

Linking simple molecules to grain evolution across planet-forming disks Salinas Poblete, V.N.

Citation

Salinas Poblete, V. N. (2017, December 18). *Linking simple molecules to grain evolution across planet-forming disks*. Retrieved from https://hdl.handle.net/1887/59500

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/59500

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: <u>http://hdl.handle.net/1887/59500</u>

Author: Salinas Poblete V.N. Title: Linking simple molecules to grain evolution across planet-forming disks Issue Date: 2017-12-18 Linking simple molecules to grain evolution across planet-forming disks.

Linking simple molecules to grain evolution across planet-forming disks.

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker volgens besluit van het College voor Promoties te verdedigen op maandag 18 december 2017 klokke 10:00 uur

door

Vachail Nicolás Salinas Poblete

geboren te Santiago, Chile in 1990 Promotiecommissie

Promotores:	Prof. dr.E.F. van Dishoeck	
	Prof. dr. M.R. Hogerheijde	
Overige leden:	Prof. dr. Y. Aikawa	Univeristy of Tokyo
	Prof. dr. T.J. Millar	Queen's University Belfast
	Dr. C. Walsh	University of Leeds
	Prof. dr. I.A.G. Snellen	
	Prof. dr. H.J.A. Röttgering	

To my beloved mother, whose passion for the universe ignited my curiosity.

Contents

1.1 Disk formation 2 1.1.1 Collapse phase 2 1.1.2 Embedded phase 3 1.1.3 Observational characterization 3 1.2 Physical properties of protoplanetary disks 4 1.2.1 Mass 4 1.2.2 Radial structure 6 1.2.3 Vertical structure 7 1.2.4 Temperature structure 7 1.2.5 Ultraviolet and X-Ray radiation 8 1.3 Disk evolution 9 1.3.1 What happens to the gas? 9 1.3.2 What happens to the dust? 9 1.3.2 What happens to the dust? 9 1.4.4 Dust in disks 11 1.4.1 Composition 11 1.4.3 Settling 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 <	1	Intr	roduction 1
1.1.1 Collapse phase 2 1.1.2 Embedded phase 3 1.13 Observational characterization 3 1.13 Observational characterization 3 1.14 Mass 4 1.21 Mass 4 1.22 Radial structure 6 1.23 Vertical structure 7 1.24 Temperature structure 7 1.2.5 Ultraviolet and X-Ray radiation 8 13 Disk evolution 9 1.31 What happens to the gas? 9 1.3.1 What happens to the dust? 9 1.3.2 What happens to the dust? 9 1.4 Composition 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17		1.1	Disk formation
1.1.2 Embedded phase 3 1.1.3 Observational characterization 3 1.2 Physical properties of protoplanetary disks 4 1.2.1 Mass 4 1.2.2 Radial structure 6 1.2.3 Vertical structure 7 1.2.4 Temperature structure 7 1.2.5 Ultraviolet and X-Ray radiation 8 1.3 Disk evolution 9 1.3.1 What happens to the gas? 9 1.3.2 What happens to the dust? 9 1.4 Dust in disks 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 23 1.7.1 Aim			1.1.1 Collapse phase
1.1.3 Observational characterization 3 1.2 Physical properties of protoplanetary disks 4 1.2.1 Mass 4 1.2.2 Radial structure 6 1.2.3 Vertical structure 7 1.2.4 Temperature structure 7 1.2.5 Ultraviolet and X-Ray radiation 8 1.3 Disk evolution 9 1.3.1 What happens to the gas? 9 1.3.2 What happens to the dust? 9 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7.1 Aim 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 1.7.4 Guerium chemistry in Disks 25 <td< td=""><td></td><td></td><td>1.1.2 Embedded phase</td></td<>			1.1.2 Embedded phase
1.2 Physical properties of protoplanetary disks 4 1.2.1 Mass 4 1.2.2 Radial structure 6 1.2.3 Vertical structure 7 1.2.4 Temperature structure 7 1.2.5 Ultraviolet and X-Ray radiation 8 1.3 Disk evolution 9 1.3.1 What happens to the gas? 9 1.3.2 What happens to the dust? 9 1.3.2 What happens to the dust? 9 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 23 1.7.1 Aim 23 1.7.2 Overall conclusions			1.1.3 Observational characterization
1.2.1 Mass 4 1.2.2 Radial structure 6 1.2.3 Vertical structure 7 1.2.4 Temperature structure 7 1.2.5 Ultraviolet and X-Ray radiation 8 1.3 Disk evolution 9 1.3.1 What happens to the gas? 9 1.3.2 What happens to the dust? 9 1.4 Dust in disks 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 1.1 Introduction 36 2.2 Observations and data reduction 37		1.2	Physical properties of protoplanetary disks 4
1.2.2 Radial structure 6 1.2.3 Vertical structure 7 1.2.4 Temperature structure 7 1.2.5 Ultraviolet and X-Ray radiation 8 1.3 Disk evolution 9 1.3.1 What happens to the gas? 9 1.3.2 What happens to the dust? 9 1.4 Dust in disks 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 <t< td=""><td></td><td></td><td>1.2.1 Mass</td></t<>			1.2.1 Mass
1.2.3 Vertical structure 7 1.2.4 Temperature structure 7 1.2.5 Ultraviolet and X-Ray radiation 8 1.3 Disk evolution 9 1.3.1 What happens to the gas? 9 1.3.2 What happens to the dust? 9 1.4 Dust in disks 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 <td< td=""><td></td><td></td><td>1.2.2 Radial structure</td></td<>			1.2.2 Radial structure
1.2.4 Temperature structure 7 1.2.5 Ultraviolet and X-Ray radiation 8 1.3 Disk evolution 9 1.3.1 What happens to the gas? 9 1.3.2 What happens to the dust? 9 1.4 Dust in disks 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.2.3 Vertical structure
1.2.5 Ultraviolet and X-Ray radiation 8 1.3 Disk evolution 9 1.3.1 What happens to the gas? 9 1.3.2 What happens to the dust? 9 1.4 Dust in disks 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1			1.2.4 Temperature structure
1.3 Disk evolution 9 1.3.1 What happens to the gas? 9 1.3.2 What happens to the dust? 9 1.4 Dust in disks 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.2 Overall conclusions 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.2.5 Ultraviolet and X-Ray radiation
1.3.1 What happens to the gas? 9 1.3.2 What happens to the dust? 9 1.4 Dust in disks 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 µm continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40		1.3	Disk evolution
1.3.2 What happens to the dust? 9 1.4 Dust in disks 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.2 Overall conclusions 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 37			1.3.1 What happens to the gas?
1.4 Dust in disks 11 1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.2 Overall conclusions 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.3.2 What happens to the dust?
1.4.1 Composition 11 1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 37		1.4	Dust in disks
1.4.2 Radial drift 11 1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 13 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 20 1.6.3 Ammonia 20 1.6.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 µm continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.4.1 Composition
1.4.3 Settling 12 1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 μm continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.4.2 Radial drift
1.4.4 Mixing 13 1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 37			1.4.3 Settling
1.5 Disk chemistry 13 1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.4.4 Mixing
1.5.1 Material inventory 15 1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40		1.5	Disk chemistry
1.5.2 Water 17 1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.5.1 Material inventory
1.5.3 Ammonia 17 1.5.4 Deuterium chemistry in Disks 18 1.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 20 1.6.3 Ammonia 20 1.6.4 Observations 20 1.6.5 Modeling 20 1.6.6 Methods 20 1.6.1 Observations 20 1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.5.2 Water
1.5.4 Deuterium chemistry in Disks181.6 Methods201.6.1 Observations201.6.2 Modeling221.7 This thesis231.7.1 Aim231.7.2 Overall conclusions251.7.3 Future outlook252 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk352.1 Introduction362.2 Observations and data reduction372.3 Model fitting40			1.5.3 Ammonia
1.6 Methods201.6.1 Observations201.6.2 Modeling221.7 This thesis231.7.1 Aim231.7.2 Overall conclusions251.7.3 Future outlook252 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk352.1 Introduction362.2 Observations and data reduction372.3 Model fitting40			1.5.4 Deuterium chemistry in Disks
1.6.1 Observations201.6.2 Modeling221.7 This thesis231.7.1 Aim231.7.2 Overall conclusions251.7.3 Future outlook252 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk352.1 Introduction362.2 Observations and data reduction372.3 Model fitting40		1.6	Methods
1.6.2 Modeling 22 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 μm continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.6.1 Observations
1.7 This thesis 23 1.7 This thesis 23 1.7.1 Aim 23 1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.6.2 Modeling
1.7.1 Aim231.7.2 Overall conclusions251.7.3 Future outlook252 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk352.1 Introduction362.2 Observations and data reduction372.3 Model fitting40		1.7	This thesis
1.7.2 Overall conclusions 25 1.7.3 Future outlook 25 2 Steepening of the 820 μ m continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.7.1 Aim
1.7.3 Future outlook 25 2 Steepening of the 820 μm continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40			1.7.2 Overall conclusions
2 Steepening of the 820 μm continuum surface brightness profile signals dust evolution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40 2.4 Dimensional data 40			1.7.3 Future outlook
Iution in TW Hya's disk 35 2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40	2	Stee	epening of the 820 μ m continuum surface brightness profile signals dust evo-
2.1 Introduction 36 2.2 Observations and data reduction 37 2.3 Model fitting 40		luti	on in TW Hya's disk 35
2.2 Observations and data reduction 37 2.3 Model fitting 40		2.1	Introduction
2.3 Model fitting		2.2	Observations and data reduction
		2.3	Model fitting
2.4 Discussion $\ldots \ldots \ldots$		2.4	Discussion

	2.5	2.4.1 Dust drift	42 43 44 44	
	2.A	Results of the emcee model fitting	47	
3	Firs	st detection of gas-phase ammonia in a planet-forming disk	49 50	
	ე.1 ეე	Observations	50	
	0.2 0.0	Madeling approach	51	
	ა.ა	2.2.1 Develop I of the second	51	
		2.2.2. Chamical model	51	
		3.3.2 Line excitation and radiative transfer	55	
	3.4	S.S.S. Lifte excitation and fadiative transfer	55	
	3.4		57	
	5.5	3.5.1 Lee recentraine and total gass masses	60	
		2.5.2 Cas phase chemistry	60	
		3.5.2 Gds-pildst chemistry	61	
	26	5.5.5 Consistons of large boules as a production mechanism	62	
	5.0		02	
4	Cor	nparing detections and upper limits of NH_3 and NH_2D in the disks of TW Hya		
	and	1 HD163296	65	
	4.1		66	
	4.2	Ubservations	6/	
	4.3	Modeling Approach	68	
		4.3.1 Physical structure	68	
		4.3.2 Parametric abundance models	71	
		4.3.3 Line excitation and radiative transfer	71	
	4.4	Results	73	
	4.5	Discussion	73	
		4.5.1 Total gass masses and deuteration estimates	73	
		4.5.2 ALMA predictions	75	
	4.6	Summary & Conclusions	76	
5 DCO ⁺ , DCN, and N_2D^+ reveal three different deuteration regimes in the disk around				
	the Herbig Ae star HD163296 8			
	5.1	Introduction	82	
	5.2	Observations	82	
	5.3	Results	83	
		5.3.1 Detections	83	
		5.3.2 Column densities and deuterium fractionation	86	
	5.4	Parametric modeling	87	
		5.4.1 Deuterium chemistry	87	
		5.4.2 Motivation	88	
		5.4.3 Physical model	88	
		5.4.4 $N_2D^+,$ DCN, and DCO+ abundance models $\hfill \ldots \hfill \hfill \ldots \hfill \hfill \hfill \ldots \hfill \h$	90	
		5.4.5 Line excitation	90	
		5.4.6 Abundance estimates	91	
		5.4.7 Best-fit parameters	91	
	5.5	Discussion	94	

5.5.1 The inner depression	94
5.5.2 Limitation of DCO ⁺ as a CO snowline tracer	94
5.5.3 The origin of the third ring	95
5.5.4 Deuterium fractionation	95
5.6 Summary	96
5.A Keplerian Masking	97
6 Exploring DCO ⁺ as a tracer of thermal inversion in the disk around the Herbig Ae	
star HD163296 1	.01
6.1 Introduction	102
6.2 Methods	103
6.2.1 Previous observation of HD 163296	103
6.2.2 Chemical model	104
6.2.3 Implementation	105
6.2.4 Radiative transfer	106
6.3 Results	107
6.3.1 Standard model (CD)	107
6.3.2 Thermal inversion model (CD+TI)	108
6.3.3 The CD+WD+TI model	110
6.4 Discussion	110
6.4.1 DCO ⁺ Outer radius	110
6.4.2 Low vs high temperature deuteration pathways	113
6.5 Summary	113
6.A Residual channel maps	114
Samenvatting 1	
English Summary 1	21
Resumen en Español	
Curriculum Vitae	
Acknowledgments	