
wish to probe the zero-frequency term specifically. The Casimir force depends on
the multiplication of the reflectivities of the surfaces. For the TE mode at zero fre-
quency, the Drude model sets the reflectivity of gold to zero, such that the effect of
the change in static reflectivity of the superconductor is canceled. Physically, it is like
only one mirror exists for this mode. The plasma model does lead to nonzero con-
tributions of both mirrors, but they are small and hard to distinguish in comparison
to the zero contribution predicted by the Drude model. However, the higher order
modes still lead to significant changes between the Drude and plasma models, so the
effect of the superconducting transition should still be visible as a possible change in
the contribution of these modes.

Figure 5.8 shows the Casimir force gradient, normalized to the sphere radius,
between a gold coated sphere and a NbTiN plate as a function of temperature at a
sphere-plate separation of 100 nm.

Two situations are depicted. In the first situation (green line), the spherical gold
surface and flat niobium titanium nitride surface above the critical temperature are
described by the Drude-Lorentz model, while the superconductor (NbTiN below the
critical temperature) follows the the two-fluid model. As with the parallel NbTiN
plates, Figure 5.6, there is a continuous transition across the critical temperature. At
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T � Tc, the force gradient does approach the plasma-model prediction, but does not
reach the same value, since the gold sphere still follows the Drude-Lorentz model.

In the second situation, the gold surface follows the generalized plasma model, as
does the NbTiN in its normal state. The two-fluid model is still used for the super-
conductor, but now describes a mixture of plasma-like superconducting electrons
and plasma-like normal electrons, so in effect we can use the generalized plasma
model for the NbTiN below the critical temperature as well. The orange line in Fig-
ure 5.8 indicates that there is hardly any change in the Casimir force gradient with
temperature.

In the Drude model description, the force gradient changes about 5.1% compared
to the value at the critical temperature. This is less than the change with temperature
between two NbTiN parallel plates, but it is still measurable. For comparison, room
temperature measurements were reported with a relative error of 0.19 to 9.0 percent
[11].

5.7 Conclusions and outlook

The Casimir force between real conductors is determined by the frequency depen-
dent, complex dielectric permittivity of the opposing surfaces. Full knowledge of
the dielectric permittivity is required, since electromagnetic waves at all frequencies
(up to a certain cut-off frequency) contribute. To avoid oscillations in the integrand,
the frequency path of integration is transformed from real to imaginary frequencies.
At finite temperatures, only a discrete set of frequencies, known as the Matsubara
frequencies ξn, contribute to the Casimir force. The dielectric permittivity at a cer-
tain Matsubara frequency follows from a integration of the dielectric permittivity
over all real frequencies, but the integrand is weighted by each ξn, such that the
greatest contribution comes from the frequency range around the given Matsubara
frequency. Effectively, only knowledge of the dielectric permittivity around the Mat-
subara frequencies is necessary, which somewhat lifts the requirement to know the
full dielectric permittivity. For gold at room temperature, the dielectric permittiv-
ity at all higher order frequencies can be deduced from measurements and only the
static contributions remain unknown. Since the contribution from the static electric
field can be determined from the reflectivity, only the contribution from the static
magnetic field remains open to debate. In superconductors, the reflectivity for the
static magnetic field is determined by the Meissner effect. Therefore, measurements
of the Casimir force between superconductors may give information on the contri-
bution of this field to the total force.

For two plates of niobium titanium nitride, we calculate an effect of 8.8 percent
across the superconducting transition. This is significantly larger than what you
would expect based on a possible change at only one Matsubara frequency. From the
dielectric permittivity of NbTiN at imaginary frequencies we can induce that certain
higher order modes also contribute differently to the Casimir force for the Drude and
plasma models. Across the superconducting transition it is not only the zero-order
mode that changes, which explains the large effect. For an experimentally more ac-
cessible geometry of a niobium titanium nitride plate paired with a gold sphere, this
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effect is smaller, a little more than 5 percent. Note that our calculations overestimate
these percentages, since the two-fluid model predicts a larger effect than the physi-
cally more correct BCS theory. The experiments in the following chapters will show
whether the effect of the superconducting transition is indeed measurable and if so,
what the magnitude of this effect to the Casimir force is.



6
Details of the Experimental Techniques

In the past, measurements of the Casimir force were performed using different kinds
of experimental set-ups. The first measurements relied on macroscopic objects, such
as two metallic parallel plates [44] or a lens and a plate [45, 46]. Technological
progress allowed an enhanced force sensitivity and sensor read-out, as well as force
measurements between microscopic surfaces. Modern set-ups for Casimir force mea-
surements include torsion pendulums [47, 50], atomic force microscopes [51, 52, 54,
142–144], microelectromechanical systems [145], micromechanical cantilevers [135]
and micromechanical torsional oscillators [11, 146, 147]. For an overview of Casimir
force experiments, see for example Refs. [98, 148].

In this thesis we will use a set-up based on atomic force microscopy. We have at-
tached a polystyrene sphere with 200µm diameter on a micromechanical cantilever,
such that the cantilever and sphere act as a force sensor [149]. When the sphere is
positioned above a plate, any force between the sphere and plate causes changes in
the cantilever motion. We read out this motion using fiber interferometry [92, 150].
The first part of this chapter will describe fiber interferometry in more detail and its
possibilities and limits when applied to our set-up. We also investigate the use of
graded index (GRIN) lenses to focus the light onto the cantilever.

Since surface roughness influences Casimir force measurements, it is important
that the surfaces can still be considered flat at the smallest sphere-plate separation.
We will show topography images of our gold coated sphere as well as of the two
plate coatings that are used for Casimir force measurements in this thesis: gold and
the superconductor niobium titanium nitride. We will also show that cooling has no
effect on the gold coating of the sphere.

A description of our measurement method will follow in chapter 7. There we
will explain that it depends on the potential we set on the plate. We simultaneously
want to perform a conductance measurement of the superconducting plate to check
whether it is in its normal or superconducting state. These two measurements may
not interfere. In the final part of this chapter we will explain our plate resistance
detection scheme that can run simultaneously with our Casimir force measurement.
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6.1 Fiber interferometry

Fiber interferometry [92, 150] is based on the interference between light reflected
at the end facet of a single-mode fiber and light that is reflected at a surface some
distance d in front of the fiber end facet. Since the light originates from the same
laser source and follows the same path through the fiber, the interference signal is
in principle only sensitive to changes between the fiber end and reflective surface.
In order to deduce a general formula for the interferometer signal, we need to know
the amplitudes of the two reflected beams, which are indicated in Figure 6.1.

r1 

r2 

t1 

z=d z=0 

E1 E2 

Figure 6.1: Schematic image of a fiber end in front of a reflective surface, separated by
a distance d. Also shown are the reflection and transmission coefficients and the paths of
the two interfering beams with amplitudes E1 and E2.

Light propagates through the fiber and encounters a 4% intensity reflection at the
fiber-to-air interface. The normalized amplitude of the Gaussian beam reflected at
this surface is given by [151]:

E1(r, t) = −r1

√
2

π

1

w0
e
− r2

w2
0 e−iωt, (6.1)

where r2 = x2 + y2, −r1 is the reflection coefficient at the fiber-to-air interface1, w0 is
the beam waist at z = 0 and ω is the angular frequency of the light.

The second beam is coupled out of the fiber, reflected at the second surface a
distance d away and coupled back into the fiber. In the first step, the amplitude
is multiplied by the transmission coefficient t1. The light then travels a distance z
where the beam waist w and radius of curvature R are altered according to:

w(z) = w0

√
1 +

(
z

zR

)2

(6.2)

R(z) = z +
z2
R

z
(6.3)

1Note the minus sign, which is due to time-reversal invariance. The Stokes relations dictate a phase
difference of 180◦ between internally and externally reflected light [152].
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with the Rayleigh length zR = πw2
0/λ and λ the wavelength of the light. At the

second surface, the light picks up a reflection coefficient r2. The light then travels
back to the fiber end facet; the total travel distance is equal to 2d. Since both the beam
waist and radius of curvature have changed, the beam no longer overlaps with the
fiber core. We need to find the coupling coefficient that describes how much light
couples back into the fiber. The effect of the radius of curvature can be ignored,
however, regardless of the travel distance. For small distances, the curvature hasn’t
changed much and the beam is still effectively flat. At large distances the beam is
curved significantly, but since the beam has expanded as well, we can assume that
the beam is locally flat at the fiber core3. So we just look at the coupling coefficient
between a beam with waist w(z) and the fiber mode with waist w0. Since the beams
are normalized, the coupling coefficient is given by the overlap integral:

ηc(z) =

∫ ∞
0

2

π

1

w0
e
− r2

w2
0

1

w(z)
e
− r2

w2(z) 2πr dr

=
2w0w(z)

w2
0 + w2(z)

=
2

√
1 + (z/zR)

2

2 + (z/zR)
2 . (6.4)

Considering this coupling coefficient and an extra factor t1 to account for the
transmission back into the fiber, the amplitude of the second beam in the fiber is
given by

E2(r, t+ τ) = ηct
2
1r2

√
2

π

1

w0
e
− r2

w2
0 e−iω(t+τ), (6.5)

where τ = 2d/c is the time delay resulting from the extra path length. The detector
signal W follows from the autocorrelation function of the sum of the two beams
[153], multiplied by the detector responsivity ρ:

W (d, f) = ρ〈{E1(r, t) + E2(r, t+ τ)}∗{E1(r, t) + E2(r, t+ τ)}〉 (6.6)
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√
I1I2 cos(ωτ). (6.7)

The first (second) term can be recognized as the intensity of the first (second) beam,
while the last term is the interference term. In this term one can recognize the inter-
ferometric visibility

V (d) =
2
√
I1I2

(I1 + I2)
=

2ηc(d)r1t
2
1r2

(r2
1 + η2

c (d)t41r
2
2)
. (6.8)

3Mathematically, the condition holds if we can ignore the contribution e
iπr2

λR(z) of the radius of curva-

ture to the Gaussian beam, which is true if πr2

λR(z)
< 1. At the fiber core, r = w0, so the condition becomes

πw2
0

λ
= zR < z +

z2R
z

= R(z), which always holds.
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If we call W0 = ρ(I1 + I2) the midpoint signal, we can rewrite the previous equation
in a more compact form

W (d, f) = W0 −W0V cos

(
4πfd

c

)
. (6.9)

A fiber interferometer is often used to detect small fluctuations (∆d� λ) on top
of a large gap distance (d� λ). The sensitivity to detect these fluctuations is maxi-
mum at the quadrature point, which can be achieved by either tuning the gap dis-
tance or the laser frequency. In our set-up, we fix the gap distance and tune the
laser frequency to quadrature. Since the visibility decreases at large distance, this
gap distance cannot be too large. But if the gap distance is small, the frequency
scan range of the laser can be insufficient to find the quadrature point. To overcome
the requirement to operate the interferometer at quadrature point, the signal can be
modulated. The modulated term in the interference signal is at phase quadrature
with the original term, therefore always warranting maximal sensitivity. Since dis-
tance modulation is often not feasible, commercial interferometers tend to modulate
the laser frequency, which may result in added noise to the signal. In chapter 7 we
will describe this method in more detail.

The gap distance in the interferometer that reads out the cantilever motion is
fixed at 200 − 300µm, which is small enough to obtain a high visibility and large
enough for our laser to scan almost half a period of the cosine in the interferometer
signal. We therefore do not use any modulation techniques in this read-out.

The interferometers are fed by a 1550 nm, 20 mW laser module with a frequency
scan range of 250 GHz. We use two distributed feedback (DWDM DFB) lasers with
adjacent frequency ranges (Thorlabs LS5-C-24A-20-NM and LS5-C-22A-20-NM) to
increase the scan range even further. The laser module where the frequency is in
quadrature point is used for the cantilever interferometer, the other is used to read
out the motion of the plate under the cantilever. The light of each laser first passes
through an optical isolator (Thorlabs IO-H-1550APC) to protect the laser from back-
reflected light. The light then goes through a 90/10 fiber coupler (Thorlabs 10202A-
90-APC) of which the 90% port is terminated and the 10% port is connected to a fiber
with a cleaved fiber end. The reflected light passes the coupler again, now 90% falls
onto a detector (Thorlabs PDA10CS).

With the cantilever interferometer we want to detect small forces that are man-
ifested as small deviations in the cantilever motion. A question that arises is what
the smallest detectable motion, or noise floor, is. The noise floor is mostly influenced
by mechanical noise from vibrations from the outside world. But even when the set-
up is mechanically stable, there is an intrinsic noise floor caused by the laser phase
noise. This noise floor can be calculated from the laser linewidth using the interfer-
ometer signal. We want to know the influence of the laser linewidth ∆f on the signal
linewidth ∆W when the laser is tuned at quadrature (sin(4πfd/c) = 1):

∆W = W0V
4πd

c
sin

(
4πfd

c

)
∆f = W0V

4πd

c
∆f. (6.10)

To obtain the signal noise floor in meters, we divide the signal linewidth by the
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sensitivity 4πW0V/λ and the square root of the bandwidth B:

∆dmin =
dλ

c

∆f√
B
. (6.11)

With a fiber-to-cantilever distance d = 200µm, laser wavelength λ = 1550 nm and
linewidth ∆f < 10 MHz we find a noise floor of ∆dmin < 327 fm/

√
Hz for a band-

width of 1 kHz. To check this value, we measured the spectrum of the cantilever
interferometer signal, shown in Figure 6.2. The cantilever motion is clearly visible
around 2.3 kHz. From a fit through the data, we could obtain a resonance frequency
of 2306 Hz and mechanical quality factorQ = 4.85×103. These are reasonable values
for a cantilever in vacuum at room temperature. This tells us that the fit is reason-
able, despite the fact that the spectrum analyzer’s low frequency noise has not been
taken into account in the fit. From the fit we determine a noise floor of 103 fm/

√
Hz.

This is somewhat lower than the calculated value, but differences can be explained
by a smaller fiber-to-cantilever distance and lower laser linewidth.
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Figure 6.2: Noise spectrum from the cantilever interferometer signal. The cantilever
motion at 2.3 kHz is clearly visible. From a fit (red line) through the data we could
determine a noise floor of 103 fm/

√
Hz. This value is somewhat lower than the calculated

value of 327 fm/
√

Hz, which may be explained by a lower laser linewidth or smaller fiber-
to-cantilever distance. The low frequency range of the spectrum is dominated by pink
noise from our spectrum analyzer, which is not taken into account in the fit.

We have compared our home build fiber interferometer with several commer-
cially available interferometers from Optics11 (OP1550) and Attocube (IDS3010). The
OP1550 came in two versions, standard with a sampled grating distributed Bragg re-
flector (SG-DBR) laser diode or upgraded with an external-cavity diode laser (ECL).
The interferometers of Optics11 could be directly connected to our set-up, such that
the measurements could be obtained under similar circumstances. The Attocube
interferometers can only be combined with their sensor heads, that require a large
distance between the reflective surfaces of at least several millimeters. All interfer-
ometers showed a higher noise floor. The noise floor of the OP1550 was 3 pm/

√
Hz



72 Details of the Experimental Techniques

for the SG-DBR laser and 300 fm/
√

Hz for the ECL. With the IDS3010 we measured
a noise floor between 22 and 33 pm/

√
Hz depending on the sensor head. This shows

that the flexible use of commercial interferometers limits their achievable sensitivity
and that our noise floor of 100 fm/

√
Hz is very reasonable. It is especially advan-

tageous that our interferometer can operate at very small distances, since the noise
floor depends linearly on the fiber-to-cantilever distance when the dominant noise
source is laser phase noise. Note that this requires a laser with a reasonably large
frequency scan range, such that the laser can always be set at the quadrature point.

When the distance can no longer be decreased, the noise floor can be lowered
by using a laser with a smaller linewidth. But this effect is not limitless. Interfer-
ence occurs between all reflected light beams, not just between light reflected at the
fiber end facet and at the cantilever. Reflections at for example fiber connectors may
result in unwanted interferences. Due to small changes in the fiber length caused
by temperature fluctuations in the cryostat, or changes in the amount of the light
reflected at the connectors, the unwanted interferences do not just add a static back-
ground. All vibrations in the system now show up in the interferometer signal. Since
interference can only occur between coherent beams, a solution to avoid this effect
is to lower the coherence length of the laser to the fiber-to-cantilever distance. This
however also enlarges the laser linewidth, so a compromise has to be made. Our
lasers allow for coherence control via a small signal modulation on the laser current.
The effect of this modulation is depicted in the noise spectrum of our cantilever in-
terferometer signal in Figure 6.3. The laser current was modulated at 18.5 kHz at
different modulation depths. The laser linewidth can be increased from less than
10 MHz with no modulation to more than 1 GHz at full modulation. The red line
in Figure 6.3 displays the noise spectrum without any modulation, which results in
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Figure 6.3: Noise spectrum from the cantilever interferometer, without modulation (red
line) and with 5 percent (orange line) and 10 percent (black line) modulation. The
modulation decreases the noise floor by a factor of three, but a modulation depth of more
than a few percent has no further effect. The noise peaks are caused by noise in our
electronics and by mechanical vibrations in our cryostat.
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a noise floor of about 300 fm/
√

Hz. A modulation depth of five percent lowers the
noise floor roughly three times, but further reduction of the coherence length has no
more influence on the noise floor. We therefore kept the modulation at a modulation
depth of five percent during our measurements.

6.1.1 GRIN lenses to focus light

Our measurement scheme based on interferometric read-out of the cantilever mo-
tion assumes only interference between the light reflected at the fiber end facet and
cantilever. Spurious reflections will result in parasitic interferences in our signal.
Especially harmful is light reflected at the plate underneath the cantilever, because
that results in a parasitic interference that changes during a measurement run while
the cantilever-plate distance is varied. To prevent this, several options are available.
Decreasing the laser coherence length to only several hundred micrometers is tech-
nically not achievable. The plate can be made from an absorptive material, but this
will severely limit the choice of materials for the Casimir measurements. Another
option is to position the fiber under an angle, to prevent light reflected at the plate
from coupling back into the fiber (compare with the read-out in atomic force mi-
croscopes via a quadrature detector), but this will also influence the read-out of the
cantilever motion. The best option is to use the cantilever to block the light from the
fiber before it reaches the plate. Especially since a relatively large sphere is attached
to the cantilever, this proofs to be a practical solution. It is not completely reliable,
however, because during our sample fabrication we have no way to check that all
the light is blocked.

The possibility of stray light to couple back into the fiber is significant since the
light from the fiber is divergent. We therefore investigated the option to focus the
light onto the cantilever, using graded index lenses because of their size and com-
patibility with fibers. A graded index (GRIN) lens is a cylindrical rod where the
index of refraction varies radially [152] according to

n(r) = n0

(
1− ζ2r

2

)
, (6.12)

where n0 is the index of refraction at the center and ζ a positive constant indicating
the variation towards the curved edge. How the light is propagated through the lens
is determined by the change in refraction index and by its length. A common use of
GRIN lenses is to collimate light from a fiber by placing a lens with the correct length
directly behind it. The collimated light then has a beam waist (radius) of roughly
40 to 200µm for commercial GRIN lenses. This is still too large compared to our
cantilever width of 50µm. By increasing the distance between the fiber and GRIN
lens (distance v in Figure 6.4), it is possible to focus the beam onto the cantilever.

The resulting beam waist and the required distances depend on the GRIN lens
and can be calculated via ray matrices [154, 155], with the ray matrix describing the
propagation through a GRIN lens given by [151]

MGRIN =

[
cos(ζz) sin(ζz)/n0ζ

−n0ζ sin(ζz) cos(ζz)

]
, (6.13)
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v b 

Figure 6.4: Diagram of the single mode fiber (left), graded index (GRIN) lens (middle)
and cantilever (right). The light beam path is indicated, as well as the fiber-to-lens
distance v and lens-to-cantilever distance b. By focusing the beam onto the cantilever
via a GRIN lens, it is less likely that light reflects on the plate under the cantilever and is
coupled back into the fiber to cause unwanted interference.

where z is the length of the lens. To block the light completely with the cantilever,
a beam waist of less than 25µm is required. This can be achieved with distances v
and b of several millimeters. Combined with the GRIN lens length of several mil-
limeters, this results in a distance of at least 8 mm between the cantilever and the
fiber end facet. These are the only reflective surfaces in the set-up, since GRIN lenses
are AR coated to suppress extra reflections on the facets. However, a gap of 8 mm
significantly increases the noise floor of the interferometer, such that the cantilever
motion can no longer be detected. A technically challenging solution would be to ap-
ply anti-reflection coatings on the fiber end and on one facet of the GRIN lens, such
that the reflective surface is now the facet of the GRIN lens positioned closest to the
cantilever. But even then the minimum gap distance is of the order of a millimeter.

Therefore, a reliable way to focus the beam onto the cantilever using GRIN lenses
could not be obtained with commercially available lenses. A custom-made GRIN
lens designed for a small gap between the reflective surfaces may still be a solution,
but this would have to be investigated further.

6.2 Sample characterization

As a second step in our set-up characterization, we take a closer look at our samples.
Our force probe is a polystyrene sphere (Thermo Scientific 4320A, radius 100µm)
that is attached to a micromechanical cantilever (Bruker RESP-20) with UV-curable
adhesive (NOA 81), using a micropositioning system. The sphere and cantilever are
then coated with a 4 nm titanium adhesion layer and a 200 nm conductive layer of
gold in a sputtering machine (Leybold Z400).

A larger sphere radius increases the strength of the force. Also, in our data analy-
sis we use several approximations that become more valid with larger sphere radius,
as will be discussed in chapter 7. The largest commercially available spheres that we
could find which still have an acceptable surface roughness [156], have a radius of
100 µm.
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Surface roughness influences the strength of the Casimir and electrostatic forces
at small distances and can even influence the effective separation [157, 158]. There-
fore, the surface roughness limits the smallest distance at which the Casimir force can
be reliably measured. Figure 6.5 shows an investigation of the large and small scale
surface roughness of our spheres. The scanning electron microscope (SEM) image
in Figure 6.5(a) shows that there are some flakes on the sphere. These may prevent
an approach closer than several micrometers if they are located in the area of closest
approach. There are, however, no other larger scale irregularities. Note that even
though the SEM image is taken with a beam energy of 15 kV, no charging effects are
shown on the sphere surface. This means that the gold layer is indeed conductive.
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Figure 6.5: Characterization of the surface roughness of our force sensor, a 100µm
radius sphere attached to a cantilever and coated with a 200 nm conductive layer of gold:
(a) SEM image, except for some micrometer sized flakes, there is no large scale surface
roughness; (b) AFM topography image (3µm by 3µm) of the sphere surface, the surface
roughness has an RMS value of 16.8 nm.

A tapping-mode atomic force microscopy (AFM) topography image of the sphere
surface is shown in Figure 6.5(b). The surface roughness has an RMS value of 16.8 nm,
mostly due to the surface roughness of the polystyrene sphere. Therefore, an ap-
proach of several tens of nanometers is in principle possible without a significant
effect of surface roughness.

These force probes are meant to be operated at a base temperature of 4 K. But it
is unknown whether the difference in thermal contraction between the polystyrene
sphere and gold layer will cause the gold layer to flake. The SEM images in Figure 6.6
show the effect of cooling a gold coated sphere to 4 K and warming up again. There
is no difference visible before (Figure 6.6(a)) and after (Figure 6.6(b)) cool-down. This
means that effects like peeling do not occur and that the force probes can safely be
used at low temperatures.
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(a) (b)

Figure 6.6: SEM images of the gold coated sphere surface (a) before and (b) after
cooling the sphere down to 4 K. The absence of notable differences shows that cooling
does not affect the coating on the spheres.

The distance of closest approach is not only determined by the surface roughness
of the sphere, but also by that of the plate. The plate’s surface roughness is deter-
mined with tapping-mode AFM topography scans. The scans are shown in Figure
6.7 for the different plate materials that were used: 150 nm gold on sapphire and
200 nm niobium titanium nitride (NbTiN) on SiO2 respectively. From these scans
we can determine the RMS surface roughness as 0.75 nm for gold and 1.13 nm for
NbTiN. For all materials it should be possible to approach the sphere up to several
tens of nanometers and we consider the plates to be perfectly flat for all practical
purposes.
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Figure 6.7: AFM topography images of the plates used for Casimir force measurements:
(a) 150 nm gold on sapphire, with a surface roughness of 0.75 nm RMS; (b) 200 nm NbTiN
on SiO2, with a surface roughness of 1.13 nm RMS
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6.3 Plate resistance

Even though the NbTiN plate is made of a superconducting material, we want to
be sure that the plate is superconducting at the time of a Casimir force measure-
ment. Therefore we designed a resistance bridge that constantly compares the cur-
rent through the plate with that through a reference resistance. We do not want this
measurement to interfere with the Casimir measurements, where the calibration is
based on the voltage V = VDC + VAC between the sphere and the plate. This means
we do not want our resistance detection scheme to cause any high voltages at the
center of the plate, where the sphere is positioned. So we keep the potential of the
plate’s center at the voltage VDC + VAC with respect to the sphere and then lift and
lower the potential at the edges of the plate, each with a voltage Vb/2 with respect to
the center. As is shown in Figure 6.8, the total voltage over the plate is then Vb and
the current through the plate is detected by comparing it to an adjustable resistance
at room temperature. When the plate resistance is equal to the adjustable resistance,
the output of the resistance bridge is zero. Since a DC measurement is susceptible to
drifts, we alternate the voltage Vb at 63 Hz with an amplitude of 0.5 V. The bridge
imbalance output can then be monitored with a lock-in amplifier.
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Figure 6.8: Schematic of the implementation of an extra plate resistance measurement
while keeping the center of the plate at the desired potential for the electrostatic calibra-
tion.

At room temperature, we set the reference resistance to be equal to the plate’s
resistance. During cool-down we monitor the bridge output and the temperature of
the plate. At the superconducting transition of the plate we observe a sudden jump
in the bridge output, as shown in Figure 6.9. This jump is visible every time we
heat or cool the plate through the superconducting transition. Since this detection
method does not interfere with our other voltages, we can apply it during a Casimir
measurement run and tell for each data point whether the plate was superconduct-
ing or not.

A real-time monitoring of the plate’s resistance is necessary, since the critical tem-
perature depends not only on the parameters of the NbTiN coating, but also on set-
up parameters that may differ per measurement run. This is demonstrated in Fig-
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ure 6.9. Using a heater in the cryostat, we have swept the temperature of the plate
through its superconducting transition as measured by the bridge imbalance output.
During this sweep we have switched off the lasers and all unnecessary voltages. The
sphere was retracted to a distance of several millimeters. Under these conditions, we
measured a critical temperature of 13.7 K for the NbTiN coating (see yellow dots in
Figure 6.9). Next we repeated these sweeps, but now we switched the laser feeding
the plate interferometer on at different laser powers.
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Figure 6.9: Output of the resistance bridge as a function of plate temperature. A sudden
jump in the output is caused by the superconducting transition of the plate. The critical
temperature of the NbTiN is found to be 13.7 K, but depends on the power of the laser
light incident on the plate. The inset shows a linear dependence of the measured transition
temperature on the laser power.

It is clear from the plot that the measured transition temperature is lowered when
light shines on the plate. The inset shows a linear dependence on laser power, with
the critical temperature being lowered to 13.4 K at 1.8 mW laser power. At low tem-
perature, we use a laser power of 0.4 mW at the plate. There are several explanations
for this behaviour. Since the laser light heats the plate from above and the thermome-
ter is placed underneath, the plate may be warmer than the thermometer monitors,
such that the actual critical temperature remains unaltered. It is also likely that the
light negatively influences the superconducting state, thus lowering its critical tem-
perature [159]. More precise measurement can find the actual reason behind this
phenomenon, but lie outside the scope of this thesis.



7
Simultaneous Calibration Scheme for Casimir Force

Measurements

In 1948 Casimir predicted the attractive force between two perfectly conducting
plates in a vacuum. But experimental confirmation of this force proved to be dif-
ficult due to several factors. The challenge of positioning the two plates perfectly
parallel [44, 135] is often circumvented by measuring the force between a plate and
a sphere. But two other challenges remain, namely the calibration of the set-up and
sphere-plate separation and the presence of the electrostatic force caused by a differ-
ence in surface potential between the two materials.

Calibration of the set-up and the distance is often done prior to the Casimir force
measurements. Compensation of the electrostatic force is achieved at the start of a
measurement run by setting a voltage over the sphere and plate such that the de-
tected force is minimized. The disadvantage of these methods is that it is still sen-
sitive to time-related drifts and distance-dependent contributions to the electrostatic
force. That is why we use a method that runs simultaneously with our measure-
ment run [144, 160]. We modulate the electrostatic force at a certain frequency by
applying an AC voltage between the sphere and the plate. Based on the modulated
force signal we can create a feedback loop that sets the distance at a desired value by
adjusting the amplitude of the AC voltage.

In this chapter we will describe this measurement method. We show Casimir
force measurements between a gold coated microsphere with radius R = 100µm
and a gold coated sapphire plate. We compare our results with calculations of the
Casimir force between two gold surfaces to show that our set-up can reliable mea-
sure the Casimir force.
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7.1 Detection of the plate motion

The set-up is designed to measure forces at submicron distances in a sphere-plate
geometry. The gold-coated sphere is attached to an atomic force microscope can-
tilever that acts as a force sensor. Read-out of the cantilever motion is done using a
fiber-optic interferometer. The technique behind fiber interferometry, as well as our
sample characterization is described in chapter 6. The cantilever is placed above a
gold coated sapphire plate. The measurements were done at room temperature at a
background pressure of 2.2× 10−1 mbar and the whole set-up was placed on an iso-
lated foundation separating it from vibrations from the outside world. A schematic
image of the main components of our set-up is shown in Figure 7.1.

The plate is coated with a 150 nm thick layer of gold. It is mounted on a mechani-
cal translation stage consisting of a stick-slip stepper motor (Attocube ANPz101) for
coarse approach and a piezo-electric transducer for accurately varying the distance
d between the sphere and plate. In this section we will describe the detection of
the motion of the plate. In a later section we will show how the electrostatic force
is used to relate this motion to the actual sphere-plate distance and to calibrate our
force sensitivity.

Figure 7.1: Schematic image of the set-up. During a measurement run, the distance d
is varied by setting dpz by a translation stage under the gold plate. A force between the
gold sphere and plate results in a change in cantilever motion. The motion of both the
cantilever and the plate is read out with fiber-optic interferometers. The interferometric
signal depends on the interference of light reflected at the fiber end facet (r1) and at the
plate surface (r2).

During a measurement run, the plate moves towards the sphere in steps. The
distance between the sphere and the plate changes with dpz compared to the initial
separation d0, such that the actual sphere-plate distance is equal to d = d0− dpz. The
distance change dpz, or plate motion, is recorded with a fiber-based common path
interferometer [92]. The interferometer is fed by a tunable continuous wave dis-



7.1 Detection of the plate motion 81

tributed feedback (CW DFB) laser module (Thorlabs LS5-C-24A-20-NM) operating
around λ = 1550 nm. The light is transported via a 90/10 fiber coupler to a cleaved
fiber end positioned above the plate. Light reflected at the fiber end (r1) interferes
with light reflected from the plate (r2) when it passes through the fiber coupler again
and falls onto a detector. The interference signal at the detector is given by

WDC = W0 −W0V cos

(
4πdpz

λ

)
(7.1)

where W0 is the midpoint interference signal and V the interferometric visibility.
The interferometer is most sensitive for values of dpz where the phases from both
reflections are in quadrature. This requirement can only be met for small changes in
the distance (dpz � λ/4π). This is not feasible for a typical measurement run, where
we want to measure over a distance of several hundred nanometers.

To overcome this issue, the plate motion dpz is modulated at ω/2π = 119 Hz,
with amplitude ∆d of roughly 0.5 nm. Following a Taylor expansion, the interfer-
ence signal now also contains an oscillating component in phase quadrature with
the original signal, with amplitude

Wω =
4πW0V∆d

λ
sin

(
4πdpz

λ

)
. (7.2)

A point with low sensitivity in one term is now compensated by a high sensitivity
in the other term. The distance change dpz can be deduced from the phase-angle
between the two terms:

dpz =
λ

4π
arctan

(
λ

4π∆d

Wω

W0 −WDC

)
. (7.3)
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Figure 7.2: Lissajous plot of the two components of the plate interferometer signal, Wω

and WDC (blue dots). The resulting ellipse is fitted (purple line) to find the distance
change dpz.
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During a measurement run, the DC level of the detector signal from the plate
interferometer, WDC, is low-pass filtered and recorded with an ADC and the modu-
lated signal Wω with a lock-in amplifier with time constant 30 ms. To determine the
values for W0 and ∆d, it is possible to fit WDC and Wω separately. But a more con-
venient choice is to display the two signals in a Lissajous plot and fit the resulting
ellipse. Both the data and the fit are shown in Figure 7.2.

The correspondence between the fit and data tells us that the plate interferome-
ter is well able to follow the plate motion and that disturbing effects such as external
vibrations or piezo creep do not affect our measurements. From the axes and the cen-
ter position we can deduce W0 = 1.35 V, ∆d = 0.61 nm and the plate interferometric
visibility V = 0.67. Using these values and Eq. 7.3 we can then determine dpz. To
calibrate the offset distance d0 and therefore the actual distance between the sphere
and the plate, we use the electrostatic force. In the next section we will explain the
calibration method.

7.2 Calibration with the electrostatic force

The force sensor is based on a doped silicon micromechanical cantilever with nom-
inal spring constant k = 0.9 N/m (Bruker RESP-20). A polystyrene sphere (Thermo
Scientific 4320A) with radius R = 100µm is attached at the end of it. Both the sphere
and the cantilever are covered with a 200 nm conductive gold coating. The cantilever
motion and resonance frequency (f0 = 2.3 kHz) are read out by a second fiber-optic
interferometer, positioned 200µm from the cantilever and fed by a second, similar
laser source. The laser frequency is tuned to quadrature point corresponding to the
fiber-cantilever distance. A self oscillating circuit [161] drives the cantilever at its res-
onance frequency to ensure a constant cantilever amplitude of roughly 1 nm RMS.

With this force sensor we wish to detect the Casimir force FC , but there also exists
an electrostatic force caused by a voltage across the plate and the sphere. Even when
there is no external voltage applied, there exists a contact potential difference V0

caused by a difference in the materials’ work functions. This difference can also exist
between two surfaces of the same material, since different application circumstances
may lead to variations in crystal face or in possible contamination. Although the
electrostatic force can easily overcome the Casimir force in magnitude, it allows us
to calibrate our force sensor and the actual distance between the sphere and plate as
well as to detect and compensate V0.

Because the electrostatic force depends on the potential difference between the
sphere and the plate, it can be altered we apply an additional voltage. More specif-
ically, since the Casimir force does not depend on the voltage across the sphere
and the plate, modulating this voltage at a known frequency allows us to sepa-
rate the two forces. The signal from the force sensor at the modulation frequency
ω1/2π = 72.2 Hz only shows the electrostatic contribution. The total voltage across
the sphere and plate consists of an applied AC and DC voltage, plus the naturally
present contact potential difference V0:

V = V0 + VDC + VAC cos(ω1t). (7.4)
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We use the expression FES = −πε0RV
2/d for the electrostatic force in a sphere-plate

geometry, with ε0 the vacuum permittivity. This expression is an approximation that
holds in the limit of small distance compared to the sphere radius [138]. Later in this
section we will check its validity. The total electrostatic force acting on the cantilever
has multiple frequency components as well as a static component:

FES = −ε0πR

d

[
(V0 + VDC)2 + 2(V0 + VDC)VAC cos(ω1t) +

1

2
V 2

AC +
1

2
V 2

AC cos(2ω1t)

]
.

(7.5)
The total force between the sphere and plate is detected as a change in the can-

tilever motion, where the cantilever’s static deflection, oscillation amplitude and
resonance frequency are influenced. The cantilever is deflected in accordance to
Hooke’s law, which results in a interferometer signal S given by

S =
γ(FC + FES)

k
, (7.6)

with γ the sensitivity of the interferometric read-out in units of V/m. When the force
oscillates slowly compared to the cantilever’s resonance frequency, the cantilever can
easily move in phase with the force. We will call this method of detection the quasi-
static (QS) detection.

Since the electrostatic force has different frequency components, the signal can
also be divided into different parts:

S = Ss + Sω1 cos(ω1t) + S2ω1 cos(2ω1t), (7.7)

with static deviation and oscillation amplitudes given by

Ss =
γFC

k
− γπε0R

kd
(V0 + VDC)2 − γπε0R

2kd
V 2

AC (7.8)

Sω1
= −2γπε0R

kd
(V0 + VDC)VAC (7.9)

S2ω1 = −γπε0R

2kd
V 2

AC = − κ

2d
V 2

AC, (7.10)

with κ = γπε0R/k the force sensitivity. The amplitudes are detected with lock-in
amplifiers (time constant 300 ms) set directly on the cantilever interferometer sig-
nal. The static deviation can be influenced by drifts, which makes it an unreliable
measure for the Casimir force. It is possible to modulate the Casimir force as well
[160] by slightly oscillating the plate, thereby modulating the distance. But since
our cantilever interferometer is very sensitive to spurious reflections from the plate
(see chapter 6), we cannot separate the modulated Casimir force from the modulated
plate motion. That is why we use a different detection method.

Since the force between the sphere and plate depends on separation, there exists
a force gradient that changes the cantilever’s resonance frequency according to [161]

∆f = − f0

2k

∂(FC + FES)

∂d
. (7.11)
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A static force gradient leads to a frequency shift, while an oscillating force gradi-
ent results in a frequency modulation. We will refer to this force gradient detection
method as the frequency modulation (FM) detection. There are also different com-
ponents in the cantilever frequency change

∆f = ∆fs + ∆fω1
cos(ω1t) + ∆f2ω1

cos(2ω1t). (7.12)

with static frequency shift and frequency deviations given by

∆fs = f − f0 = − f0

2k

∂FC

∂d
− f0πε0R

2kd2
(V0 + VDC)2 − f0πε0R

4kd2
V 2

AC (7.13)

∆fω1 = −f0πε0R

kd2
(V0 + VDC)VAC (7.14)

∆f2ω1 = −f0πε0R

4kd2
V 2

AC = − µ

2d2
V 2

AC, (7.15)

where we assign the system parameter µ = f0πε0R/2k. Since a lock-in amplifier
doesn’t detect frequencies, we send the cantilever interferometer signal through a
frequency-to-voltage converter that detects the cantilever frequency and translates
it linearly to a DC voltage. Frequency modulations translate to modulations of the
voltage, with the frequency deviation equal to the amplitude of the signal at the
modulation frequency. The static frequency shift can be used to extract the Casimir
force gradient. We detect the instantaneous cantilever frequency using a home-built
software radio and a frequency counter (Agilent 53131A) on the (filtered) cantilever
interferometer signal. We also use the phase-locked loop option of our lock-in am-
plifier (Zurich Instruments HF2LI). To obtain the frequency shift, we determine f0

from data points far away enough that the Casimir force has an undetectable influ-
ence. The instantaneous frequency there is only affected by the known electrostatic
force, which we can subtract to obtain f0.
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Figure 7.3: Frequency components in the cantilever interferometer signal. The quasi-
static signals are at the low-frequency range of the spectrum, at ω1 and 2ω1. The
frequency modulation signals appear as double side-bands around the resonator frequency.
The signals at ω1 are used to correct for the contact potential difference, via a feedback
loop that minimizes these signals by applying a compensating DC voltage. The signals
at 2ω1 are used to calibrate the system. The Casimir force is detected as a shift in the
cantilever resonance frequency.
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An overview of the frequency components of our cantilever interferometer signal
is shown in Figure 7.3. The quasi-static signals are located near DC and the frequency
modulation signals appear as double sidebands around the resonance frequency of
the cantilever. Both QS and FM signals can be used to calibrate the system and
correct for the contact potential difference. The static shift of the resonance frequency
is used to measure the Casimir force gradient.

We will first discuss how the influence of the contact potential difference is com-
pensated using a technique similar to what is used in Kelvin probe force microscopy
[162]. Note that the QS amplitude Sω1

as well as the frequency deviation ∆fω1
are

proportional to the sum of the contact potential difference and our applied DC volt-
age. Both terms are linear in VDC and are zero when VDC = −V0, i.e. when the contact
potential difference is compensated. We have checked that this is true by sweeping
the DC voltage while measuring Sω1 and ∆fω1 . Both lines should be linear and cross
zero at the same point. The result is shown in Figure 7.4. These data were obtained
at room temperature between the gold sphere and plate separated by roughly 1µm.
During the sweep we applied an AC voltage of 1 Vpp. The results are indeed lin-
ear in VDC and both signals are zero around the same DC voltage, although a slight
offset exists. The FM signal decreases faster with distance than the QS signal. At
the relative large distance of 1µm, it is therefore not surprising that it is more influ-
enced by noise. Note that even between two gold surfaces at room temperature, we
detect a contact potential difference of 61 mV. This is probably caused by different
circumstances in the coating process and/or the different substrates.
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Figure 7.4: The QS and FM signals at ω1 as a function of the DC voltage; Sω1
(blue)

and ∆fω1 (purple). Both signals are linear in VDC and cross zero at the same DC voltage,
indicating a contact potential difference of 61 mV between two gold surfaces.

Knowing V0, we can simply set VDC at the start of a measurement. But since
V0 can change over time during a measurement, we create a feedback loop keeping
either Sω1

or ∆fω1
zero. In Figure 7.5 we show the output DC voltage from the feed-

back loop during a measurement run, as well as the remaining potential difference
calculated from Sω1 .

The contact potential difference is fed back up to only a few millivolts during the
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Figure 7.5: Result of the electrostatic compensation scheme. From the quasi-static
signal Sω1

can be calculated that the surface potential V0 is successfully reduced. The
remaining potential as a function of distance is shown in blue. The output DC voltage
(purple), equal to −V0, changes as a function of distance.

whole measurement run. However, there is a clear distance-dependence of the out-
put DC voltage. This would suggest that the mean surface potential V0 is distance-
dependent, but it is only determined by the material properties. There are several
possible explanations for the behaviour in our measurements. One is the presence of
another conductor, for example the cantilever or the sample mount, that is gradually
shielded during approach [163]. Another explanation is the influence of variations in
the surface potential, which leads to an electrostatic force with a different distance-
dependence than following from the mean surface potential [164, 165]. The presence
of this extra force shows that compensating for V0 only at a far away distance is not
sufficient and that a real-time compensation scheme is clearly needed.

Apart from compensation, the electrostatic force is used to calibrate the force
sensitivity of the set-up and the distance between the sphere and the plate. As de-
scribed in the previous section, we use a fiber interferometer positioned above the
plate to determine the distance the plate moves during one measurement run, dpz.
The sphere-plate distance is equal to d = d0 − dpz. The initial separation d0 is ob-
tained from a fit to the electrostatic signals at 2ω1. Instead of fitting S2ω1 directly, we
rewrite Eq. 7.10 as V 2

AC/(2S2ω1
) = (d0 − dpz)/κ, which is linearly dependent on dpz.

Similarly, we can rewrite Eq. 7.15 as VAC/
√

2∆f2ω1
= (d0 − dpz)/

√
µ. The data from

a typical measurement run based on the QS signals is shown in Figure 7.6(a), and
based on the FM signals in Figure 7.6(b). The fits follow the data, especially at large
dpz where the distance between the sphere and the plate is smallest and the electro-
static force is largest. From the fit we can determine an offset distance d0 = 832 nm
which we can use to deduce the actual sphere-plate distance.

From the slope of the fit in Figure 7.6(a) we can determine the force sensitivity κ =
1.69 × 10−8 m V−1. This value is close to the expected value of κ = 2 × 10−8 m V−1

based on the values k = 0.9 N/m, R = 100µm and γ = 7 MV/m. The difference is
caused in uncertainties in the spring constant and/or sphere radius. The interfero-
metric sensitivity γ can be determined separately from the cantilever interferometer
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Figure 7.6: Data (blue dots) and fit (purple line) used to find the offset distance d0 from
the modulated electrostatic force: (a) V 2

AC/(2S2ω1
) as a function of the distance change

dpz; (b) VAC/
√

2∆f2ω1
as a function of the distance change dpz.

signal as a function of the laser frequency. The system parameter µ is found from
the fit in Figure 7.6(b), µ = 1.98 × 10−12 Hz m2 V−2, close to the calculated value of
3.55× 10−12 Hz m2 V−2.

Once we know these parameters, we can determine the distance from the ratio
between either S2ω1 or ∆f2ω1 and the AC voltage VAC:

d =
κV 2

AC

2S2ω1

=

√
µV 2

AC

2∆f2ω1

. (7.16)

This approach is preferable, because it is less sensitive to noise in our plate inter-
ferometer. It also allows us to set the distance by applying a certain AC voltage
and creating a feedback loop that moves the piezo-electric transducer until the cor-
responding electrostatic force signal (either S2ω1

or ∆f2ω1
) is reached. This way it is

possible to reach a certain distance by simply setting the AC bias voltage. We typ-
ically do one measurement run with an educated guess for either κ or µ, then we
determine the correct values for κ and µ from the fits such that we can set the de-
sired distances for the following runs. It is even possible to do a measurement run
where we keep the distance fixed at one value. This allows us to directly measure
the effect of the superconducting transition by sweeping the temperature across the
critical temperature, without the influence of drift or thermal expansion.

7.2.1 Validity of the proximity force approximation
As mentioned before, our calibration scheme is based on an approximation of the
electrostatic force. Here we will check the validity of this approximation by compar-
ing it to the full electrostatic force. From the self-capacitance of the sphere and plate
and their mutual capacitance it is possible to find a complete expression [166]:

FES = 2πε0V
2
∞∑
n=1

coth(α)− n coth(nα)

sinh(nα)
(7.17)
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with α = arccosh(1 + d/R). We approximated the infinite sum by taking the first
100.000 terms. Within the precision of our calculations, we could see no change
when more terms were taken into consideration.

It is possible to calculate the sum at several distances and calibrate our measure-
ment with (an interpolation of) the full electrostatic theory. But this is may be an
unnecessarily complex method if a more simple expression is also valid. For prac-
tical purposes, we use the expression given in Eq. 7.5. This expression is obtained
via the Proximity Force Approximation (PFA) [136–138] that relates the force in a
sphere-plate geometry (Fsp) to the free energy per unit area in a parallel-plate geom-
etry (Upp):

Fsp(d,R) ≈ 2πRUpp(d). (7.18)

From the energy per unit area of two infinite parallel conducting plates, Upp(d) =
ε0V

2/2d, we deduce the expression given in Eq. 7.5. It must be noted, however, that
the PFA only holds under two conditions: the interaction energy must be localized
and the distance of closest approach must be small compared to the sphere radius
(d � R). In our set-up we have a 100µm radius sphere at a distance of less than
1µm from the plate. So the condition is only met up to 1%. To see if this indeed
leads to errors in our measurements, we look at the QS electrostatic signal S2ω1

as a
function of distance. During a typical measurement run we keep this signal constant
in a feedback loop that adjusts the distance to match a given AC voltage. There
should therefore be a linear dependence between V 2

AC and the distance as long as
the electrostatic approximation holds. In Figure 7.7 we show data obtained during a
typical Casimir force measurement run. The black dots show the applied AC voltage
as a function of distance. The two lines indicate the calculated AC voltage based
on experimental parameters, either using the approximation or the full theory. The
purple line is derived from the approximation according to

V 2
AC,approx =

2kdS2ω1

γε0πR
. (7.19)

The distance here is derived with our calibration method based on the approximated
expression for the electrostatic force. The blue line is obtained using the full electro-
static force and is given by

V 2
AC,full =

kS2ω1

γπε0

(
100.000∑
n=1

coth(α)− n coth(nα)

sinh(nα)

)−1

. (7.20)

In both calculations we have used the measured value of S2ω1
. The ratio k/γ is

derived from the calibration of κ, with the value R = 100µm. The sum is calculated
for 2000 distances between d = 100 nm and 10µm and then interpolated with the
distances from our measurement.

From the overlap in Figure 7.7(a) it is clear that both the full electrostatic force
and the approximation describe our data well within the measurement fluctuations.
This is even better visible in the residuals between the data and the two calculations
shown in Figure 7.7(b). The two calculations start to deviate from each other at a
distance larger than 700 nm, which shows the limits of the PFA. But it is clear that
we can safely use the approximated electrostatic force for our calibration scheme.
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Figure 7.7: Comparison of electrostatic force approximation with full theory: (a) V 2
AC as a

function of distance, both measured experimentally (black dots) and calculated from either
the full electrostatic force (blue line) or its approximation (purple line). Any deviation
from linear dependence shows that the approximation no longer holds; (b) Residuals of
the measurements in (a) show negligible deviation compared to the fluctuations in the
measurement.

7.3 Casimir force measurements

In the previous section we described how we use the electrostatic force to compen-
sate the contact potential difference and to set the distance at a fixed value. We
mentioned that this calibration scheme operates simultaneously with our Casimir
force measurements. The Casimir force gradient itself is obtained from the static fre-
quency shift ∆fs given by Eq. 7.13. When V0 is compensated, the middle term on
the right hand side in this equation is zero. The other terms can be rewritten to give
the Casimir force gradient, normalized to the sphere radius:

1

R

∂FC
∂d

=
ε0π

µ
[∆f2ω1

−∆fs]. (7.21)

Via the proximity force approximation we can compare this to theoretical computa-
tions of the Casimir force in the parallel-plate geometry, since the measured, normal-
ized, Casimir force gradient only differs a factor 2π from the calculated pressure.

The result of one of our measurement runs between two gold surfaces at room
temperature is shown in Figure 7.8. During this run the distance feedback was active,
setting the distance at 200 logarithmically distributed values between 800 nm and
56 nm. The feedback was set on the quasi-static signal S2ω1

, with set-point 0.5 mVrms
and based on a force sensitivity κ = 1.69 × 10−8 m V−1. This set-point corresponds
to a force amplitude at 2ω1 of 0.1 nN. A second feedback loop was set to minimize
Sω1 by applying a DC voltage of about 80 mV, this value changed with distance.

The calculation shown in the same plot is done according to the Lifshitz theory
using the Drude model for the reflectivity of the gold surfaces [112]. For an explana-
tion of these calculations we refer to chapter 5. There may be slight deviations due
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Figure 7.8: Casimir force gradient, normalized to the sphere radius, between a sapphire
plate coated with 150 nm gold and a 100µm radius sphere with a 200 nm gold coating.
The measurement was performed at room temperature with a background pressure of
2.2 × 10−1 mbar. The good overlap between calculations and measurements shows that
we can reliably measure the Casimir force with a method based on simultaneous calibration
with the electrostatic force.

to surface roughness or the specific optical properties of our samples. Also the calcu-
lated Casimir force would be somewhat larger if it was based on the plasma model.
However, these deviations will be less than a percent compared to the calculations
shown in the figure. This is still within the precision of our measurements which is
of the order of several percent.

From the good overlap between experiment and theory it is clear that our set-up
is capable of detecting the Casimir force gradient between two gold surfaces in a
sphere-plate geometry. It is also clear that there persist no systematic errors in our
set-up, at least no errors larger than the measurement fluctuations of order 1 N/m2.
This means that with our electrostatic force calibration scheme, we can reliably mea-
sure the Casimir force gradient in the range 50 − 200 nm. This scheme also allows
us to measure the temperature dependence directly by setting the distance at a cer-
tain value and keeping it fixed while we sweep the temperature. The next step is to
exchange the gold coated plate for a plate coated with a superconductor.



8
Dependence of the Casimir Force on the

Dielectric Permittivity of NbTiN

The magnitude of the Casimir force is determined by circumstances like the geom-
etry of the system and the closest distance between the surfaces. Another impor-
tant factor is the reflectivity of the surfaces. The reflectivity of the material can be
determined via optical reflection measurements, and can be used to calculate the
Casimir force via the method described in chapter 5. We have followed these steps
to compute the force between a gold sphere and a superconducting plate. These cal-
culations show very good agreement with Casimir force measurements obtained at
room temperature.

The exact calculation of the Casimir force between real materials requires full
knowledge of the complex dielectric permittivity of the materials [97, 98]. At high
frequencies, we can rely on the measured optical spectra, but these are available only
in a certain frequency range. At low frequencies, it remains uncertain whether to in-
clude Ohmic dissipation in the calculation of the Casimir force or not. Since dissipa-
tion is not present in superconductors, it has been proposed [49, 55] to measure the
Casimir force between superconducting materials. Comparison of the Casimir force
below and above the critical temperature may give insight into the low frequency
contribution of the dielectric permittivity.

Measurements of the Casimir force gradient between a gold coated sphere with
radiusR = 100µm and a 150 nm thick gold layer on a sapphire substrate were shown
in chapter 7. In that chapter we described our measurement method in detail, we
will therefore not elaborate on that in this chapter. Here we will show the results
obtained by exchanging the gold coated sapphire plate by a SiO2 plate coated with a
200 nm thick layer of niobium titanium nitride (NbTiN), which is a superconductor
below its critical temperature of 13.6 K. The Casimir force is measured as a function
of distance at two different temperatures, below and above the critical temperature,
and as a function of temperature at a distance of 83 nm. We detect no large influence
of the superconducting transition on the strength of the Casimir force.



92 Dependence of the Casimir Force on the Dielectric Permittivity of NbTiN

8.1 Casimir force computed from the measured optical
spectrum of NbTiN

In chapter 7 we demonstrate the accurate calibration of our system by comparing
measurements with calculations of the Casimir force between two gold surfaces. To
compute the Casimir force, we used optical reflection measurements of gold [112].
Extrapolation to frequencies where these data are incomplete can be done based on
the Drude or on the plasma model, using the plasma and relaxation frequencies that
can be obtained from a fit to the optical reflection data. We are interested in the
Casimir force between gold and NbTiN, but a comparison with computations could
not directly be obtained due to the lack of optical reflection data on NbTiN in lit-
erature [167]. We therefore sent our NbTiN sample to Erik van Heumen from the
optical spectroscopy lab at the University of Amsterdam [168], who measured the
optical spectrum between 1 cm−1 and 60 000 cm−1 (between 1.89 × 1011 rad/s and
1.13 × 1016 rad/s). The dielectric permittivity of our sample was calculated via a fit
of the reflection data and its real and imaginary part are shown in Figure 8.1. The op-
tical spectrum was measured at room temperature and at lower temperatures, since
the spectrometer is combined with a cryostat. Figure 8.1 also shows the permittivity
at 16 K, the base temperature of that cryostat.

10-3 10-2 10-1 100

Energy [eV]

500

0

500

1000

1500

2000

ε′

(a)

16 K

300 K

10-3 10-2 10-1 100

Energy [eV]

100

101

102

103

104

105

ε′
′

(b)

16 K - data

300 K - data

300 K - fit

Figure 8.1: Dielectric permittivity of NbTiN as a function of frequency, measured at the
optical spectroscopy lab at the University of Amsterdam, both at room temperature and
at 16 K: (a) Real part; (b) Imaginary part, a fit to the room temperature spectrum based
on the Drude model combined with Lorentz oscillators is also shown.

Extra resonances resulting from the restoring force that binds the core electrons to
the nuclei [116] are visible in the spectra. A fit to the imaginary part of the spectrum,
shown in Figure 8.1(b) for the room temperature data, based on the imaginary part
of the Drude-Lorentz model,

ε′′DL(ω) =
Ω2
pγ

ω(ω2 + γ2)
+

K∑
j

fjβjω

β2
jω

2 + (ω2
0j − ω2)2

, (8.1)
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yielded K = 4 resonances with resonance frequencies ω0j at 0.059 eV, 0.88 eV, 2.4 eV
and 6.2 eV respectively. Their oscillator strengths fj and damping rates βj were also
found, as well as values for the plasma frequency Ωp = 43 000 cm−1 ≈ 5.33 eV and
relaxation rate γ = 3750 cm−1 ≈ 0.465 eV at room temperature and γ = 3350 cm−1 ≈
0.415 eV at 16 K. Based on these values, the dielectric permittivity at imaginary fre-
quencies is given by the Drude-Lorentz model

εDL(iξ) = 1 +
Ω2
p

ξ(ξ + γ)
+
∑
j

fj
ω2

0j + ξ2 + βjξ
, (8.2)

or by the generalized plasma model

εgp(iξ) = 1 +
Ω2
p

ξ2
+
∑
j

fj
ω2

0j + ξ2 + βjξ
. (8.3)

For comparison, we also integrate the imaginary part of the dielectric permittivity
via the Kramers-Kronig relations (see Eq. 5.12), after we extrapolate the data to lower
and higher frequencies according to the Drude model. This should lead to the same
dielectric permittivity at imaginary frequencies as described by the Drude-Lorentz
model.

From these dielectric permittivies, the reflectivity of the surfaces is then deter-
mined via the Fresnel equations. The Casimir pressure between gold and NbTiN is
found by putting in the appropriate reflectivities in Eq. 5.11. Finally, to compare
the calculated parallel plate pressure with our measurements of the Casimir force
gradient in the sphere-plate geometry, we use the proximity force approximation
[137, 138].

8.1.1 Comparison to room temperature measurements
For a detailed description of the set-up and measurement scheme, we refer to chap-
ters 6 and 7. The room temperature data shown here were obtained with the follow-
ing settings. Compensation of the contact potential difference V0 was done via the
FM side-bands at ω1. We first performed a measurement run based on an educated
guess of the system parameter µ. From the fit to the frequency deviation ∆f2ω1

as
a function of separation we determined a value µ = 1.9 × 10−12 Hz m2 V−2, close
to the calculated value of 3.6 × 10−12 Hz m2 V−2 based on values of f0 = 2.3 kHz,
R = 100µm and k ≈ 1 N/m. During the measurements shown here the distance
was set by a feedback loop that adjusted the piezo-electric transducer under the plate
until the set-point at the 2ω1 FM side-bands was reached, via the relation

d =

√
µV 2

AC

2∆f2ω1

. (8.4)

The set-point was ∆f2ω1
= 0.54 Hz, corresponding to a force gradient modulation

with an amplitude of 4.7× 10−4 N/m at the frequency 2ω1.
The room temperature measurements shown here were obtained in the same

cryostat as the low temperature measurements shown later in this chapter. The
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Figure 8.2: Measured Casimir force gradient, normalized to the sphere radius, between
a gold coated sphere and a NbTiN thin film at room temperature (green dots). The
lines indicate calculations of the Casimir force gradient at room temperature, between
two gold surfaces (black line) and between gold and niobium titanium nitride. Three
methods, discussed above, were used to determine the dielectric permittivity for NbTiN
at imaginary frequencies: the Drude model based on extrapolation of the data (yellow
line), the Drude-Lorentz model (blue dashed line) and the generalized plasma model
(orange line). The good overlap between the calculations and measurements in general
shows our control of the measurement as well as our ability to base calculations on actual
optical reflection data. Compared to the calculations between two gold surfaces there is
a decrease of about twenty percent in the force gradient between gold and NbTiN. The
inset shows the difference between the calculations and data for the Drude-Lorentz and
generalized plasma models, normalized to the model values.
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background pressure in the cryostat was 6.2× 10−2 mbar. A four stage mass-spring
system, in fact the mechanical equivalent of an electrical wave filter [94, 169], was
used to isolate the set-up from vibrational noise. To check that the data are not ac-
cidentally influenced by the surroundings, we have repeated our measurements in
different circumstances. The same results were obtained in a different cryostat, with
a different gold coated sphere, a different NbTiN plate and with the distance lock
and electrostatic compensation done via the quasi-static signals.

The green dots in Figure 8.2 show the Casimir force gradient normalized to the
sphere radius measured at room temperature. The lines show calculations of the
normalized Casimir force gradient at room temperature. The dielectric permittivity
of NbTiN at imaginary frequencies is determined via the three methods described
above: via extrapolation of the optical data using the Drude model (yellow line),
via the Drude-Lorentz model accounting for resonances in the material (blue dashed
line) and via the generalized plasma model (orange line). The first two methods
lead to the same Casimir force gradient, as can be expected. Using the generalized
plasma model results in a stronger force gradient, at small separation the deviation is
about five percent. This is significantly more than between two gold surfaces (com-
pare Figure 5.4). As already explained in chapter 5, due to the higher resistance of
NbTiN compared to gold, the two models diverge already at a higher frequency. The
two models lead to different contributions to the Casimir force not only at the zero
Matsubara frequency, but at higher order Matsubara frequencies as well. At room
temperature, at the first eight or nine Matsubara frequencies the two models predict
different contributions, while about a hundred frequencies contribute in total. Mea-
suring the Casimir force between high resistive materials therefore seems a prudent
way to distinguish between the Drude and plasma models [170].

If we compare our data with our calculations between gold and NbTiN, we notice
the good general overlap. Note that the lines are not fits and that the measurements
and calculations were obtained in two completely independent ways. The overlap
shows both our control and good calibration of the measurements and our ability to
base Casimir force calculations on measured optical spectra. Taking a closer look at
the overlap between the data and the computations based on the plasma and Drude
models, we observe that the data seem to coincide better with the Drude model than
with the plasma model. This is illustrated by the inset in Figure 8.2, which shows
the difference between the data and Drude-Lorentz model (green dots) and between
the data and generalized plasma model (orange dots), normalized to the values cal-
culated by the models. This shows that for distances up to 200 nm, the data deviate
6.2 ± 2.8% from the plasma model and 0.4 ± 2.7% from the Drude model. This
is just one measurement run, but other data runs show the same trend. Note that
in general, the presence of an extra (electrostatic) force that is not calibrated in the
experiments may lead to an overestimation of the Casimir force [165], an underesti-
mation of the force is less likely [107]. More extensive data analysis, combined with
more measurements, is required to draw a more definitive conclusion.

When we compare our data and calculations with calculations between two gold
surfaces at room temperature (black line in Figure 8.2, equal to the line in Figure 7.8),
we notice that the force between gold and NbTiN is twenty percent weaker than be-
tween two gold surfaces. This is a direct result of the smaller dielectric permittivity
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of NbTiN. A decrease of twenty percent is substantial, different metallic surfaces pro-
duce nearly the same Casimir force [98]. For comparison, the Casimir force between
gold and indium tin oxide (ITO), which is transparent in a large frequency range,
reduces the force by about 40-50% [144].

Since the Drude model accounts correctly for Ohmic resistivity, it would seem
more prudent to base calculations of the Casimir force on this model. However, cer-
tain measurements coincide better with the plasma model description that does not
take Ohmic dissipation into account [11, 52, 107, 124]. These measurements were ob-
tained at short distances, where the difference between the two models is relatively
small. Measurements at a larger separation on the other hand have indicated a better
accordance with the Drude model [50]. To our knowledge, the measurements shown
in this chapter are the first that demonstrate a better overlap with the Drude model
description at small separation.

8.2 Low temperature measurements

The measurements were repeated at 13.9 K, just above the critical temperature, such
that the NbTiN is not yet superconducting. The orange squares in Figure 8.3 show
these results. These data were obtained in the same circumstances as the room tem-
perature measurements, except that the electrostatic compensation and distance lock
were set on the quasi-static signals (set-point 50µVrms, or 0.7 nN amplitude). Al-
though the FM side-bands were not stable enough to be used for feedback, they
were still recorded. A value for the system parameter could be determined as µ =
2.4 × 10−12 Hz m2 V−2. The small change compared to the room temperature value
can be explained by a change in spring constant. This is also apparent in the res-
onance frequency, which shifts 60 Hz upwards from room temperature to low tem-
peratures.

At low temperature, the Casimir force gradient has increased significantly com-
pared to room temperature. We can even deduce an increase of the order of twenty
percent. This cannot be an effect of the thermal Casimir force [50, 97], which is only
a fraction of the zero-point contribution even at room temperature. Another expla-
nation would be the change in the optical reflectivity of the surfaces. The reflectivity
of gold is slightly temperature dependent [171, 172], but this influence is negligible
[120]. The low temperature dielectric permittivity of NbTiN is measured and shown
in Figure 8.1. Based on this optical spectrum we calculate via the Drude-Lorentz
model the expected Casimir force at 16 K, equal to the temperature at which the op-
tical spectrum of NbTiN was obtained. Figure 8.3 shows the result, denoted by the
blue line. If we overlap the calculated Casimir force gradient at 16 K with the cal-
culations at room temperature (the blue dashed line in Figure 8.3), we see that the
force gradient differs only slightly between the two temperatures. It is clear that the
change in reflectivity cannot account for the change in Casimir force gradient. Also
if we base our calculations on the generalized plasma model, as indicated by the
yellow line in Figure 8.3, the increased Casimir force gradient cannot be explained.

The black line shows the Casimir force gradient between two gold surfaces at
16 K, from the overlap between this line and the data, it would almost seem that the
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Figure 8.3: Casimir force gradient, normalized to the sphere radius, between a gold coated
sphere and a NbTiN thin film measured at 13.9 K (orange squares). The solid lines indicate
calculations of the Casimir force between gold-gold and gold-niobium titanium nitride at
16 K, based on the Drude-Lorentz model (blue line) as well as on the generalized plasma
model (yellow line). The blue dashed line shows the calculated Casimir force gradient
between gold and NbTiN at room temperature (equal to the yellow line in Figure 8.2). It
is remarkable that the data overlap best with the calculations between two gold surfaces
(black line), since we would expect an overlap with the calculated force gradient between
gold and NbTiN (blue or yellow line).

NbTiN surface appears metallic for the Casimir force. To confirm these measure-
ments, we repeated these measurements at temperatures between 9.3 K and 22 K,
and at different cool-down runs. All these low temperature data overlap within our
measurement error. This effect of increased Casimir force gradient should there-
fore begin at higher temperatures. It would be interesting to repeat our experiments
in the temperature regime between 22 K and room temperature. If we take a look
at low temperature measurements reported in literature, comparison between mea-
surements at room temperature and at 77 K show no discrepancy [54]. Measure-
ments at 4 K did report a ten percent difference, but ascribed it to an outdated system
calibration [51].

We have no explanation for the increase in the detected Casimir force gradient at
low temperatures. It may still have a technical cause. However, our room tempera-
ture calibration measurements between two gold surfaces (see Figure 7.8), as well as
the good overlap between theory and our room temperature gold-NbTiN measure-
ments (Figure 8.2) show that our measurement scheme is well capable of calibrating
the sphere-plate distance and the sensitivity of our force sensor. For a conclusive
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indication of the validity of our calibration scheme at low temperatures we would
need to precede our low temperature Casimir force measurements between a gold
sphere and NbTiN plate with calibration measurements between the sphere and a
gold plate, during the same cool-down and under the same circumstances.

We are ultimately interested in the effect of the superconducting transition to
the Casimir force. Since this results in a relative change, an absolute calibration of
our set-up does not seem to be a strict requirement. The room temperature mea-
surements convince us that we are indeed capable of measuring the Casimir force.
However, we need to be cautious to ascribe any change across the superconducting
transition to a change in the Casimir force.

8.2.1 The effect of superconductivity

In chapter 5 we discussed that measuring the Casimir force between superconduc-
tors may give insight in the uncertain contribution of the dielectric permittivity at
low frequencies. The dielectric permittivity of a superconductor differs from the
normal state in two ways. First is that static magnetic fields are expelled. Another
change is the opening of the superconducting gap at high frequencies, which leads
to a zero resistivity of the material. Both effects may have measurable impact on the
Casimir force. These effects become greater when the temperature approaches 0 K.
It is therefore optimal to measure the force over a large temperature range below
the critical temperature, but unfortunately the base temperature of our cryostat was
limited to 9.3 K. However, our measurements still allow us to impose an upper limit
on the effect of superconductivity on the Casimir force.

In Figure 8.4 we show the normalized Casimir force gradient as a function of dis-
tance measured just below (9.3 K) and just above (13.9 K) the critical temperature of
our NbTiN plate (13.6 K). The data were obtained during the same cool-down under
equal circumstances. For both measurements, the electrostatic compensation of the
contact potential difference V0 was done via the quasi-static signal Sω1

. The distance
lock was set on the quasi-static signal S2ω1

with a set-point of 50µVrms correspond-
ing to a force modulation with an amplitude of 0.6 nN at the frequency 2ω1, based
on a spring constant of 1 N/m and interferometric read-out sensitivity of 125 kV/m.
The force sensitivity, deduced from the fit to S2ω1

as a function of separation, had
a value of κ = 2.56 × 10−10 m V−1 at 9.3 K and κ = 2.48 × 10−10 m V−1 at 13.9 K.
The difference can be explained by a small deflection of the cantilever that is caused
by the change in temperature, which in turn causes a change in the interferometric
read-out sensitivity γ.

The calculation of the Casimir force between two gold surfaces at 16 K is also de-
picted in Figure 8.4 as a guide to the eye. The choice for this calculation is motivated
by the low temperature results shown above. At distances larger than 200 nm the
data points start to deviate towards our measurement precision of 1.5 N/m2.

The Casimir force measurements below the critical temperature overlap with the
measurements above the critical temperature, at least within our measurement ac-
curacy. We can therefore conclude that there is no significant influence of the su-
perconducting state. There is definitely no new, unexpected effect that has a signif-
icantly greater influence on the Casimir force than what we predicted based on the
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Figure 8.4: Casimir force gradient, normalized to the sphere radius, between a gold coated
sphere and a NbTiN thin film as a function of distance. The film was in a superconducting
state at 9.3 K (green dots) and in a normal state at 13.9 K (orange spheres). Within our
measurement accuracy we can set an upper limit of about seven percent on the effect of
superconductivity to the Casimir force.

possible change in reflectivity of the superconductor. To make this statement more
quantitative, we take a closer look at the force at a distance of 120 nm. Values for
the normalized force gradient are indicated in Table 8.1. From these values we can
deduce that the effect of the superconducting state is less than seven percent.

Temperature Normalized force gradient
9.3 K 20.9± 1.5 N/m2

13.9 K 21.8± 1.2 N/m2

Table 8.1: Casimir force gradient, normalized to the sphere radius, between a gold
coated sphere and a NbTiN plate at a distance of 120 nm at two different temperatures,
just below and just above the critical temperature of the plate.

Since the precision of 1.5 N/m2 is constant over distance, we can improve on this
limit by measuring at a smaller separation. Our measurement method allows us to
keep the distance fixed even when circumstances like the temperature change. It is
therefore possible to do a temperature sweep of the Casimir force gradient. Since
we monitor the plate conductance simultaneously, we can directly indicate the su-
perconducting transition in our measurements. These measurements are shown in
Figure 8.5. Since the cantilever may deflect as the temperature changes, the interfero-
metric read-out sensitivity γ can change, which will influence the force sensitivity κ.
It is therefore not possible to set the distance lock on the QS signal S2ω1 . We set it in-
stead on the FM side-band ∆f2ω1

, with a set-point of 1 Hz (8.7×10−4 N/m). The sys-
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tem parameter was determined from a previous measurement of the Casimir force
gradient as a function of distance and was found to be µ = 2.22× 10−12 Hz m2 V−2.
We set the AC bias voltage between the sphere and the plate such that the PI feedback
loop will set the distance to 83 nm. Note that a deviation in the distance of about 1.5%
will result in a variation in the measured force gradient of about 6%. With resistance
heaters in the cryostat we sweep the temperature. During the run the temperature
was increased from 10.2 K to 14.5 K before the heaters were switched off again, low-
ering the temperature to 10.4 K. The output of the resistance bridge that monitors
the plate resistance (described in chapter 7) is shown in Figure 8.5(a). The green dots
show the data during the temperature increase, the data obtained during the down-
ward sweep are depicted in orange. The superconducting transition occurred at a
value of 12.5 K on the plate thermometer. This is lower than the expected critical
temperature of 13.6 K. The difference can be caused by a larger temperature gradi-
ent between the thermometer and plate due to a higher heating rate than we used
to determine the critical temperature in chapter 7. Since we determine the supercon-
ducting transition based on the plate’s resistance and not on the temperature, this is
not an issue.
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Figure 8.5: Temperature dependency of the Casimir force: (a) The simultaneous resis-
tance measurement of the plate detects the superconducting transition at a temperature
of 12.5 K; (b) Casimir force gradient at a distance of 83 nm as a function of temperature,
the superconducting transition is indicated by the dotted vertical line.

The normalized Casimir force gradient as a function of temperature is shown in
Figure 8.5(b). The sweep up is indicated in green, the downward sweep in orange.
The superconducting transition is indicated by the dotted line. Above the critical
temperature the Casimir force gradient, normalized to the sphere radius, is equal
to 81 ± 2.1 N/m2. The expected change with temperature, based on the theory de-
veloped in chapter 5, depends on which model is used to extrapolate the dielectric
permittivity. If we use the (generalized) plasma model, we expect no temperature
dependence. The Drude-Lorentz model predicts an increase of the force as the tem-
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perature is lowered, of about 5% between the critical temperature and T � Tc. This
number is an overestimation since we use the two-fluid model for our prediction,
which does not account for impurity scattering [134]. Since we only measure at tem-
peratures around Tc, and not at T � Tc, the force should not have increased maxi-
mally yet. But we can still expect a change of 3.4% between our data at the lowest
temperature and above the critical temperature when the low frequency permittivity
of the normal state of NbTiN is described by the Drude model instead of the plasma
model.

If we look at the data in Figure 8.5(b), we see no such increase in the force below
the critical temperature. It seems that two branches appear below 12 K, but a similar
deviation is visible above 14 K. We are not sure what causes this effect, but we do
not exclude that it is caused by small fluctuations in the distance. The deviations
in the measured force gradient of about 5 N/m2 can be explained by an imprecision
in the distance of about 1.3 nm at 83 nm. We need to repeat this measurement after
minimizing the effect of noise in our distance lock in order to give a more conclusive
answer to the effect of the superconducting transition on the Casimir force.

If we compare our accuracy of 2.1 N/m2 to the average force gradient that we
measured, we can set an upper limit of 2.6% of the influence of the superconducting
state to the Casimir force. This is in the same order of magnitude as the maximally
expected effect obtained from calculations based on the Drude-Lorentz model. Re-
call that the plasma model predicts no measurable changes. Although, at first glance
our upper limit seems to be smaller than the effect predicted by the Drude model,
we must be careful to draw conclusions. The estimation is likely to be too large, as
was mentioned above. Furthermore, we cannot guarantee that the distance is fixed
within 0.2 nm at 83 nm, such that changes in the force of the order of a percent cannot
be ascribed to or concealed by changes in the distance.

There is another effect that may lessen the effect of the superconducting state. The
Casimir force is mostly determined by the surface modes of the material [36, 173], as
it depends on the penetration depth of the electromagnetic fields. Very simply put,
the bulk properties are screened by the surface. This penetration depth varies with
frequency and depends on the plasma and relaxation frequencies, we estimate it to
be of order 100 nm. Superconductors, on the other hand, are characterized by their
coherence length ξ0. This length can be interpreted as the distance from the surface
over which the density of superconducting Cooper pairs recovers to the bulk value
assumed in our calculations [174]. This means that at the surface, up to the coherence
length, the material cannot be considered as a full superconductor. The effect of the
superconducting state on the Casimir force can only be measured if the coherence
length is significantly shorter than the penetration depth. And even then, the effect
is less than what we have calculated based on bulk values of the superconducting
electron density only. We can only make an estimate of the coherence length of our
NbTiN sample based on literature [167], which is ξ0 = 170 nm. But the coherence
length depends on temperature, such that it diverges at the critical temperature and
becomes significantly smaller near 0 K. Correctly taking the surface effects into ac-
count will therefore lead to a smaller effect of superconductivity, but approaches our
bulk value calculations near T � Tc. We therefore need to repeat our measurements
at significantly lower temperatures.
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However, it is already a significant result to set an upper limit of 2.6% on the ef-
fect of superconductivity, significantly larger than the effect predicted by the plasma
model, but of the same order as the effect predicted by the Drude-Lorentz model.
This means that only small improvements are needed to be able to distinguish the
effect of the superconducting state.

8.3 Conclusion

The Casimir force depends on the reflectivity of the interacting surfaces. When the
dielectric permittivity of a material is known, the Casimir force can be calculated. We
have shown these calculations based on optical reflection measurements of NbTiN.
The computed Casimir force gradient is then compared to measurements between a
gold coated microsphere and a NbTiN thin film. At room temperature, the overlap
with the calculations is striking. Due to the higher resistivity of NbTiN compared
to gold, the Drude-Lorentz and generalized plasma models coincide at a higher fre-
quency, such that even at room temperature the two models predict different con-
tributions at higher order Matsubara frequencies. The two models lead to a signif-
icant difference in the Casimir force gradient that is detectable even with moderate
sensitivity at close distances. Our measurements show better agreement with the
Drude-Lorentz description and seem to exclude the plasma description.

At low temperatures, the experiments showed a twenty percent increase in the
measured Casimir force, which does not coincide with our calculations of the force at
these temperatures. We could find no satisfying explanation for this effect. However,
our real-time calibration scheme and the good overlap between theory and experi-
ment at room temperature convince us that the measurements are not dominated by
other forces or drifts in the system between the moment of calibration and the mea-
surements. Measurements of the Casimir force between 22 K and room temperature
will demonstrate when this effect occurs and whether the transition is gradual or
sudden. Comparison to Casimir force measurements between two gold surfaces at
low temperature will exclude any technical errors leading to this effect. The mea-
surements seem to indicate that the NbTiN plate behaves metallic, although optical
reflection measurements do not show this behaviour. This may indicate that Casimir
force measurements can provide new information on the reflection and conductance
properties of materials that are not visible with other experiments.

Measuring the Casimir force between superconductors is a good way to gain in-
sight in the role of dissipation in the Casimir force [49, 55], since dissipation becomes
absent in superconductors. Our experiments show no significant influence of the su-
perconducting state and can set an upper limit of 2.6% on its effect. This is of the
same order of magnitude as the expected effect of superconductivity on the Casimir
force, if such an effect exists.
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Increased Read-Out Sensitivity with an

Optomechanical Cavity

Interest in the Casimir force has increased significantly since technological progress
allowed for more sensitive measurements of the force. The Casimir force has been
measured between different materials, such as metals [11, 47, 50, 52, 54, 135, 142, 143,
146], semiconductors [51, 175–178], conductive oxides [144], ferromagnets [107] and
even superconductors [179].

Also theoretically, methods have been developed for accurate calculations of the
force between real materials in different geometries [113, 114, 180, 181]. These calcu-
lations in general show good agreement with experiment within several percent. But
for a more accurate comparison improvements are required in the force sensitivity of
the measurements. One question that is still not answered with satisfaction is what
model to use to extrapolate the measured dielectric permittivity of the surfaces to
lower frequencies. Two models are proposed, one that includes Ohmic dissipation
(Drude model) and one that does not account for dissipation (plasma model).

As discussed in chapter 5 and Refs. [49, 55] differentiating between the two mod-
els would be possible by measurements of the Casimir force between superconduc-
tors. Since we know that dissipation is not present in superconductors, we can com-
pare these experiments with measurements above the critical temperature. From the
presence or absence of notable differences we can deduce the role of dissipation in
normal conductors. This experimental investigation of the Casimir force between
gold and a superconductor is discussed in chapter 8. We found that the measure-
ment precision was of the same order of magnitude as the maximally expected effect
of superconductivity on the Casimir force. To get a more definite insight into this
effect, it is necessary to increase our force sensitivity.

In this chapter we will discuss our current sensitivity and remark on some pos-
sible changes. One major change would be to combine the Casimir set-up with an
optomechanical cavity to read out the motion of the resonator acting as the force sen-
sor. With this set-up it would in principle be possible to increase the force sensitivity
by an order of magnitude.



104 Increased Read-Out Sensitivity with an Optomechanical Cavity

9.1 Considerations for Further Improvements

Measurements of the Casimir force gradient as a function of temperature, see Figure
8.5, show a force sensitivity that is of the same order of magnitude as the expected
influence of superconductivity. This influence is negligible near the critical temper-
ature, and only approaches the expected maximum value near 0 K. It is therefore
unfortunate that the lowest temperature in our measurements was only a few Kelvin
below the critical temperature. We could lower the base temperature of our cryostat,
or double the effect by measuring the Casimir force between two superconductors.
But even then we need to improve on the force sensitivity of our set-up.

To investigate the force sensitivity of our set-up and its limitations, we first look at
the frequency read-out of our cantilever. The cantilever frequency is determined via
interferometric read-out of the motion, with the signal sent to a frequency counter
(Agilent 53131A). A self-oscillating circuit drives the cantilever at a constant ampli-
tude [161]. In Figure 9.1(a) we show the detected frequency as a function of time
with a time interval of one second. During this measurement, the cantilever was
in vacuum (p ≈ 10−4 mbar) and at room temperature. The cantilever was with-
drawn several millimeters from the plate. Over the measurement time of several
hours, no drifts were present in the cantilever frequency, interferometric read-out
and frequency counter. From a fit to the histogram of the data, see Figure 9.1(b), we
determine that the read-out sensitivity of the cantilever frequency is 13 mHz. Via the
system parameter µ = 2.22×10−12 Hz m2 V−2 we calculate that the sensitivity of the
normalized force gradient is equal to 0.16 N/m2, based solely on the read-out of the
cantilever motion. This corresponds to a parallel-plate pressure of 0.025 N/m2. The
actual measurement precision based on our Casimir force measurements shown in
chapter 8 is an order of magnitude higher. But these measurements were obtained
while the distance between the plate and the sphere was fixed. Since the Casimir
force depends strongly on the distance, any deviation in the distance results in a
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Figure 9.1: Force sensitivity of our set-up: (a) Cantilever frequency measured with fiber
interferometry and detected by a frequency counter for several hours. The time interval
between data is set at 1 s. The frequency counter, interferometric read-out and cantilever
frequency are not sensitive to drifts in a few hours; (b) Histogram of the data in (a). The
frequency sensitivity is 13 mHz, which results in a force gradient sensitivity of 0.16 N/m2.
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strong deviation in the measured force. The difference between the predicted and
actual force sensitivity can therefore be explained by the fact that the distance lock
is not tight enough. This is again a result of our force sensitivity, since small, low
frequency fluctuations in the detection lead to small fluctuations in the distance. For
the current settings of our force detection, mostly determined by the AC voltage that
sets the magnitude of the electrostatic force, the fluctuations in the distance are of
the order of a nanometer.

The lock can be improved by setting reasonable feedback parameters. But the
distance feedback is based on the electrostatic force and thus on the force read-out.
Improving the force sensitivity will therefore also improve the distance lock.

Theoretically, the minimum force gradient that can be detected with the fre-
quency modulation (FM) technique and interferometric read-out is given by [161]

∂F

∂d

∣∣∣∣
min

=

√
4kBkBT

ω0Q〈x2
osc〉

(9.1)

with k the spring constant, B the measurement bandwidth, kB Boltzmann’s con-
stant, T the temperature and ω0 and Q the cantilever’s angular frequency and qual-
ity factor respectively. The mean-square amplitude 〈x2

osc〉 is the driven amplitude of
the cantilever, which is generally larger than the thermal motion. Via the proximity
force approximation (see Eq. 5.31) we can relate this value to the minimal detectable
parallel-plate pressure

Ppp|min ≈
1

2πR

√
4kBkBT

ω0Q〈x2
osc〉

. (9.2)

If we put in our experimental parameters R = 100µm, k ≈ 1 N/m, B = 1 Hz,
ω0/2π = 2.3 kHz, Q = 5000 and take a driven amplitude of xrms = 5 nm, we find at
room temperature that the minimal detectable pressure is equal to 0.005 N/m2. The
difference between this value and the measured sensitivity in Figure 9.1 is caused
either by laser phase noise or by noise in the electronics driving the cantilever at
constant amplitude.

At low temperature, the minimal detectable pressure is an order of magnitude
lower, 3 × 10−4 N/m2, directly due to the influence of the temperature, but also in-
directly because the mechanical quality factor is higher, Q ≈ 30 000. The resonance
frequency and spring constant shift a few percent up, but this is a negligible effect.
We could further lower the detectable force gradient by limiting the bandwidth fur-
ther, but this will increase our measurement time. Increasing the cantilever ampli-
tude has a positive effect on the detectable pressure. But a large oscillation means
a large modulation of the sphere-plate distance. And since the Casimir force, but
also the electrostatic force, decreases nonlinearly with distance, this modulation re-
sults in an larger average force. If the cantilever amplitude is large compared to
the average distance, mixing between the frequency components of our modulation
technique can occur. A large cantilever amplitude results in a large average electro-
static force, which causes a large amplitude at the modulation frequency ω1, such
that the Casimir force is also modulated at this frequency. Increasing the cantilever
amplitude is therefore limited to only a few nanometers.
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Measuring at low temperatures theoretically lowers the minimal detectable pres-
sure, but in our experiment we see no difference between the room temperature
force sensitivity and the sensitivity at low temperature. This means that other noise
sources, like laser noise, are still dominant [51]. If we want to increase our force
sensitivity, we can gain a lot by improving the feedback parameters of the distance
lock, by increasing the electrostatic force set-point and by upgrading the electronics
that drive the cantilever. Increasing the read-out sensitivity would also be a great
improvement.

9.2 A New Measurement Set-up

The force sensitivity of our current set-up can be increased via the recommendations
mentioned above. But even if all the technical noise is cleared up, there is still a
limit from the interferometric read-out. In chapter 7 we found that the noise floor of
our interferometric read-out is equal to σ = 100 fm/

√
Hz. If we take a measurement

bandwidth of 1 Hz, spring constant of 1 N/m, a sphere with radius 100µm and a
sphere-plate distance of 100 nm, we find via

Ppp =
σk
√
B

2πRd
(9.3)

that the detection limit of the parallel-plate pressure is equal to 0.002 N/m2. To reach
the minimal detectable pressure at low temperature as given by Eq. 9.3, we should
also improve the detection of the cantilever motion.

In general, an optical cavity provides a more sensitive read-out of the resonator
motion than a fiber interferometer, due to a stronger light-resonator interaction.
To demonstrate this, with our optomechanical cavity we measure a noise floor of
300 am/

√
Hz, which is a factor 300 lower than what we can achieve with our fiber

interferometer. Note that this is measured at the resonance frequency of the trampo-
line resonator, which is two orders of magnitude higher than for the cantilevers with
microspheres.

We can use the trampoline resonator as our force sensor, the only adaption to
our current optomechanical set-up would be a conductive coating of the resonator,
which is required for our calibration and compensation scheme based on the elec-
trostatic force. An advantage of the trampoline resonators is that we can increase
the interaction area of the force. Whereas spheres with a large radius generally also
have a larger surface roughness [156], trampoline resonators or nanomembranes can
be manufactured with an area of the order of 1 mm2 while maintaining practically
flat surfaces. The idea of using a nanomembrane to read out the motion has been
proposed before [182–185], but in these proposals it was not combined with a high-
finesse cavity for read-out.

At first glance, it would seem imprudent to pair our flat trampoline resonator
with a flat conductive plate for the Casimir force measurements, because of the tech-
nical challenge to align them perfectly parallel. But having to align a sphere directly
opposite the resonator is also not ideal. Fortunately, it was shown [186] that the
trampoline resonators are curved due to the tensile stress in the silicon nitride. The
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radius of curvature is commonly about R ≈ 1 mm. We can therefore pair a curved
trampoline resonator with a flat conductive plate.

Another advantage of using trampoline resonators is that its mechanical proper-
ties can be tuned. Compared to microspheres attached to cantilevers, the mechanical
quality factor, resonance frequency and radius of curvature are higher. The spring
constant can be tuned by the design of the arms of the resonator. A low spring con-
stant is better for the force sensitivity, but when it is too low, the resonator may snap
under the influence of the large forces. Fortunately, further tunability is possible due
to the optical spring effect [187]. In principle, the spring constant can be adapted as
the distance between the resonator and the plate changes. A comparison of typical
parameters of the two systems is shown in Table 9.1.

microsphere on cantilever trampoline resonator
radius of curvature 100µm 1 mm
resonance frequency 2 kHz 200 kHz
mechanical quality factor 5000 - 30 000 400 000
spring constant 1 N/m 0.2 N/m, tunable
read-out interferometric high-finesse cavity

Table 9.1: Comparison of typical parameters of two systems for Casimir force measure-
ments; a microshere attached to an atomic force microscope cantilever that was used in
this thesis and the proposed improvement based on a trampoline resonator.

Based on the noise floor of 300 am/
√

Hz of our optomechanical cavity, we find
that the optical cavity can read out a pressure of 1 × 10−7 N/m2, at a distance of
100 nm and a bandwidth of 1 Hz. The minimal pressure that can be detected by
the trampoline resonator, using the FM technique, is according to Eq. 9.3 equal to
9×10−5 N/m2 at room temperature based on a thermal resonator RMS amplitude of
144 pm. The trampoline resonator can be driven [80, 188] to an amplitude of around
1 nm, which would result in a minimal detectable pressure of 1.3 × 10−5 N/m2, a
significant enhancement compared to our current sensitivity.

To set the distance between the trampoline resonator, it is possible to position
the plate on a piezo-electric translation stage. The distance can be determined by
modulating the electrostatic force between the two surfaces in a similar fashion de-
scribed in this thesis. This method requires an independent read-out of the plate’s
distance change dpz during a measurement run. We therefore need to install a fiber
interferometer directed towards the plate. Since we are not interested in the absolute
direction of the distance change, we can place the fiber on either side of the plate.
Behind the plate would be more advantageous for spatial arguments. Another, more
challenging, but also more sensitive option would be to align a second beam be-
tween the large cavity mirror and the plate to form a second optical cavity that is
tilted slightly with respect to the first cavity.

To set the distance more accurately than can be done with a piezo, we can use the
nested resonator described in chapter 4. The coated outer resonator and the plate
form a capacitor. By setting an adequate voltage between them, the electrostatic force
will pull the nested resonator closer to the plate. Since this requires different volt-
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Figure 9.2: Impression of the set-up for Casimir force measurements with an optomechan-
ical cavity for force detection. The large cavity mirror (left), nested resonator (middle)
and plate (right) are indicated, as well as the cavity light and vacuum fluctuations. The
plate is separated into two areas which can be set at different potentials. The center area
(grey) is used for calibration and compensation as described in chapter 7 of this thesis,
the outer area (yellow) is used to set the distance between the nested resonator and the
plate.

ages than needed for our calibration and compensation technique, the plate needs
to be divided into two areas that can be set at different voltages with respect to the
nested resonator. The voltages VDC and VAC, required for our modulation scheme,
are applied to the inner area, indicated in grey in Figure 9.2. The distance between
the outer resonator and plate is set by the potential of the outer area. A large degree
of control of the nested resonator motion with the dielectric force was already shown
in Ref. [96]. A similar degree of control can be expected with the capacitative force,
as the main objection in chapter 4 against this force was the alignment procedure,
which is required in this set-up anyway.

Combining the Casimir force measurement method based on modulation of the
electrostatic force with an optomechanical cavity to read out the motion of the tram-
poline resonator serving as a force sensor is a promising way to significantly improve
our force sensitivity. Our current force gradient sensitivity of 2 N/m2 (correspond-
ing to a pressure sensitivity of 0.3 N/m2) is limited by noise in our electronics. If
we can eliminate this noise, we are still limited to a minimal detectable pressure of
0.005 N/m2 at room temperature based on the read-out sensitivity of our fiber inter-
ferometer. We can improve on this further if we switch to optomechanical cavities.
The resulting pressure sensitivity of 1.3× 10−5 N/m2 at low temperatures is signifi-
cantly better than with our current set-up. For comparison, the lowest experimental
error reported so far is 2.2× 10−3 N/m2 [11].
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Casimir force in terms of reflection coefficients

In this appendix we will show the calculations to rewrite the Lifshitz expression for
the Casimir force in terms of the reflection coefficients of the plates [110]. The re-
flection coefficients are expressed in terms of the Fresnel equations. The calculations
and expressions are partially based on Ref. [98]. We start with the original expression
found by Lifshitz (Equation 5.10 of this thesis and Equation 5.2 of Ref. [97]):

FC =
kBT

πc3

∞∑
n=0

′
∞∫

1

p2ξ3
n

{[
(s1 + p)

(s1 − p)
(s2 + p)

(s2 − p)
e2pξnd/c − 1

]−1

+

[
(s1 + ε1p)

(s1 − ε1p)

(s2 + ε2p)

(s2 − ε2p)
e2pξnd/c − 1

]−1
}

dp, (A.1)

where T is the temperature, d the distance between the plates and kB and c Boltz-
mann’s constant en the speed of light respectively. The prime on the summation
mark indicates that the term with n = 0 is multiplied by 1

2 . For imaginary frequen-
cies ω = iξn = i 2kBT

~ n,

p =

√
1 +

c2

ξ2
n

k2
‖, (A.2)

s1,2 =
√
ε1,2(iξn)− 1 + p2 =

√
ε1,2(iξn) +

c2

ξ2
n

k2
‖, (A.3)

with k‖ the wave vector component tangential to the plates. If we multiply the nu-
merators and denominators in Equation A.1 by ξ2

n/c
2 and write out the expressions
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of p and s1,2, we find for the fractions

s1,2 + p

s1,2 − p
=

√
ε1,2

ξ2n
c2 + k2

‖ +
√

ξ2n
c2 + k2

‖√
ε1,2

ξ2n
c2 + k2

‖ −
√

ξ2n
c2 + k2

‖

, (A.4)

s1,2 + ε1,2p

s1,2 − ε1,2p
=

√
ε1,2

ξ2n
c2 + k2

‖ + ε1,2

√
ξ2n
c2 + k2

‖√
ε1,2

ξ2n
c2 + k2

‖ − ε1,2

√
ξ2n
c2 + k2

‖

, (A.5)

where ε1,2 = ε1,2(iξn). We can simplify these expressions if we introduce qn =√
ξ2n
c2 + k2

‖ and k(1,2)
n =

√
ε1,2

ξ2n
c2 + k2

‖:

s1,2 + p

s1,2 − p
=
k

(1,2)
n + qn

k
(1,2)
n − qn

(A.6)

s1,2 + ε1,2p

s1,2 − ε1,2p
=
k

(1,2)
n + ε1,2qn

k
(1,2)
n − ε1,2qn

. (A.7)

When we apply the expressions above and use p dp = c2

ξ2n
k‖ dk‖, Equation A.1 looks

like

FC =
kBT

πc3

∞∑
n=0

′
∞∫

0

√
1 +

c2

ξ2
n

k2
‖ξ

3
n


[
k

(1)
n + qn

k
(1)
n − qn

k
(2)
n + qn

k
(2)
n − qn

e
2

√
ξ2n
c2

+k2‖d − 1

]−1

+

[
k

(1)
n + ε1qn

k
(1)
n − ε1qn

k
(2)
n + ε2qn

k
(2)
n − ε2qn

e
2

√
ξ2n
c2

+k2‖d − 1

]−1
 c2

ξ2
n

k‖ dk‖. (A.8)

For any further simplification we turn to the Fresnel equations for the reflection co-
efficients for the transverse electric and transverse magnetic waves [189], where θ0 is
the angle of incidence for a wave in vacuum reflecting on a medium with dielectric
permittivity ε:

rTE =
cos θ0 −

√
ε− sin2 θ0

cos θ0 +
√
ε− sin2 θ0

,

rTM =
ε cos θ0 −

√
ε− sin2 θ0

ε cos θ0 +
√
ε− sin2 θ0

. (A.9)

For an electromagnetic wave in vacuum sin θ0 = k‖c/ω, such that cos2 θ0 = 1 −
k2
‖c

2/ω2. By setting ω = iξn and multiplying by ξn/c, we arrive at ξn
c cos θ0 =
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√
ξ2n
c2 + k2

‖ = qn and ξn
c

√
ε− sin2 θ0 =

√
ε
ξ2n
c2 + k2

‖ = kn. This means we can write

r
(1,2)
TE =

qn − k(1,2)
n

qn + k
(1,2)
n

, (A.10)

r
(1,2)
TM =

ε1,2qn − k(1,2)
n

ε1,2qn + k
(1,2)
n

. (A.11)

If we compare this with the fractions in Equation A.8, we see that we can replace
them directly with the inverted reflection coefficients1. After some final transforma-
tions, we arrive at the expression for the Casimir force in terms pof the reflection
coefficients:

FC =
kBT

π

∞∑
n=0

′
∞∫

0

qnk‖

{[(
r

(1)
TE r

(2)
TE

)−1

e2qnd − 1

]−1

+

[(
r

(1)
TMr

(2)
TM

)−1

e2qnd − 1

]−1
}

dk‖.

(A.12)

1Actually, the fractions are inversely proportional to −rTE,TM, but since the reflection coefficient of
medium 1 is multiplied by the reflection coefficient of medium 2, the minus signs cancel out.
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Samenvatting

Dit proefschrift bevat twee verschillende onderwerpen, die verbonden worden door
het begrip stralingsdruk. Stralingsdruk ontstaat wanneer (electromagnetische) stra-
ling tegen een object botst en daarbij van richting verandert of wordt geabsorbeerd.
Het verschil in impuls wordt overgedragen op het voorwerp dat hierdoor een kracht
ondervindt. Deze kracht is in het algemeen erg klein, waardoor het effect alleen
merkbaar is als er veel straling is, als het voorwerp erg klein is, of als het voorwerp
goed geı̈soleerd is van andere invloeden. Een bekend voorbeeld van stralingsdruk
is de staart van een komeet. Die beweegt niet achter de komeet aan, zoals in eer-
ste instantie verwacht, maar wijst altijd van de zon af door de stralingsdruk die het
licht van de zon levert op het gas dat de staart van de komeet vormt. In het lab
kan stralingsdruk ook gemeten worden, of zelfs worden gebruikt om de beweging
van mechanische resonatoren te beı̈nvloeden. Als de resonator klein genoeg is, kan
deze significant worden afgeremd of juist aangedreven. Deze interactie wordt on-
derzocht in het eerste deel van dit proefschrift. Dat straling in zijn vacuümtoestand
ook druk kan uitoefenen wordt aangetoond door het Casimireffect. Dit effect wordt
bestudeerd in het tweede deel van dit proefschrift. Specifiek richten we ons op de
invloed van supergeleidende materialen op de sterkte van de Casimirkracht.

Optomechanica

In het vakgebied optomechanica wordt gebruikt gemaakt van stralingsdruk veroor-
zaakt door de reflectie van licht om de beweging van een microscopische resonator
te beı̈nvloeden. Deze koppeling biedt de mogelijkheid om de kwantummechanische
eigenschappen van het licht over te brengen op de resonator. Hierdoor zou het in
de toekomst mogelijk kunnen worden om de kwantummechanische eigenschappen
van relatief grote objecten te onderzoeken.

De grootte van de resonator kan sterk verschillen, net als de frequentie van het
gebruikte licht. In ons system gebruiken we een spiegeltje met een diameter van
80µm dat via vier silicium nitride armpjes verbonden is met de buitenwereld. De
beweging van de spiegel valt te vergelijken met dat van een trampoline, vandaar
dat we spreken van een trampolineresonator. De spiegel weerkaatst infrarood laser-
licht met een golflengte van 1064 nm. Om de interactie te versterken plaatsen we een
tweede, vaste spiegel tegenover de trampolineresonator. De intensiteit van laserlicht
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gevat in deze optische trilholte is vele malen sterker dan de intensiteit van het licht
buiten de trilholte. Door de frequentie van het inkomende laserlicht te ontstemmen
ten opzichte van de resonantiefrequentie van de trilholte, is het mogelijk de resona-
tor af te remmen of aan te drijven. Omdat het laserlicht erg weinig ruis heeft, kan
je er een lage effectieve temperatuur aan toekennen. Koppeling van de trampoline
resonator met dit bad resulteert in een verminderde ruis in de beweging van de re-
sonator en daarmee een lagere effectieve temperatuur, waardoor we het niet alleen
kunnen afremmen maar ook kunnen koelen. Het mechanisme dat we hiervoor ge-
bruiken heet optisch zijbandkoelen. Hoofdstuk twee van dit proefschrift toont aan
hoe dit mechanisme werkt en hoe wij dit toepassen in onze opstelling.

We gebruiken de optomechanische interactie ook om de resonator aan te drijven.
In hoofdstuk drie laten we zien dat de amplitude zo’n 450 keer vergroot kan worden
ten opzichte van de thermische beweging op kamertemperatuur. Het systeem laat
zich goed beschrijven door de gekoppelde bewegingsvergelijkingen van de mecha-
nische spiegel en de optische trilholte. Dit toont de ongevoeligheid van ons systeem
voor absorptie van licht.

Het optisch zijbandkoelen van de spiegel is gelimiteerd door mechanische tril-
lingen die ruis in het spectrum veroorzaken, zodanig dat de beweging van de spie-
gel bij zekere koelfactor niet meer waarneembaar is. Om de trampolineresonator te
isoleren van deze trillingen, hebben we hem omringd met een tweede trampolinere-
sonator, zodat een genestelde resonator ontstaat. De isolatie van de buitenresonator
wordt geschat op zo’n 80 dB. Met deze constructie zijn we in staat om een effectieve
temperatuur van 23 mK te bereiken vanaf kamertemperatuur. De beweging van de
buitenresonator beı̈nvloedt echter ook de stabiliteit van de optische trilholte, wat
weer een nadelig effect heeft op de mogelijkheid om optisch te koelen. Het is dus
belangrijk de beweging van de buitenresonator te dempen. Dit kan met behulp van
een fiberoptische interferometer om de beweging uit te lezen en terugkoppeling op
basis van ofwel de elektrostatische ofwel de diëlectrische kracht. Beide mogelijkhe-
den worden onderzocht in hoofdstuk vier.

Casimireffect

Het vacuüm is niet leeg en bevat nog altijd electromagnetische straling. Hierdoor
kunnen voorwerpen in vacuüm toch stralingsdruk ondervinden. Dit wordt aange-
toond door het Casimireffect, de kracht die twee ongeladen voorwerpen in elkaars
nabijheid ondervinden. Deze kracht is over het algemeen heel zwak en wordt al-
leen significant als de twee voorwerpen dicht bij elkaar staan, op een afstand van
niet meer dan een paar micrometer. De sterkte van de kracht hangt verder af van
de hoeveelheid reflectie of absorptie die de electromagnetische straling ondervindt
aan het oppervlak van de voorwerpen en is dus materiaalafhankelijk. De reflectie en
absorptie van een materiaal worden bepaald door zijn diëlectrische permittiviteit.
Die kan gemeten worden, maar alleen voor bepaalde frequenties binnen het elec-
tromagnetische spectrum, afhankelijk van de beschikbaarheid van stralingsbronnen
en detectoren. Het bereik van frequenties die bijdragen aan de kracht is echter heel
groot. In principe zijn dit alle frequenties tot een zekere afsnijdfrequentie, die geen
bijdrage meer levert omdat de bijbehorende golflengte kleiner is dan de atomen van
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het materiaal. In veel gevallen is het bereik van frequenties die bijdragen aan de Casi-
mirkracht dus groter dan het bereik van frequenties waarbij de diëlectrische permit-
tiviteit bekend is. Om toch een berekening van de kracht te kunnen maken, wordt de
gemeten diëlectrische permittiviteit geëxtrapoleerd met behulp van modellen. Twee
modellen zijn in omloop en discussie bestaat welke het beste gebruikt kan worden.
Het grote verschil is de invloed van de weerstand van de vrije elektronen in het ma-
teriaal. Het Drudemodel zegt dat dit mee moet worden genomen in het bepalen van
de reflectiviteit en daarmee de Casimirkracht, terwijl het volgens het plasmamodel
juist weggelaten moet worden. Voor veel materialen waartussen in het verleden de
kracht is gemeten leiden de modellen tot een minimaal verschil in de kracht en zijn
precisiemetingen met zeer betrouwbare kalibratie noodzakelijk.

Om dit laatste punt wat te versoepelen is voorgesteld om de Casimirkracht te me-
ten tussen supergeleidende materialen. Van deze materialen is bekend dat de weer-
stand van de vrije elektronen wegvalt. Een verschil in de kracht boven en onder de
kritische temperatuur van de supergeleider zal er dus op duiden dat het Drudemo-
del de voorkeur heeft, een afwezigheid van dit verschil duidt op het plasmamodel.
Een absolute meting van de kracht is dus niet zeer noodzakelijk, zolang aangeno-
men kan worden dat er verder niets in het systeem verandert met temperatuur. In
hoofdstuk vijf van dit proefschrift wordt de Casimirkracht tussen supergeleidende
materialen berekend.

Hoewel berekeningen vaak uitgaan van twee parallele platen in elkaars nabij-
heid, is het perfect parallel uitlijnen van twee platen op een afstand van ongeveer
een micrometer experimenteel uitdagend. Net als veel opstellingen gebruiken wij
daarom een bol-plaatgeometrie, waarbij een polystyreen bol met een straal van 100µm
boven een vlakke plaat wordt gepositioneerd. Zowel bol als plaat zijn voorzien van
een laag van 200 nm van het gewenste materiaal. In dit proefschrift is de bol bedekt
met een goudlaag, terwijl de plaat ofwel een goudlaag ofwel een niobium-titaan-
nitridelaag heeft. De metingen tussen twee goudlagen worden gebruikt ter kali-
bratie en demonstratie van onze opstelling en meetmethode. Wij gebruiken de su-
pergeleider niobium-titaan-nitride vanwege zijn hoge kritische temperatuur en zijn
ongevoeligheid voor oxidatie.

De bol zit vast aan een microscopische hefboom, zoals gebruikt in atoomkracht-
miscroscopie. Een kracht op de bol leidt tot een uitwijking van de hefboom, wat
wordt uitgelezen via fiberinterferometrie. De techniek achter fiberinterferometrie
wordt beschreven in hoofdstuk zes van dit proefschrift, net als enkele andere ex-
perimentele details. Het meten van de Casimirkracht heeft nogal wat voeten in de
aarde. De grootste uitdaging is de accurate kalibratie van de afstand tussen de twee
oppervlakken en van de krachtsensor die gebruikt wordt. Bovendien wordt de Casi-
mirkracht vaak overschaduwd door de elektrostatische kracht, die ontstaat door een
verschil in uittreedpotentiaal tussen de twee oppervlakten. Het is dus noodzake-
lijk om voor deze kracht te compenseren, maar het kan ook gebruikt worden om de
opstelling te kalibreren. In tegenstelling tot de Casimirkracht is de elektrostatische
kracht afhankelijk van de spanning tussen de bol en de plaat. Door die spanning te
moduleren op een bepaalde frequentie, kunnen we de beide krachten onderscheiden
en de bekende elektrostatische kracht gebruiken voor kalibratie van de krachtsensor
en de afstand. Het verschil in uittreedpotentiaal kan op deze manier ook worden
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gecompenseerd. Het voordeel van onze meetmethode is dat de kalibratie tegelijk
geschiedt met de Casimirkrachtmeting, waardoor we minder gevoelig zijn voor ver-
anderingen in de kalibratie over tijd. In hoofdstuk zeven van dit proefschrift laten
we zien hoe onze kalibratiemethode werkt en dat we daarmee succesvol de Casimir-
kracht tussen twee gouden oppervlakten kunnen meten.

De Casimirkrachtmetingen tussen goud en niobium-titaan-nitride staan beschre-
ven in hoofdstuk acht. Hier vinden we op kamertemperatuur dat de hoge weerstand
van dit materiaal leidt tot een groot verschil tussen het Drude- en plasmamodel. Ac-
curate metingen van de Casimirkracht lijken aan te tonen dat het gebruik van het
Drudemodel meer overeenkomt dan het plasmamodel. Op lage temperatuur is de
Casimirkracht significant sterker dan we verwachten op basis van optische reflec-
tiemetingen. Dit lijkt geen effect te zijn van de supergeleidende toestand aangezien
deze toename ook te zien is op enkele Kelvin boven de kritische temperatuur van
de supergeleider. We kunnen niet uitsluiten dat het effect een technische oorsprong
heeft. Rond de supergeleidende overgang van niobium-titaan-nitride zien we geen
verschil in de Casimirkracht. Dit zou kunnen duiden op een betere overeenkomst
met het plasmamodel, maar gezien de onverklaarde toename van de kracht bij lage
temperatuur zijn we voorzichtig deze conclusie te trekken.

Vooralsnog is de gevoeligheid van de metingen gelimiteerd tot eenzelfde orde
van grootte als het maximale verwachte effect van de supergeleidende overgang.
Om de gevoeligheid te vergroten wordt in hoofdstuk negen de mogelijkheid onder-
zocht om een optomechanische trilholte, zoals beschreven in het eerste deel van dit
proefschrift, te gebruiken als krachtsensor. De gevoeligheid zal hiermee vele malen
kunnen toenemen.
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