
Mast cells as immune regulators in atherosclerosis
Kritikou, E.

Citation
Kritikou, E. (2017, December 12). Mast cells as immune regulators in atherosclerosis.
Retrieved from https://hdl.handle.net/1887/59479
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/59479
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/59479


 
Cover Page 

 
 

 
 
 

 
 
 

The following handle holds various files of this Leiden University dissertation: 
http://hdl.handle.net/1887/59479 
 
 
Author: Kritikou, E. 
Title: Mast cells as immune regulators in atherosclerosis 
Issue Date: 2017-12-12 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/59479
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 8 

General discussion -  Future perspectives



168 | Chapter 8

Synopsis

Atherosclerosis is the most prevailing underlying pathology responsible for 
the increased mortality rates due to acute cardiovascular syndromes1. Cardiovascular 
disease (CVD) was accounted for 1 in 3 deaths in US adults over the year 2014, with 
approximately 1 death incidence occurring every 40 seconds2. In Europe, CVD is 
the cause of 45% of all deaths, according to the 2017 statistics rates3. Despite the 
misconception that cancer is the leading cause of death nowadays, mortality due to 
CVD is actually higher than the sum of deaths by cancer and chronic lower respiratory 
disease1. Therefore, research aiming at identifying new therapeutic strategies to battle 
atherosclerosis pathology from an early stage is mandatory. 

Atherosclerotic plaque formation is a chronic process which develops as a 
result of disturbed cholesterol regulation and immune system dysfunction4. Mast cells 
are immune components that have been described as important contributors in the 
progression of experimental mouse and human atherosclerosis5. The presence of mast 
cells within the plaques of human carotid arteries, was found to be a predictor of future 
cardiovascular events and furthermore, was associated with intraplaque hemorrhage 
levels, a characteristic of end-stage atherosclerosis6. Activation of mast cells in the 
plaque is suggested to lead to plaque destabilization7, increasing thus the chances for an 
acute episode. However, the exact mechanism by which these cells get activated inside 
the plaque tissue has not been studied in detail. 

In the work described throughout this thesis, we aimed to decipher the action of 
mast cells in experimental and human atherosclerosis. In chapter 3 we determined the 
therapeutic potential of the LPA1/3 antagonist, Ki16425, which was hypothesized to lead 
to inhibition of a recently described mast cell activator, termed lysophosphatidic acid8. 
Chapters 4 and 5 examined the novel role of mast cell mediated antigen presentation 
in atherosclerosis. In chapter 6, by applying a translational approach, we determined 
the abundance and function of mast cells in human atherosclerotic plaques. Finally, in 
chapter 7 we explored the influence of mast cells in atherosclerosis regression.

Mast cells act on multiple cardiovascular syndromes

The contribution of mast cells in the pathology of atherosclerosis is a subject 
that has gained considerable attention over the years. Upon contemplating the adverse 
effects that mast cell activation can elicit in other autoimmune pathologies, such as 
allergy9 or rheumatoid arthritis10, it is necessary to gain more information regarding 
their exact function in atherosclerotic disease. Therefore, during this thesis we aimed to 
unravel their mechanisms of action in atherosclerosis. 
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Chapter 2 offered a general overview on the implication of mast cells in various 
cardiovascular diseases (CVD). Even though the field of atherosclerosis has been actively 
investigating their function for the past 20 years, not much is known regarding other 
cardiovascular pathologies. 

We reviewed the role of mast cells in diet induced obesity. Mast cells have been 
shown to infiltrate white adipose tissue11 and contribute to local adipogenesis12 and 
probably obesity. However, recently it was revealed that mast cells, through their 
secretion of leptin, can actually protect against obesity and diabetes, highlighting their 
dual-face actions13. This notion was strengthened by a report stating that mast cells 
can promote the formation of brown fat cells14, which comprise the protective kind of 
adipocytes responsible for body temperature retention15.

This double-edged nature of mast cells was also discussed in the case of 
myocardial infarction (MI). We conferred on their detrimental role in end-stage plaque 
rupture16. Their adverse nature in plaque destabilization was suggested in a new paper 
stating that mast cells are found at increased numbers in patients with stable and 
unstable coronary plaques, as well as in individuals who suffered from either an acute or 
chronic MI episode17. However, it seems that mast cells do not exert only harmful effects, 
since they are linked to neo-angiogenesis and healing of the myocardium after an acute 
MI episode18,19. Interestingly, a very recent report stated that following an MI incident, 
mast cells deriving from white adipose tissue can communicate with cardiomyocytes, 
increase their contractility and improve heart function20.

The effect of mast cells on the pace of the myocardium may be particularly 
important in arrhythmia, as we also discussed in the second chapter. Indeed, the 
presence of mast cells has also been reported a few years ago in arrhythmic atrial 
fibrillation21. Heart rhythm-related dysfunctions are linked to atherosclerosis22 and 
atrial fibrillation in particular shows an increasing predominance at present1. In fact, 
arrhythmia is widely understudied with respect to the contribution of the immune 
system. Interestingly, mast cells are a population that is fundamentally populating the 
heart at a normal state23. Although information available on the role of mast cells in 
arrhythmia is scarce, it seems that they act in a negative way24,25. Furthermore, a novel 
paradigm-shifting study revealed that also macrophages can influence the regulation 
of heart rhythm26. Mast cells are reported to interact with macrophages in other 
cardiovascular diseases such as atherosclerosis27 and aortic aneurysms28. While this 
does not imply a causative relationship, it would be interesting to investigate in the 
future a possible interaction between tissue resident macrophages and cardiac mast 
cells in heart rhythm disorders.

It is therefore apparent that mast cells do not compose a cell type that is clear-
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cut pro-inflammatory in cardiovascular syndromes. Examination of their function 
should be approached in a delicate fashion.

Modulation of immune responses in atherosclerosis through mast cells

Having in mind the above mentioned diverse abilities of mast cells, as well as the 
fact that atherosclerosis is the underlying pathology for the majority of CVDs, we aimed 
to experimentally elucidate their effects in atherosclerosis.

In chapter 3 we examined the downstream effects of the established mast cell 
activator, lysophosphatidic acid (LPA)29. LPA is a bioactive lipid produced inside the 
atherosclerotic plaques where it has been shown to act in a proatherogenic manner30,31. 
LPA acts via its specific receptors LPA1/3

32
 on an array of immune cells33 among which the 

mast cells29,34. For that reason, we inhibited the action of LPA by blocking the downstream 
signaling of receptors LPA1/3, with the use of the small molecule Ki16425. LPA1/3 

inhibition had a significant impact on the systemic immune response, which resulted in 
a 40% reduction of the plaque burden, caused by a reduced macrophage content. The 
protective effect of Ki16425 was mainly attributed to the disruption of the CCR2-CCL2 
infiltration axis, but we also observed an increase in the non-inflammatory monocyte 
content and the anti-inflammatory TREG population.  These effects were accompanied by 
a mild reduction in the LDL cholesterol levels. Overall, inhibition of LPA1/3 appears to be 
an appealing therapeutic method to limit the progression of established atherosclerosis. 
Furthermore, our observations show that a shift of the systemic immune response, 
from pro-inflammatory to anti-inflammatory, in atherosclerosis can not only halt 
plaque progression, but can also influence cholesterol regulation. However, in this study 
we did not observe any significant mast cell contribution. Nonetheless, we still have 
strong indications that mast cells may also be affected by the LPA-signaling cascade. For 
example, mast cells have been reported to act also through additional LPA receptors, 
such as LPA5, which in our study were still fully-functional35. Be that as it may, this did 
not seem to have any effect on the mast cell response we observed. The previously 
reported LPA action on the mast cells was introduced at advanced atherosclerosis 
stages29, which was not the case in our experimental setup. The beneficial effects that 
we reported on the adaptive immune response suggest that LPA1/3 inhibition may also 
be therapeutically relevant for a prolonged period. It would therefore be interesting to 
investigate this agent throughout a longer timeframe. In addition, the induction of TREG 
cells opens the pathway to investigating this agent in atherosclerosis regression since 
TREG cells are themselves an attractive therapeutic target36,37.

The overall importance of the adaptive immune response, and particularly the 
one evoked by T cells is a known fact38. CD4+ T cells, predominantly those of the TH1 
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phenotype, are the most frequent inside atherosclerotic plaques39. In chapter 4 we 
discussed a newly found direct interaction between mast cells and CD4+ T cells in 
atherosclerosis. Knowing that mast cells are in close cross-talk with T cells in other 
inflammatory diseases40,41, and based on novel reports on the role of mast cells as 
inducible antigen presenting cells42,43, we aimed to study whether they interact with 
CD4+ T cells in atherosclerosis. We reported that mast cells increase their antigen 
presentation capacity upon hyperlipidemia, by increasing their MHC-II expression 
in both experimental atherosclerosis, as well as inside human plaques. Through this 
crosstalk mast cells can present antigens directly to CD4+ T cells, which, under the 
influence of a high-fat diet, are skewed towards a pro-atherogenic TH1 subtype. This 
is interesting, considering the fact that mast cells in allergies seem to favor a TH2 
response instead44. It therefore seems that mast cells exert differential effects on T 
cells according to the local inflammatory milieu. Atherosclerosis, being a TH1 mediated 
disease, is probably favoring presentation of antigenic fragments that are affecting the 
TH1 subset. On the contrary, in allergies, which are mediated by TH2 cells, mast cells seem 
to enhance the TH2 response. It would be interesting to see if this mast cell-CD4+ T cell 
crosstalk results in antibody production by the B cells. Screening for TH1-linked antibody 
fragments is an attractive concept to explore further. Furthermore, we do not know 
what is the exact contribution of this pathway in atherosclerosis. It would be intriguing 
to see if abolishment of MHC-II, specifically from the surface of mast cells, can affect 
atherosclerosis progression in vivo. Also, we do not yet know which antigenic fragments 
are presented by mast cells to CD4+ T-cells via MHC-II, in atherosclerosis. In the future, 
it may be appealing to scan the MHC-II epitopes of mast cells for lipid-specific antigenic 
presentation, as well as explore the pathway via which mast cells take up antigens from 
their surroundings. For instance, their uptake capacity could be investigated through 
differentially charged nanoparticles. Finally, a crucial question arises, on whether mast 
cells can take up lipids in a “foam-cell” fashion.  Although we do not have indications 
that they possess classical uptake receptors, present on macrophages or dendritic cells, 
mast cells may take up lipids by other means and store them in forms other than neutral 
lipid accumulation.

The existence of a direct crosstalk between mast cells and the adaptive immune 
system was investigated also in chapter 5, where we observed a direct interaction 
with the NKT cell population, through CD1d-mediated lipid-specific presentation. 
Surprisingly, this pathway showed a protective effect in atherosclerosis development. 
This was an unexpected finding, considering that NKT cells, which in our study showed 
reduced activation, are reported to be proatherogenic, particularly upon engagement 
with CD1d45. However, we must remember that NKT cells can function as activators as 
well as inhibitors of the immune response, depending on the glycolipid that is presented 
to them46,47. In fact, it has been previously reported that NKT cells can negatively regulate 
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CD4+ cells in atherosclerosis, in a fashion that matches our observations48. Furthermore, 
a protective role of NKT cells was also observed in other autoimmune syndromes 
where mast cells are known mediators, such as obesity49 and rheumatoid arthritis50. 
Therefore, it seems that, while classical presentation of lipid antigens through CD1d 
present on APCs exacerbates atherosclerosis51,52, antigen presentation through CD1d 
on the mast cell surface, exerts a protective effect. It is also interesting to observe that, 
although indirectly, mast cells again affect the CD4+ TH1 cell response, as in the case of 
MHC-II mediated presentation. This interaction seems to be tightly balanced, and of 
importance, in atherosclerosis development; therefore, it requires further exploration.

The presentation capacity of human mast cells mentioned in the fourth chapter, 
was accompanied by a general phenotypic characterization of human mast cells as 
stated in chapter 6. While human intraplaque mast cells are the only immune cell type 
that was found to positively associate with future cardiovascular events6, it is still not 
fully understood how these cells become activated within the atherosclerotic plaque. 
In this study we screened human intraplaque mast cells obtained from 22 carotid and 
femoral arteries, using for the first time the flow cytometry method. We confirmed 
immunohistochemical data from previous reports, which stated that the protease 
secretome of mast cells is highly heterogeneous53, showing a differential cellular 
content of tryptase and chymase. Importantly, we detected high levels of activation by 
human intraplaque mast cells, based on their expression of protein CD6354. Of note, the 
majority of activated mast cells were IgE-sensitized, indicating that this pathway is the 
main activation mode of the human intraplaque mast cell population. This does not 
come as a surprise, since mast cells are mostly known for their classical degranulation 
potency upon antigen-sensitized IgE binding on their Fcε-receptor55. However, it may 
explain why serum IgE levels correlate in a positive manner with coronary artery 
disease56. This observation as mentioned above, has also been attributed to mast 
cells6,17. In addition, we noted that a minor fraction of these cells was activated in a non-
IgE specific manner, thus strengthening the case of non-classical Fcε-receptor mediated 
activation of mast cells. It has been proven that mast cells in cardiovascular diseases can 
get activated by means other than FcεR, such as through TLRs57, complement receptors57 
or neuropeptide receptors58. However, we did not have an indication on the proportion 
of these alternative activation pathways within the atherosclerotic plaque. The adverse 
effects that this seemingly small fraction of mast cells can exert in atherosclerosis 
progression, like in the case of substance P which is linked to intraplaque hemorrhage 
levels59, indicates the magnitude of power that these cells possess in atherosclerosis. 
The above, therefore, states how important it is to consider therapeutic possibilities 
that target mast cells.

In chapter 7, we explored the therapeutic potential that arises from the 
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sheer absence of mast cells in atherosclerosis regression conditions. Specifically, we 
conditionally depleted mast cells, at a systemic level, upon altering the diet content from 
high-fat to normal chow. In our experimental setup we did not observe any reduction 
in the atherosclerotic plaque size; which indicates that depletion of mast cells after 
an ongoing inflammatory cascade, does not have the intensity to reduce the plaque 
volume. We did detect, however, a reduced neutrophil intraplaque influx, in the absence 
of mast cells. This effect can be explained by the fact that mast cells induce neutrophil 
infiltration into the plaque60. Interestingly, even though there was no effect detected in 
overall plaque burden, mast cell depletion affected the collagen content of the plaque 
in a negative manner. This was unexpected, since mast cells are negatively associated 
with collagen deposition inside atherosclerotic plaques, in a chymase specific action61. 
Yet, tryptase release has been reported to induce collagen synthesis in a renal fibrosis 
model62, indicating again the complex manner by which these cells act. 

Overall, the observations stated in this thesis suggest that when it comes to 
intervention of the mast cell action, we should not aim solely on their abolition as they 
do not appear to possess only harmful effects, but are rather fine tuners of the overall 
immune response.

Future perspectives

The research described in this thesis paves the way for exploring the therapeutic 
potential of targeting mast cells in atherosclerosis. Evidently, this cell type, as most 
immune cells, shows remarkable plasticity. As such, mast cells require refined targeting 
of specific pathways that would inhibit their negative actions, while retaining or even 
enhancing their positive effects. 

In the case of atherosclerosis, mast cells are, for the most part damaging, when 
it comes to disease progression; particularly, through their FcεR mediated activation. 
This specific response is a promising therapeutic point, mainly due to the already 
commercially available agents that target its ligand, IgE63. Specifically, IgE has been found 
to circulate at high levels in the serum of patients suffering from an acute cardiovascular 
syndrome64. In addition, IgE levels independently correlate with the severity of coronary 
syndromes56. Here we reported that IgE can penetrate the endothelial barrier, accumulate 
inside the atherosclerotic plaque and bind on the surface of mast cells, thus sensitizing 
them. The accumulation of IgE within the atherosclerotic plaque does not necessarily 
require the participation of an antigen. However, most of the intraplaque mast cells 
we examined were found to have IgE bound on their surface and to be at an activated 
state. It therefore seems, that they have undergone at least one cycle of degranulation in 
the area. A previous study has stated that, IgE is elevated upon myocardial infarction65 
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and the authors detected IgE fragments inside human atherosclerosis specimens. 
However, this intraplaque IgE was argued to act mainly on the inducible FcεRI of the 
macrophages, and not on intraplaque mast cells. Here we have provided proof that 
the intraplaque IgE is also activating mast cells in the plaque area. For this process to 
take place, the presence of an antigen is also necessary. As mentioned above, we do 
not know which antigenic fragment may bind on IgE. It may however be speculated 
that the antigen derives directly from the atherosclerotic plaque environment. Further 
research is needed on the antigen-mediated activation of mast cells within the plaques. 
Yet, upon considering the harmful effects linked to intraplaque mast cell activation7,66, 
it is obvious that intervention on this pathway may prove beneficial for end-stage CVD 
related events. The IgE-antibody blocking agent omalizumab67, which is already on the 
market and prescribed for allergic asthma cases68,69, as well as for patients suffering 
from urticaria70 and mastocytosis71, could prove beneficial also in atherosclerosis. 
Indeed, we are eager to report that we have gained permission to study the effects of 
omalizumab in atherosclerosis patients.

A more crude method to battle the adverse effects of mast cell activation could be 
through the use of mast cell stabilizers72, such as cromolyn73 or tranilast74. These agents 
act on the mast cell mediated degranulation pathway, mainly by affecting ion exchange 
between the cell and its microenvironment75,76. Mast cell stabilization via this method 
has been proven in the past to be beneficial in experimental atherosclerosis studies7,77. 
Since in our experimental work we showed that human intraplaque mast cells are highly 
activated, using a mast cell stabilizer to eliminate their degranulation sounds appealing. 
However, there are two important aspects to keep in mind. The first one is that the 
mode of action that stabilizers exert is not strictly specific for mast cells. For example, 
tranilast is known to influence also vascular smooth muscle cells78, an effect which could 
risk adverse effects. The second aspect that needs to be noted is that inhibition of the 
mast cell degranulation machinery exclusively will alter also the release of mediators 
that are not necessarily pro-inflammatory. For example, mast cells are a source of the 
anti-inflammatory cytokine IL-1078, which is known to be athero-protective79,80. In fact, 
mast cells have been recently reported to act in an immunoregulatory manner in bone 
marrow81 as well as in solid organ transplantation82,83. Therefore, blocking the release 
of the entire mast cell secretome may interfere with the healing properties that these 
cells possess, while reducing protection towards pathogen infections. Furthermore, 
it is important to remember that mast cell activation does not necessarily mean 
degranulation. Mast cells can secrete pro-inflammatory cytokines like IL-8, in means 
that do not include release of their pre-stored granules84. A similar mode of mast cell 
activation has been previously reported through IL-1, which results in release of IL-6 
but does not involve degranulation85. Therefore, while most activation pathways lead to 
mast cell degranulation, there are means which do not elicit such an effect, but rather lead 

174 | Chapter 8



to controlled cytokine release.  One additional example is the TLR activation pathway 
which results in increased cytokine production but not mast cell degranulation86. As 
mentioned before, oxLDL activates mast cells through TLR457. This states how different 
the downstream mast cells action is inside the atherosclerotic plaque. According to our 
observations, approximately 20% of human intraplaque mast cells get activated via 
pathways other than IgE, which may include cytokine release without degranulation. 
In addition, it is known that when a cell undergoes activation, the intracellular energy 
consumption, and therefore the mitochondrial machinery, can alter its metabolic status. 
In the case of mast cells, recent work has stated that IgE mediated activation induces 
both oxidative phosphorylation and glycolysis87. Considering the fact that oxLDL acts 
via the TLR pathway57 which does not elicit energy consuming degranulation86, it would 
be interesting to see if this atherosclerosis specific pathway evokes any change in the 
cell metabolism of mast cells. Overall, it is important to exactly refine these differential 
activation pathways in the future, since distinct activators possibly lead to the release of 
different mediators, in both quality and quantity. After all it is the prevalence of the net 
immune effect that shapes disease progression.

As we demonstrated, mast cells possess also immunoregulatory abilities that 
seem to surpass the classical view of a cell that goes inside the atherosclerotic plaque 
to get activated, degranulate and inflict damage. The inducible antigenic presentation 
capacity of mast cells we mentioned, is an interesting target for therapeutic development. 
In particular, MHC-II expression on foam cells was reported to increase upon oxLDL 
uptake, which triggered an autophagy mediated pathway88. Mast cell degranulation is 
also reportedly mediated by autophagy signals, in a mechanism that is separate from 
their cytokine secretion machinery89. Interestingly, MHC-II induction on the mast cells 
is stated to increase in the presence of cytokine IL-3390, a signal that also activates 
autophagy pathways91. It may therefore be that mast cell autophagy-mediated effects are 
also taking place in atherosclerosis, and affect the expression of MHC-II on the mast cell 
surface. Further exploration of such a pathway could be of importance in understanding 
the mast cell presentation capacity. Additionally, a past report indicated that MHC-II is 
stored in the intracellular mast cell compartment and fuses with the membrane upon 
degranulation92. Investigating whether disruption of this mechanism could reduce 
the established crosstalk between mast cells and CD4+ TH1 cells could be helpful in a 
therapeutic context. Here we should also mention that mast cells do not seem to affect 
the adaptive immune system only via a direct action on the CD4+ T cells, but can do 
so indirectly as well. There are studies that explore the exchange of antigenic content 
between mast cells and dendritic cells93. This can happen both through intracellular 
bridges93, but it may also happen via the secretion of exosomes94. Neither the exosomal 
release by mast cells, nor the antigen-induced crosstalk between mast cells and DCs 
has been explored in atherosclerosis. However, in our study, we did see that more mast 
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cells infiltrate the para-aortic lymph nodes upon hyperlipidemia; particularly in the 
area where DCs reside. The accumulation of mast cells in the LNs upon atherosclerosis 
progression is on its own an additional pathway to explore. Are they for instance 
travelling there through the lymphatics? Are they able to migrate from one tissue to 
the other, carrying along tissue specific antigens? Or are they newly-maturated mast 
cells deriving from bone marrow progenitors? Answering these questions may provide 
evidence towards new therapeutic interventions.

An additional pathway that needs further exploration is the epigenetic pressure 
exerted on the mast cells, inside an inflammatory tissue. The final mast cell maturation 
step takes place within the tissue94 in a multitude of organs where mast cells reside. 
This suggests that mast cells are a highly diverse population with different properties, 
depending on their place of residence. A recent study screened the transcriptome of 
mast cells collected from various tissues and confirmed this exact notion95. Mast cells 
indeed appeared to be highly sensitive depending on their surroundings. This raises a 
question regarding tissues that are characterized by chronic inflammatory pressure, 
such as the atherosclerotic plaque. Is the local environmental pressure able to alter the 
mast cell properties at a genetic level? Very recent pioneering work has in fact stated 
that mast cell tryptase can elicit epigenetic changes on the mast cell genome, through 
histone truncation96. This epigenetic effect is enhanced through time and affects the 
cellular identity of mast cells, which begin to show similarities with macrophages. It 
would be intriguing to examine if such a pathway exists also inside the atherosclerotic 
plaque. After all, epigenetic changes have gained recent attention in atherosclerosis96.

In conclusion, the above work states that it is important to target specific pathways 
involved in differential mast cell actions. This is of particular clinical importance since 
these cells are not only crucial in inflammatory conditions97, but are also the first 
responders in infections98 and potent immune regulators in cancer99. After all it is their 
balancing nature that makes mast cells a fascinating cell type in atherosclerosis, worthy 
to be explored in depth.

Lastly, it is necessary to mention the therapeutic potential that is offered in 
atherosclerosis, by targeting the overall immune response. As shown by our work on the 
LPA-receptor inhibition, systemic modulation of the immune response can efficiently 
hamper atherosclerosis progression. At this moment, pre-clinical atherosclerosis is 
being pharmacologically treated with the use of statins100. Originally, the benefits of 
statin use were appointed to the lowering of non-HDL cholesterol alone. However, it 
was the combination with lower inflammatory burden that resulted in atherosclerotic 
plaque stabilization100. Yet up to now it has not been possible to reduce the plaque burden 
of an already established human plaque101. A novel approach for the reduction of LDL 
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has been put to practice very recently. Antibody-mediated inhibition of the expression 
of the hepatic protein PCSK9 is reported to lower LDL levels by 50%, showing very 
promising potential102. However, long term assessment on this type of medication is not 
possible at the moment. Atherosclerosis research has been actively focusing on means 
to achieve plaque regression, with experimental models spanning from stimulation of 
reverse cholesterol transport by means of micro-RNA antagonism103, to inhibition of 
immune pathways, in combination with low-lipid diets104,105. Lastly, about two months 
ago, the large scale CANTOS trial, which introduced the inhibition of the inflammatory 
cytokine IL-1β, using the antibody canakinumab, met its primary clinical endpoint106. 
The results stated that patients treated with canakinumab showed a significant 
reduction in the risk of developing secondary cardiac events107. This anti-inflammatory 
therapeutic method is a scientific breakthrough comparable to the discovery of statins.

Ultimately, treating atherosclerosis is the challenge of the near future. A challenge 
that the scientific field has long accepted, in a duel that will be won. Et lux in tenebris 
lucet.
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