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Abstract
Introduction of more relevant cell models in early pre-clinical drug discovery, combined 
with high-content imaging and automated analysis are expected to increase the quali-
ty of compounds progressing to pre-clinical stages in the drug development pipeline. 
In this review we discuss the current switch to more relevant 3D cell culture models 
and associated challenges for high-throughput screening and high content analysis. We 
propose that overcoming these challenges will enable front-loading the drug discovery 
pipeline with better biology, extracting the most from that biology and in general, im-
prove translation between in vitro and in vivo models. This is expected to reduce the 
proportion of compounds that fail in vivo testing due to lack of efficacy or due to toxicity.
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Introduction
Declining drug success rates and increasing costs suggest that alternative strategies are 
required in early drug discovery. Traditional drug discovery has favoured a target-based 
approach where drugs were selected to manipulate a single molecular target. Since 
good targets are often not identified or inhibition of single targets is often not sufficient 
for effective therapy, phenotypic screening represents an alternative approach that has 
proved successful in recent years.1-3 Phenotypic drug screening techniques typically 
combine simple single end-point measurements, such as cell viability, with 2D mono-
layer cultures of cell lines. Such pleiotropic endpoints limit their sensitivity and selec-
tivity for the most promising drugs.4 Furthermore, cells cultured as a monolayer often 
respond differently to drugs compared to native tissues.5 

Reasons underlying the aberrant responses of 2D cultured cell lines compared to tis-
sues include the grossly distorted architecture of cells stretched on rigid plastic, the 
absence of natural ligands with which to attach to and the lack of multiple different 
cell types found within a tissue that are typically closely intertwined to regulate cellu-
lar behaviour. These cellular interactions can dramatically influence cell differentiation 
and signalling and thus the ability to accurately recapitulate the situation in the body. 
For example, cancer cells grown as a monolayer have a deregulated cell cycle, often 
doubling every 24 hours, while tumours in vivo typically show only a few percent of 
actively cycling cells and only have a marginally higher rate of proliferation compared 
to healthy tissue. As a result, cancer drugs selected on this basis often show adverse 
effects in healthy tissues. These problems indicate that different, more biologically- 
relevant strategies, will be more effective in developing successful medicines.

Three-dimensional cell culture models simulate aberrant tissue organization 
in pathology
Over the last three decades or so, three-dimensional (3D) cell culture techniques have 
been developed that have resulted in models that more accurately mimic physiological 
and diseased states than their 2D counterparts.6-11 These have the potential to provide 
a more physiologically relevant context for drug screening, as culturing cells in a 3D 
environment allows the formation of complex multicellular micro-tissues or organoids 
that display cell-cell and cell-matrix attachment that drive differentiation and normal 
tissue function.12-19

The resulting biological complexity of these multicellular micro-tissues makes them 
particularly well suited for phenotypic drug discovery. Traditional end-points, such as 
proliferation and viability can be combined with 3D assays – either using biochemical 
assays or specific fluorescent labels.20 But just as modern histopathology relies on a 
diverse range of cell and tissue archtectural characteristics of patient material for de-
cision making, maximum leverage of the more complex biology of 3D-cultured tissues 
can also be gained from analysis of diverse morphological characteristics. This can be 
of particular value when aberrant tissue organization is directly associated with patho- 
logy, for example, with neurodegenerative disorders,21-22 tissue fibrosis,23 cancer,24-27 
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and ciliopathies such as polycystic kidney disease (PKD).28-29 In the context of these 
diseases, 2D cultured cell lines fail profoundly to capture properties critically associ-
ated with the pathophysiology. The modelling of cystopathies is a particularly clear ex-
ample since cysts, such as those formed in the kidneys of PKD patients, are 3D struc-
tures that cannot be recapitulated in 2D cell cultures. Therefore, mechanistic studies 
and compound efficacy testing can only effectively be studied in a 3D environment or 
in vivo. Similarly, to evaluate tumour dysplasia and invasion, 2D cell cultures lack the 
required physical environment. These and many other examples underscore the need 
for the more disease-relevant 3D cell culture models (Figure 1). 

Front-loading the early in vitro stages of drug discovery with more disease-relevant 
biological models will inevitably increase the quality of molecules entering the pipe-
line.30 A more faithful in vitro representation of the pathways and processes in disease 
in vivo will improve drug testing even with simple end-point measurements such as 
cell viability. However, maximum potential of 3D cultured tissues can be realized by ex- 
ploiting the phenotypic complexity with high-content endpoints.

3D cell culture models for high-throughput screening
Many different options to culture cells in 3D have emerged, each with specific limita-
tions and advantages for evaluation of compound effects.31-35 3D culture techniques 
often make use of immortalized cell lines due to ease of culturing and relative lack of 
heterogeneity and, while convenient for high-throughput screens, these cells may not 
accurately represent tissues, since these generally require the interaction of multiple 
cell types for normal function. This problem may be circumvented by introduction of 
co-cultures,36 as has been shown for different co-culture systems.37-39 However, co- 
culture systems also introduce an increased level of complexity to the culture system, 
which can be undesirable for high-throughput screens. For example, cell ratios and cell 
culture media require optimization to support growth of both co-cultured cell types to 
obtain functional tissues.36, 38 It may only be worth considering this approach if the in-
teraction between the co-cultured cell types is of particular significance for the disease, 
such as the interaction of fibroblasts and epithelial cells in fibrosis.40-41 

Additional improvement of the relevance of cell models can be gained by the incor-
poration of primary cells obtained from specific tissues.12 However, as these can only 
be passaged a few times before they cease proliferating, their capacity to develop into 
functional tissues is limited. Furthermore, the cost, logistics and lack of prior character-
ization of patient tissues limits their suitability for in vitro testing.36 

Induced pluripotent stem cells (iPSCs) are an attractive alternative to the direct use 
of primary cells in screening, since iPSCs can be generated from virtually any adult cell 
type reprogrammed with a combination of transcription factors (e.g. Oct4, Sox2, Klf4 
and c-Myc42). The resulting pluripotent stem cells can be differentiated to generate a 
desired tissue type. As a result, iPSC-derived tissues have been used to model a variety 
of different diseases43 such as cardiovascular, neurological44 and hepatic45 disorders. 
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FIGURE 1 3D cell cultures provide a more physiologically relevant context for drug 
screening. A) Prostate Carcinoma (PC-3) cells cultured as 2D monolayer (top) or 
embedded in 3D hydrogels (bottom) display differential morphology and response to 
growth factors.75 Images in top panel obtained using wide-field BD pathway 855 with a 
10x objective and images in bottom panel obtained using a Nikon Ti Eclipse confocal 
microscope with 20x objective. B) mIMCD3 cells transduced with a short-hairpin 
targeting Pkd1, deactivation of which is responsible for cyst growth in polycystic 
kidney disease, cannot form cysts in 2D culture conditions (left panel, BD pathway 855 
with 10x objective), whereas they can in 3D hydrogels (right panel, Nikon Ti Eclipse 
confocal microscope with 20x objective). F-actin (rhodamine-phalloidin), red; Nuclei 
(Hoechst 33258), blue.
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Although the popularity of using iPSC-derived tissues in high-throughput screens is 
rapidly increasing, significant hurdles for routine use of iPSCs for this purpose are still 
posed by extensive differentiation procedures that are required and also the possibility 
of incomplete differentiation.46 In addition, slow growth47 and challenging culture con-
ditions can complicate screening procedures.48 Interestingly, because 3D culturing of 
iPSC-derived tissues is known to facilitate rapid reprogramming,49 growing iPSC-derived 
tissues in 3D assays may overcome some of these hurdles.

In the context of neoplastic disorders, an attractive possibility is the use of patient 
derived xenograft (PDX) tumour material as a source of cells for 3D culture assays.50-

52 These tumours are typically well characterized genetically with respect to drug sen- 
sitivity in vivo and the availability is not restricted as with primary patient tumour mate-
rial. Practically, dissociated tumour cells can be allowed to reform as tumour spheroids 
in extracellular matrix hydrogels for the screening of small molecules and biologics 
(figure 2). The use of PDX derived tumour material for in vitro tests also offers the pos-
sibility to subsequently test compounds in the autologous in vivo model. Such approa- 
ches are expected to improve the concordance between in vitro and in vivo data al-
though to what extent remains to be established. Recent advances in tissue culture 
technology have also enabled the generation of 3D organoid cultures of normal and 
diseased tissues from stem cells derived from tissue biopsies. Studies on panels of pa-
tient derived organoids have shown that these can preserve the histology and genetic 
profile of the primary tissue and maintain an additional level of physiological relevance 
by forming more complex structures comprised of cells with different functions.9-10,53 
While expansion of these tissue cultures is demanding compared to standard cell lines, 
they can still be used for compound screening.54 

Despite a number of successful studies showing the practical implementation of 
3D cultures in routine screening,55-57 adoption of these model systems in routine drug 
discovery pipelines has been slow. Generally, high reagent costs and low-throughput 
experimental procedures have long hampered the development of high-throughput 
screening platforms, and as a result, 3D cultures have mostly been used for small-scale 
experimentation and validation with single end-point measurements, rather than for 
primary screens. Although several technical challenges remain, the appearance of a 
wide range of new reagents, technologies and published methods have resulted in in-
creasing adoption of 3D cultures for compound screening and testing.

Matrix composition and automation
To provide a physiologically relevant context for 3D-cultured micro-tissues to develop 
and interrogate the effects of compounds, a micro-environment is required that pro-
vides cells with mechanical and physical interactions that normally occur in vivo.58 
For this purpose, scaffolds have been used that can mimic the extracellular matrix 
(ECM).59-61 The most commonly used scaffolds include hydrogels, which can be natu-
ral, synthetic, or a combination.62 Natural hydrogels are animal-derived basement- 
membrane (BM) extracts, which have fixed chemical and physical properties, but an un-
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defined composition that varies between batches with unforeseen consequences. Ex-
amples of such natural hydrogels are collagen or the laminin-rich extracts produced from  
Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells (Matrigel). These gels contain 
many endogenous factors that can support viability of cell cultures.63 Synthetic hy-
drogels, in contrast, are well-defined and can be readily modified and manufactured, 
thereby overcoming many problems associated with natural hydrogels. However, syn-
thetic hydrogels often do not support cell growth since these lack endogenous factors 
and first require remodelling to support cell adhesion and other cellular behaviour.64 
In order to adequately recapitulate the natural microenvironment, these gels need to 
present various different ligand types at different densities.65 Probably most critical is 
the absence of functional laminin mimetics which are required to engage at multiple 
sites on the laminin binding integrins66 and subsequently drive differentiation.67 Cells 
that grow under conditions where integrin-mediated interactions with the extracellular 
environment are compromised, such as in synthetic hydrogels, but also in hanging-drop, 
suspension media, or ultra-low adhesion systems, fail to differentiate adequately or re-
quire extended culture periods to enable secretion of endogenous ECM proteins to support  
differentiation. 

FIGURE 2 3D cultures of patient-derived xenograft (PDX) material. PDX material from 
different tumours can be cultured in 3D hydrogels to form complex micro-tissues 
that can be used for compound screening in a physiologically- and patient-relevant 
context. Actin cytoskeleton visualised with rhodamine-phalloidin. Image materials 
provided by OcellO B.V. (Leiden, the Netherlands).
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Automation of liquid handling for 3D culturing techniques is a more technical chal-
lenge that can hamper the adoption of 3D micro-tissues in primary high-throughput 
screens. While liquid handling for suspension media and ultra-low attachment micro-
plates can be conveniently automated, this can be challenging for more viscous liquids 
such as collagen- and Matrigel-containing hydrogels.68 The polymerization of these gels 
is typically temperature sensitive, requiring extensive environment control to avoid pre-
mature polymerization and rapid liquid handling to avoid blocked pipette tips. While 
automation of 3D culturing techniques can often be achieved for 96- or 384 well plates, 
further miniaturization may be problematic due to pipetting of smaller volumes.69

Sample preparation
Additional challenges arise due to the environment in which cells are cultured. For ex-
ample, for the detection of fluorescent signals, or for absorption measurements, the cul-
ture matrix often interferes with measurement, and this can be especially important for 
colorimetric measurements of cell viability or proliferation. Also, protein- or RNA/DNA 
sample preparation techniques are often not compatible with the use of natural hydro-
gels that contain many endogenous factors, as the presence of matrix proteins can in-
terfere with antibody labelling of protein or purification and detection of RNA and DNA. 

Alternatively, the specific composition of the matrix can interfere with free diffusion 
of certain compounds, especially large molecules, such as antibodies, or molecules 
that bind to ECM-proteins. For sample preparation, this means that standard proce-
dures for immunofluorescent labelling have to be modified to allow sufficient time for 
diffusion of antibodies through the gel. Similarly, washing steps need to be prolonged 
to allow excess antibody removal. Importantly, these properties of gels can also mimic 
specific physiological processes, such as poorly perfused tissues.

Developments in 3D culture reagents and liquid handling technology will help to 
overcome these challenges and the adoption of 3D cell cultures in high-throughput 
screening, will inevitably continue to grow.

Phenotypic profiling of 3D-cultured micro-tissues
High throughput screens typically use single-endpoint measurements for hit selection, 
such as cell viability or a single fluorescent reporter. This can compromise the quality 
of the selected hits, since only a narrow view of the cellular response to a treatment is 
reported.  Automated microscopy and image analysis enables multiple features to be 
measured and allows a better differentiation of biological responses. The greater mor-
phological complexity of tissues cultured in 3D make this type of high content analy-
sis particularly valuable, retrieving rich information that would be overlooked by single 
end-point assays. The fluorescent reporters in 2D assays can also typically be incorpo-
rated in the 3D assays. Recent years have witnessed the development of (ultra-)high 
content phenotypic screening and multiparametric analysis techniques  that can fully 
exploit the complex cellular response patterns to classify compound effects.70-74 While 
currently used extensively for 2D cultured cells, high-content screening of 3D cell-based 
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assays presents challenges for imaging, image analysis, computation and data storage 
and also data visualisation. 

Imaging of 3D-cultured micro-tissues
To analyse cellular phenotypes, fixed and stained cultures are typically imaged using 
conventional wide-field or confocal fluorescence microscopy. Because single xy- 
images taken from gel-embedded micro-tissues capture only a fraction of the objects in 
a well (with the majority captured in a sub-optimum plane), to retrieve sufficient infor-
mation from 3D cultures it is necessary to capture a series of xy-images at fixed steps 
in the vertical direction using automated microscopes,75 to obtain a z-stack from each 
well (Figure 3A). Although the entire well of a 384-well plate is typically captured with 
a 4x objective, stepping up to a 10x lens to capture more (sub)cellular detail multiplies 
the number of xy-fields and z-planes required to capture the same number of objects –  
increasing the image capture time perhaps 10-fold. Using multiple fluorescent channels 
similarly multiplies image capture time.  Wide-field fluorescence imaging can speed up 
image capture time compared to confocal imaging, but requires post-imaging deconvo-
lution to reduce out-of-focus signal.

Since 3D cultures in multi-well plates require the capture of multiple xy-images, often 
with multiple image channels, data volumes can rise considerably. For example, a 384 
well plate of 3D cultures imaged with a 4x lens can typically yield 50GB-100GB of image 
data. Maximum focus or –intensity projection algorithms are available in several soft-
ware packages such as ImageJ76 and CellProfiler77 and convert 3D image stacks to 2D 
images, dramatically reducing data volume and the complexity of analysis (Figure 3A). 
However, collapsing a 3D image stack to a single xy-image results in a significant cor-
ruption of architecture, mis-measurement of objects blended from different z-planes 
and loss of the spatial association of objects between fluorescence channels, compro-
mising co-localisation measurements; analysis of intact 3D image stacks is necessary 
to retain this phenotypic information (Figure 3B).78-79 2D cell cultures typically provide 
thousands of cells for phenotypic analysis. 3D cultures, however, often only provide 
one object (in the case of spheroids generated using the hanging-drop technology or 
ultra-low attachment plates20) or perhaps a hundred objects per well (cells embedded 
in gel) for analysis. Low object numbers, coupled with heterogeneity of cell seeding and 
growth, can be potentially problematic when measuring single-endpoints such as cell 
viability. Multiparametric high-content analysis can overcome these problems by allow-
ing for normalization to object (spheroid) number and can additionally exploit hetero-
geneity to study the effect of treatments on specific cellular subpopulations.78-79  

While it is clear that adding a third dimension increases the image capture and 
computational demands, including live-cell 3D imaging in a multi-well screen-
ing format pushes the demands beyond the capacity of the available technology.  
However, such techniques could provide valuable information on tissue dynamics over 
time in more relevant biological systems.80 With advances in image analysis software and  
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automated microscopy systems and the increases in computational power, live 3D 
image capture is also expected to become accessible.

Image analysis and multiparametric end-points
Despite the availability of advanced image analysis tools through software such as 
ImageJ76 and CellProfiler,77 the true phenotypic complexity of 3D-cultured micro-tissues 
is often not exploited to its full extent.4 Although often requiring the use of high mag-
nification lenses and multiple z-planes when imaging, it is relatively straightforward 
to capture single-cell-resolution images from cells cultured in a monolayer and apply 
this in an automated high throughput format. However it is not yet feasible to achieve 
this with 3D cultures – largely due to the inability of imager software to detect objects 
‘on-the-fly’ and home in for high magnification image capture. However, this may be 
compensated by the additional features that can be measured from multicellular or-
ganotypic structures using lower magnification lenses in a high-throughput format. 

For many research questions, a simple parameter, such as spheroid size, may 
be adequate to discriminate a treatment response. As an advantage of using only a 
few parameters, readouts are generally simpler to interpret. But the use of a limited 
number of parameters ignores an abundance of the information that can be extracted 
from the 3D image stacks. We showed previously that the integration of multiple phe-
notypic descriptors can improve classification of compounds according to phenotypic 
response.79 The analysis of high-dimensional data (often containing over 500 different 
phenotypic measurements) requires the use of more advanced data processing and  
visualisation software, such as KNIME, R and Spotfire. As a result of using hundreds of 
phenotype-derived parameters, it can be difficult to extrapolate individual parameters 
to biological observations.81 To integrate high-dimensional data and generate mean-
ingful visualisations, dimensionality-reduction methods such as principal components 
analysis (PCA) can be useful. PCA linearly transforms high-dimensional data to a space 
of fewer dimensions, while retaining most of the variance of the data. We have pre- 
viously applied this dimensionality reduction technique to differentiate between c-Met 
and epidermal growth factor receptor (EGFR)-specific inhibitors in a cancer cell invasion 
assay75 and also, more recently, to identify new potentially drugable targets for PKD.82

< FIGURE 3 Maximum-intensity projections can cause loss of phenotypic information 
in 3D cultures. A) Schematic representation of 2D maximum-intensity projections 
modified from Booij et al, 2016.75 Structures embedded in hydrogels are captured in 
xy and z directions using automated microscopy and in-focus regions from all sections 
are projected into a 2D reconstruction. B) 2D projections from 3D structures can cause 
loss of important phenotypic characteristics. These images display human kidney 
cyst-derived organoids, cultured in Matrigel and stained for F-actin (rhodamine-
phalloidin, red) and nuclei (Hoechst 33258, blue) and imaged on a Nikon Ti Eclipse 
confocal microscope. Maximum-intensity projection performed with ImageJ software 
prevents lumen and cell shape detection.



46

FIGURE 4 Extracting the value of 3D-image stacks with multiparametric end-points. 
A) Metformin, rapamycin, roscovitine and sorafenib inhibit forskolin-induced 
(‘stimulated’) cyst growth and roscovitine and sorafenib would be classified as the 
most potent inhibitors on the basis of single parameters (left to right: cyst size, 
roundness, perimeter and distance of cyst wall to cyst centre). B) Three principal 
components summarizing 84% of variance in the data show a desirable phenotypic 
change (left panel, green arrow) from stimulated (empty circles [2.5µM forskolin-
exposed large cysts]) to unstimulated (black circles [solvent-exposed small cysts]) for 
exposure to 5mM metformin + 2.5µM forskolin (purple) or 10nM rapamycin (green) +
(legend continues on next page)
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As an example of this approach, in figure 4A we show the efficacy of four control  
molecules at inhibiting forskolin-induced cystogenesis.82 On the basis of single para- 
meters such as cyst size and perimeter, all inhibitors show inhibition of cyst growth, 
with roscovitine and sorafenib being most potent. However, if a PCA-based visualiza-
tion is used, such as shown in figure 4B,82 the inhibitory effects of metformin and rapa-
mycin can be discriminated from those of roscovitine and sorafenib, which induce a 
novel phenotype indicative of toxicity (figure 4B). This type of approach can also be 
useful in the classification of previously untested compounds (figure 4C).73, 75, 82

The use of multiparametric end-points to profile compounds therefore represents an 
opportunity to extract more information from primary 3D screens and exploit this phe-
notypic information to better discriminate promising compounds at the earliest stage 
of the discovery process. 

Conclusion and perspectives
We propose that inclusion of biologically relevant in vitro model systems early in 
pre-clinical development will aid in selection of the best drugs, especially when these 
model systems are coupled to multiparametric phenotypic analysis strategies. Based 
on the progress in the development of tissue culture matrices, improvement of cell cul-
ture techniques and the incorporation of laboratory automation equipment over the 
past decade, we anticipate a steep rise in the popularity of 3D cell culture techniques in 
primary high-throughput screens, and also expect a move away from immortalized cell 
lines in favour of more physiologically relevant iPSC-, PDX-, co-culture- and organoid 
models, or even in vitro -generated and -cultured organs. It is likely that the current 
switch from single cell lines to more challenging iPSC-, PDX-, co-culture- and organoid 
models, or even in vitro -generated and -cultured organs, will also increase the demand 
for high-content analysis methods due to increased tissue complexity that cannot be 
exploited when using well-based measurements.

 2.5µM forskolin. The right panel shows that despite efficacy of roscovitine and sorafenib 
on the basis of single parameters as shown in A, multiparametric analysis reveals 
additional phenotypic alterations (orange arrow).82 C) Two principal components 
from figure B showing inhibitors for cyclin-dependent kinases (CDK), mammalian 
target of rapamycin (mTOR), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), 
human epidermal growth factor receptor 2 (HER2) and polo-like kinase (PLK1). Density 
estimations in red and blue shown to emphasize the locations of 2.5µM forskolin-
stimulated and unstimulated controls, respectively). Grey arrow represents desirable 
compound efficacy (from forskolin-stimulated control to unstimulated) and purple 
arrow represents novel phenotypes that are observed after treatment with PLK1 
inhibitors or high dose CDK inhibitors.
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With the increases in computational power and improvements in data storage, but 
also now that better image analysis tools are available, we anticipate that morpholo- 
gical analysis of 3D cell cultures will become more accessible and will eventually allow 
object-based phenotypic analysis and classification, perhaps eventually also allowing 
3D-volume analysis of multi-well plates, rather than analysis of image stacks.

However, there currently is a high need to validate these technologies and to demon-
strate that using biologically relevant in vitro systems actually improves the efficiency 
of early drug discovery. Rather than waiting to see sufficient evidence, a comparison of 
the predictive value of 2D and 3D models for in vivo efficacy is required. Ideally such an 
effort should include collections of molecules that have previously passed and failed 
in pre-clinical and clinical studies to determine the phenotypic footprint of successful 
medicines, and apply this knowledge in our search for more effective medicines. 
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