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About the title and cover pages 
 

The title is a word play on the common statement “don’t take it personal”. While this 

saying may be good advice in many cases, there are distinct advantages to “take” medication 

personal. Genetic differences between individuals can affect both diseases and drug action. 

Therefore much research effort is focused on making medicine personalized, to tailor it 

better to the individual patient or situation, to increase beneficial effects and decrease side-

effects. 

The cover artwork was inspired by a quote from Jim Watson, the co-discoverer of DNA’s 

double helix structure, who told Time magazine in 1989: " We used to think our fate was in 

our stars. Now we know, in large measure, our fate is in our genes." (Quoted in Time, “The 

Gene Hunt”, by Leon Jaroff, March 20, 1989). The art on the cover was made from actual 

experimental xCELLigence data generated during this thesis while investigating the influence 

of genetic differences on G protein-coupled receptors. In the decorations on the edges, the 

xCELLigence data dissolves into a double helix as a further reference to the DNA that 

underlies the data itself. The distribution of the stars resembles the distribution of cell 

clusters, similar to how the lymphoblastoid cell lines, the cellular model system used 

throughout this thesis, look like under a microscope when grown on xCELLigence plates. The 

cover artwork also reminds of the season in which the defense of this thesis is held.  

The artwork on the chapter title pages is an abstract representation of both DNA and the 

strings of golden electrodes embedded in xCELLigence plates. 
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About this thesis 

This thesis describes the study of the influences of genetic variation on a specific class of drug 

targets, the G protein-coupled receptors (GPCRs), using a combination of personal cellular 

models and novel label-free assay technology. The results obtained herein will likely assist in 

the translation of early in vitro experiments to more clinically relevant studies in the course 

of the drug discovery pipeline. Eventually, the findings in this thesis hopefully contribute to 

the development of clinically more effective drugs and advance the current ‘one-size-fits-all’ 

paradigm into the realm of precision medicine. In this first chapter, I introduce the concepts 

of precision medicine, importance of GPCRs as drug targets and prevalent sources of genetic 

variation. Moreover, I discuss the advantages and opportunities that arise from combining a 

novel label-free assay technology with personal cell lines. In the last section of this chapter, 

I specifically outline the objectives of this thesis. 

 

Precision medicine 

Historically, conventional disease treatments have been based on diagnosing a patient with 

a general disease state and providing a corresponding generalized drug treatment. However, 

while successful to a degree, such one-size-fits-all treatments may be ineffective or harbor 

dangers for the individual patient. Inter-individual variability in drug effectiveness poses a 

significant challenge for the conventional strategies. Even today’s best sold, ‘blockbuster’ 

drugs, poster children of the current treatment paradigm, work in only 35% - 75% of patients 

due to influences of genetics, lifestyle and environmental differences [1, 2]. Hence, modern 

medicine is undergoing a paradigm shift towards a more personalized, patient-customized 

treatment model, for which a large part is based on a deeper understanding at a molecular 

level [3, 4]. For this emerging concept known as personalized or precision medicine, it is 

paramount to better understand the effects of a drug not only in the overall population, but 

in the individual patient as well [5]. Customization using a sub-population or patient's 

individual characteristics, e.g. genetic information, could decrease risks of ineffective 

treatment, dosing or side-effects [2, 6, 7]. Genetic testing is already available for 

approximately 2000 clinical conditions today, most of which are in oncology. Two successful 

examples are genetic tests for HER2-positive breast cancer which serve as a predictor of 

response to the drug Herceptin, and CYP450 polymorphisms which affect the action and 

metabolism of drugs such as selective serotonin-reuptake inhibitors [6-9]. Despite the 

promise shown by these examples, most drug targets and disease mechanisms are still in 
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dire need of further research to determine whether, and how, genetic variation affects both 

pathology and drug responses.  

 

GPCRs and genetic differences 

The majority of drug targets today are GPCRs, a specific class of membrane proteins. In fact, 

30-40% of all current drugs work by influencing GPCR function [10, 11]. This is no surprise as 

approximately 800 GPCRs are encoded by the human genome. Over 300 of these are 

considered druggable, i.e. they constitute current or future drug targets [12]. Due to their 

ubiquity, GPCRs are involved in almost all aspects of human physiology from vision to 

immune response [13]. In general terms, the role of a GPCR is to translate an extracellular 

signal, which can range from photons to odorants, hormones or neurotransmitters, into a 

cellular response. Depending on the nature of ligand and receptor, the cellular effect can 

vary from changes in morphology to proliferation, differentiation and survival (Figure 1).  

Due to their physiological importance, it is highly interesting to decipher the influence of 

genetic variation in GPCR-mediated drug responses in the context of personalized medicine 

[5, 14]. Several studies have already linked GPCR polymorphisms to diseases and drug 

response variation [14-18], including for instance serotonin [15], dopamine [14, 16, 19-21], 

adenosine [22-24], purinergic [25, 26] and cannabinoid [17, 18] receptors, and many other 

commonly targeted GPCRs [14].  

 

Single Nucleotide Polymorphisms 

One prevalent source of genetic differences which can lead to an alteration in the drug target 

are Single Nucleotide Polymorphisms (SNPs). SNPs make up 84 to 95% of the total human 

genetic variation and are defined as single-base variations with a presence in at least one 

percent of the population. Consequently, SNPs are quite common, with on average around 

one SNP per 300 bases [27]. These variations can cause a multitude of differences in the end-

product of genes, depending on their location and nucleotide difference. For example, a SNP 

can cause a new start- or stopcodon to appear, cause the transcript to be removed or even 

change the encoded amino acid with a different one, i.e. a so called missense SNP. SNPs that 

somehow change the amino acid sequence of the resulting protein are known as non-

synonymous SNPs. It is believed that such changes are the most prevalent source of 

differences in GPCR response to drugs (Figure 2). 

A common example is the association between SNPs on the chemokine 2 and 5  
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Figure 1: GPCR signaling and in vitro assays. When a ligand binds to and activates a GPCR, the receptor 
in turn activates the G protein. The trimeric G protein dissociates and can activate various secondary 
messenger pathways, leading via a cascade of reactions to an eventual cellular response. Traditional 
drug development programs are often target-focused, i.e. relying on in vitro assays which use reporter 
systems for the investigated target. Such reporter systems include for instance the use of radioactive 
labels or fluorescent dyes for ligand, target or effector labeling, or of more downstream reporter gene 
constructs. Such modifications, however, may influence target pharmacology. Label-free whole-cell 
assays are phenotypic assays that capture the biological cellular response in real-time, without focusing 
on merely one pathway and without requiring any such modifications, potentially providing a better 
physiological context. Image constructed using components from Servier Medical Art by Servier 
(http://www.servier.com/Powerpoint‐image‐bank).  

 

receptors (CCR2 and CCR5) and the delayed or increased onset of AIDS after HIV infection 

[28]. In another instance, a SNP-caused tryptophan to arginine change in the β3-adrenergic 

receptor has been associated with obesity [29]. A set of four SNP locations on the dopamine 

D3 receptor have been associated with schizophrenia, where the susceptibility to the disease 

is most likely caused by the combined effect of these SNPs [30]. In the GRM1 glutamate 

receptor, the presence of SNPs in the splice region between two exons causes a new splice 

variant lacking one transmembrane domain, again associated with schizophrenia symptoms 

[31]. These examples emphasize that the possible influence of SNPs on GPCRs can be quite 
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Figure 2: Effects on individuals of SNPs in GPCRs. GPCR polymorphisms can lead to differences in drug 
response between individuals, potentially changing drug effectiveness and risks of side-effects. 
 

profound. However, the knowledge of polymorphism effects in GPCRs is still scant as of 

today. Hence we sought to find out more on the influence SNPs have on ligand-induced GPCR 

function in this thesis. 

 

Lymphoblastoid Cell Lines 

Most evidence supporting the influence of GPCR polymorphism effects are based on statistic 

association with occurrence of a disease, or by functional characterization in artificial, 

heterologous cell lines [14, 16, 17]. Both methods lack the final, well-defined physiological 

link that would allow us to understand more precisely how a polymorphism changes GPCR 

effects in an individual patient [32, 33]. Such understanding could be provided by directly 

measuring drug responses in patient material or cells as a model system. 

An upcoming phenomenon in the past two decades are biobanks, which collect and store 

biological material to support modern medical research such as -omics approaches and 

personalized medicine. For this purpose, biobanks provide biomaterial resources including 

tissues, cells, blood, and serum from patients with specific diseases, specific populations or 

individuals with specific traits [34-36]. One type of cells used in many biobanks as a preferred 

choice for storing genetic material are lymphoblastoid cell lines (LCLs), which are derived 

from a person’s B-Lymphocytes [37, 38]. Renowned consortia with LCL libraries include the 

Centre d’Étude du Polymorphisme Humain, the International HapMap and 1000 genomes 

projects [39-43]. In most cases, however, LCLs are merely used as a source of DNA or RNA 

for genotyping, expression or methylation studies [16, 37].  

In this thesis, we set out to show that LCLs can be used as a model system to directly 

study polymorphism effects on GPCR function on a cellular level.  
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Label-free technologies 

Traditional GPCR assays are often label-based, which have definite disadvantages when 

venturing to remain as close to the physiological situation as possible. These assays rely on 

(chemical) engineering by, for instance, radioligand tagging or overexpression of the receptor 

(Figure 1). All of such alterations to the cell may influence its physiology leading to for 

instance identification of false-positive or false-negative hits [44]. Furthermore, such assays 

are mostly pathway-biased as they typically focus on only one cellular event in a specific 

signaling pathway [45]. Another drawback is that they often lack the sensitivity required for 

receptors endogenously expressed in cell lines, as this is much lower level than in specifically 

engineered cell lines. In short, such assays are not well-suited for investigating subtle 

polymorphism changes on endogenous receptors in their native environment.  

However, new assays are emerging that enable measurements in endogenous cell lines 

and hereby provide greater, more relevant biological insight. By eliminating any need for 

labels, label-free cellular biosensors have the capability of assessing endogenous receptor 

function in their native physiological settings [46]. They are more sensitive, less invasive and 

monitor drug effects on a whole cell in real-time [33, 47, 48]. Hence, label-free assays are 

also more translational towards a correlation between in vitro and in vivo findings [49, 50]. 

Moreover, the sensitivity of these label-free assays allows monitoring of standard effects 

such as GPCR activation or inhibition as well as detection of smaller changes such as biased 

signaling [33, 51], which may also be affected by polymorphisms [5]. In short, label-free 

technologies offer unique advantages for precision medicine as they offer the ability to 

monitor small changes in GPCR signaling or drug responses in the native cellular context. 

 

Objective and overview of this thesis 

Aim and set-up 

The aim of the study was to provide detailed insight in the influence of genetic variation on 

ligand-induced GPCR function within the general human population. Our selection process 

of SNP containing GPCRs to be investigated with label-free technology and LCLs is visualized 

in Figure 3. In this thesis we focused on SNPs that are likely to have a profound effect on 

GPCR signaling responses by changing the amino acid sequence, in particular the so-called 

missense SNPs. The biobank employed in this research, the Netherlands Twin Registry (NTR; 

http://www.tweelingenregister.org/en/) [39], offered genotyped LCLs of individuals with a 

family structure consisting of parents and twin siblings. We first established an overview of 

such SNPs on each druggable, non-olfactory GPCR gene within these NTR individuals, after 
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Figure 3: Flowchart of target selection. The selection was aimed at identifying all druggable GPCRs 
containing non-synonymous SNPs that were well enough expressed to allow functional characterization 
in LCLs from the NTR. For the bioinformatics, the selection was limited to non-synonymous SNPs in 
druggable GPCRs. The genotype data of the cell lines was provided by the NTR, as part of the Genomes 
of the Netherlands (GoNL) consortium [39]. A list of all druggable non-olfactory GPCRs was downloaded 
from the IUPHAR database. SNPs within each gene were extracted from the NTR data using PLINK, an 
open-source whole genome association analysis toolset, and annotated with their SNP-consequence 
types (gene data, SNP location and consequences were extracted from Ensembl). Cellular assays and 
qPCR were used to determine which GPCRs were expressed above a threshold that allowed functional 
responses to be measured using the label-free technology. 

  

which we pursued several interesting cases in GPCRs commonly used in drug research.  

Three separate cases of common polymorphisms that affect GPCR signaling and cellular 

effects were discovered, each revealing different properties including the sensitivity of 

partial versus full agonists, different chemical scaffolds and intron versus missense SNPs. 

These examples should provide the reader with insights that will hopefully lead to the 

development of clinically more effective drugs and drug treatment paradigms in the long 

term. 

 
Outline of this thesis 

The concept of using patient-derived cell lines as model systems is introduced and discussed 

in Chapter 2. This chapter furthermore highlights the advantages of label-free technology for 

assays on such cell lines. 

Chapter 3 focuses on the optimization and application of an impedance-based label-free 

assay, the xCELLigence, to suspension cells such as LCLs to allow direct measurement of 

cellular effects of GPCR signaling.  
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Chapter 4 presents the case of the Adenosine A2A receptor, in which an intron SNP is 

related to differential cellular effects of a partial agonist, but not full agonists or antagonists. 

Chapter 5 summarizes the effects on a highly common non-synonymous polymorphism on 

the Cannabinoid Receptor 2, to which different chemical scaffolds show different sensitivity. 

Chapter 6 presents the case of the Glucose-Dependent Insulinotropic Polypeptide (GIP) 

Receptor, in which a missense SNP that has often been associated with diseases changes the 

cellular effects of the endogenous ligand. 

The research presented in these chapters highlights that coding and non-coding, 

common and less common genetic variations in GPCRs can affect endogenous signaling as 

well as drug effects.  

An overall conclusion from the results described in this thesis and forthcoming 

opportunities for drug discovery and treatment are presented and discussed in Chapter 7. 
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Abstract 

Drug development requires physiologically more appropriate model systems and assays to 

increase understanding of drug action and pathological processes in the human individual. 

Specifically patient-derived cells offer great opportunities as representative cellular model 

systems. Moreover, with novel label-free cellular assays it is often possible to investigate 

complex biological processes in their native environment. Combining these two offers 

distinct opportunities for increasing physiological relevance. 

Here, we review impedance-based label-free technologies in the context of patient 

samples, focusing on commonly used cell types including fibroblasts, blood components and 

stem cells. Applications extend as far as tissue-on-a-chip models. Thus, applying label-free 

technologies to patient samples can produce highly biorelevant data and with it unique 

opportunities for drug development and precision medicine. 
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Introduction 

Two significant challenges in today’s drug development are the inter-individual variability in 

drug effectiveness, and lack of translatability of preclinical results. Simultaneously, modern 

medicine is shifting towards personalized or precision medicine, which proposes to use 

individual characteristics of a specific patient or sub-population to tailor drug prescriptions, 

hereby decreasing risks of ineffective dosing or side-effects [1]. Challenges to achieve this 

are in a generally perceived lack of understanding of the molecular details of drug action and 

of pathological processes in the human individual. This, in turn, is to a large degree brought 

about by insufficient physiological representability of model systems and assays used in drug 

research. Traditional drug research has relied on a target-focused approach by screening 

compounds in in vitro assays. Such assays traditionally use reporter systems, for instance 

radiolabeled or fluorescent probes, dyes, and reporter gene constructs, all of which are 

modifications that may influence target pharmacology (Box 1, Fig. 1). In addition, cellular  

 

BOX 1: Traditional label-based versus label-free assays. 
Traditional label-based assays follow drug effects and cellular functions by chemical attachment of 
a "label" to the drug molecule, drug target or downstream effectors. These can consist of for 
instance radiolabeled or fluorescent probes or dyes. Reporter-based assays introduce specifically 
regulated gene promoters as biomarkers for specific events. Commonly used reporter genes involve 
visually identifiable characteristics such as fluorescent and luminescent proteins. 
Label-free assays do not require any such modifications as they measure cellular changes by 
alternative detection means, without the need for introducing chemical or bioengineered 
modifications. 

 

 

Figure 1. Traditional label-based assays. Stars highlight where effects are often measured by 
introducing labels or reporters. Image constructed using components from Servier Medical Art by 
Servier (http://www.servier.com/Powerpoint‐image‐bank). 
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models and cell systems are often selected based on habit and technical feasibility rather 

than disease relevance, resulting in physiologically less representative heterologous or 

recombinant cells lines. Such renewable in vitro cell sources have been essential in facilitating 

drug discovery and certainly have merits for studying target or drug action in more detail. 

However,  both assay and model systems are factors that can contribute to an eventual lack 

of clinical effectiveness and thus the issues experienced in the drug development to date, 

such as high attrition rates [2]. To fully comprehend the mechanisms underlying pathologies, 

drug response and its variation in individuals, functional characterization on a physiologically 

relevant molecular and cellular level is essential. Hence, the focus is shifting onto more 

physiologically appropriate cellular models and readout systems. Specifically patient-derived 

cells offer great opportunities when used directly as a model system. Novel label-free cellular 

assays are a new type of phenotypic assay able to acquire the molecular-level understanding 

from complex biological processes in their native environment [1, 2]. Applying them to 

human primary cells can increase physiological relevance [3-5]. In this review, we highlight 

the realm of these possibilities, by focusing on the application of one type of such label-free 

cellular assays, based on impedance, on some of the most common types of human primary 

cells derived from patient samples. 

 

Advantages of Label-free cellular assay technologies 

The two currently most used forms of label-free cellular biosensors are impedance- or optics-

based. Extensive reviews on the detection principles are provided elsewhere [6-8]. In short, 

the ECIS, xCELLigence, and CellKey systems use an electrode array biosensor to measure 

impedance changes in a cell monolayer (Fig. 2). Optical systems such as the EPIC and BIND 

use resonant waveguide grating to detect dynamic mass redistribution in cells. Both optical 

and impedance methods detect a wide spectrum of cellular changes, from cell adhesion to 

life cycle processes such as proliferation, growth and death, as well as pathogen infections 

and response, cell migration and signaling such as receptor signaling or cell-cell 

communication [6]. Hence, these label-free assays are also known as phenotypic assays.  

In this review, we focus on impedance-based assays which are applicable to a broad 

range of samples, are highly versatile and can integrate many assays into one (see also Fig. 

3). For instance, such assays record a variety of cellular parameters including proliferation, 

adhesion and cellular morphology in one combined read-out in real-time(Fig. 3A). This is a 

particular advantage over many traditional assays, which often interrogate one aspect only 

of a given pathway or a cellular response (e.g., second messenger accumulation).  
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Figure 2. Principle of impedance-based label-free cellular assays. Cell attachment to gold electrodes 
generates impedance by changing the local ionic environment at the electrode-solution interface. 
Relative changes in impedance (Z) are recorded in real-time. 1. Prior to the seeding of cells, baseline 
impedance is Z0. 2. As cells adhere to the electrodes, impedance increases proportionally. 3. Changes 
in cell number, adhesion, viability and morphology are directly reflected in the impedance profile. 
Impedance-based label-free cellular assays can detect a wide range of cellular events including cell 
proliferation, division, growth, death, migration and signaling. All these parameters can in turn be 
affected by drugs. For instance, depending on the moment of drug treatment, drugs can result in 
response A by initiating receptor signaling or drug response B by decreasing overall proliferation. 

 

Impedance-based assays offer the distinct advantage of a direct read-out of drug action 

in real-time. While there are also traditional assays which record specific functions in real-

time (e.g., Ca2+-mobilization assays) impedance measurements offer the benefits of real-time 

measurements in both acute (eg. direct receptor signalling) and chronic settings (e.g., cellular 

proliferation). Besides recording the abovementioned cellular functions, impedance-based 

label-free assays also provide some specialist applications such as electrical stimulation for 

pore formation (Fig. 3D) and co-culture without contact (Fig. 3H), though these may require 

specialized recording or plate equipment (Fig. 3B, 3E, 3H). Overall, impedance-based assays 

have already successfully been applied to an extensive list of targets, including highly 

important drug target classes such as G protein-coupled receptors (GPCRs) [6, 9], nuclear 

receptors [10] and receptor tyrosine kinases [11]. Applications extend as far as toxicity 

screens on cardiac function [12] and migration of cancer cells in 3D cultures [13] (Fig. 3B and 

3E). Furthermore, almost any cell type can be studied. Examples include standard 

recombinant cell lines, primary and stem cells, both adherent as well as suspension cell types 

[6, 9, 14] (see also Table 1). This is because in comparison to many traditional assays, label-

free technologies offer a sensitive, less invasive detection methodology that monitors drug 
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Figure 3: Typical applications of impedance-based label-free cellular assays. (A) General label-free 
cellular assay formats are capable of monitoring many cellular functions such as adherence, 
proliferation, viability and morphology. Additional specialized assay applications exist for instance to 
(B) monitor cell migration (e.g. through a porous membrane, xCELLigence), (C) measure barrier 
functionality for instance in a wound scratch assay, (D) apply electrical impulses e.g. to increase cellular 
permeability (ECIS) and (E) measure (cardio)-myocyte contractility (xCELLigence CARDIO system). (F) 
Besides adherent cells, label-free cellular assays are also applicable to suspension cells and capable of 
monitoring interactions between two cell types, for instance by (G) cytotoxicity of effector cells on 
another type of target cell, or (H) cell-cell communication without actual cellular contact (xCELLigence 
co-culture set-up). 

 

effects on a whole cell. Furthermore, without the need for tagging, labeling or recombinant 

expression, cellular functions can be studied in a more physiological context, including a vast 

amount of endogenously expressed targets and pathways. Simultaneously, sensitivity is 

often high enough to distinguish subtle changes in mechanisms of action in e.g., GPCR 

signaling bias [6, 14]. Receptors are linked to various downstream signaling pathways, 

termed signaling pluridimensionality. Ligands can be biased towards one or some particular 

downstream pathways, potentially resulting in different pharmacological effects. For 

instance, closely related agonists for the β2- adrenergic receptor induced subtly yet distinctly 

different response signatures as a consequence of such bias [15, 16].  

Hence, as a number of  reviews have already summarized, label-free technologies can 

offer distinct advantages for drug development. They capture compound action in a dynamic 

time-resolved manner, allow for identification of leads independent of prior assumptions of 

signaling pathways and enable the use of more native systems at higher through-put. As a 

cell-phenotypic screen, they can be used for target identification, compound screening, lead 

selection, investigating mechanism of action and testing drug safety and toxicity [14, 17]. In 

this review we particularly focus on applications involving patient cells. This offers 

opportunities both for drug development and precision medicine research by sensitively 

detecting an extensive variety of pharmacological effects under minimally invasive conditions 

in a clinically relevant endogenous context of primary cells, and even patient samples. 
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Nowadays, such samples are increasingly available to support research, for instance by their 

systematic collection in biobanks. 

 

Advantages of primary human cells 

Over the past decades, numerous biobanks have emerged to support medical research by 

programmed storage of biological material and corresponding data. These biomaterials 

include tissues, (stem) cells, blood, and serum, all of which have played a critical role in 

medical research. These materials are actively used from translational and personalized 

medicine research to target and drug discovery [18, 19]. For human physiology, primary 

human cells are considered a much better model system than the more traditional cellular 

models such as rodent, recombinant, or immortalized non-tissue specific human cell lines, 

and even better than in‐vivo rodent models [20-22]. While the mentioned cellular models 

certainly have merits, for instance ease-of-use or to attain initial understanding of pathways, 

their physiological relevance is questioned increasingly. In recombinant cell lines, target 

overexpression, differences in intracellular metabolic conditions and products from other 

genes could modify cellular responses [5]. Well-established cell lines derived from a patient 

with a particular disease can be more representative of that specific pathological condition. 

However, these are generally immortalized cell lines derived from one particular patient 

sample a long time ago. Prolonged cell culture frequently leads to problems such as 

contamination or genotypic and phenotypic instability. These issues unfortunately contribute 

to irreproducibility in preclinical research, which is an increasingly well-recognized problem 

[23].  

In general, primary cells express signaling pathways and retain many cellular functions 

that are seen in vivo, thus providing a more relevant context. Tissue or cell samples from 

healthy or patient volunteers are even more representative for (patho)physiology and closer 

to the situation in the clinic.  

 

Application to patient samples and primary human cells 

Many patient-related biomaterials can and have already been studied using impedance-

based label-free technologies, of which some prominent examples are discussed here. The 

sample types most commonly studied include fibroblasts and blood components, but 

applications also extend to endothelial, epithelial and stem cells (Table 1). In these examples, 

label-free impedance-based assays are employed to monitor a wide range of cellular effects, 

including specific functions such as migration, epithelial barrier function or 
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Table 1. Application examples of impedance-based label-free cellular technology to patient samples and 
stem-cell related types. 
 

Type Subtype Technology Material source Reference 

B
lo

o
d

 c
o

m
p

o
n

en
ts

 

Antibodies xCELLigence Type I diabetes patients, type II diabetes 

patients and healthy controls 

[37] 

PBMCs  xCELLigence From healthy volunteers but tested on 

patient material 

[32, 33]  

Plasma and cells 

therein  

ECIS Healthy volunteers vs. trauma patients [35] 

ECIS Hantavirus Cardiopulmonary Syndrome 

patients 

[36] 

Monocytes ECIS Patients with peripheral vascular disease 

and abdominal aortic aneurysm 

[31] 

Neutrophils  ECIS Critically ill septic patients [34] 

Serum ECIS  Scleroderma patients [27]  

C
an

ce
r 

ce
lls

 a
n

d
 r

el
at

ed
 c

el
ls

 

γδ T cells xCELLigence Healthy volunteers and B-lineage acute 

lymphoblastic leukemia patients 

[60] 

Glioblastoma cells xCELLigence Paired tumoral and peritumoral tissue 

samples from glioblastoma patients  

[54] 

Malignant 

melanoma cells 

xCELLigence Malignant melanoma of the ciliary body 

from a female patient  

[55] 

Malignant pleural 

effusions 

xCELLigence Patients with solid tumors [59] 

Mesenchymal 

chondrosarcoma 

cells 

xCELLigence Newly established cell line from patient [56] 

Mononuclear 

cells 

xCELLigence Normal controls and breast 

cancer patients  

[61] 

Myxofibrosarcom

a cells 

xCELLigence Myxofibrosarcoma patient  [58] 

Non-small-cell 

lung carcinoma 

cells 

xCELLigence Non-small-cell lung carcinoma patient [57] 

Normal and 

neoplastic 

mammary cells 

xCELLigence Patient-derived primary human breast 

cancer epithelial cells 

[8] 

Ovarian cancer 

cells 

xCELLigence Serous ovarian cancer patient and 

endometrioid peritoneal cancer patient  

[53] 

C
h

o
n

d
ro

-

cy
te

s 

Chondrocytes 

and cartilage 

tissue  

xCELLigence Osteoarthritic patients [32] 
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Fi
b

ro
-b

la
st

s 

Benign prostatic 

hyperplasia 

xCELLigence Benign prostatic hyperplasia patients [26] 

Dermal ECIS Scleroderma patients and normal controls [27]  

Orbital ECIS Patients with or without Graves’ disease [24] 

Synovial  xCELLigence Patients with rheumatoid arthritis or 

osteoarthritis 

[28-30] 

iP
SC

s 
an

d
 s

im
ila

r 
st

em
 c

el
l t

yp
es

 

Adipose stromal/ 

stem cells 

ECIS Healthy human donors of varying age 

groups 

[51] 

xCELLigence Female patients undergoing liposuction, 

model for obesity 

[52] 

iPSC 

cardiomyocytes 

xCELLigence Healthy human donors or commercial from 

Cellular Dynamics (CDI; 

http://www.cellulardynamics.com/products

/cardiomyocytes.html) 

[12, 43-45] 

iPSC Retinal 

pigment 

epithelium 

ECIS Age-related macular degeneration patient 

and unaffected sibling 

[47] 

Mesenchymal 

stromal/stem 

cells 

ECIS and 

xCELLigence 

From bone marrow (three donors) and 

adipose tissue (two donors) 

[48] 

 

xCELLigence From endometrial lining of the human 

uterus of premenopausal women 

[49] 

xCELLigence Healthy human donors [50] 

xCELLigence Osteoarthritic patients [33] 

M
yo

-

b
la

st
s Skeletal muscle 

myoblasts and 

myotubes 

xCELLigence Chronic heart failure patients and age and 

gender-matched healthy donors 

[62, 63] 

 

cardiomyocyte beating (Fig. 3). Overall, the highlighted examples show that impedance-

based label-free technology is highly versatile with an extensive range of applications. 

 

Fibroblasts 

The earliest applications of label-free assays to fibroblasts date back to over two decades. In 

one early example, prostaglandin E2 was shown to play a significant role in Graves’ disease 

pathology by comparing morphological changes of orbital fibroblasts from patients with and 

without Graves’ disease versus dermal fibroblasts (Fig. 3A). The authors chose ECIS over 

traditional light microscopy after testing both methodologies head to head, as it offered 

insight into the subtle, rapid cellular changes, especially into the underlying kinetics [24]. 

Since then, label-free cellular assays have been applied to other types of fibroblasts. 

Fibroblasts are in fact the most common cell type in human connective tissue and can often  
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retain memory of their previous tissue context, thus giving rise to numerous fibroblast types 

(Table 1). They are also among the most commonly employed clinical and biobanked samples 

in general [25]. For instance, Nolte et al. demonstrated a potential strategy against hyper-

proliferating fibroblasts by treating fibroblasts from benign prostatic hyperplasia patients 

with small interfering RNA against the transcription factor serum response factor. Effects on 

cell proliferation and growth inhibition were detected with the xCELLigence (Fig. 3A) [26]. 

Another notable study involved dermal fibroblasts and sera from scleroderma patients, 

which is discussed later [27]. 

Finally, in a clinically relevant setting synovial fibroblasts from patients with rheumatoid 

arthritis (RA) or osteoarthritis (OA) obtained during knee surgery were investigated. In the 

most recent ones, Lowin et al. used the xCELLigence to show that the endocannabinoid 

system is involved in regulating inflammatory effects in RA [28]. This suggested a potential 

treatment for RA with synthetic cannabinoids, demonstrated in a later study [29]. Similar 

studies showed further contributors to the pathogenesis of RA that modify cellular functions 

and adhesion of synovial fibroblasts, the most recent of which are included in Table 1 [30]. 

The relevance and implications of these findings for potential treatment options are of 

translational value as the cells were obtained from patients with the disease.  

 

Blood cells 

Blood is an easily obtained patient material and is thus often biobanked [25]. Hence, various 

types of blood components or cells are used in medical research and have been investigated 

using impedance-based label-free cellular assays.  

Several studies involving monocytes have been published. Interestingly, monocytes are 

often measured indirectly by quantifying their effect on another cell type. A layer of adherent 

target cells is grown on the electrodes, after which they are exposed to the effector cells, 

here monocytes, which induce for instance cytotoxicity in the target cells (Fig. 3G). Lee et al. 

used ECIS to reveal differences between patients of peripheral vascular disease and 

abdominal aortic aneurysm to find better methods for targeted therapy. Monocytes of 

peripheral vascular disease patients induced higher endothelial barrier dysfunction [31].  

Another particularly useful type of blood cells are peripheral blood-derived mononuclear 

cells (PBMCs). Hopper et al. showed PBMCs enhanced osteoarthritic human chondrocyte 

migration, which could be the basis for a treatment strategy for OA. The PBMCs were derived 

from healthy volunteers, while chondrocytes and cartilage tissue explants were from patients 

undergoing total knee replacement. Here, migration and chemokinetic potential of the cells  
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were measured using a specialized migration assay format of the xCELLigence (Fig. 3B) 

[32]. Later it was shown that PBMCs also enhanced migration and chondrogenic 

differentiation of multipotent mesenchymal stromal cells (MSCs) from knees of OA patients 

[33]. 

Other types of blood components have been assayed using label-free technology as well, 

although most of them again rely on an indirect measurement through effects on another 

cell type. For instance, neutrophils from critically ill septic patients were found to reduce 

endothelial barrier integrity to a greater extent than untreated normal neutrophils in an ECIS 

assay [34]. Human serum was also employed in some studies. In an early example by Huang 

et al., ECIS was used to demonstrate differences in micromotions of dermal fibroblasts from 

patients with scleroderma and normal controls, as well as the effect of sera from patients on 

fibroblast behavior [27]. Rahbar et al. measured the effects of plasma samples from healthy 

volunteers and severely injured trauma patients on human endothelial cells using ECIS. 

Material of patients with low plasma colloid osmotic pressure caused an increase in cell 

permeability [35]. In a similar manner, plasma samples of patients with Hantavirus 

Cardiopulmonary Syndrome were shown to induce loss of cell-cell adhesion in epithelial and 

endothelial cells in ECIS [36]. Finally, Jackson et al. employed xCELLigence to demonstrate 

that anti-calcium channel autoantibodies from patients with type I diabetes inhibit the 

adherence of Rat insulinoma cells, while antibodies from type II diabetes patients and healthy 

controls did not [37]. 

The reason that all these blood components are measured indirectly is twofold. On one 

hand, studying their effect on the function of other cell types provides more physiological 

context. On the other hand, many of the cell types involved are suspension cells. Label-free 

technology was long deemed incompatible with suspension cells, as the detection 

mechanism positioned at the bottom of the well requires cells to adhere [7]. However, a 

number of studies demonstrated that suspension cells are amenable to label-free 

technologies as well, with both optical and impedance-based biosensors. Interestingly, 

impedance-based assays appear less susceptible to decreased cellular adherence than 

optical biosensors [7], and hence potentially applicable to an even broader range of cell 

types. Examples include various types of blood cells, one notably involving personal cell lines. 

For instance, CellKey was used to directly measure GPCR signaling in monocytes, neutrophils 

and PBMCs, though these were not in fact patient material [38, 39]. The xCELLigence was 

applied to lymphoblastoid cell lines (LCLs) from participants of the Netherlands Twin Register 

to show effects of single nucleotide polymorphisms on GPCR signaling [9, 40]. On these 
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occasions, increased cell densities and usage of adherence-mediating agents were sufficient 

to allow measurements (Fig. 3F). LCLs are in fact used as a preferred choice for storing genetic 

material, including in biobanks of renowned consortia such as the International HapMap 

project [25, 41]. 

 

iPSC and common stem-cell types 

Stem cells carry great promise for rendering physiologically more relevant cell models, in 

particular induced pluripotent stem cells (iPSCs). By reprogramming of e.g. fibroblasts into a 

pluripotent state, iPSCs can be derived that maintain the disease genotype and phenotype 

indefinitely. These iPSCs then provide a source of models for an expansive range of adult 

differentiated cells, possibly even for each individual patient, which has the potential to 

personalize drug discovery [42]. Many of the cell types derived from such iPSCs can be 

investigated using label-free technology. For one of these, a specific type of application has 

been developed for the xCELLigence, namely a cardiomyocyte-based biosensor. Safety 

pharmacology studies that evaluate potential cardiac (side) effects of drug candidates are an 

essential part of drug development. The xCELLigence RTCA Cardio System detects the beating 

rhythm of cardiomyocytes (Fig. 3E). It has been applied to human iPSC derived 

cardiomyocytes (hiPS-CMs) on several occasions to investigate risks of drug-induced 

arrhythmia and general cardiotoxicity, of which the most recent publications are listed in 

Table 1 [12, 43-45]. Rhythmic beating is essential for cardiomyocyte function, but has 

traditionally been hard to investigate in simple in vitro assays. Phenotypic measurements of 

native cellular systems are more suited for this [46]. The xCELLigence Cardio System 

capturing cardiac beating was in fact the most sensitive of various tests for detecting 

compounds with known clinical cardiac risk [43], and can be used to evaluate potential 

clinical drug candidates [12].  

Another stem cell-based study involved iPSC-derived retinal pigment epithelium (RPE) as 

a disease-model-on-a-chip of age-related macular degeneration (AMD). In general, epithelial 

and endothelial cells are often studied using label-free technology, and some specific assay 

formats related to formation and disruption of monolayers have been developed for these 

(e.g. barrier function, Fig. 3C). Here, RPE cells from a patient with inherited AMD and an 

unaffected sibling were examined using an ECIS electrical wound healing assay. Real-time 

monitoring over a 25-day period demonstrated the establishment and maturation of RPE 

layers on the microelectrode arrays, in which a spatially controlled damage to the cell layer 

was introduced to mimic AMD. Apparently, label-free technology can be used to measure 

long-term effects, and is apparently suited for tissue-on-a-chip technology. This offers 
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translational value by enabling real-time, quantitative and reproducible patient-specific 

studies [47].  

Another stem cell type of interest are MSCs, which are attractive candidates for tissue 

engineering due to their wide mesodermal differentiation potential. Angstmann et al. 

compared ECIS and xCELLigence in search for standardized quality control assays to monitor 

differentiation and high-throughput screening that is both non-invasive and time-resolved. 

They studied MSCs isolated from two different tissues of various donors, namely bone 

marrow and adipose tissue. Impedance measurements were used to discriminate osteogenic 

from adipogenic differentiation, which showed modulating effects of extracellular matrix 

components [48]. Label-free assays were also used to establish culture conditions for 

expansion of endometrial MSC (eMSC) isolated from endometrial lining of the human uterus 

of premenopausal women [49] or to test MSC labelling by a new type of nanoparticle [50]. 

In another instance, ECIS was used to monitor proliferation and osteogenic 

differentiation of human adipose stem cells (hASC) from donor populations of different ages. 

This assay could be used to predict the osteogenic potential for patient-specific bone tissue 

engineering [51]. Finally, Berger et al. studied molecular mechanisms in human obesity in 

hASCs from liposuctions of female patients. Studying lipid uptake and adipocyte 

differentiation with the xCELLigence, the authors identified several dysregulated adipocyte-

specific genes involved in fatty acid storage or cell adhesion [52]. 

 

Other cell types 

Label-free assays are suited for virtually any cell type and have in fact been applied to 

numerous others besides the most commonly biobanked samples highlighted above. 

A further category of particular interest are cancer and related cell types. Here, 

impedance-based cellular assays are most often used to measure migratory and invasive 

properties (e.g. Fig. 3B), which are key characteristics for any (metastatic) cancer type. For 

instance, the xCELLigence was used to monitor the motility of primary human normal 

mammary cells versus patient-derived breast cancer epithelial cells [8], migration in various 

ovarian cancer patient samples [53] and proliferation and response to kinase inhibitors in 

patients' glioblastoma samples [54]. Others have evaluated (potential) treatment options on 

a patient’s malignant melanoma cells [55] and on a newly established mesenchymal 

chondrosarcoma cell line from a patient [56]. Two other publications used the xCELLigence 

for characterization of newly established cell lines from patient samples, offsetting them 

versus parental tumor tissue or traditionally used carcinoma cell lines [57, 58]. Finally, Ruiz 

et al. applied the xCELLigence to patients' own cancer cells for in vitro selection of the most 
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promising treatment, in this case for human carcinoma cells from malignant pleural effusions 

[59]. This is an illustrative example of possible applications in precision medicine. 

Impedance-based technologies are also suited to test potential cell-based therapies (Fig. 

3G). Seidel et al. demonstrated the therapeutic potential of γδ T cells for antibody-based 

immunotherapy in pediatric patients with B-lineage acute lymphoblastic leukemia (ALL). γδ 

T cells were derived from healthy blood donors as well as from a patient with common-ALL. 

The xCELLigence was used to measure γδ T cell lysis in a breast adenocarcinoma cell line in 

real-time, and outperformed the traditional endpoint assay [60]. In a similar manner, others 

studied the ability of mononuclear cells from normal and breast cancer patients to kill 

different breast cancer cell lines in the presence or absence of trastuzumab [61].  

Myoblasts from muscle biopsy samples are another cell type of interest. In a recent 

example, Sente et al. studied pathological mechanisms of heart failure. Using the 

xCELLigence, they observed myoblast adiponectin signaling, differentiation, proliferation and 

viability in primary myoblasts and myotubes from chronic heart failure patients and age- and 

gender-matched healthy donors [62, 63].  

 

From drug discovery to precision medicine 

Due to their versatility, label-free assays and patient cells, when combined, can be utilized at 

various stages of medicines research. As a cell-phenotypic screen, label-free assays are well 

suited for target identification, compound screening andlead selection. Likewise they allow 

the investigation of mechanisms of action and the testing of drug efficacy and safety [14, 17]. 

In this review we provided typical examples involving patient cells, which offer increased 

physiological context. As such patient samples are often in limited supply, this set-up is not 

so much used for e.g., screening drug candidates but rather for understanding disease 

mechanisms and testing potential treatments. This was done by Lowin et al. in the context 

of rheumatoid arthritis to identify drug targets, to subsequently test compounds and to 

define possible treatments [28, 41]. In a more integrated approach the combination of 

patient cells and label-free assays resulted in tissue-on-a-chip technology, as demonstrated 

by Gamal et al.[47]. It is to be expected that the advent of stem cell technology will radically 

change the availability of patient-derived materials [42, 64], which would allow a further 

integration of label-free assays. This would be an ideal starting point for the advancement of 

precision medicine, if patient-derived material can be made available readily, on demand, 

and in larger quantities. In this light the question arises whether label-free technologies can 

be developed that take the three-dimensionality of advanced cellular models and organoids 
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into account [65-67]. In drug safety and toxicity research, iPSC-derived cardiomyocytes can 

be used in a label-free setting to evaluate potential cardiac (side) effects of drug candidates 

[12, 43]. Finally, the combination of patient cells and label-free technology can be used for 

clinical compound selection, for instance by measuring patient cell responses in vitro as 

means of selecting the most promising treatment. This has been demonstrated by profiling 

drug treatment responses of patient derived malignant pleural effusions in a study by Ruiz et 

al. [59], with the aim to provide drug treatment of cancer in a personalized manner.  

 

Conclusion 

Physiologically more appropriate cellular models and readout systems are needed to 

increase representability and translational value. Patient-derived cells can provide 

pathological and physiological context, and biobanking has increased the availability of 

human primary samples for research. Label-free impedance-based assays can and have been 

applied to a wide range of such samples. These assays indeed increase physiological 

representability by omitting reporter-based modifications and measuring physiological cell 

function in real-time. Thus, combining label-free assays with human primary samples offers 

a uniquely biorelevant set-up for the purposes of drug development and precision medicine. 
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Abstract 

Deciphering how genetic variation in drug targets such as G protein-coupled receptors 

(GPCRs) affects drug response is essential for precision medicine. GPCR signaling is 

traditionally investigated in artificial cell lines which do not provide sufficient physiological 

context. Patient-derived cell lines such as lymphoblastoid cell lines (LCLs) could represent the 

ideal cellular model system. Here we describe a novel label-free, whole-cell biosensor 

method for characterizing GPCR-mediated drug responses in LCLs. Generally, such biosensor 

technology is deemed only compatible with adherent cell lines. We optimized and applied 

the methodology to study cellular adhesion properties as well as GPCR drug responses in 

LCLs, which are suspension cells. Coating the detector surface with the extracellular matrix 

protein fibronectin resulted in cell adherence and allowed detection of cellular responses. A 

prototypical GPCR present on these cells, i.e. the cannabinoid receptor 2 (CB2R), was selected 

for pharmacological characterization. Receptor activation with the agonist JWH133, 

blockade by antagonist AM630 as well as downstream signaling inhibition by PTX could be 

monitored sensitively and receptor-specifically. Potencies and effects were comparable 

between LCLs of two genetically unrelated individuals, providing the proof-of-principle that 

this biosensor technology can be applied to LCLs, despite their suspension cell nature, in 

order to serve as an in vitro model system for the evaluation of individual genetic influences 

on GPCR-mediated drug responses.  
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Introduction 

Inter-individual variability in drug action and clinical effectiveness forms a challenge in 

today's drug treatment and development. In fact, variation in drug response that arises from 

genetic, lifestyle and environmental differences causes even blockbuster drugs to work in 

only 75% to merely 35% of all [1, 2]. Personalized medicine, or, more broadly defined, 

precision medicine proposes to personalize drug prescriptions using a sub-population or 

patient's individual characteristics, e.g. genetic information, and thereby decrease risks of 

ineffective treatment, dosing or side-effects [2-4]. In order to achieve this, it is paramount to 

determine whether, and how, genetic variation affects drug responses. Today, genetic 

testing is available for around 2000 clinical conditions, particularly in oncology [3, 5]. Two 

poster children of personalized medicine are HER2-positive breast cancer tests as a predictor 

of response to the drug herceptin and screens for CYP450 polymorphisms that are known to 

affect treatment with e.g. selective serotonin-reuptake inhibitors [3, 4]. 

The majority of therapeutic targets to date are formed by a class of membrane proteins, 

the G protein-coupled receptors (GPCRs) [6]. More than 30% of all currently marketed drugs 

exert their therapeutic effect by directly binding to and influencing GPCR function. Due to 

their ubiquity GPCRs are involved in a plethora of physiological processes. It is therefore 

highly interesting to decipher the influence of genetic variation in GPCR-mediated drug 

responses [7, 8]. While several examples have linked GPCR polymorphisms to disease and 

drug response variation, research has mostly focused on the statistics of genotype influences 

followed by functional characterization in heterologous cell lines [8-10]. Heterologous cell 

lines are, however, systems with artificial receptor expression and represent a non-

physiological, cellular context [11, 12]. To fully understand the underlying mechanism of 

polymorphism influence, functional characterization on a physiologically relevant molecular 

and cellular level is vital. An ideal setup would be to use patient-derived cell lines as a model 

system to assess polymorphism influences on drug response. 

A well-established example of such personal cell lines are lymphoblastoid cell lines 

(LCLs), which to date are a preferred choice for storing a person's genetic material [13, 14]. 

Numerous consortia have built and actively utilize LCL libraries, including the Centre d’Étude 

du Polymorphisme Humain (CEPH), the International HapMap and 1000 genomes projects 

[15-19]. However, LCLs are mainly used as a source of DNA or RNA for genotyping, expression 

or methylation studies [9, 13]. Functional cellular assays on LCLs have seldom been 

performed [13, 20, 21] with virtually none for GPCRs. Only Morag and Gurwitz et al. studied 

the influence of a few GPCR antagonists on LCL growth [20]. In fact, many traditional cellular 
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assays, especially for GPCRs, are incompatible with LCLs as they require labeling and cell or 

target engineering. Another drawback is that they generally lack the sensitivity required for 

such endogenous cell lines which often have low target expression levels. Recently 

developed label-free technologies offer a more sensitive, less invasive solution and can 

monitor drug effects on a whole cell in real-time [12, 22, 23]. The sensitivities of these label-

free assays is high enough for standard applications such as GPCR activation or inhibition 

down to detection of small changes such as biased signaling [12, 24]. It may very well be that 

receptor polymorphisms induce subtle yet important changes in drug-target binding, 

signaling bias and receptor subtype selectivity [7]. Label-free technologies are therefore ideal 

for precision medicine purposes, as they harbor the ability to pick up small changes in GPCR 

signaling or drug responses in the physiologically relevant context of endogenous cells. One 

disadvantage, however, is that the detection method of label-free assays generally requires 

cells to adhere to the detector surface at the bottom of the well [12, 23] and unfortunately, 

LCLs are by nature non-adherent suspension cells [25]. However, several reports have been 

published recently on the application of label-free technology to suspension cells, including 

various types of blood cells [26, 27]. To solve the above listed challenges we developed a 

methodology for a label-free, impedance-based whole-cell assay that allows characterization 

of GPCR signaling in LCLs despite their suspension cell nature. This enables the use of LCLs as 

an in vitro cellular model system to evaluate individual differences in GPCR-mediated drug 

responses. 

 

Material and methods 

Chemicals and reagents 

The LCLs were kindly provided within the framework of this collaboration [15]. Fibronectin 

from bovine plasma, poly-D-lysine (PDL) and unsupplemented RPMI 1640 cell culture 

medium were purchased from Sigma Aldrich (Steinheim, Germany). Collagen I from rat tail 

was purchased from Fisher Scientific (Illkirch, France). The GPCR agonist JWH133 was 

purchased from TOCRIS (Bristol, UK), ATP from Sigma Aldrich and AM630 from Cayman 

Chemicals Company (Ann Arbor, Michigan, USA). RGD peptide (GRGDTP) and RGE peptide 

(GRGESP) were purchased from AnaSpec/Tebu-bio (Heerhugowaard, the Netherlands). 

Gαi blocking pertussis toxin (PTX) was purchased from Sigma Aldrich. All other chemicals 

were of analytical grade and obtained from standard commercial sources. 
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Lymphoblastoid cell line generation 

The LCLs had previously been generated at the Rutgers Institute (Department of Genetics, 

Piscataway, NJ, USA) using a standard transformation protocol [15]. In short, peripheral B-

lymphocytes were exposed to Epstein–Barr Virus (EBV) by treatment with filtered medium 

from a Marmoset cell line in the presence of phytohemaglutinin (PHA) during the first week 

of culture [13, 14, 28]. Cultures were maintained for 8–12 weeks to adapt and expand the 

EBV transformed lymphocytes and subsequently cryopreserved. 

 

Cell culture 

Two LCLs from two genetically unrelated individuals were used for the experiments 

presented in this manuscript. Cryopreserved cells were thawed, resuscitated and multiple 

aliquots frozen for future use. Of note, LCLs were disposed of after culturing them for 

maximally 120 days. LCLs were grown as suspension cells in culture medium consisting of 

RPMI 1640 (25 mM HEPES and NaHCO3) supplemented with 15% Fetal Calf Serum (FCS), 

50 mg/mL streptomycin and 50 IU/mL penicillin at 37 °C and 5% CO2. Cells were subcultured 

twice a week at a ratio of 1:5 on 10 cm ø plates. 

 

Label-free whole-cell biosensor analysis (xCELLigence RTCA system) 

Detection principle 

Whole-cell assays were performed using the xCELLigence RTCA system [12], a real-time cell 

analyzer (RTCA) based on the electrical impedance generated by cells attaching to gold 

electrodes embedded on the bottom of the microelectronic E-plates. Cell attachment 

changes the local ionic environment at the electrode-solution interface, thereby generating 

impedance. Such relative changes in impedance (Z) are summarized as a dimensionless 

parameter, the so-called Cell Index (CI), and displayed in a real-time plot. In detail, a very 

weak electrical signal is applied to the sensor electrodes, where the AC excitation voltage 

level is in the lower mV range and the resulting current is in the μA range (output test signal 

is 22 mV rms ± 20% with max. 5 mV DC offset at 10, 25 and 50 kHz). The RTCA analyzer 

determines cell indeces at these three predetermined optimal midrange frequencies and the 

average speed of measurement is approximately 150–250 ms for each individual well. In 

order to increase usability and ease for the user, the RTCA system provided by the 

manufacturer has pre-set conditions for amplitude, applied potential, frequency range and 

used frequency for extrapolation of results [29, 30], which were used in all experiments  
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presented in this manuscript. The CI value at a given time point is defined by the formula 

in Eq. (1): 
 

Equation (1)   CI = (Zi-Z0) Ω /15 Ω 
 

where Zi is the impedance at each individual time point and Z0 represents the baseline 

impedance in the absence of cells, which is measured prior to the start of the experiment. 

The CI in the absence of cells is therefore defined as 0. As cells adhere to the electrodes, 

impedance and the corresponding CI increase proportionally. Impedance changes thereby 

reflect variations in cell number and degree of adhesion, as well as cellular viability and 

morphology [12, 22]. Such cellular parameters are also affected upon activation of GPCR 

signaling, thereby resulting in impedance changes and real-time monitoring of cellular 

signaling events [12]. Typically, GPCR-mediated activation would result in an increase in cell 

adhesion and overall increase in CI, while a lower CI would indicate loss of adhesion [31]. 

 

General protocol 

The wells of 16 or 96 well E-plates were coated with 50 μl of fibronectin (10 μg/ml), unless 

stated otherwise. After 30 min incubation at room temperature, the coating liquid was 

removed and all plates were air dried for at least 1 h prior to use. LCLs were harvested by re-

suspending in cell culture medium after brief treatment with EDTA and centrifuged twice at 

200g for 5 min. Background impedance (Z0) was measured after adding 45 μL, or in case of 

antagonist experiments 40 μL, of culture media to 16 or 96 well E-plates, respectively. In all 

cases, final well volumes after cell and ligand addition were 100 μL. Cells were seeded by 

adding 50 μL of cell suspension containing 50,000 cells per well, unless stated otherwise. To 

ensure accurate seeding densities, cells were counted using Trypan blue staining and a 

BioRad TC10 automated cell counter. After resting at room temperature for 30–60 min, the 

E-plate was placed into the recording station situated in a 37 °C and 5% CO2 incubator. 

Impedance was measured every 15 min overnight. Cells were stimulated by a GPCR ligand or 

vehicle control in 5 µl after 18–20 h, unless specified otherwise. To record GPCR activation, 

CI was recorded for at least 30 min with a recording schedule of 15 s intervals for 20 min, 

followed by intervals of 1 min, 5 min and finally 15 min. 

For assay optimization purposes, cells were stimulated with the purinergic P2Y receptor 

agonist ATP at a saturating concentration of 100 μM. As compound solubility of JWH133 and 

AM630 required addition of dimethylsulfoxide (DMSO), the final DMSO concentration upon 

ligand or vehicle addition was kept at 0.25% DMSO for all wells and assays. For agonist assays, 
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cells were stimulated with increasing concentrations of JWH133. For antagonist assays, cells 

were pre-incubated for 30 min with 5 μl of the antagonist AM630 at increasing 

concentrations or vehicle control. Subsequently, cells were challenged with a submaximal 

agonist concentration equal to the agonist's EC80 value (100 nM for JWH133) or vehicle 

control. 

For coating trials, wells were coated with 50 μl of varying coatings such as poly-D-lysine 

(0.1 mg/ml), collagen I (50 μg/ml), pure Fetal Calf Serum or fibronectin (0.1–50 μg/ml). Non-

coated wells were used as control condition. After removing coating liquid, only poly-D-lysine 

plates were washed with 3×100 μl PBS before use. 

To assess the specificity of LCL adherence to fibronectin, assay medium was 

supplemented with increasing concentrations of the integrin blocking RGD peptide GRGDTP 

[1 µM–1 mM] or the inactive control RGE peptide GRGESP [1 mM]. Normal assay medium 

was used as control and non-coated wells were used for reference. 

For studies on Gαi coupling, cells were seeded in assay medium containing 100 ng/ml 

Pertussis Toxin (PTX). 

 

Data analysis 

Experimental data were obtained with RTCA Software 1.2 (Roche Applied Science) and 

subsequently exported and analyzed using GraphPad Prism 5.0 (GraphPad Software Inc., San 

Diego, CA, USA). For data analysis, ligand responses were normalized to Δ cell index (Δ CI) 

after subtracting baseline (vehicle control) to correct for any agonist-independent effects. 

Overall, a threshold of 0.01 Δ CI was kept for considering responses different from baseline. 

Peak responses were defined as highest Δ CI observed within 30 min after compound 

addition. Peak values and experimental Δ CI traces were exported to Prism for further 

analysis; construction of bar graphs or dose-response curves by nonlinear regression and 

calculation of IC50, EC50 and EC80 values. All values obtained are means of at least three 

independent experiments performed in duplicate. Statistical significance was determined 

using Student's t-test for two values or two column comparison, e.g. comparing pEC50 values 

between individuals. Comparison of the means of multiple data sets, e.g. the peak Δ CI of 

ATP responses of various coating conditions, was performed by one-way ANOVA, followed 

by a Tukey's post test for comparison of all columns or a Dunnett's post test when comparing 

to vehicle or non-coated control. To get an indication of statistical assay reproducibility under 

optimized assay conditions, correlation analysis was performed for the dose–response 

curves for both the CB2R agonist as well as antagonist for each cell line. 
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Results 

Coating allows detection of GPCR responses 

At first various common coatings known to mediate cellular adherence were tested for their 

ability to allow detection of GPCR signaling in LCLs, for which ATP was chosen as a typical 

GPCR ligand. The result of a representative coating experiment is shown in Fig. 1. Following 

LCL seeding, an initial increase in impedance related to cell adhesion, growth and division 

was observed (Fig. 1A). The overall levels of impedance after 1 h and 18 h, i.e. shortly prior 

to ligand addition, are summarized in Fig. 1B and C. Impedance levels after 1 h are likely to 

reflect initial cellular adhesion, while impedance after 18 h is also influenced by cellular 

proliferation or more prolonged changes in cellular morphology. Subsequent addition of the 

agonist ATP induced changes in LCL morphology that were recorded in real-time (Fig. 1A and 

D). Typically, ATP addition resulted in an immediate dose-dependent increase of impedance 

to a peak level. Subsequently, the CI trace gradually decreased towards a plateau within a 

period of 30 min.  

Lack of coating resulted in no adherence or detection of GPCR response. Even though 

poly-D-lysine initially caused a high amount of cellular adherence equal to fibronectin  

(Fig. 1B) this declined drastically over the course of 18 h (Fig. 1C) and allowed little to no 

detection of GPCR response (Fig. 1D and E). Even though both poly-D-lysine and collagen 

coating resulted in significant impedance levels in comparison to non-coated wells just 

before ATP addition (18 h, Fig. 1C), both of them failed to allow detection of an ATP-induced 

response (Fig. 1D and E) as growth curves had dropped to or below baseline levels (CI<0). 

Fibronectin coating, on the other hand, did mediate cellular adherence over a longer time 

course resulting in a stable growth curve and sufficient window for detection of GPCR 

signaling (Fig. 1D and E). 

Of note, coating experiments performed on LCLs from a second individual, individual 2, 

gave virtually identical results (data not shown).  

Subsequently, the amount of fibronectin required for stable impedance levels and GPCR 

signal detection was further optimized. While initially all amounts of fibronectin resulted in 

impedance above non-coated levels (Fig. 2A and B), only fibronectin levels from 5 μg/ml or 

higher maintained impedance above non-coated up to 18 h (Fig. 2A and C). Significant ATP 

signaling was detected from 10 to 50 μg/ml fibronectin coating (Fig. 2D and E). In fact, 25 and 

50 μg/ml were indistinguishable in impedance level and ATP response window. 10 μg/ml 

resulted in slightly lower effects, but still gave stable impedance levels and response window,  
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which were both not statistically significantly different from 25 or 50 μg/ml. Fibronectin 

concentration effects were comparable for another cell line from individual 2 (data not 

shown). Therefore, a fibronectin concentration of 10 μg/ml was chosen for all further 

experiments. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Fibronectin coating mediates LCL adhesion to allow detection of GPCR response. Electrodes 
were coated with various standard coatings, i.e. fibronectin (Fb; [50 μg/ml]), collagen I (Col; [50 μg/ml]) 
poly-D-lysine (PdL; [0.1 mg/ml]) and Fetal Calf Serum (FCS). Non-coated (NC) wells were used as a 
control. Cells were stimulated with the agonist (ATP [100 μM]) after 18 h of growth. Representative 
xCELLigence traces of a full experiment (A) and a baseline-corrected ATP response (D) are given. Time 
point 0 represents the time of cell seeding (A) and agonist addition (D), respectively. Bar graphs 
summarize the differences in cell index (CI) shortly after seeding (B, 1 h) and prior to agonist addition 
(C, 18 h), both normalized to fibronectin (100%) and non-coated (0%) wells. (E) Bar graph of baseline-
corrected Δ cell index (Δ CI) of peak ATP response per coating condition, normalized to fibronectin 
(100%) and non-coated (0%) wells. Data are mean ± SEM from three separate experiments performed 
in quadruplicate (B, C) and duplicate (E) using one cell line (individual 1, 50,000 cells/well). Significance 
compared to control was tested using one-way ANOVA with Dunnett's post-hoc test. *=p<0.05, 
**=p<0.01, ***=p<0.001. 
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LCLs specifically adhere to fibronectin 

In order to confirm the specificity of LCLs' interaction with fibronectin, inhibition of 

fibronectin adherence by small, integrin-targeting peptides containing the RGD motif was 

characterized. Addition of RGD peptide to the assay medium decreased the LCLs' attachment 

to fibronectin, as reflected by a decreased cell index (Fig. 3A and B), though not to levels as 

low as the non-coated control. This inhibition was concentration-dependent (Fig. 3B). 

However the effect decreased over time and was not noticeable after 18 h or, therefore, on  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Titration of fibronectin coating concentration. Electrodes were coated with different amounts 
of fibronectin from 0.1–50 µg/ml. Non-coated (NC) wells were used as a control. Cells were stimulated 
with agonist (ATP [100 μM]) 18 h after seeding. Representative xCELLigence traces of a full experiment 
(A) and a baseline-corrected GPCR agonist response (D) are given. Time point 0 represents time of cell 
seeding (A) or agonist addition (D). Bar graphs indicate the cell index (CI) shortly after seeding (B, 1 h) 
and prior to agonist addition (C, 18 h), both normalized to fibronectin (100%) and non-coated (0%) 
wells. (E) Bar graphs represent the baseline-corrected Δ cell index (Δ CI) at peak ATP response, 
normalized to fibronectin (100%) and non-coated (0%) wells. Data are mean ± SEM from three separate 
experiments performed in quadruplicate (B, C) and duplicate (E) using one cell line (individual 1, 50,000 
cells/well). Significance compared to control was tested using one-way ANOVA with Dunnett's post-hoc 
test. *=p<0.05, **=p<0.01, ***=p<0.001. 
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ATP response (data not shown). Treatment with the inactive RGE peptide at a high 

concentration (1 mM) did not affect any part of the impedance readout, thereby confirming 

that LCL adherence was affected by specific inhibition of integrin–fibronectin interactions. 

Similar experiments performed on LCLs from a second individual, individual 2, gave 

comparable results (data not shown). 

 

Seeding density and stimulation time affect GPCR response 

Next to optimization of coating, assay conditions were further optimized by evaluating 

various LCL densities. The experimental results are summarized in Fig. 4. Both the height of 

the growth curves (Fig. 4A and B) and the GPCR signal (Fig. 4C and D) increased accordingly 

with the cell density.  

The cell index after 18 h (Fig. 4B) was significantly different between all seeding densities, 

except between 50,000 and 25,000 cells/well. While 25,000 and 50,000 cells/well showed 

no statistically significant difference in growth curve, they did show significant differences in 

detection of an ATP signal (Fig. 4D). 25,000 cells/well gave an insufficient window for full 

pharmacological characterization and was not statistically different from the control. 50,000 

Cells/well, however, was sufficient to allow a reliable detection of a GPCR signal. 

Interestingly, the ATP response was not statistically different from the condition with  
 

 

  

 

 

 

 

 

 
Figure 3. Influence of peptides blocking the fibronectin interaction. Cells were seeded on fibronectin 
coated plates (Fb; [10 µg/ml]) in assay medium containing varying concentrations of RGD peptide 
[1 mM–1 µM], inactive reference peptide RGE [1 mM] or normal medium. Non-coated (NC) wells were 
used as reference. Cells were stimulated by agonist addition (ATP [100 μM]) after 18 h growth. (A) 
Representative full xCELLigence traces, where time point 0 represents the time of cell seeding. (B) Bar 
graphs indicate cell index (CI) 1 h after seeding, normalized to fibronectin (100%) and non-coated (0%) 
wells. Data derived from six separate experiments performed in quadruplicate using LCLs of one 
individual (individual 1, 50,000 cells/well). Statistical significance versus control RGE peptide was 
determined using one-way ANOVA with Dunnett's post-hoc test. *=p<0.05, **=p<0.01, ***=p<0.001. 



 

51 | Chapter 3 

 

100,000 cells/well. Irrespective of specific statistical significances, both the basal level of 

impedance as reflected in the growth curve and the ATP response increase in height along 

with the seeding density. As 50,000 cells/well was the lowest cell density that allowed reliable 

measurements of GPCR activation, this cell density was chosen for all further experiments. 

Similar experiments performed on LCLs from a second individual, individual 2, gave 

comparable results (data not shown). 

Additionally, as the LCL's growth curve appeared to reach a stable plateau much earlier 

than 18–20 h (Fig. 5A), stimulation after 5 h was also investigated. GPCR stimulation after 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Seeding density influences growth curve and window of GPCR response. Cells were seeded in 
four different densities (25,000–200,000 cells/well). Cells were stimulated with the agonist (ATP 
[100 μM]) after 18 h of growth. Representative xCELLigence trace of a full experiment (A) and a 
baseline-corrected ATP response (C). Time point 0 represents the time of cell seeding (A) or agonist 
addition (C). Bar graphs indicate the cell index (CI) shortly prior to agonist addition normalized to CI=0 
(B, 18 h) and baseline-corrected Δ cell index (Δ CI) at peak ATP response, normalized to vehicle control 
(D). Data are mean ± SEM from three separate experiments performed in quadruplicate (B) and 
duplicate (D) using one cell line (individual 1). Statistical significance was determined using one-way 
ANOVA with Tukey post-hoc test to compare all columns to each other (B) and Dunnett's post-hoc test 
to compare values to vehicle control (D). ns=not significant (p>0.05), *=p<0.05, **=p<0.01, 
***=p<0.001. 
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Figure 5. Influence of growth phase duration. Two cell lines were stimulated with the GPCR agonist ATP 
[100 μM] immediately after reaching growth plateau at 5 h or after a longer duration of growth at 20 h. 
Representative xCELLigence traces of a full experiment (A) and a baseline-corrected ATP response (B). 
Time point 0 represents the time of cell seeding (A) or agonist addition (B). (C) Bar graphs indicate the 
baseline-corrected Δ cell index (Δ CI) at peak ATP response, normalized to vehicle control. Data 
represents means of four separate experiments performed in duplicate using the LCLs of one individual 
(individual 1, 50,000 cells/well). Statistical significance was determined using Student's t-test. 
*=p<0.05, **=p<0.01, ***=p<0.001. 

 

20 h gave a significantly higher response than stimulation after 5 h, despite the fact that the 

growth curve plateau had been reached after 5 h (Fig. 5B and C). Comparable effects were 

observed on LCLs from a second individual (individual 2, data not shown). 

 

Detailed pharmacological characterization of GPCR signaling in LCLs is possible 

After completing assay optimization, the resulting protocol was applied for full 

pharmacological characterization of an example GPCR. For this purpose, a GPCR with well 

characterized pharmacology and known to be expressed in LCLs was chosen, i.e. the 

cannabinoid receptor 2 (CB2R; Ensembl gene: ENSG00000188822). A result of a 

representative experiment along with concentration-effect curves is provided in Fig. 6. 

Responses from two cell lines from two unrelated individuals were recorded and compared. 

Addition of a CB2R selective agonist JWH133 resulted in an immediate and 

concentration- dependent increase of impedance (Fig. 6A and B), which was similar in shape 

to the recorded ATP responses (Fig. 1, Fig. 2 and Fig. 3). The impedance increase was 

concentration-dependently reduced by pretreatment with the CB2R selective antagonist  
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Figure 6. Characterization of Cannabinoid receptor 2 responses in two genetically unrelated LCLs. Cell 
lines were stimulated with a CB2R selective agonist JWH133 18 h after seeding (50,000 cells/well). (A) 
Representative example of a baseline-corrected JWH133 response [1 μM–100 pM]. (B) Dose-response 
curves of JWH133 derived from peak Δ cell index (Δ CI) within 30 min after agonist 
addition. pEC50 values of JWH133 were 7.82±0.07 (individual 1) and 7.71±0.04 (individual 2). (C) Cell 
lines were pre-incubated for 30 min with increasing concentrations of AM630 [10 μM–100 pM] before 
stimulation with JWH133 [EC80: 100 nM]. Dose-response curves of AM630 were derived from peak 
Δ CI within 30 min after agonist addition. pIC50values for AM630 were 6.77±0.06 (individual 1) and 
6.85±0.04 (individual 2). To test coupling to Gαiproteins, cells were seeded and grown in assay medium 
with or without PTX [100 ng/ml] and stimulated with JWH133 [EC80: 100 nM]. (D) Representative 
example of baseline-corrected JWH133 response in the absence and presence of PTX. (E) Bar graphs 
show the PTX effect on peak Δ cell index (Δ CI) of JWH133 response, normalized to vehicle control. Data 
represents the means of four separate experiments performed in duplicate. Statistical significance was 
calculated by Student's t-test. ns=not significant (p>0.05), *=p<0.05, **=p<0.01, 
***=p<0.001. pEC50 and pIC50 values did not differ significantly between the two individuals. 
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AM630 (Fig. 6C). Concentration-effect curves were obtained by peak analysis of 

corresponding agonist-induced CI changes. Potencies of JWH133, given as pEC50 values, were 

7.82±0.07 (15 nM) and 7.71±0.04 (20 nM) on individual 1 and individual 2, respectively. 

Antagonist IC50 values for AM630 were obtained by stimulating cells with a submaximal (EC80) 

concentration of JWH133 following antagonist pre-incubation. The pIC50 values for AM630 

were 6.77±0.06 (169 nM) and 6.85±0.04 (141 nM) on individual 1 and individual 2, 

respectively. Both agonist pEC50 and antagonist pIC50 values did not differ significantly 

between the two individuals. In order to get an indication of overall assay reproducibility 

under these optimized conditions, correlation analysis was performed for the dose–response 

curves for both the CB2R agonist as well as antagonist. Experiments were reproducible with 

a coefficient of correlation (Pearson's r) of minimum 0.95 (p<0.05) for both individuals and 

at all concentrations of the agonist and 0.85 for the antagonist (p<0.01). 

The influence of blocking the Gαi-coupled pathway upon CB2R activation was examined 

for both cell lines, as shown in Fig. 6D and E. Addition of PTX to the assay medium effectively 

diminished the CB2R response to agonist JWH133 (Fig. 6D) in a similar manner for both cell 

lines (Fig. 6E). This confirmed that the LCLs' response to the selective CB2R agonist was 

dependent on the Gαi pathway. 

 

Discussion 

Personal cell lines, such as LCLs that are commonly used for storing an individual's genetic 

material [13], can offer a model system to investigate individual differences in drug response 

in a physiologically relevant, cellular context. The introduction of highly sensitive, label-free 

technologies that allow cellular assays with minimal modifications makes harvesting this 

potential possible. In the present study, we have setup and optimized a label-free 

methodology for investigating GPCR-mediated drug responses in LCLs and characterized a 

prototypical GPCR for proof-of-principle. 

As P2Y receptors (Ensembl family: ENSFM00760001715026) are abundantly present on 

virtually all cell types, including LCLs [32, 33], ATP was chosen as initial ligand for the 

methodological setup. In fact, P2Y receptors represent one of the few examples with 

functional characterization in LCLs. Lee et al. investigated ATP-induced P2Y receptor 

responses in LCLs using a single-cell fluorescent microscopy technique. While this traditional, 

label-based technique measured little response at an ATP concentration of 100 μM, the 

label-free assay used in our study was able to measure a clear response at the same 

concentration (Fig. 1, Fig. 2,Fig. 3, Fig. 4 and Fig. 5). This emphasizes the advantage and 
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opportunity of using label-free techniques to measure GPCR signaling in LCLs over traditional, 

label-based methodologies, as they offer highly increased sensitivity and lower detection 

limits. 

The initial experimental setup was based on previously published protocols for adherent 

cell lines [24, 31, 34]. While label-free assays are often deemed incompatible with suspension 

cells, some application examples exist for various label-free assays based on optical or 

impedance detection. These include various types of blood cells. For instance, GPCR signaling 

was measured in primary human neutrophils and THP-1 cells, a human monocyte cell line, 

using an optics-based assay [27, 35]. The impedance-based CellKey technology was used to 

measure GPCR signaling in monocyte cell lines (THP-1 and U937), neutrophils and primary 

normal peripheral blood monocytes (PBMCs) [36, 37]. Both these technologies have the 

disadvantage of being performed in buffer and at room temperature, while xCELLigence 

assays use more physiologically relevant conditions like normal cell culture medium and a 

temperature of 37 ˚C. Application of xCELLigence technology to suspension cells has been 

reported, however not for investigating GPCR signaling. Obr et al. [38] applied the 

technology to measure the effect of histone deacetylase inhibitors on hematopoietic 

cells. Martinez-Serra et al. [26] investigated the cytotoxic effect of antineoplastic agents on 

cells from hematological malignancies, which included the leukemia lymphoblast cell line 

K562. It is well known that the cell density and distribution on the electrodes can significantly 

influence impedance and experimental readout [12, 22, 23]. In previous cases, fibronectin 

was often used to achieve cell adherence combined with increased cell densities with an 

optimal range of 60,000 to 45,000 cells/well [26, 27, 35, 38]. Accordingly, we first tested 

various standard coating conditions and optimized cell density for impedance recordings in 

LCLs and found similar conditions to be optimal for LCLs. In our hands, LCL densities of 50,000 

cells/well were sufficient for detection of a robust GPCR response (Fig. 4), a number that is 

merely 2.5-fold higher than common for adherent cells [24, 31, 34] and very comparable to 

existing suspension cell protocols described above. 

Following LCL seeding onto fibronectin-coated plates, an initial increase in impedance 

related to cell adhesion, growth and division was observed, as is similar for any adherent cell 

line [31, 34]. Fibronectin was capable of mediating LCL adherence sufficiently for the 

measurement of a GPCR response after 18 h (Fig. 1) in a concentration-dependent manner 

(Fig. 2). It has been shown that LCLs can attach to fibronectin [39] and that LCLs express the 

α4β1 and αvβ3 type integrins [40], which are known to interact with fibronectin [41, 42]. 

Most fibronectin-binding integrins interact with a RGD tripeptide active site of fibronectin 

[41-43]. Small soluble RGD peptides have been shown to compete for integrin binding [43, 
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44] and one of those partially blocked the LCL's cellular interaction with the fibronectin 

coating (Fig. 3). The inactivity of the RGE control peptide confirmed that adherence was due 

to a specific interaction of LCL's integrins with fibronectin. Interestingly, around 50% of LCL 

adherence remained even in the presence of a high concentration of the RGD peptide. This 

remaining adhesion is most likely mediated through another motif in fibronectin, the LDV 

motif, which is known to be the predominant binding site for the α4β1 integrin [42]. Poly-D-

lysine is known to mediate cellular adhesion by changing surface charges [45, 46], but failed 

to maintain LCL adherence at sufficiently high levels for detection of an ATP response despite 

an initially equally high adherence as fibronectin (Fig. 1). LCLs have been shown to attach to 

poly-L-lysine at the same concentration, however, for a shorter timeframe than the 18 h in 

our experiments, i.e. 4 h [33]. Moreover, collagen, which also mediates cellular adhesion 

through specific integrins [41], failed to promote adhesion of LCLs. Collagen-interacting 

integrins are thus likely not present in LCLs, while fibronectin-specific integrins are. 

Furthermore, the findings agree with Martinez-Serra et al. who showed that cells from 

hematological malignancies, including the leukemia lymphoblast cell line K562, attached 

more efficiently to fibronectin than to collagen, laminin or gelatin [26]. 

Following the methodological optimization, we showed that in-depth pharmacological 

characterization of GPCRs is possible in LCLs using the CB2 receptor as a prototypical example 

(Fig. 6). This receptor is well expressed in LCLs [47] and has been investigated in a 

heterologous cell line on the xCELLigence [31], but has not yet been functionally 

characterized in LCLs until now. With recombinant cell lines, it is straightforward to confirm 

that an impedance signal is receptor-specific by using the untransfected parental cell line as 

negative control [31, 34]. However, this is not possible for endogenously expressed 

receptors, as is the case for LCLs used in this study. Therefore, proof of a receptor-specific 

response was provided by the concentration-dependent receptor activation with a CB2 

receptor selective agonist, JWH133, and inhibition of that response by a CB2 receptor 

selective antagonist, AM630 [31, 48, 49]. Both JWH133 and AM630 effects were comparable 

between LCLs from two different individuals (Fig. 6), as was expected as both cell lines carried 

the same genotype for all non-synonymous variants (data not shown). Furthermore, both 

JWH133 and AM630 effects on LCLs were comparable to literature values obtained in 

heterologous cell lines. Scandroglio et al. determined the potency of JWH133 and AM630 in 

traditional and label-free assays using a for GPCR investigations typical heterologous cell 

system, a recombinant CHO cell line. Agonist JWH133 had a comparable potency in both 

impedance and traditional cAMP assays of 29.9±20.5 nM and 30±7.3 nM, respectively, 

showing that label-free assays yield values equal to traditional techniques. Similarly, 
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JWH133's potency determined in the present study on LCLs (pEC50: 7.82±0.07 (15 nM) for 

individual 1, 7.71±0.04 (20 nM) for individual 2) were very comparable to Scandroglio et al.'s 

values on the CHO-cells. Furthermore, these authors showed that AM630 was able to 

antagonize JWH133's effects, however they did not report an IC50 value for this inhibition. 

Literature values for AM630 include an IC50 of 128.6±40.6 nM in a traditional cAMP assay on 

a recombinant CHO cell line [48]. On LCLs, AM630 readily antagonized JWH133 effects with 

a very comparable potency (pIC50: 6.77±0.06 (169 nM) for individual 1, 6.85±0.04 (141 nM) 

for individual 2). 

Besides for measuring cellular effects on GPCR signaling by agonists or antagonists, the 

label-free xCELLigence system is also well suited to monitor inhibition of downstream 

pathways [31, 50]. The CB2 receptor is known to predominantly couple to the Gαi-pathway 

and it was previously shown that JWH133 signaling on CHO cells could be inhibited by Gαi-

blocker PTX [31, 51]. Similarly, PTX effectively diminished the CB2R response to JWH133 in 

LCLs of both individuals (Fig. 6), which thereby confirmed that the LCLs' response to the 

agonist was indeed dependent on the Gαi-pathway. Taken together, the effects of JWH133 

in LCLs are mediated by the CB2 receptor. While the effects and potencies of the CB2R ligands 

were comparable between the endogenous LCLs and the recombinant CHO cells, LCLs 

represent a more relevant physiological context as they are cell lines with specific individual 

genetic material. 

LCLs already form a large resource for personalized medicine research, as they are 

commonly used to investigate association of genetic variation to disease or drug response 

[9, 13, 21]. Moreover, large libraries of LCLs have already been built and are actively utilized 

in numerous consortia [15-19]. Investigation of GPCR drug responses in LCLs may further 

help the advancement of precision medicine. Examples linking GPCR polymorphisms to drug 

response to date are sparse and focus on statistic associations followed by validating 

polymorphism influences by generating these variants in heterologous cell lines [10]. 

Heterologous cell lines, however, are labor intensive to make and represent a different, non-

physiological cellular context than cells of an individual [11, 12]. Receptor overexpression, 

differences in intracellular metabolic conditions as well as products from other genes could 

modify cellular responses. Therefore, screening receptor responses in LCLs from persons 

with potentially interesting polymorphisms may offer a more direct way of validation. 

Expression studies indicate that LCLs express a wide range of druggable GPCRs that are of 

interest for drug research, besides the CB2 and P2Y receptors investigated in this study [47]. 

Next to investigation of GPCRs, label-free technology offers a wide range of other 
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applications and has similarly been applied to other important classes of drug targets, such 

as receptor tyrosine kinases [52, 53]. 

 

Conclusion 

In conclusion, the current paper shows that direct characterization of GPCR activity in LCLs is 

possible with a highly sensitive label-free technology, the xCELLigence. Despite that such 

biosensor technology is deemed only compatible with adherent cell lines, we were able to 

optimize the assay for the suspension cell LCLs. Using the CB2R as a prototypical GPCR, we 

were able to show that receptor activation by an agonist, blockade by an antagonist, as well 

as inhibition of downstream signaling could be monitored sensitively and receptor-

specifically. The resemblance of cellular responses between LCLs from two unrelated 

individuals confirms that the methodology is robust and applicable to LCLs in general. This 

offers the ability to use LCLs not just as a mere source of DNA for genetic studies, but also as 

a functional, physiologically more relevant cellular model system for detailed investigation of 

GPCR pharmacology in vitro. Ultimately, a mechanistic link may be made between 

polymorphisms and drug response variation in individuals. Thus combining the resolution 

power of a whole-cell label-free method with LCLs opens vast possibilities for research on 

precision medicine. 
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Abstract 

Genetic differences between individuals that affect drug action form a challenge in drug 

therapy. Many drugs target G protein-coupled receptors (GPCRs), and a number of receptor 

variants have been noted to impact drug efficacy. This, however, has never been addressed 

in a systematic way, and, hence, we studied real-life genetic variation of receptor function in 

personalized cell lines. As a showcase we studied adenosine A2A receptor (A2AR) signaling in 

lymphoblastoid cell lines (LCLs) derived from a family of four from the Netherlands Twin 

Register (NTR), using a non-invasive label-free cellular assay. The potency of a partial agonist 

differed significantly for one individual. Genotype comparison revealed differences in two 

intron SNPs including rs2236624, which has been associated with caffeine-induced sleep 

disorders. While further validation is needed to confirm genotype-specific effects, this set-

up clearly demonstrated that LCLs are a suitable model system to study genetic influences 

on A2AR response in particular and GPCR responses in general.  
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Introduction 

The majority of therapeutic drug targets to date are within the G protein-coupled receptor 

(GPCR) superfamily, a class of membrane-bound proteins [1, 2]. As such, GPCRs have been 

widely and intensively studied for the development of new therapeutics. Among the most 

well-studied members of this group are the adenosine receptors, a family comprising of 4 

different subtypes: A1, A2A, A2B and A3 [3]. The various subtypes have been implied in a broad 

range of diseases and (patho)-physiological conditions, such as a variety of respiratory and 

inflammatory conditions for the A2A or cardiovascular disorders for the A1 [4]. Likewise, a 

wide variety of compounds selectively activating, inhibiting or modulating these receptors 

are available to date [3, 4]. Some of these have even been or are currently in clinical trials [3, 

4]. Adenosine itself has been long approved for treatment of supraventricular tachycardia [3] 

and one A2AR antagonist, istradefylline, has made it to the market as adjuvant drug therapy 

for Parkinson’s disease in Japan [5]. 

In the emerging era of personalized medicine, it is paramount for drug development to 

better understand the effects of a drug not only in the overall population, but in the individual 

patient as well [6]. Genetic differences between individuals can affect drug action. 

Accordingly, several examples linking GPCR polymorphisms to diseases and drug response 

variation already exist [7-11], which include many commonly targeted GPCRs [11] such as 

purinergic [12, 13], cannabinoid [9, 10] and adenosine [14-16] receptors. Specifically for the 

adenosine A2A receptor, Single Nucleotide Polymorphisms (SNPs) have been associated with 

for instance anxiety [17, 18], caffeine intake [17], or vigilance and sleep [14]. Despite these 

examples of statistical association of genotype and condition, as well as extensive mutational 

characterization of the adenosine receptors, little is known about the direct functional effect 

of receptor polymorphisms or SNPs. Therefore, an ideal set-up would be to use patient-

derived material as a model system to study the influence of polymorphisms on receptor 

response. 

Lymphoblastoid cell lines (LCLs) are one of the most common choices for storing a 

person’s genetic material [19, 20] and can be used to study GPCR function as has been shown 

in Chapter 3. For example, Morag, Kirchheiner [21] studied the influence of a few GPCR 

antagonists on LCL growth. We recently published an even more direct way of measuring 

receptor function, including agonist and antagonist concentration-effect curves (Chapter 3). 

Using a newly developed, highly sensitive label-free cellular assay technology [22, 23], we 

have shown in Chapter 3 that it is possible to measure an individual’s GPCR response in LCLs 

using the cannabinoid receptor 2 as example . In such label-free assays one can monitor drug 
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effects on an intact cell in real-time, rather than being limited to a static, one-molecule-

detection of ligand binding or second messenger accumulation, as is usually employed in 

GPCR and adenosine receptor research [3, 22-24]. 

In the current study we have applied this label-free methodology to assess personal 

adenosine A2A receptor function in LCLs. We characterized A2AR signaling with various types 

of ligands including endogenous and synthetic agonists, partial agonist and antagonists, 

among which istradefylline. To allow conclusions about genotype in relation to receptor 

response, we compared responses between the individuals of a family of four from the 

Netherlands Twin Register [25]. This family consisted of two genetically unrelated individuals, 

the parents, as well as their children, which were monozygotic twins. Confirming the 

comparability of monozygotic twins’ responses is one of the standard ways to control for 

genotype-unrelated effects, and thereby assess a system’s suitability for genetic studies [25, 

26]. 

 

Material and methods 

Chemicals and reagents 

Fibronectin from bovine plasma, Roswell Park Memorial Institute (RPMI) 1640 cell culture 

medium (25 mM HEPES and NaHCO3), NECA, adenosine and ATP were purchased from Sigma 

Aldrich (Zwijndrecht, The Netherlands). CGS21680, ZM241385 and CCPA were purchased 

from Abcam Biochemicals (Cambridge, United Kingdom), Cl-IB-MECA from Tocris Bioscience 

(Bristol, United Kingdom) and istradefylline from Axon Medchem (Groningen, The 

Netherlands). BAY60-6583 was synthesized in-house. LUF compounds were synthesized as 

described by van Tilburg, von Frijtag Drabbe Kunzel [27] for LUF5448 and LUF5631, van 

Tilburg, Gremmen [28] for LUF5549 and LUF5550 and Beukers, Chang [29] for LUF5834. All 

other chemicals and reagents were of analytical grade and obtained from commercial 

sources, unless stated otherwise. 

 

Lymphoblastoid cell line generation 

The lymphoblastoid cell lines (LCLs) were generated from participants of the Netherlands 

Twin Register (NTR, VU, Amsterdam, The Netherlands) [25]. The LCLs were generated by the 

Rutgers Institute (Department of Genetics, Piscataway, NJ, USA) using a standard 

transformation protocol [25], as previously mentioned in Chapter 3. Peripheral B-

lymphocytes were transformed with Epstein–Barr Virus (EBV) by treatment with filtered 

medium from a Marmoset cell line in the presence of phytohemaglutinin (PHA) during the 
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first week of culture [19, 20, 30]. Cultures were maintained for 8–12 weeks to expand the 

EBV transformed lymphocytes and subsequently cryopreserved. 

 

Cell culture 

LCLs from a family of four individuals, two parents (genetically unrelated; called Parent 1 and 

Parent 2) and their monozygotic twin (genetically equal; called Twin 1 and Twin 2), were used 

for the experiments presented in this manuscript. According to culture conditions described 

in Chapter 3, cryopreserved cells were thawed and resuscitated. LCLs were grown as 

suspension cells in RPMI 1640 (25 mM HEPES and NaHCO3) supplemented with 15% FCS, 50 

mg/ml streptomycin, 50 IU/ml penicillin, at 37 °C and 5% CO2 and were subcultured twice a 

week at a ratio of 1:5 on 10 cm ø plates. LCLs were disposed of after maximally 120 days in 

culture. 

 

qPCR 

RNA from LCLs was isolated using RNeasy Mini kit (QIAGEN, Venlo, The Netherlands). The 

RNA was treated with optional on column DNase digestion using DNase I (QIAGEN) and 

converted to cDNA using Superscript III (Invitrogen, Bleiswijk, The Netherlands). cDNA was 

run on custom designed 384 well qPCR plates from Lonza (Copenhagen, DK), in accordance 

with a previous publication [31]. These plates contained primers for 379 GPCRs as well as 3 

RAMPs, together with primers for Rn18s and genomic DNA (Primers are listed in Engelstoft 

et al. [31]). Genomic DNA sample was used as calibrator and the relative copy number was 

calculated as stipulated previously [31]. 

 

Label-free whole-cell analysis (xCELLigence RTCA system) 

Instrumentation principle 

Cellular assays were performed using the xCELLigence RTCA system [22] in accordance with 

previously published protocols (Chapter 3, [32]). Briefly, the real-time cell analyzer (RTCA) 

measures the whole-cell responses using a detection system based on electrical impedance. 

Impedance is generated through cell attachment to gold electrodes embedded on the 

bottom of the microelectronic E-plates, which changes the local ionic environment at the 

electrode-solution interface. Relative changes in impedance (Z) are recorded in real-time and 

summarized in the so-called Cell Index (CI), a dimensionless parameter. The CI at any given 

time point is defined as (Zi - Z0) Ω/15 Ω, where Zi is the impedance at each individual time 

point. Z0 represents the baseline impedance in the absence of cells, which is measured prior 

to the start of the experiment and defined as 0. As cells adhere to the electrodes, impedance 
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and the corresponding CI increase proportionally. Changes in cell number and degree of 

adhesion, as well as cellular viability and morphology are directly reflected in the impedance 

profile [22, 23]. Such cellular parameters are also affected upon activation of GPCR signaling, 

thereby allowing real-time monitoring of cellular signaling events [22]. 

 

General protocol 

xCELLigence assays on LCLs were performed in accordance with a protocol previously 

described in Chapter 3 with minor modifications. Briefly, cells were seeded onto fibronectin-

coated E-plates (10 μg/ml) at 80,000 cells/well. All cell counts were performed using Trypan 

blue staining and a BioRad TC10 automated cell counter. E-plates were placed into the 

recording station situated in a 37 °C and 5% CO2 incubator and impedance was measured 

overnight. After 18 h, cells were stimulated by a GPCR ligand or vehicle control in 5 μl, unless 

specified otherwise. As compound solubility required addition of dimethylsulfoxide (DMSO), 

the final DMSO concentration upon ligand or vehicle addition was kept at 0.25% DMSO for 

all wells and assays. 

For agonist screening purposes, cells were stimulated with agonist concentrations 

corresponding to 100 × Ki value for their respective receptors [4]. For the partial agonist 

screen, all partial agonists as well as reference agonist CGS21680 were tested at a 

concentration of 1 μM. 

Agonist concentration–response curves were generated by stimulating cells with 

increasing concentrations of the respective agonist. For antagonist assays, cells were pre-

incubated for 30 min with 5 μl of vehicle control or the respective antagonist at increasing 

concentrations. Subsequently, cells were challenged with a submaximal agonist 

concentration of CGS21680 that was equal to the agonist’s EC80 value (100 nM) or vehicle 

control. Generally, compound dilutions for concentration–response curves were generated 

using the digital TECAN dispenser (Tecan Group, Männedorf, Switzerland). 

 

Data analysis 

Data were analyzed as stipulated in the previous protocol in Chapter 3. Briefly, experimental 

data were obtained with RTCA Software 1.2 (Roche Applied Science). Ligand responses were 

normalized to Δ cell index (Δ CI) and exported to GraphPad Prism 6.0 (GraphPad Software 

Inc., San Diego, CA, USA) for further analysis. Vehicle control was subtracted as baseline to 

correct for any agonist-independent effects. Peak responses were defined as highest Δ CI 

(Max ΔCI) observed within 60 min after compound addition. When stipulated, area under 

the curve (AUC ΔCI) within those 60 min was used as an additional parameter to analyze 
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response height. Peak values and experimental Δ CI traces were used for construction of bar 

graphs or concentration–effect curves by nonlinear regression and calculation of IC50, EC50 

and EC80 values. Ki values for antagonists were calculated using the Cheng–Prusoff equation 

[33] using the concentration of the agonist (CGS21680, 100 nM) and EC50 value 

corresponding to each cell line. 

All values obtained are means of at least three independent experiments performed in 

duplicate, unless stated otherwise. Statistical significance was determined by comparison of 

the means of multiple data sets by a one-way ANOVA, followed by Tukey’s post hoc test for 

comparison of all columns or a Dunnett’s post hoc test when comparing to control or 

reference compound. 

 

Processing of SNPs and genetic data 

SNP data for the four individuals were obtained from the Genomes of the Netherlands 

consortium (http://www.nlgenome.nl/) of which the Netherlands Twin Register is part of and 

analyzed in-house using PLINK, an open-source whole genome association analysis toolset 

[34, 35]. 

 

Results 

Label-free assays enable detection of adenosine A2A receptor signaling in LCLs 

The standard applications of label-free technologies such as the xCELLigence for GPCRs 

generally require adherent cell systems [22, 23, 32]. LCLs are suspension cells for which we 

have developed a protocol in which fibronectin coating of the plate wells allowed the LCLs to 

adhere (Chapter 3). With this approach we confirmed the presence or absence of adenosine 

receptor subtypes by testing selective agonists using LCLs of one individual as example 

(parent 2). These agonists included selective ligands such as CCPA for hA1AR, CGS21680 for 

hA2AAR, BAY60-6583 for hA2BAR, Cl-IB-MECA for hA3AR and the unselective agonist NECA. To 

ensure full receptor occupancy, we tested the compounds at concentrations corresponding 

to 100 × Ki value for their respective receptor [4]. An example of resulting xCELLigence traces 

is provided in Fig. 1. Addition of the compounds induced changes in cellular morphology that 

were recorded in real-time. Typically, agonist addition resulted in an immediate increase of 

impedance to a peak level which gradually decreased toward a plateau within 30 min. 

Responses were normalized to the subtype unselective agonist NECA for reference. Overall, 

hA2AAR selective agonist CGS21680 gave the highest response which was close to the 

response to NECA itself, as would be expected from the expression data which showed that  
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Figure 1. Adenosine receptor agonist screen. Cells were seeded onto fibronectin-coated wells 
(10 μg/ml) at 80,000 cells/well. After 18 h of growth, cells were stimulated with AR ligands at 
concentrations corresponding to 100 × Ki value for their respective receptor [4]. CCPA (83 nM) for 
hA1AR at, CGS21680 (2.7 μM) for hA2AAR, BAY60-6583 (36 μM) for hA2BAR and Cl-IB-MECA (140 nM) 
for hA3AR were compared to the unselective hAR agonist NECA. Unselective NECA was tested a 
concentration of 14 μM which is at least 100 × Ki or more for all ARs. Representative xCELLigence traces 
of a baseline-corrected ligand response are given of one individual (parent 2), where time point 0 
represents the time of ligand addition. Data are from at least three separate experiments performed 
in duplicate. Statistical differences of compound responses to NECA were analyzed using a one-way 
ANOVA with Dunnett’s post hoc-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Response 
heights normalized to NECA (100 ± 1%) were for CCPA: 35 ± 5% , CGS21680: 67 ± 11%, BAY60-6583: 

40 ± 14%  and Cl-IB-MECA: 39 ± 10% . 

 

hA2AAR is the highest expressed in LCLs while the other three subtypes were expressed to a 

much lower extent (receptor expression family mean ± SEM was hA2AAR 21.87 ± 5.41, hA1AR 

1.35 ± 0.85, hA2BAR 0.88 ± 0.35 and hA3AR 0.40 ± 0.37, calculated using a normalization factor 

derived from all genes expressed above genomic DNA levels, in accordance with a previous 

publication by Engelstoft et al. [31]). In fact, CGS21680 was the only compound whose 

response did not differ significantly from NECA. CCPA, the hA1AR agonist, and hA3AR agonist 

CL-IB-MECA gave small responses (Fig. 1), most likely caused by a modest activation of A2AR 

at the concentrations used. While all other agonists displayed a positive impedance 

response, BAY60-6583 gave a small positive peak followed by a decline to a negative 

impedance plateau. Responses to all agonists from LCLs of a second individual, parent 1, gave 

comparable results in terms of conclusion of receptor subtype presence (data not shown). 

 

A2AR agonist and antagonist responses compare well between monozygotic twins and their 

parents 

Subsequently, the label-free methodology was applied to compare adenosine A2Areceptor 

related responses between LCLs derived from the four different individuals. We 

characterized A2AR signaling with various types of ligands, including the endogenous agonist 

adenosine as well as the synthetic non-selective agonist NECA and A2AR selective agonist  
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Figure 2. Characterization of full agonist responses in LCLs from a family of four from the NTR. The family 
consists of two genetically unrelated individuals, parent 1 and 2, and their children which are a 
monozygotic twin (twin 1 and twin 2). Cell lines were stimulated with endogenous agonist adenosine 
[1 nM–100 μM], synthetic agonists NECA or CGS21680 [100 pM–1 μM] 18 h after seeding 
(80,000 cells/well). Representative example of a baseline-corrected concentration-dependent 
CGS21680 response (A). Concentration–response curves for CGS21680 (B), NECA (C) and adenosine (D) 
were derived from peak Δ cell index (Δ CI) within 60 min after agonist addition (see Methods). Data in 
B–D represent the means ± SEM of at least three separate experiments performed in duplicate. 

 

CGS21680. All three agonists displayed a similar shape of and height in response, both within 

each cell line and between individuals. An example of such a response is depicted in Fig. 2A. 

The corresponding concentration–response curves are shown in Fig. 2B-D. In a similar 

manner, concentration-inhibition curves for A2AR antagonists ZM241385 and istradefylline 

were obtained. An example trace of such an agonist/antagonist experiment is in Fig. 3A while 

the concentration-inhibition curves are represented in Fig. 3B and C. AllpEC50 and 

pIC50 values for the LCLs of the four individuals are summarized in Table 1. From the 

pIC50 values we derived affinity (pKi) values for both antagonists using the Cheng–Prusoff 

equation. For ZM241385 these values were 8.29 ± 0.11, 9.00 ± 0.09, 8.88 ± 0.05 and 

9.08 ± 0.08 for parent 1, parent 2, twins 1 and 2. pKi values for istradefylline were 6.84 ± 0.17, 

7.67 ± 0.07, 7.47 ± 0.05 and 7.88 ± 0.07, respectively. 

 

A2AR partial agonist responses are measurable in LCLs 

Finally, we tested a number of partial agonists synthesized in house, all at a concentration of 
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Figure 3. Characterization of A2AR antagonist responses in LCLs from a family of four from the NTR. The 
family consists of two genetically unrelated individuals, parent 1 and 2, and their children which are a 
monozygotic twin (twin 1 and twin 2). For antagonist curves, cell lines were pre-incubated for 30 min 
with increasing concentrations of ZM241385 [10 pM–10 μM] before stimulation with CGS21680 [EC80: 
100 nM] 18 h after seeding (80,000 cells/well). Representative example of a baseline-corrected 
concentration-dependent response to ZM241385 (A). Concentration–response curves for ZM241385 
(B) and istradefylline (C) were derived from peak Δ cell index (Δ CI) values within 60 min after agonist 
addition. Data in B and C represent the means ± SEM of at least three separate experiments performed 
in duplicate. 

 

1 μM. An example trace of partial agonist and CGS21680 responses for LCLs of one individual 

is in Fig. 4A. Some partial agonists (LUF5549 and LUF5631) displayed high efficacy in this cell 

system, as their maximum response almost equaled that of the full agonist CGS21680 with 

112 ± 9% and 95 ± 11%, respectively. LUF5448 and LUF5550 however showed robust partial 

agonistic behavior of 64 ± 5% and 40 ± 5% of maximal efficacy (Fig. 4A). Partial agonist 

LUF5834 gave a different shape of response, which was marked by a negative peak followed 

by a negative impedance plateau, which differed significantly from any other partial agonist 

or reference full agonist CGS21680 (Fig. 4A). Its maximum response was therefore at 

17 ± 8%. 

 

A2A partial agonist response differs between individuals 

In order to further demonstrate the sensitivity of the label-free technology combined with 

LCLs, one partial agonist was chosen to obtain concentration–response curves. LUF5448 was  
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chosen as a suitable candidate as it displayed robust partial agonistic behavior with a 

maximum effect of approx. 50% of the reference full agonist CGS21680. An example 

xCELLigence trace is provided in Fig. 4B while the corresponding concentration–response 

curves for the four individuals are summarized in Fig. 4C. Interestingly, while three of the 

individuals gave very comparable curves and pEC50 values, one of the parents differed 

significantly from all (Table 1), with an approx. tenfold higher potency (pEC50 value). LUF5448 

behaved as a typical partial agonist on all cell lines with a % Max ΔCI of CGS21680 of 66 ± 7% 

for parent 1, 70 ± 2% for parent 2 and 67 ± 2% and 54 ± 4% for twins 1 and 2, respectively. 

 

Figure 4. A2AR partial agonist responses in LCLs. Cells were stimulated 18 h after seeding 
(80,000 cells/well) with A2AR partial agonists as well as full agonist CGS21680 [all at 1 μM] for reference. 
(A) Representative example of a baseline-corrected response is given from one individual (parent 2). 
Maximal responses of partial agonists compared to CGS21680 were 112 ± 9% for LUF5549, 95 ± 11% 
for LUF5631, 64 ± 5%  for LUF5448, 40 ± 5%  for LUF5550 and 17 ± 8%  for LUF5834. Statistical 
differences from CGS21680 were assessed with a one-way ANOVA with Dunnett’s post hoc 
test. *p < 0.05, **p < 0.01,***p < 0.001, ****p < 0.0001. (B) Representative example of a baseline-
corrected response of A2AR partial agonist LUF5448 [10 pM–1 μM] for one individual (parent 2). (C) 
Concentration–response curves for all four individuals were derived from peak Δ cell index (Δ CI) within 
60 min after agonist addition, normalized to CGS21680 as reference. Data are representative examples 
or means ± SEM of at least three separate experiments performed in duplicate. 
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Table 1. Overview of the pEC50 and pIC50 values of Adenosine, NECA, CGS21680, ZM241385, istradefylline 
and LUF5448 for the tested individuals’ LCLs. Data represents the means of at least three separate 
experiments performed in duplicate. Statistical analysis was performed with one-way ANOVA with 
Tukey post-hoc test. Asterisks highlight statistical differences to the other individuals (P1 = parent 1; P2 
= parent 2; T1 = Twin 1; T2 = twin 2). * p<0.05, ** p<0.01,*** p<0.001. 

Ligand 
pEC50 / pIC50 (M) 

Literature Parent 1 Parent 2 Twin 1 Twin 2 

Adenosine 
Endogenous 

agonist 

6.51 [36] 6.34 ± 0.32 5.59 ± 0.13 5.94 ± 0.12 5.82 ± 0.16 

NECA  
Full non‐selective 

agonist 

8.60 ± 0.02 [32] 
7.59 ± 0.33 [37] 

7.54 ± 0.07 

**T2; ***P2 
8.06 ± 0.04 

**T1; ***P1 
7.68 ± 0.04 

*T2; **P2 
7.92 ± 0.07 

*T1; **P1 

CGS21680 
Full selective 

agonist 

8.42 ± 0.05 [32] 
8.18 ± 0.36 [38] 

7.61 ± 0.14 8.20 ± 0.09 7.76 ± 0.08 8.30 ± 0.42 

ZM241385 
Antagonist/ 

inverse agonist 

8.80 a [4] 7.52 ± 0.15 7.55 ± 0.17 8.01 ± 0.07 7.73 ± 0.10 

Istradefylline 
Antagonist/ 

inverse agonist 

7.92 a [39] 6.21 ± 0.09 
*P2; **T1; 

***T2 

6.45 ± 0.04 
*P1 

 

6.66 ± 0.02 
**P1 

 

6.59 ± 0.03 
***P1 

LUF5448 
Partial agonist 

8.62 ± 0.19 [32] 8.69 ± 0.11 
**all 

7.60 ± 0.11 
**P1 

7.69 ± 0.08  
**P1 

7.76 ± 0.26 
**P1 

a. KI 
 
Table 2. SNP genotype differences within the ADORA2A gene between the four individuals included in 
this study. The heterozygous differences of parent 1 to the other individuals are underlined. Data 
obtained from the NTR and analyzed in-house. 

SNP 
Genotype 

Parent 1 Parent 2 Twins 

rs34999116 T C C C C C 
rs5751869 A G A G G G 
rs5760410 A G A G G G 
rs5751870 T G T G G G 
rs5751871 T G T G G G 
rs9624470 A G A G G G 

rs11704959 A C C C A C 

rs2298383 T C T C C C 

rs3761420 A G A G G G 

rs3761422 C T C T T T 

rs2267076 C T C T T T 

rs11704811 T C C C T C 

rs17650801 G G A G G G 

rs4822489 G T G T T T 

rs2236624 C C T C T C 

rs5751876 C T C T T T 
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Genotype differences between the four individuals 

SNP data for the four individuals were obtained from the Genomes of the Netherlands 

consortium and analyzed in-house using PLINK, an open-source whole genome association 

analysis toolset [34, 35]. SNPs within the boundaries of the ADORA2A gene as defined by 

human genome overview GRCh37 were selected. Based on GRCh37 and dbSNP information 

(http://www.ncbi.nlm.nih.gov/SNP/), SNPs were further annotated according to position 

(e.g., intron, exon) and SNP type (e.g., missense, synonymous). The genotype differences of 

the individuals used in this study are summarized in Table 2. 

 

Discussion 

It is well established that label-free technologies can be applied to investigate GPCR signaling 

in heterologous as well primary adherent cell systems [22, 23, 32]. For instance, the 

xCELLigence system has successfully been applied to study ligand effects on the cannabinoid 

receptor 2 (CB2) and the metabotropic glutamate receptor 1 (mGluR1) using recombinant 

Chinese hamster ovary (CHO) cells [40]. Similarly, A2AR signaling has been studied in 

HEK293hA2AAR cells using selective agonists as well as partial agonists [32]. While only such 

recombinant cell lines have been used to study A2AR signaling using label-free technology, 

A2AR function has been studied in some endogenous cell types using other, more traditional 

assays [38, 41, 42]. However, studying a person’s A2AR response using a personal cell line 

such as the LCLs has not been possible up until now, and is therefore a translational step 

further toward precision medicine. 

Applicability of this label-free technology to LCLs is, however, not entirely 

straightforward due to their suspension cell nature. Nonetheless, adherence levels after 

coating of the wells with fibronectin were sufficient to allow monitoring of receptor 

responses, as was demonstrated by testing adenosine receptor ligands (Fig. 1). Activation of 

A2AR receptors led to a typical increase in impedance often seen for GPCR ligands in LCLs. For 

instance, P2Y receptors (Ensembl family: ENSFM00760001715026) are abundantly present 

on many cell types, including LCLs [43, 44], which has made ATP a reference agonist for 

testing of functional LCL responses (Chapter 3). Interestingly, both adenosine receptor 

agonists and ATP display the same shape of response, which was also comparable to the 

response to cannabinoid receptor 2 (CB2) agonists as seen in earlier in Chapter 3. Herein we 

showed that LCL densities of 50,000 cells/well were sufficient for detection of a robust CB2 

as well as P2Y receptor response. In the present chapter seeding densities were increased to 

80,000 cells/well to obtain a window sufficient for A2AR partial agonist characterization. 
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It is well known that A2AR are expressed in immune cells, including lymphocytes and LCLs 

[41, 45], which was confirmed in this study by both receptor expression levels in the qPCR 

experiments and the responses to selective adenosine receptor agonists in the label-free 

assay (Fig. 1). The results from these tests indicated that A2AR are the only adenosine 

receptors highly expressed in LCLs. This was further confirmed by the comparability of the 

responses of all three full agonists tested in this paper. The endogenous ligand adenosine as 

well as subtype unselective NECA and A2AR selective CGS21680 had comparable responses 

(Fig. 2) suggesting these were all mediated through the A2AR. Similarly, antagonist responses 

were also measurable for all four different individuals (Fig. 3), strengthening the conclusion 

that responses are mediated through A2AR only. 

While it is straightforward to confirm that an impedance response is a specific receptor-

mediated effect with recombinant cell lines, namely by simply using the untransfected 

parental cell line as negative control [32, 40], this is not possible in cell lines with endogenous 

receptor expression. Therefore, for LCLs the most reliable way is to confirm overall receptor 

pharmacology with receptor subtype-selective agonists and antagonists. By showing that the 

A2AR selective antagonists ZM241385 and istradefylline competed with and blocked the 

signal of the A2AR selective agonist CGS21680 (Fig. 3), we confirmed that the impedance 

effects indeed originate from an A2AR response. 

Overall, agonist pEC50 values for agonists were within a log unit from previously reported 

literature values obtained with standard functional assays on heterologous cell lines (Table 

1). For instance, adenosine itself is within that range as it has been reported with an EC50 

value of 310 nM in a cAMP assay on hA2AAR [36]. For the antagonists, the calculated pKi 

values of ZM241385 and istradefylline were also within the range of previously published 

values. This calculation corrects for the fact that the same concentration of agonist was used 

during the assay, corresponding to the EC80 of CGS21680, while the efficacy of this agonist 

differed slightly between cell lines. 

Following this characterization of full agonists and antagonists to verify the presence and 

functional relevance of A2AR, a number of partial agonists were tested to demonstrate the 

sensitivity of the system. The set-up was well able to measure partial agonist effects on LCLs, 

quite comparable to our previous study on HEK293hA2AAR cells [32]. Interestingly, while 

most agonists induced an increase in impedance with a single peak in LCLs, there were two 

agonists which gave rise to a different shape of response. Both BAY60-6583 and the partial 

agonist LUF5834 responses were marked by a small peak followed by a negative impedance 

plateau, rather than one positive peak (Fig. 1 and Fig. 4). Interestingly, both BAY60-6583 and 

LUF5834 belong to a structurally distinct class of non-ribose agonists, as opposed to all other 
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agonists tested in this paper. Hence, it seems that non-ribose agonists, while equally able to 

activate the hA2AAR, give rise to a different cellular response than the more common ribose-

containing agonists. This was not observed in the heterologous HEK293hA2AAR cell line where 

partial agonist LUF5834 had been tested previously [32], which highlights the differences of 

using an unmodified human cell line when characterizing compound effects. In fact, 

efficacies and signaling of ligands can differ under artificial or heterologous conditions due 

to a number of factors [22, 46]. Receptor overexpression, differences in intracellular 

metabolic conditions as well as products from other genes could modify cellular responses. 

Unfortunately, most studies of receptor function involve artificially expressed receptors in 

heterologous cell systems, such as CHO or HEK cells [3, 32]. While useful for high-throughput 

screening and fundamental research, such systems are far from the real-life situation in an 

individual. To move further toward the physiological situation, it is essential to study receptor 

function in a more endogenous setting such as LCLs. This is especially true when attempting 

to understand how polymorphisms may functionally affect the receptor and therefore the 

drug response of an individual. 

Employing the LCLs, we investigated genotype effects on receptor response by 

comparing the effects of various types of A2AR ligands between the individuals of a family of 

four from the Netherlands Twin Register, which consisted of two genetically unrelated 

individuals, the parents, and their children, which were monozygotic twins. Overall, the 

results were comparable between all individuals. Analyzing and confirming the comparability 

of results obtained in monozygotic twins is one of the standard ways in genetic studies to 

control for genotype-unrelated effects, and assess a system’s suitability for genetic studies 

[25, 26]. As expected, the twins did not differ significantly from each other, with exception 

of their pEC50 values for NECA (p < 0.05; Table 1). Interestingly, NECA was also the only ligand 

for which all individuals differed significantly in their pEC50 values. As monozygotic twins are 

genetically identical, these differences could not be related to genetic effects and therefore 

precluded any further conclusion about differences between the parents. However, parent 

1 showed significant differences on two occasions, when all other three individuals, including 

the monozygotic twins, were comparable. This was the case with istradefylline as well as with 

the partial agonist LUF5448. While with istradefylline the difference was rather marginal 

within half a log unit, the potency shift (approx. tenfold higher) for LUF5448 was much more 

pronounced for parent 1. Partial agonists are deemed more sensitive to system-related 

differences in receptor function, for instance in receptor expression or downstream coupling, 

than full agonists or antagonists [28]. Therefore, the difference in potency possibly reflects 

subtle changes introduced by the genetic differences between individuals. While none of the 
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four individuals had non-synonymous SNPs in the ADORA2A gene (Table 2), there were some 

heterozygous differences present in non-coding SNPs. Two SNP differences were in line with 

the pEC50 and pIC50 changes, namely in which only parent 1 differed while parent 2 and the 

twins showed the same genotype and response. These were rs34999116 where parent 1 is 

heterozygote for the minor allele and rs2236624 where parent 1 is homozygote for the minor 

allele. Interestingly, the C-allele of rs2236624, which is located in intron 4 of the ADORA2A 

gene, has been associated with vigilance and sleep, while the CC genotype has been 

associated with anxiety in autism patients [14-16]. The TT genotype has been associated with 

pharmacotherapy-related toxicities in acute lymphoblastic leukemia [47]. Several studies 

have proposed a subtle effect on receptor expression as possible mechanism, as this intron 

SNP has intermediate regulatory potential [16, 47]. As we did not observe significant 

differences in receptor mRNA levels in our qPCR experiments, this regulation may affect the 

subsequent translation. Changes in receptor expression may affect G protein coupling 

efficiency, for which a partial agonist is more sensitive than a full agonist. 

Although this genetic variation does not provide causal evidence that response 

differences as observed in the LCLs from these individuals are directly related to these SNPs, 

the experimental results show that the chosen methodology and set-up are capable of 

picking up individual differences in receptor signaling for the A2AR. Although A2AR function 

has been studied in endogenous cell types [38, 41, 42], we made a further step toward both 

physiologically relevant conditions and personalized medicine by enabling the study of a 

person’s A2AR response using a combination of LCLs from a family of four from the NTR and 

a non-invasive label-free cellular assay. 

It is increasingly recognized that genetic differences between individuals form a large 

challenge in drug therapy indeed. In our study of real-life genetic variation of A2AR signaling, 

we found that partial agonist potency differed significantly for one individual with genotype 

differences in two intron SNPs, one of which has previously been associated with caffeine-

induced sleep disorders. While further validation is needed to confirm genotype-specific 

effects, this set-up clearly demonstrated that LCLs are a suitable model system to study 

genetic influences on A2AR and GPCR responses in general. LCLs express a wide range of other 

‘drugable’ GPCRs, besides the A2AR, CB2 and P2Y receptors investigated in this and earlier 

studies (Chapter 3, [45]). Therefore, screening receptor responses in LCLs may help to 

provide the mechanistic link between polymorphisms of various GPCRs and the individual 

variation in drug response. 
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Data access 

The LCLs used in this study were kindly provided within the framework of this 

collaboration [25] and are part of the Netherlands Twin Register 

(NTR; http://www.tweelingenregister.org/en/), and part of the Center for Collaborative 

Genomic Studies on Mental Disorders (NIMH U24 MH068457-06). Data and biomaterials 

(such as cell lines) are available to qualified investigators, and may be accessed by following 

a set of instructions stipulated on the National Institute of Mental Health (NIMH) website 

(https://www.nimhgenetics.org/access_data_biomaterial.php). 
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Abstract 

The Cannabinoid Receptor 2 (CB2R) is a G protein-coupled receptor (GPCR) investigated 

intensively as therapeutic target, however no drug has reached the market yet. We 

investigated personal differences in CB2R drug responses using a label-free whole-cell assay 

(xCELLigence) combined with cell lines (Lymphoblastoid Cell Lines) from individuals with 

varying CB2R genotypes. Responses to agonists, partial agonists and antagonists of various 

chemical classes were characterized. Endogenous cannabinoids such as 2-AG induced 

cellular effects vastly different from all synthetic cannabinoids, especially in their time-

profile. 

Secondly, the Q63R polymorphism affected CB2R responses in general. Agonists and 

especially partial agonists showed higher efficacy in a Q63R minor homozygote versus other 

genotypes. Non-classical cannabinoid CP55940 showed the most pronounced personal 

effects with highly reduced potency and efficacy in this genotype. Contrarily, 

aminoalkylindole compounds showed less individual differences. 

In conclusion, a label-free whole-cell assay combined with personal cell lines is a 

promising vehicle to investigate personal differences in drug response originating from 

genetic variation in GPCRs. Such phenotypic screening allows early identification of 

compounds prone to personal differences (‘precision medicine’) or more suited as drugs for 

the general population.  
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Introduction 

The Cannabinoid Receptor 2 (CB2R) is a class A G Protein-Coupled Receptor (GPCR) which has 

been investigated intensively, for instance as therapeutic target for novel 

immunomodulators [1]. The Cannabinoid receptor family consists of CB1R, CB2R and as of 

late, the former orphan receptors GPR55 and GPR18. Together with their endogenous 

ligands, they form part of the endocannabinoid system which is involved in many 

physiological processes. CB2R is a (predominantly) Gαi-coupled receptor which is expressed 

mainly in cells of the immune system, such as T- and B-lymphocytes, as well as the central 

and peripheral nervous system and the gastrointestinal tract [1-3]. As such, the CB2R is 

involved in a wide range of pathological conditions ranging from atherosclerosis [4], 

neuropathic pain [5], neurodegenerative diseases [6], osteoporosis [7] and autoimmune 

diseases [8] to cancer [9-11]. Hence, the CB2R has been in the focus of drug development 

efforts for over a decade. However, no selective drug targeting the CB2R has made it to the 

market as of yet. There can be several reasons as to why drugs fail in clinical trials, one of 

which is differences in individuals’ responses to the drug. In fact, even the most widely 

prescribed and sold drugs, the so-called big ‘blockbuster’ drugs, only work in 35–75% of all 

patients [12], as individual drug response varies due to differences in genetics, lifestyle and 

environment. Therefore, personalized or precision medicine aims to personalize drug 

prescriptions based on a patient’s individual characteristics, e.g. genetic information, and 

thereby decreases risks of ineffective dosing or side-effects [13, 14]. An abundant source of 

genetic variation in humans is Single Nucleotide Polymorphism (SNP), which can lead to an 

alteration in the amino acid sequence of a protein [15]. Many polymorphisms have been 

documented in the CB2R, including three that change the amino acid sequence and occur 

highly frequently in the population, namely Q63R, Q66R and H316Y [16]. Of these, both Q63R 

and H316Y have been linked to various pathological conditions. Q63R is special, as it can be 

caused by a SNP (rs2501432) as well as a dinucleotide polymorphism (rs35761398). Q63R 

has been shown to be involved in schizophrenia and depression [17-19], alcoholism [20], 

eating disorders [21], early menarche in obesity [22] and various immune system related 

disorders [23-25], while H316Y has been associated with lowered bone mineral density [26]. 

We investigated personal differences in CB2R drug responses using a sensitive in 

vitro assay, i.e. a label-free cellular assay using the xCELLigence system, in combination with 

personal cell lines. With the xCELLigence, whole-cell responses are measured non-invasively 

allowing for the investigation of drug responses in an unbiased way, i.e. without selecting 

one signaling pathway or effect. The personal cell lines used in this study were 
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Lymphoblastoid Cell Lines (LCLs) obtained from participants of the Netherlands Twin Register 

(NTR), which are derived from B-lymphocytes and thus endogenously express the CB2R [27, 

28]. Using LCLs from individuals with different CB2R genotypes, we tested a number of ligands 

ranging from agonists and partial agonists to antagonists (Fig. 1), which have potential use in 

different pathological indications. Firstly, endogenous cannabinoids are fatty acid derivatives 

such as the eicosanoids 2-AG (2-Arachidonoylglycerol), the main endogenous ligand for CB2R, 

and AEA (anandamide) [29, 30]. Synthetic cannabinoids can be divided into classical and non-

classical, such as JWH133 and CP55940, respectively. Another large class of synthetic 

cannabinoid receptor ligands are the aminoalkylindoles, of which WIN55212-2 is the most 

studied agonist and AM630 is one of the most utilized CB2R antagonists [1, 31]. Several 

classes also contain partial agonists, such as aminoalkylindole GW405833 or BAY59-3074, 

which belongs to a separate chemical class. 

In this study, we show that the xCELLigence in combination with these personal cell lines 

can be successfully applied to investigate personal differences in drug response originating 

from, for instance, genetic variation in GPCRs. We furthermore demonstrate that while 

certain classes of CB2R ligands show individual differences, others deliver consistent effects  
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Figure 1. Chemical structures of CB2R ligands characterized in this manuscript. 
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independent of genotype. Thus while taking personal medical effects into account, it is still 

possible to identify potential ‘blockbuster’ drugs by using such phenotypic screening 

methods with personal cell lines. 

 

Material and methods 

Chemicals and reagents 

Fibronectin from bovine plasma, Roswell Park Memorial Institute (RPMI) 1640 cell culture 

medium (25 mM HEPES and NaHCO3) and Pertussis Toxin (PTX) were purchased from Sigma 

Aldrich (Zwijndrecht, NL). CB2R ligands AM630, GW405833 and CP55940 were purchased 

from Sigma Aldrich, BAY59-3074, WIN55212-2 mesylate, JWH133 and AEA from Tocris 

Bioscience (Bristol, UK) and 2-AG from Cayman Chemicals (Ann Arbor, MI, USA). All other 

chemicals and reagents were of analytical grade and obtained from commercial sources, 

unless stated otherwise. 

 

Lymphoblastoid cell line generation 

For all participants of the Netherlands Twin Register (NTR, VU, Amsterdam, NL) [27] included 

in this study, lymphoblastoid cell lines (LCLs) were generated in accordance with Chapter 3 

and 4 by the Rutgers University Cell and DNA Repository (Department of Genetics, 

Piscataway, NJ, USA). According to a standard transformation protocol [27], peripheral B-

lymphocytes were transformed with Epstein-Barr Virus (EBV) by treatment with filtered 

medium from a Marmoset cell line in the presence of phytohemagglutinin during the first 

week of culture [32-34]. EBV transformed lymphocytes were expanded by culture for 8–

12 weeks and subsequently cryopreserved. 

 

Cell culture 

LCLs from a family of four individuals, two parents (i.e. genetically unrelated; individual 2 and 

3) and their monozygotic twin children (i.e. genetically equal; individual 4 and 5), as well as 

one other unrelated individual (individual 1) were used for the experiments presented in this 

manuscript. Individual 2 and 3 have been part of previous Chapter 3, where we investigated 

effects of JWH133, AM630 as well as PTX inhibition of JWH133. These data were 

incorporated in the current Chapter to allow direct comparison to effects of other 

compounds, individuals and genotypes. The LCLs were cultured as described 

previously (Chapter 3). In short, LCLs were cultured as suspension cells in RPMI 1640 (25 mM 

HEPES and NaHCO3) supplemented with 15% Fetal calf serum (FCS), 50 mg/ml streptomycin, 
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50 IU/ml penicillin, at 37 °C and 5% CO2. Cells were subcultured twice a week at a ratio of 

1:5 on 10 cm ø plates and disposed after maximally 120 days. 

 

qPCR 

For qPCR analysis of receptor expression, RNA of three independent samples of each cell line 

was isolated by RNeasy Plus Mini (QIAGEN, Venlo, the Netherlands) and cDNA was randomly 

primed from 500 ng of total RNA using ReverstAid H Minus First Strand cDNA synthesis Kit 

(ThermoFisher, Breda, The Netherlands). The primer list is included in Table 1. Real-time 

qPCR was performed in triplicate for each sample using SYBR Green PCR (Applied Biosystems, 

part of ThermoFisher) on a 7500 Real-Time PCR System (Applied Biosystems). qPCR data 

were collected and analyzed using SDS2.3 software (Applied Biosystems). Household gene β-

actin was used as internal control to normalize receptor expression and compare between 

individuals. Relative mRNA amounts after correction for β-actin control mRNA were 

expressed using the 2 ΔΔCtmethod. 

 

Table 1. Primers for qPCR. 
 

Gene Forward  Reverse 

β-actin ATTGCCGACAGGATGCAGAA GCTGATCCACATCTGCTGGAA 
CNR1 GAGAAGATGACTGCGGGAGA GTTGTAAAATTCTGTAATGTTCACCTG 
CNR2 CATGCTGTGCCTCATCAACT GATCTCGGGGCTTCTTCTTT 
GPR55 GGAAAGTGGAAAAATACATGTGC CAGCGGGAAGAAGACCTTG 
GPR18 AACGGGGGAGAACAGTTACA AACTTTTTCTGCGCATGCTT 

 

Label-free whole-cell analysis (xCELLigence RTCA system) 

Instrumentation principle 

Cellular assays using the xCELLigence RTCA system [35] were performed in accordance with 

previously published protocols (Chapter 3) and [36]. The real-time cell analyzer (RTCA) uses 

a detection system based on electrical impedance to measure the whole-cell responses. Cell 

attachment to gold electrodes embedded on the bottom of the microelectronic E-plates 

changes the local ionic environment at the electrode-solution interface, which generates 

impedance. Relative changes in impedance (Z) are recorded in real-time and summarized in 

the Cell Index (CI). This CI, which is a dimensionless parameter, is defined at any given time 

point as (Zi  Z0) Ω/15 Ω. Zi is the impedance at each individual time point, whereas Z0 is 

defined as 0, as it represents the baseline impedance in the absence of cells measured prior 

to the start of the experiment. Impedance and the corresponding CI increase proportionally 

as cell adhere to the electrodes. The impedance profile directly reflects any changes in 
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degree of adhesion, cell number, viability and morphology [35, 37]. As such cellular 

parameters are also affected upon activation of GPCR signaling, this allows real-time 

monitoring of cellular signaling events [35]. 

 

General protocol 

xCELLigence assays on LCLs were performed as described previously in Chapter 3 with some 

minor modifications. Briefly, cells were seeded onto fibronectin-coated E-plates (10 μg/ml) 

at 50,000 cells/well, unless stated otherwise. Cell counts were performed with Trypan blue 

staining on a BioRad TC10 automated cell counter. E-plates were clicked in the xCELLigence 

recording station in an incubator (37 °C, 5% CO2). Impedance was measured overnight for 

18 h, after which the cells were stimulated with a cannabinoid receptor agonist or vehicle 

control in 5 μl, unless specified otherwise. As compound solubility required addition of 

dimethylsulfoxide (DMSO) or acetonitrile (ACN), the final concentration upon ligand or 

vehicle addition was kept at 0.25% DMSO or respectively 1% ACN for all wells and assays. 

For agonist screening purposes, cells were stimulated with agonist concentrations 

corresponding to approximately 100 × published pKI values for hCB2R [38, 39]. Agonist or 

partial agonist concentration-effect curves were generated by stimulating cells with 

increasing concentrations of the respective compound. For antagonist assays, cells were pre-

incubated for 30 min with 5 μl of vehicle control or the respective antagonist at increasing 

concentrations. Subsequently, cells were challenged with a submaximal agonist 

concentration of reference full agonist JWH133 equal to the agonist’s EC80 concentration 

(100 nM) or vehicle control. Of note, for partial agonist curves, fibronectin coating was 

increased (50 μg/ml) and cells were seeded at a higher density of 100,000 cells/well in order 

to achieve a sufficient window. To allow comparison, full agonist JWH133 was always tested 

alongside all partial agonists under equal conditions. For endocannabinoids, addition of the 

protease inhibitor phenylmethylsulfonyl fluoride (PMSF) to prevent possible degradation was 

tested, but as this did not change the responses or time-profile it was further omitted (data 

not shown). 

For studies on Gαi coupling, cells were seeded in assay medium containing 100 ng/ml 

Pertussis Toxin (PTX) or vehicle control, and stimulated after 18 h with agonist at 

corresponding EC80 concentration or vehicle control. 

 

Data analysis 

Data were analyzed as described previously in Chapter 3. Experimental data were captured 

and processed with RTCA Software 1.2 (ACEA, San Diego, CA, USA), in which ligand responses 
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were normalized to the last time point prior to compound addition resulting in the Δ Cell 

Index (Delta Cell Index or Δ CI). Data were exported to GraphPad Prism 6.0 (GraphPad 

Software Inc., San Diego, CA, USA) for further analysis. Correction for any ligand-independent 

effects was achieved by subtracting vehicle control as baseline. Peak responses were defined 

as highest Δ CI (Max Δ CI) observed within 30 min after compound addition. For negative 

impedance responses of 2-AG, Max-Min Δ CI within 1 h was used, which is the amplitude 

between the highest and lowest Δ CI. Peak values and experimental Δ CI traces were used 

for construction of bar graphs or concentration–effect curves by nonlinear regression and 

calculation of IC50 (half maximal inhibitory concentration), EC50 (half maximal effective 

concentration) and EC80 (80% maximal effective concentration) values. Emax (maximum 

effect) values of compounds were derived from maximal responses within the analyzed 

timeframe. Agonist and partial agonist curves of all individuals as well as the derived 

Emax values were normalized to Emax of CB2R-selective agonist JWH133 response on individual 

1, first as this individual also showed the highest response for all agonists with the exception 

of CP55940, and secondly as this was also the only case of a single individual per genotype 

(only minor homozygote for Q63R, Q63). 

All values obtained are means of at least three independent experiments performed in 

duplicate, unless stated otherwise. When comparing multiple means or multiple instances of 

two means, statistical significance was calculated using a two-way analysis of variance 

(ANOVA) with Fisher’s LSD test, for example comparison of multiple EC50 values or antagonist 

inhibition of multiple compounds. Comparison of multiple means to one value was 

performed with a two-way ANOVA with Dunnett’s post hoc test, for instance comparison of 

JWH133 Peak Δ CI response after pre-incubation with various antagonists. 

 

Processing of SNPs and genetic data 

As stipulated in the previous Chapter 4, SNP data for the NTR individuals included in this study 

were obtained from the Genomes of the Netherlands consortium 

(GoNL; http://www.nlgenome.nl/) of which the NTR is part of [40] and analyzed in-house 

using PLINK, an open-source whole genome association analysis toolset (PLINK 

v1.07, http://pngu.mgh.harvard.edu.ezproxy.leidenuniv.nl:2048/purcell/plink/) [41]. All SNPs 

within the boundaries of the CNR2 gene (Ensembl gene: ENSG00000188822) as defined by 

human genome overview GRCh37 were analyzed further. Based on GRCh37 and dbSNP 

information (http://www.ncbi.nlm.nih.gov.ezproxy.leidenuniv.nl:2048/SNP/), SNPs were 

annotated according to position (e.g. coding sequence, exon) and SNP type (e.g. missense). 
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Data access 

The LCLs used in this study were kindly provided within the framework of this 

collaboration [27] and are part of the Netherlands Twin Register 

(NTR; http://www.tweelingenregister.org/en/), and part of the Center for Collaborative 

Genomic Studies on Mental Disorders (NIMH U24 MH068457-06). Data and biomaterials 

(such as cell lines) are available to qualified investigators, and may be accessed by following 

a set of instructions stipulated on the National Institute of Mental Health (NIMH) website 

(https://www.nimhgenetics.org/access_data_biomaterial.php). 

 

Results 

LCLs predominantly express CB2R 

To confirm the suitability of LCLs for studies of CB2R function alone, RNA expression levels of 

the four receptors belonging to the cannabinoid family were assessed by qPCR. These results 

showed that mRNA of all four cannabinoid receptors is present in LCLs to a similar degree, 

both compared between receptors and between individuals. There were however some 

differences. For instance, GPR18 was expressed higher in many individuals, though not 

statistically significant in all. The corresponding expression data are summarized in Fig. 2. We 

used the xCELLigence to further confirm the presence or absence of the different 

cannabinoid receptor subtypes, specifically CB2R, by testing selective and non-selective 

cannabinoid agonists and antagonists using the LCL of one exemplary individual  

 

 

 
Figure 2. Cannabinoid receptor subtype mRNA expression in LCLs. Results of real-time qPCR (three 
independent samples measured in triplicate, mean ± SEM) show mRNA expression of four cannabinoid 
receptor genes per individual (A–E for individual 1–5, respectively). Significant differences in expression 
were determined with a two-way ANOVA Fisher’s LSD test. * = p < 0.05, ** = p < 0.01, *** = p < 0.001, 
**** = p < 0.0001. Expression differences within each individual are indicated in the figure. Expression 
differences between individuals were for CNR2: # = individual 1 with *to 3,5 and ***to 4. For GPR18 
these were: † = individual 1 with *to 2; **to 5; ****to 4 and § = individual 3 with ****to 2,4,5. 
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(individual 4). To ensure full receptor occupancy, we tested the compounds at 

concentrations corresponding to approximately 100× their Ki value at the respective 

receptor [38, 39]. The agonists tested included selective CB2R agonist JWH133 as well as non-

selective agonists CP55940 and WIN55212-2, which are both known to activate CB1R as well 

as CB2R. Neither of these three compounds are GPR18 agonists [42]. These agonists were 

also chosen as they represent three distinct chemical classes (Fig. 1). Ligand-induced changes 

in impedance were recorded in real-time, of which an example of resulting xCELLigence 

traces is shown in Fig. 3. A full real-time trace of a complete experiment is shown in Fig. 3A, 

and the corresponding vehicle-corrected compound responses are summarized in Fig. 3B. 

LCL seeding resulted in an initial quick increase in impedance related to cell adhesion, after 

which cells were allowed to proliferate and adjust for 18 h (Fig. 3A). Subsequent addition of 

the agonists induced an immediate increase of impedance to a peak which gradually 

decreased towards a plateau within 30 min (Fig. 3B). The responses of all three agonists were 

highly similar both in shape and height (Fig. 3B, C), indicating that the effects were mediated 

through the same receptor. AM251, which is known to be a GPR55 full agonist, partial GPR18 

agonist and CB1R antagonist [42], gave little to no response. This indicates that the actual 

protein expression of these receptors is absent or too low to contribute to any of the 

compound responses measured here. 

Furthermore, a CB2R-selective antagonist, aminoalkylindole AM630 was tested as well 

to confirm that agonist responses were indeed CB2R-mediated. While AM630 gave little to 

no response on its own, it was able to significantly block responses of all agonists at a 

concentration of 100 × Ki. The level of blockade did not differ significantly between agonists, 

irrespective of their receptor selectivity (Fig. 3D). Furthermore, comparable AM630 effects 

were observed on LCLs from other individuals. For instance, AM630 showed strong inhibition 

with a clear concentration-effect relationship that did not differ in potency between the five 

individuals tested and ranged from 6.76 ± 0.04 to 6.90 ± 0.05 (Fig. 3E). 

Finally, the effect of pertussis toxin (PTX) pre-treatment was investigated to confirm 

downstream signaling through Gαi. PTX caused a significant decrease in cellular responses of 

all three agonists for individual 4, which was to a similar degree as AM630 (Fig. 3F). In 

addition, inhibition of the agonist JWH133 by PTX was strong in all five individuals, with some 

differences in the level of remaining effects ranging from 7.6 ± 3.6% up to 35.5 ± 8.9% 

(Fig. 3G). Taken together, the agonist, antagonist and PTX effects confirm that CB2R signaling 

can be measured sensitively and specifically in these LCLs. 
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Figure 3. Cannabinoid receptor ligand screen to determine receptor subtype expression. Representative 
real-time traces of (A) a full experiment and (B) baseline-corrected responses in a screen of cannabinoid 
agonists and antagonist. (C) Corresponding maximal responses of the screen (Max Δ Cell Index or Max 
Δ CI), normalized to response to CB2R-selective agonist JWH133. Concentrations used were JWH133 
[1 μM], WIN55212-2 [10 μM], CP55940 [1 μM], AM630 [10 μM] and GPR55 agonist AM251 [10 μM]. 
All data shown were obtained with the LCLs of individual 4. (D) Inhibition of agonist effects by CB2R 
specific antagonist AM630 in LCLs of individual 4, normalized to peak Δ CI of untreated agonist 
response. LCLs were pre-incubated with AM630 [10 μM] 30 min before stimulation with agonist at 
EC80 (JWH133 [100 nM], WIN55212-2 [10 nM], CP55940 [10 nM]). Degree of inhibition did not differ 
significantly between agonists, as determined by two-way ANOVA with Fisher’s LSD post-hoc test. (E) 
Individual AM630 concentration-effect curve obtained from peak Δ CI of the baseline-corrected 
JWH133 response antagonized by increasing concentrations of AM630. Antagonist potency values 
were 6.76 ± 0.04, 6.77 ± 0.06, 6.85 ± 0.04, 6.90 ± 0.05 and 6.77 ± 0.04 for individuals 1–5, respectively. 
No statistically significant differences between individuals were observed as determined by two-way 
ANOVA with Fisher’s LSD post-hoc test. (F) Inhibition of agonist-induced Gαi downstream signaling by 
pretreatment with PTX in LCLs of individual 4, normalized to peak Δ CI of untreated agonist response. 
LCLs were seeded in presence or absence of PTX [100 ng/ml] and treated with agonist at EC80 after 18 h 
growth. Degree of inhibition did not differ significantly between agonists, as determined by two-way 
ANOVA with Fisher’s LSD post-hoc test. (G) Individual effect of Gαi inhibition by PTX on CB2R response 
to agonist JWH133. Response in the presence of PTX versus JWH133 alone was highly significantly 
reduced within each individual (****). Statistical differences between individuals were determined by 
two-way ANOVA with Fisher’s LSD post-hoc test. * = p < 0.05, ** = p < 0.01, *** = p < 0.001, 
**** = p < 0.0001. Data represent mean ± SEM obtained from three or four (B, C, E, G) independent 
experiments of performed in duplicate. For (D, F) data represent mean ± SD from two independent 
experiments performed in duplicate from individual 4, used as representative example here, while 
results on other individuals (2, 3, 5) were comparable (data not shown). #AM630 curves and PTX 
inhibition for individuals 2 and 3 had been previously established (Chapter 3) but were incorporated to 
allow direct comparison. 
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Individual differences in CB2R synthetic agonist responses in LCLs 

Following the confirmation that cellular effects were specifically CB2R-related, agonist 

concentration-effect curves were studied on LCLs from five individuals. Individuals 2 and 3 

are the parents of individuals 4 and 5, their monozygotic twin children, while individual 1 is 

unrelated. Examining their genotypes from DNA sequence data revealed that individual 1 is 

a homozygote for the minor allele (genotype GG thus Q63) for Q63R polymorphism 

(rs35761398), while individuals 2 and 3 are heterozygotes and individuals 4 and 5 are 

homozygotes for the major allele (genotype AA thus Q63) (see also Table 2 and Table 3), 

representing the most common genotype among the human population 

(http://www.ncbi.nlm.nih.gov.ezproxy.leidenuniv.nl:2048/SNP/). First, full concentration-

response curves were made for three compounds, typically referred to as full agonists, from 

different chemical classes, JWH133, WIN55212-2 and CP55940. Example xCELLigence traces 

of the JWH133 concentration-effect relationship are given in Fig. 4A. The resulting 

concentration-effect curves are summarized in Fig. 4B–D. Corresponding pEC50 values are 

summarized in Table 2 while Emax values are given in Table 3. 

As can be observed from the curves and pEC50 values (Table 2), potencies for the three 

agonists were similar for all individuals, with a notable exception for CP55940 on individual 

1 (Fig. 4D). For this individual, who is the only minor homozygote for Q63R, CP55940 showed 

a significantly increased EC50 value of approximately 10-fold. In contrast, the efficacy of all 

three agonists was much more divergent on the different cell lines. Interestingly, WIN55212-

2 which showed no significant differences in potency, showed a significant spread in efficacy 

corresponding to genotype (Fig. 4C, Table 3). WIN55212-2 had the lowest efficacy on the two 

heterozygous individuals 2 and 3, which in fact made it a partial agonist on these cell lines in 

comparison to JWH133 (Table 3). For the other three individuals, WIN55212-2 had a similar 

efficacy to JWH133, and both compounds had the highest efficacy on the LCLs of individual 

1. The two synthetic cannabinoids JWH133 and CP55940 showed differences in efficacy that 

did not correlate with genotype. However, compared to JWH133, CP55940 had a lower 

efficacy in all individuals making it a partial agonist, with exception of individual 4. Even on 

individual 1 CP55940 was a partial agonist, where for all other tested agonists the highest 

efficacy was found. Taken together, CP55940 was the only synthetic agonist with clear 

individual differences related to genotype (i.e. a decreased potency and efficacy in presence 

of Q63), while aminoalkylindole WIN55212-2 was the least prone to individual variation. 

 

Endogenous agonist induces different cellular response than synthetic agonists 

To test whether signaling caused by endogenous agonists also showed individual differences, 
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Figure 4. Individual CB2R responses to full agonists of three distinct chemical classes. Cell lines were 
stimulated with different concentrations of full agonist JWH133, WIN55212-2 or CP55940 18 h after 
seeding (50,000 cells/well). (A) Representative graph of the baseline-corrected JWH133 response 
[1 μM – 100 pM] from individual 1. Concentration-effect curves of all individuals (1–5) of (B) classical 
cannabinoid JWH133 (C) aminoalkylindole WIN55212-2 and (D) non-classical cannabinoid CP55940 
obtained from Max Δ CI, normalized to Emax of CB2R-selective agonist JWH133 response on individual 
1. Data represent mean ± SEM obtained from three or four independent experiments performed in 
duplicate. #JWH133 curves for individuals 2 and 3 have been previously established (Chapter 3) but 
were incorporated to allow direct comparison. 

 

the response induced by the two main endogenous CB2R ligands, eicosanoid 2-AG and AEA, 

known as full and partial CB2R agonists respectively, were examined. In order to allow a 

sufficient response window to characterize partial agonist AEA, conditions were optimized 

by seeding more cells (100,000 cells/well) and coating with more fibronectin (50 μg/ml). Both 

full agonist JWH133 and 2-AG were also tested under these adjusted conditions, and the 

responses of JWH133 were used as reference compound to determine the level of partial 

agonism. Interestingly, the resulting real-time trace differed significantly from all synthetic 

agonists, as shown in Fig. 5A, B. While all synthetic agonists induced an immediate positive 

impedance change, which was characterized by a fast peak and subsequent decline to 

baseline in around 30 min, the endogenous 2-AG induced a negative change in impedance 

with a much slower onset after about 20 min, and a much more prolonged response that still  
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Figure 5. Individual CB2R responses to endocannabinoids. Cell lines were stimulated with 2-AG (50,000 
cells/well, fibronectin 10 μg/ml) or AEA (100,000 cells/well, fibronectin 50 μg/ml) 18 h after seeding. 
Representative graphs of the baseline-corrected (A) 2-AG [10 μM – 3.16 nM] and (B) AEA [10 μM –
1 nM] response from individual 1. (C) Concentration-effect curves of 2-AG were obtained from Max-
Min Δ CI within 1 h of stimulation were normalized to Emax on individual 1. (D) Concentration-effect 
curves of AEA were obtained from Max Δ CI normalized to Emax of CB2R-selective agonist JWH133 
response on individual 1. Next, bar graphs show the inhibition of the 2-AG effect by (E) CB2R-selective 
antagonist AM630 [10 μM] and (F) Gαi-inhibitor PTX normalized to 2-AG’s effect at EC80 (3.16 μM). Data 
represent the means ± SEM from three or four (C, D) or means ± SD of two (E, F) independent 
experiments performed in duplicate. Significance of inhibitor effect versus 2-AG response only was 
determined with a two-way ANOVA Fisher’s LSD test * = p < 0.05, ** = p < 0.01. AM630 and PTX 
inhibition did not differ significantly between individuals 1 (Q63) and 4 (Q63) as determined using a 
two-way ANOVA with a Sidak post-hoc test. 
 

persisted after 180 min (Fig. 5A). Interestingly, AEA showed a similar time-profile as 2-AG 

with slower onset and prolonged response, but induced a positive impedance change like 

the synthetic cannabinoids, albeit with a different shape (Fig. 5B). Thus, endogenous agonist 

signaling through CB2R lead to vastly different cellular changes than any of the synthetic 

agonists. To confirm whether these effects were also CB2R -mediated, we showed that the 

2-AG response is blocked by CB2R -selective antagonist AM630, similar to the synthetic 

agonists (Fig. 5E). Moreover, downstream signaling via Gαi was inhibited by PTX pre-

treatment as well (Fig. 5F). Of note, AM630 blockade and PTX inhibition did not differ 

significantly between individuals, even with opposing Q63R genotype, as demonstrated in 

the LCLs of individuals 1 and 4 (Fig. 5E, F).  
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Furthermore, the concentration-effect relationship of 2-AG showed significant 

differences between the five individuals, which were within half a log-unit and therefore 

smaller than those observed for CP55940. However, these differences in potencies were not 

consistent with the presence of Q63R (Fig. 5C, Table 2). Interestingly, the differences in 

efficacy of 2-AG were consistent with genotype (Table 3), as the efficacy in heterozygous 

individuals 2 and 3 was significantly lower than for all other individuals. Any differences 

observed for AEA were not CB2R genotype-related (Fig. 5D, Table 2 and Table 3). In summary, 

especially signaling by the main CB2R endogenous ligand 2-AG lead to different cellular 

changes as opposed to synthetic agonists, and showed a genotype effect on efficacy as it 

appeared to be highest in the Q63 homozygote, but lowest in Q63R heterozygotes. 

 

Partial agonist responses differ between individuals 

Subsequently, two partial CB2R agonists were tested on all five individuals to investigate the 

presence of any differences in individual effects possibly linked to the Q63R genotype. Once 

again, conditions were adjusted to more cells (100,000 cells/well) and fibronectin (50 μg/ml) 

to allow a sufficient response window for these partial agonists. JWH133 was also tested 

under these adjusted conditions as reference compound to determine the level of partial 

agonism. The two partial agonists tested were aminoalkylindole GW405833 and BAY59-

3074, which belongs to a separate chemical class (Fig. 1). In all individuals, both agonists 

induced positive impedance responses like the synthetic full agonists, and demonstrated 

clear partial agonistic behavior in comparison to JWH133, irrespective of genotype 

(Fig. 6A and B). The concentration-effect curves are represented in Fig. 6C and D, while the 

resulting pEC50 and Emax values are summarized in Tables 2 and 3, respectively. GW405833 

showed significant differences in potency which were within half a log-unit and were not 

entirely consistent with genotype. However, the individual potencies for BAY59-3074 

showed a larger spread close to a full log-unit. The lowest potency was observed on individual 

1, though this statistical difference was not genotype consistent. In terms of efficacy, BAY59-

3074 had a higher efficacy than GW405833 for all individuals. Interestingly, the Emax value of 

GW405833 on the LCLs of individual 1 (i.e. presence of Q63) was significantly higher than 

that on all other individuals (Table 3), which was also observed for BAY59-3074. Taken 

together, the partial agonists showed personal differences in response, which (in part) 

appeared to be compound specific and less pronounced for the aminoalkylindole 

GW405833. 
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Figure 6. Individual CB2R responses from two partial agonists. Cell lines were stimulated with agonist 
18 h after seeding (100,000 cells/well, fibronectin 50 μg/ml). Representative graph of the baseline-
corrected response to (A) GW405833 and (B) BAY59-3074 [1 μM – 100 pM] from individual 1. Resulting 
concentration-effect curves of (C) GW405833 and (D) BAY59-3074 obtained from peak Δ CI normalized 
to JWH133 [1 μM] effect on individual 1. Data represent mean ± SEM obtained from three independent 
experiments performed in duplicate. 

 

Discussion 

CB2R is considered a potential therapeutic target for immune system related disorders such 

as multiple sclerosis and allergy [43], neuropathic pain [44], cancer and osteoporosis [1, 43]. 

As genetic differences between individuals can induce large variations in drug response, we 

studied such personal effects on a variety of CB2R ligands with a panel of personal cell lines, 

the LCLs, from individuals with varying CB2R genotypes. These included genetically unrelated 

individuals as well as monozygotic twins, who are deemed genetically identical. Hence, 

confirming the comparability of their responses is a standard way to control for genotype-

unrelated effects [27, 45]. The individuals in this study represent all possible genotypes for 

the polymorphism Q63R. Even though this polymorphism is present in roughly half of the 

population and thus is extremely common, it has also been associated with various 

pathological disorders [17-19, 22-25]. This makes characterizing the impact of this 

polymorphism on drug responses an important issue for CB2R drug discovery. 

We characterized the genotype-effect on responses of several individuals by applying 

label-free cellular assay technology, namely the impedance-based xCELLigence apparatus. 
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Such technologies allow sensitive non-invasive assays that enable the investigation of GPCRs 

in endogenous cell systems, including LCLs for which we previously established an optimized 

protocol (Chapter 3). The combination of such a non-invasive assay with a personal cell line 

offers many advantages over traditional GPCR methodologies. In general, potencies of all 

CB2R compounds tested in our research on the LCLs were within one log-unit range of 

previously published values (Table 2) [38, 39]. Notable exceptions were 2-AG and 

GW405833, which differed from published pEC50 values by up to 17-fold (pEC50 of 6.91 by 

Gonsiorek et al. [46]) and 43-fold (pEC50 of 9.19 ± 0.09 by Valenzano et al. [47]), respectively. 

This discrepancy is most likely due to differences in cell lines and assay type. Valenzano et al. 

[47] used a typical endpoint cAMP accumulation assay in combination with a CHO-K1 system 

overexpressing recombinant CB2R, while LCLs represent a more physiological cell system with 

endogenous receptor expression. Furthermore, rather than just being a human cell line with 

endogenous expression, LCLs are even one step closer to the physiological situation as they 

are directly derived from individual persons. The use of a label-free whole-cell assay is 

preferable over typical endpoint assays to minimize bias [48], especially when investigating 

a GPCR with functional selectivity such as the CB2R, in which multiple pathways can be 

activated to a different extent [49, 50].Before starting CB2R functional investigations in LCLs, 

we studied expression levels and screened functional responses to confirm receptor subtype 

presence. All cannabinoid receptors are expressed in LCLs at mRNA level (Fig. 2) with some 

differences between individuals. However, these did not correspond to the general 

differences we observed in compound potency or efficacy (Table 2 and Table 3). For example 

for CB2R, mRNA expression differed for individual 1, especially as opposed to individual 4. 

However, both individuals were among the highest responders on average for CB2R 

compounds (Table 3). Furthermore, most individuals showed high GPR18 mRNA levels, but 

AM251 which targets GPR18 and GPR55 but not CB2R, showed no response (Fig. 3) [46]. This 

indicates that functional GPR18 levels were in fact not high, if at all present in these LCLs, 

which shows that mRNA expression levels do not necessarily correlate with functional 

protein expression on the cellular membrane, a feature well appreciated in literature [51, 

52]. Taken together, the data shown in Fig. 3 prove that CB2R is in fact the major receptor 

responsible for compound responses, which is in accordance with previous literature that 

states CB2R is the highest expressed receptor in LCLs [28]. Of note, any of the full agonists 

tested in this manuscript such as WIN5512-2, JWH133, CP55940 and 2-AG are not known as 

agonists of GPR18 [42]. 

After confirming that CB2R is well expressed in LCLs and that CB2R signaling can be 

measured sensitively and specifically in LCLs (Fig. 2 and Fig. 3), we characterized responses  
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of five individuals to various CB2R ligand types and classes (Fig. 1) which revealed that certain 

chemical classes of compounds were more sensitive to genotype than others (Fig. 4, Fig. 

5 and Fig. 6, Table 2 and Table 3). All tested aminoalkylindole compounds as well as the 

classical cannabinoid JWH133 showed the least differences between individuals, in 

comparison to compounds of other chemical classes. The notion that aminoalkylindole 

compounds showed the least genotype-related effects was strengthened by testing three 

pharmacological types of ligands of this chemical class. Similar to the aminoalkylindole 

agonist, no individual differences were observed for the CB2R -selective antagonist AM630 

(Fig. 3D). Even a partial agonist of this class (GW405833) was less prone to individual 

differences than a partial agonist of another class. It has been suggested that partial agonists 

are more sensitive to system-related differences in receptor function, for instance receptor 

expression or downstream coupling, than full agonists or antagonists [53]. Consequently, 

they may be more prone to genotype-related effects. In fact, we have demonstrated in a 

previous Chapter that a partial agonist on the adenosine A2A receptor showed a clear 

genotype-related difference in LCLs, while full agonists did not (Chapter 4). The two synthetic 

partial agonists for the CB2R that we tested here exhibited similar sensitivity (Fig. 6, Table 

2 and Table 3). In efficacy, they showed the clearest genotype-related effect as it was only 

significantly elevated for the Q63 individual, as opposed to the full agonists where more 

individuals differed. 

Overall, CP55940 showed the most pronounced personal effects with highly reduced 

potency and efficacy in presence of Q63, while all other agonists and partial agonists showed 

the highest efficacy in presence of this genotype. Interestingly, Q63R has been reported to 

cause diminished WIN55212-2 efficacy in HEK293h CB2R cells while CP55940 was not 

affected [54]. Our results contradict these findings, which may be due to the difference in 

model systems used. HEK293 cells are recombinant and receptor-overexpressing, whereas 

LCLs are personal cell lines with endogenous levels of receptor expression, and therefore 

may represent a more physiologically relevant system. 

When investigating genotype effects on endogenous cannabinoid response, we noted 

that 2-AG showed vastly different cellular effects than any other ligand tested here, despite 

being clearly CB2R -mediated (Fig. 5). Another endocannabinoid, AEA, showed a similarly 

changed time-profile as 2-AG, even though the direction of impedance change was more 

similar to synthetic cannabinoids. These differences in cellular effects between endogenous 

and synthetic cannabinoids may originate from downstream signaling differences resulting 

in a different cellular response as measured by xCELLigence. For instance, Shoemaker et 

al. [49] found that 2-AG was a more potent activator of MAPK whereas synthetic ligands 
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more potently inhibited adenylyl cyclase activity. Moreover, our experiments with 2-AG do 

not suggest that Q63R influences its responses, which contrasts with previous reports of 

Carrasquer et al. [54] and Ishiguro et al. [17], where recombinant overexpressing cell 

systems, HEK293 and CHO cells, were used. However, our findings are confirmed by Sipe et 

al. [8] who used a more physiological setting of T-lymphocytes, as is the case in this study. 

Taken all of the above together, this once more highlights the importance of using primary 

or derived (i.e. endogenous immortalized) cell systems that offer more physiological 

relevance versus recombinant systems. 

There are several mechanisms by which a polymorphism may influence receptor 

signaling. Q63R in the CB2R results from a dinucleotide conversion of AA to GG that 

exchanges a glutamine for an arginine at position 63 in the intracellular loop 1, and as such 

it is not in proximity of the putative CB2R ligand binding site [54, 55]. Therefore, its position 

suggests that Q63R does not directly influence ligand binding. Rather, its effects on drug 

responses may originate from differences in downstream signaling [17, 54]. CB2R has been 

shown to signal through multiple pathways such as cAMP, β-arrestin, pERK and GIRK, to 

which various agonists may be differently biased [30, 56, 57]. Moreover, it has been well 

established that agonists can activate the various G protein-dependent and –independent 

pathways modulated by CB2R to a different extent [49, 50]. In our LCLs, all CB2R agonists 

signaled strongly through Gαi coupling as was demonstrated by potent inhibition through PTX 

(Fig. 3 and Fig. 5), which on some instances showed differences in the levels of remaining 

response (Fig. 3D). While Gαi signaling therefore clearly represents the predominant 

signaling pathway for CB2R in all individuals, the varying remaining responses could indicate 

individual differences in coupling to other signaling pathways. Hence, Q63R related 

differences observed between CP55940 and other agonists may be related to their specific 

bias. Q63R could potentially affect coupling to one signaling pathway more than others, an 

effect which is then only noted for agonists that preferably and potently activate that 

pathway, in this case CP55940. Alternatively, Q63R could affect the bias of a particular ligand 

as CP55940 towards different signaling pathways. 

Another interesting genotype-related effect was that in overall efficacy  

(Table 3), Q63 homozygous individual 1 generally ranked highest. Q63R heterozygotes (ind. 

2 and 3) appeared to have the lowest efficacy for CB2R agonists, even compared 

to Q63 homozygotes (ind. 4 and 5), rather than an intermediate or mixed cellular effect. This 

was most pronounced for WIN55212-2 and 2-AG (Table 3). The effect could arise from, for 

instance, a difference in signaling pathway bias between the two receptor forms. In a 

heterozygote, where both receptor forms are present that each have different efficiencies 
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in pathway-coupling, the overall signaling and cellular effect may be lower as opposed to 

either receptor form as homozygote, that works synergistically. 

In conclusion, our results demonstrate that aminoalkylindole compounds exhibited the 

least sensitivity to genotypes while non-classical cannabinoid CP55940 showed the 

most. Q63 genotype influenced CB2R ligand effects leading to higher efficacy of agonists and 

especially partial agonists, but decreased potency and efficacy of the non-classical 

cannabinoid CP55940, which was also the most pronounced ‘personal’ effect measured here. 

The LCLs, as personal cell lines, in combination with the sensitive label-free impedance-based 

technology have the potential to represent a more physiologically relevant model system to 

investigate individual differences in drug response. Their combination provided novel 

insights into the impact of CB2R polymorphism on drug response, which demonstrates on the 

one hand the ability of this phenotypic screening method to identify ‘blockbuster’ drug 

candidates that are less prone to individual differences. On the other hand, this approach 

may advance precision medicine and stratify patient groups. Altogether, this will help in 

reducing attrition rates of drugs in clinical trials. 
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Abstract 

The glucose-dependent insulinotropic polypeptide receptor (GIPR) is a G protein-coupled 

receptor that plays an important role in whole-body metabolism. One missense Single 

Nucleotide Polymorphism (SNP) rs1800437 coding for amino acid change E354Q in the GIPR, 

has been associated with several diseases including diabetes and the risk of bone fractures. 

We investigated the functional effects of this SNP in personal cell lines from a panel of 

individuals with different genotypes for the polymorphism. Genotype effects were measured 

using a sensitive in vitro assay, i.e. a label-free cell morphology-based assay (xCELLigence), in 

combination with personal lymphoblastoid cell lines (LCLs) derived from Netherlands Twin 

Register participants. Responses to the endogenous agonist GIP showed enhanced potency 

in Q354 homozygous individuals, while heterozygotes showed mixed effects. A mutational 

study of the E354 residue in recombinant HEK293 cells expressing GIPR did not show 

differences in potency, but revealed a reduced duration of effect for Q354, which was not 

observed in LCLs. Taken together, this study provides more insight into E354Q-related 

physiological changes as they occur in the human individual, and thereby contributes to 

precision medicine for GIPR-related pathologies.  
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Introduction 

The glucose-dependent insulinotropic polypeptide receptor (GIPR) is a class B G protein-

coupled receptor (GPCR) which is part of the glucagon receptor family [1]. It plays an 

important role in whole-body metabolism, such as glucose homeostasis and particularly 

insulin secretion, lipid uptake and bone density [2-4]. In the emerging era of precision 

medicine, it is becoming apparent that genetic differences between individuals can affect 

both drug action and susceptibility to disease. Several of such examples for GPCR 

polymorphisms already exist [5-8]. For the GIPR, previous research has linked Single 

Nucleotide Polymorphisms (SNPs) to various pathological conditions including obesity and 

diabetes [9-12]. One SNP of particular interest is rs1800437, which is a missense SNP that 

changes a glutamic acid to a glutamine at amino acid 354 of the receptor (E354Q). This E354Q 

is the only frequent one of 227 known GIPR missense variants that occurs in more than 1% 

of the population, namely with a Minor Allele Frequency (MAF) of 16% [13, 14]. Interestingly, 

several studies have associated this SNP with insulin resistance, type II diabetes, 

cardiovascular disease and the risk of bone fractures [3, 12, 15, 16]. Furthermore, a number 

of functional studies have indicated roles for this polymorphism in for instance receptor 

(in)activation [17] and desensitization [3].  

This polymorphism could therefore play an important role in disease susceptibility of, as 

well as influence drug treatment. Mapping and understanding the effects of this 

polymorphism not only in the overall population, but in the individual patient is therefore 

paramount [18]. However, the E354Q polymorphism has so far been the subject of either 

cohort or candidate gene studies, or of functional studies in which its effect was analyzed in 

mouse cell lines or recombinant cell systems with artificially introduced mutations [3, 12, 15, 

16, 19]. Despite their merits such cellular systems are further away from the physiological 

condition in humans. To better understand the influence of polymorphisms on receptor 

response in an individual, an ideal set-up would therefore be to use patient-derived material 

as a model system. 

One example of such are lymphoblastoid cell lines (LCLs), which are commonly used to 

store a person's genetic material, as is done by many large scale genetic consortia such as 

the International HapMap and 1000 genomes projects [20-24]. We recently published a 

methodology that allows measurement of GPCR function in such LCLs, with which we were 

able to detect the effect of polymorphisms in two other GPCRs, the adenosine A2A receptor 

and cannabinoid receptor 2 (Chapter 4, 5). Responses were measured using the xCELLigence,  
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a newly developed, highly sensitive label-free cellular assay technology. This assay measures 

changes in cell morphology in real-time as opposed to techniques traditionally employed in 

GPCR research such as ligand binding or second messenger accumulation assays, which use 

static, one-molecule-detection [25-28]. 

In the current study we have applied this real-time morphological assay to assess effects 

of the GIPR polymorphism E354Q in LCLs. We characterized GIPR responses in a selection of 

individuals from the Netherlands Twin Register (NTR) [29].  Subsequently, we performed an 

E354 mutational study in HEK293 cells using the same cellular assay technology as a 

functional read-out to provide a direct comparison to the effects observed in the LCLs. 

 

Material and methods 

Chemicals and reagents 

Fibronectin from bovine plasma, ATP, unsupplemented Roswell Park Memorial Institute 

(RPMI) 1640 cell culture medium (25 mM HEPES and NaHCO3) and Dulbecco’s Modified 

Eagles Medium – high glucose (DMEM) were purchased from Sigma Aldrich (Zwijndrecht, 

The Netherlands). Fetal calf serum (FCS) was obtained from Thermo Fisher Scientific (Breda, 

The Netherlands). GIP was purchased from Tebu-Bio (Heerhugowaard, The Netherlands), 

while (Pro3)GIP was obtained from American Peptide Company Inc (Sunnyvale, CA, USA). All 

other chemicals and reagents were of analytical grade and obtained from commercial 

sources, unless stated otherwise. 

 

Lymphoblastoid cell line generation 

For all 78 individuals of the Netherlands Twin Register (NTR, VU, Amsterdam, NL) [29] 

included in this study, lymphoblastoid cell lines (LCLs) were generated in accordance with 

previous Chapters (eg. Chapter 3) by the Rutgers Institute (Department of Genetics, 

Piscataway, NJ, USA). Briefly, peripheral B-lymphocytes were transformed with Epstein-Barr 

Virus (EBV) using a standard transformation protocol [29] and subsequently cryopreserved.  

 

Cell culture 

LCLs were cultured as suspension cells in RPMI 1640 (25 mM HEPES and NaHCO3) 

supplemented with 15% FCS, 50 mg/mL streptomycin, 50 IU/mL penicillin, at 37°C in a 

humidified 5% CO2 incubator, as described previously (Chapter 3). Cells were subcultured 

twice a week at a ratio of 1:5 on 10 cm ø plates and disposed after maximally 120 days. 

HEK293 cells were grown in culture medium consisting of DMEM supplemented with 
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10% FCS, 50 mg/mL streptomycin and 50 IU/mL penicillin at 37°C in a humidified 7% CO2 

incubator. Cells were subcultured twice a week at a ratio of 1:10 to 1:30 on 10 cm ø plates. 

 

DNA constructs and mutant generation 

cDNA encoding the human GIPR (ORF: NM_000164) with an N-terminal FLAG-tag cloned into 

the pcDNA3.1(+) vector was purchased from GenScript (Hong Kong, China). Primers to 

generate the E354Q mutant were designed using the online QuickChange Primer Design tool 

[30] and produced by Eurogentec (Maastricht, The Netherlands). Primer sequences were 

forward: GCTGGGTGTCCACCAGGTGGTGTTTGC, and reverse: 

GCAAACACCACCTGGTGGACACCCAGC (5’–3’). The GIPR mutant was generated based on the 

QuikChange site-directed mutagenesis method (Agilent Technologies, La Jolla, CA, USA) [31] 

using pfu polymerase (Promega, Madison, WI, USA) in an 18-cycle mutagenic PCR. 

Subsequently, template DNA was digested by DpnI (New England Biolabs, Ipswich, MA, USA) 

treatment. PCR products were transformed into chemically competent DH5α cells (Life 

Technologies, Carlsbad, CA, USA) and purified using a standard Qiagen Miniprep kit (QIAGEN 

Benelux B.V., Venlo, The Netherlands). DNA concentration and purity were determined by 

NanoDrop 2000 (Thermo Fisher Scientific) and mutations were confirmed through double 

stranded DNA sequencing by the Leiden Genome Technology Center (LUMC, Leiden, The 

Netherlands). 

 

HEK293 transfection  

hGIPR constructs were transiently transfected into HEK293 cells. HEK293 cells were cultured 

in supplemented DMEM as stipulated above as a monolayer on 10-cm ø culture plates to 80–

90% confluency. Transfections were performed using Lipofectamine 2000 (Thermo Fisher 

Scientific) and 8 µg of plasmid per 10-cm ø culture plate, in accordance with the 

manufacturer’s instructions. As per these instructions, both plasmid and lipofectamine were 

diluted in unsupplemented OptiMEM (Thermo Fisher Scientific), subsequently mixed and 

incubated for 20 min at room temperature. Medium of HEK293 cells was exchanged to 

unsupplemented OptiMEM, after which the plasmid-lipofectamine mixture was deposited 

on the cells. After 6 hours of incubation with this mixture, cells were used for experiments.  

 

Label-free whole-cell analysis (xCELLigence RTCA system) 

Instrumentation principle 

Cellular assays using the xCELLigence RTCA system [25] were performed in accordance with  
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previously published protocols (Chapter 3, 4) [32]. The detection principle of this real-time 

cell analyzer (RTCA) is based on electrical impedance. Gold electrodes are embedded on the 

bottom of the microelectronic E-plates. When cells attach to these, they alter the local ionic 

environment at the electrode-solution interface, thereby generating impedance. Relative 

changes in impedance (Z) are recorded in real-time and summarized in the dimensionless 

parameter Cell Index (CI). The CI at any given time point is defined as (Zi-Z0) Ω /15 Ω, where 

Zi is the impedance at each individual time point. Z0 is defined as 0, as it represents the 

baseline impedance in the absence of cells. The resulting time-resolved impedance profile 

directly reflects any changes in degree of adhesion, cell number, viability and morphology, 

which are also the typical cellular parameters that are affected by GPCR signaling [25, 26].  

 

General protocol 

Prior to any experiment, background impedance (Z0) was measured after adding 45 μL, or in 

case of antagonist experiments 40 μL, of the respective culture media to the E-plate wells. 

Subsequently, cells were harvested, centrifuged at 200g for 5min and resuspended in their 

corresponding fresh medium. xCELLigence assays on LCLs were performed as described 

previously (Chapter 3) with some minor modifications. Briefly, LCLs were harvested  and 

seeded onto fibronectin-coated glass-bottom E-plates (50 µg/ml) at 100,000 cells/well. 

Transiently transfected HEK293 cells were harvested 4-6 hours following transfection by 

trypsinization, spun down once and seeded onto uncoated PET E-plates at 80,000 cells/well. 

Cell counts were performed with Trypan blue staining on a BioRad TC10 automated cell 

counter. After cell seeding, E-plates were clicked in the xCELLigence recording station in an 

incubator (37°C, 5% CO2). Impedance was measured overnight for 18 hours, after which the 

cells were stimulated with a GPCR agonist or vehicle control in (5 µl), unless specified 

otherwise. For GIP concentration-response curves in LCLs, ATP [100 µM] was taken along to 

provide a receptor-independent reference of response height. As GIP and (Pro3)GIP were 

stored as aliquots in Phosphate Buffered Saline (PBS), as per vendor instructions, PBS was 

used as vehicle control. The final PBS concentration upon ligand or vehicle addition was kept 

constant at 0.5 % PBS for all wells and assays. Agonist concentration-response curves were 

generated by stimulating cells with increasing concentrations of GIP. For the (Pro3)GIP assay, 

cells were pre-incubated for 30 minutes with 5 µl of vehicle control or a high concentration 

of (Pro3)GIP [1 µM]. Subsequently, cells were challenged with vehicle control or a submaximal 

agonist concentration of GIP corresponding to its EC80 value (concentration causing 80% of 

maximal effect) of E354 and Q354, respectively (31.6 nM and 3.16 nM). All compound 

responses were recorded for at least 3 hours following agonist or vehicle addition. 
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ELISA 

HEK293 cells were transiently transfected with the hGIPR E354, Q354 variant or mock as 

described above. Flat-bottom sterile 96 wells plates were coated with 50 µl poly-D-lysine (20 

mg/L) (Sigma Aldrich) for 10 minutes. Cells were harvested, counted and seeded at 80,000 

cells/well as described under the xCELLigence protocol, and medium was exchanged to 

normal culture medium. Cells were grown overnight at 37°C and 7% CO2. Twenty-four hours 

post transfection, cells were washed once with PBS, fixed with 3,7% formaldehyde for 10 

minutes and incubated in Tris-buffered saline (TBS) with 2% bovine serum albumin (BSA) for 

30 minutes at room temperature. Cells were then incubated with 1:1000 anti-Q1-FLAG 

monoclonal antibody (Sigma Aldrich) and 1:1250 goat-anti-mouse HRP conjugated IgG 

antibody (Thermo Fisher Scientific) subsequently. Immunoreactivity was visualized by 

addition of 3,3’,5,5’-tetramethylbenzidine (Sigma Aldrich). After 5 minutes the reaction was 

stopped by addition of 0.2M H2SO4. Absorbance was measured at 450 nm using a Victor plate 

reader (Perkin Elmer, Groningen, The Netherlands).  

 

qPCR 

qPCR on LCLs was performed as described previously (Chapter 5). Briefly, for each cell line 

RNA of three independent samples was isolated with RNeasy Plus Mini (QIAGEN, Venlo, the 

Netherlands). cDNA was randomly primed from 500 ng of total RNA using ReverstAid H Minus 

First Strand cDNA synthesis Kit (ThermoFisher, Breda, The Netherlands). The primers for GIPR 

were CGTCTGCTGGGACTATGCTG forward and TCTCCAAAGTCCCCATTGGC reverse. 

Household gene β-actin was used as internal control to enable comparison between 

individuals, and the primers for this were ATTGCCGACAGGATGCAGAA forward and 

GCTGATCCACATCTGCTGGAA reverse. Real-time qPCR was performed in triplicate for each 

sample using SYBR Green PCR (Applied Biosystems, part of ThermoFisher) on a 7500 Real-

Time PCR System (Applied Biosystems). qPCR data were collected and analyzed using SDS2.3 

software (Applied Biosystems). The 2 ΔΔCt method was used to express relative mRNA 

amounts after correction for β-actin control mRNA. 

 

Data analysis 

xCELLigence 

xCELLigence data were analyzed as described previously (Chapter 3). Experimental data were 

captured with RTCA Software 1.2 (ACEA, San Diego, CA, USA). Ligand responses were 

normalized to the last time point prior to compound addition resulting in a Normalized Cell 

Index (NCI). For HEK293, this was done directly in the RTCA program, while for the LCLs the 
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NCI was calculated in GraphPad Prism as the small (and sometimes negative) growth curves 

of LCLs hindered this calculation in the RTCA program. The NCI corrects for non-receptor-

related variations that could for instance arise from a slight difference in seeding density, 

individual differences in proliferation rate and well-plate ‘edge effects’. Data were exported 

to GraphPad Prism 6.0 (GraphPad Software Inc., San Diego, CA, USA) for further analysis. The 

lowest concentration of GIP was subtracted as baseline to correct for ligand-independent 

effects. Responses after compound addition were analyzed using AUC within 30 minutes for 

GIP and 60 minutes for ATP in LCLs, and 4 hours for GIP in HEK293hGIPR, due to the 

differences in duration of response. For analysis of the duration of response in HEK293hGIPR, 

responses were defined as highest NCI (Max NCI) observed at specific time points after 

compound addition. Peak values, AUC and experimental ΔCI or NCI traces were used for 

construction of bar graphs or concentration–effect curves by nonlinear regression and 

calculation of EC50 (concentration causing half maximal effect) and EC80 (concentration 

causing 80% of maximal effect) values. Emax (maximum effect) values of compounds were 

derived from maximal responses within the analyzed timeframe. All Emax values were 

normalized to the E354 variant (individual E4 for LCLs).  

 

Statistics 

All values obtained are means of at least three independent experiments performed in 

duplicate on the same cell line, unless stated otherwise. When comparing multiple means or 

multiple instances of two means, statistical significance was calculated using a one-way 

analysis of variance (ANOVA) with Fisher’s least significant difference (LSD) test, for example 

comparison of multiple pEC50 values for LCLs or percentage of response at certain time points 

for HEK293 cells. Comparison of two values was done with Student’s t-test, for instance pEC50 

values of HEK293 cells. 

 

Processing of SNPs and genetic data 

As described in previous Chapter 4, the SNP data of the individuals included in the current 

study were obtained from the Genomes of the Netherlands consortium (GoNL, 

http://www.nlgenome.nl/) [33], in which the NTR takes part. The SNP data were analyzed in-

house using PLINK, an open-source whole genome association analysis toolset [34, 35]. For 

the current study, SNPs within the boundaries of the GIPR gene (Ensembl gene: 

ENSG00000010310) as defined by the human genome overview GRCh37 

(http://grch37.ensembl.org/index.html) were extracted. Subsequently, SNPs were annotated 
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according to position (e.g. coding sequence, exon) and SNP type (e.g. missense) based on 

GRCh37 and dbSNP (http://www.ncbi.nlm.nih.gov/SNP/).  

 

Results 

Genotypes and NTR study 

To study the effect of GIPR polymorphisms using LCLs of the NTR, we first determined the 

GIPR genotypes in the NTR population. This constituted a selection of in total related and 

unrelated 78 individuals of the NTR for whom both genetic information and corresponding 

LCLs were available. Table 1 provides an overview of the SNPs present in the GIPR gene of 

this NTR population. We found a total of 23 SNPs with varying location, type and frequency. 

None were rare as all occurred in more than 10% of this NTR population, but two SNPs were 

extremely frequent as they were found in more than 40% of the NTR individuals (i.e. SNPs 

no. 22 and 23, rs9749225 and rs2238689, respectively). Of note, frequencies of most SNPs 

within this population were similar to the global MAF, with some exceptions that were found 

more frequently (e.g. SNP 22, rs9749225) or less frequently (e.g. SNP no. 14, rs35568293). 

Most commonly, SNPs were located within introns, with the exception of three. Two of those 

were located in other non-coding regions, namely the 3’-UTR. Finally, there was only one 

missense variant, rs1800437, which is in fact the polymorphism causing E354Q by changing 

a codon from GAG to CAG. Approximately 21% of the NTR individuals carried the minor allele 

of this SNP (i.e. CAG), which therefore provided sufficient individuals to perform a study on 

the effect of this polymorphism.  

The preference for any genetic study is to include multiple unrelated individuals of each 

genotype, and if possible of both genders. Here, we also used the unique family set-up of the 

NTR for selecting individuals for inclusion into our study. The individuals from NTR included 

in GoNL comprised of  trio’s, with two genetically unrelated individuals, the parents, and an 

offspring. In a small number of families, two children, which were monozygotic or dizygotic 

twins, were included. As summarized in Table 2, we selected individuals to include: 1) one 

family with two monozygotic twins (family 1), whose comparability of response is a basic 

requirement to allow any conclusions from the experiments presented here in association 

with genotype; 2) one family in which the parents were opposing homozygotes and their 

offspring thus a heterozygote (family 2), where this special genetic relationship allowed 

further conclusions on genotype-related effects, and 3) three additional individuals to be 

able to study several unrelated individuals of each genotype. Of note, the maximum number 
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Table 2. Selected set of NTR individuals studied for the E354Q GIPR polymorphism. 

Identity E354Q 

Group Individual Gender Code Genotype Amino acid 

Family 1 

Father 1 Male E1 GG E 

Mother 1 Female E2 GG E 

Twin 1A Female E3 GG E 

Twin 1B Female E4 GG E 

Family 2 

Father 2 Male E5 GG E 

Mother 2 Female Q1 CC Q 

Twin 2A Male EQ1 CG E/Q 

Additional  

Additional 1 Female EQ2 CG E/Q 

Additional 2 Female EQ3 CG E/Q 

Additional 3 Male Q2 CC Q 

 

of Q354 individuals was investigated, as only two of such were available in the NTR 

population. Moreover, both genders were represented in each group. Thus in total, we 

studied responses of LCLs of 10 individuals (Table 2). 

 

GIPR signaling can be measured sensitively in LCLs using xCELLigence 

To confirm the suitability of LCLs for studying GIPR effects, we first performed an initial qPCR 

as well as a response screen on the xCELLigence. The qPCR on a set of E354 and Q354 

homozygous individuals revealed that mRNA of the GIPR was present in all individuals  

(Fig. 1F). mRNA levels were not consequently linked to genotype as significant differences 

were observed between individuals both with the same or different genotypes, and even 

between monozygotic twins E3 and E4.  

Subsequently, we assessed GIPR responses on the xCELLigence in comparison with 

responses to ATP. The latter was used as a reference ligand as it is known to target GPCRs 

that are highly expressed and activation of these leads to cellular responses in LCLs  

(Chapter 3) [36, 37]. In Fig. 1A an exemplary experiment on the LCLs is presented, where 

cellular growth and responses were recorded in real-time. LCL seeding resulted in an initial 

increase in impedance related to cell adhesion, growth and division. Subsequent addition of 

a GPCR agonist such as ATP or GIP induced an immediate increase of impedance to a peak 

level of similar height, which gradually decreased towards a plateau. However, the duration  
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Figure 1. Characterization of GIPR response in LCLs with varying E354Q genotypes. (A) Representative 
example of a full real-time impedance plot and baseline-corrected responses of LCLs from one 
individual (E3) to GIP [1 µM] and ATP [100 µM]. Representative examples of baseline-corrected real-
time impedance plot for one E354 (E3, B) and one Q354 (Q2, C) homozygous individual as a function of 
different concentrations of the endogenous agonist GIP ranging from 1 µM to 10 pM. (D) GIP 
concentration-response curves derived from AUC of NCI within 30 minutes after agonist addition, 
normalized to E354 (E3). pEC50 and Emax values are summarized in Table 3. (E) Inhibitory effect of 
(Pro3)GIP [1 µM] on response to a submaximal dose of GIP ([3.16 nM] for Q354 and [31.6 nM] for E354). 
(F) Results of real-time qPCR show mRNA expression of GIPR in 6 selected individuals with E354 or Q354 
genotype. Statistic differences were determined by one-way ANOVA with Fisher’s LSD test. *p≤0.05, 
**p≤0.01, ***p≤0.001, ****p≤0.0001. For F, differences to β-actin are indicated with asterisk. 
Expression differences between individuals were # =  E1 **** to E2, *** to E4 and Q2, ** to Q1. § = E3 
** to E2 and Q2, * to E4. In figures A, B and C, representative traces are shown. In figures D, E and F 
means ± SEM of three or more separate experiments performed in duplicate (D and E) or triplicate (F) 
are shown.  
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of response caused by ATP or GIP differed. For GIP, the response returned to baseline levels 

within a period of 30 minutes, where ATP induced cellular changes lasting over 60 minutes. 

This showed that LCL responses to GPCR agonists are receptor specific with regard to shape 

and duration as measured using the xCELLigence technology. 

Finally, we tested inhibition of GIP signaling effects in LCLs using the only commercially 

available GIPR selective antagonist, (Pro3)GIP, which did not elicit a response on its own upon 

addition to the LCLs (Supplemental Fig. S1). As shown in Fig. 1E, (Pro3)GIP was able to (partly) 

diminish GIP responses.  

Together, these results show that GIPR signaling in LCLs can be measured sensitively and 

specifically using the xCELLigence methodology. 

 

E534Q alters endogenous agonist potency of GIPR in personal cell lines 

Subsequently, LCL responses of the selection of E354Q individuals by the endogenous agonist 

GIP were determined. The resulting concentration-effect curves are summarized in  

Fig. 1B-D. GIP efficacy and potency values for the entire set of 10 individuals are summarized 

in Table 3. Responses between the monozygotic twins E3 and E4 were highly comparable, 

confirming that the LCLs are a suitable model system to study genetic effects on the GIPR.  

Shown in Fig. 1B and 1C are representative examples of the real-time baseline-corrected 

responses of two unrelated individuals representing the two possible E354Q homozygous 

genotypes, i.e. one E354 and one Q354 homozygous individual, respectively. Irrespective of 

genotype, these LCLs showed similar responses to GIP which did not differ significantly in 

overall shape or duration. However, differences in GIP effects were observed, especially in 

potency as can be seen in Fig. 1D where the concentration-response curves of these two 

individuals are given. Furthermore, both E354 and Q354 homozygous individuals showed 

highly similar effects in potency within their respective group of individuals with the same 

genotype, but these groups differed significantly from each other. Specifically, pEC50 values 

of GIP on E354 individuals ranged from 7.90 ± 0.07 (E4) to 8.34 ± 0.08 (E2), while the same 

values on LCLs of Q354 individuals were 8.96 ± 0.25 (Q1) and 9.12 ± 0.08 (Q2). Therefore, 

GIP potency was significantly higher (i.e. 4-17-fold) in LCLs from Q354 homozygous 

individuals (Q1 and Q2), as opposed to the E354 homozygotes. Interestingly, the LCLs of 

heterozygotes showed mixed effects, as their potency values showed a large spread with a 

range of 7.91 ± 0.11 (EQ2) to 9.32 ± 0.14 (EQ1). Heterozygotes thus also differed significantly 

from each other by 4- to 26-fold, which was similar to the difference between Q354 and E354 

homozygous individuals. In general, heterozygotes were closer in potency to Q354  
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(EQ1, EQ3) than to E354 individuals (EQ2 only). This was irrespective of gender, and not 

smaller between related family members. In fact, in family 2 who encompassed a E354 father 

and Q354 mother, GIP potency in LCLs of their child was not in between the two but instead 

much closer to Q354. 

Besides potency, we also assessed GIP efficacy for which we did not observe a genotype-

related trend, despite a wide range of efficacies with many significant differences (Table 3). 

The individuals with the highest efficacy were three E354 homozygotes, followed by two 

heterozygotes. Both Q354 individuals showed lower efficacy, with Q1 the lowest of all. The 

trend was however not consistent, as other E354 homozygotes such as E2 showed efficacies 

lower than some Q354. Furthermore, the monozygotic twin pair E3 and E4 differed largely 

in efficacy. Thus, GIP efficacies were not consistent with genotype. Of note, GIP efficacy was 

not related to gender either, as for instance for E354 the individuals with highest and lowest 

efficacy were both female. Finally, there was also no clear relationship to GIPR mRNA levels, 

as for example the two cell lines with the highest Emax, E4 and E1, differed greatly in their 

mRNA levels (Fig. 1F). 

In conclusion, the responses of the NTR individuals’ LCLs revealed that the E354Q 

polymorphism increased the potency of endogenous agonist GIP in Q354 homozygotes, 

while heterozygotes showed mixed effects with respect to GIP potency. The efficacy of GIP 

was not affected by this polymorphism. 

 

Mutational study E354 in HEK293 cells shows differences in duration of effect 

To provide a more direct comparison to our personal cell lines, we performed a mutational 

study using transiently transfected HEK293 cells and measured their responses upon GIP 

addition using the xCELLigence. An example of the real-time readout of cellular growth and 

responses to GIP for HEK293 cells transiently transfected with mock, E354 and Q354 is 

presented in Fig. 2A. Addition of GIP to mock-transfected HEK293 cells did not induce 

significant changes in impedance, while it resulted in an immediate effect in E354 or Q354 

transfected cells. In both cases, impedance increased to a peak level within 120 minutes and 

subsequently declined towards baseline, which it did not reach though, even after 240 

minutes. Thus, the GIP response dynamics of HEK293hGIPR cells are different from LCLs, 

especially in response duration. 

Fig. 2B and 2C display examples of the respective real-time traces of E354 and Q354 

HEK293hGIPR cells responses to GIP from which concentration-effect curves were 

constructed by analyzing the AUC over 4 hours of response (Fig. 2D). The overall effect of GIP 

in this time period did not differ significantly between E354 and Q354 with respect to potency  
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Figure 2. Characterization for hGIPR response in HEK293 cells transiently transfected with E354 or Q354 
variant. Representative example of a full real-time impedance plot and baseline-corrected responses 
of mock, E354 and Q354 transiently transfected HEK293 cells (A) and real-time baseline-corrected 
concentration-responses curves for (B) E354 and (C) Q354 transfected HEK293 cells. (D) 
Concentration-response curves derived of AUC from NCI within 4 hours after GIP addition for E354 
and Q354 transfected HEK293 cells. pEC50 values were 10.25 ± 0.06 and 10.18 ± 0.08, while Emax 
values were 100 ± 2.9 % and 56.9 ± 6.4 %, respectively. Potency was not significantly different, while 
Emax differed by **** as determined by Student’s t-test. (E) Percentage highest baseline-corrected 
response to GIP [1 µM] of Q354 versus E354 at several time points. The overall highest response of 
E354 was set to 100%. (F) Cell-surface expression of E354 and Q354 over mock transfected HEK293 
cells as determined by FLAG-tag ELISA, which was not significantly different between the two variants. 
All data are presented as means ± SEM of three or more separate experiments performed in 
duplicate. Statistic differences were determined by two-way (E) or one-way (F) ANOVA with Fisher’s 
LSD test. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001. 



 
 

E354Q polymorphism effects on GIP receptor signaling | 124  

6 

(pEC50 of 10.25 ± 0.06 and 10.18 ± 0.08, respectively). Efficacy, however, defined as the 

maximally achieved overall AUC, was significantly altered (Emax of 100 ± 2.9 % and 56.9 ± 6.4 

%, respectively). Thus, the overall cellular effect through Q354 was lower than through E354, 

which was mostly due to how the height of the cellular effect diverged over time (Fig. 2E). 

Specifically, at 30 minutes after agonist addition E354 and Q354 showed virtually the same 

height of response to GIP, while the effect on Q354 declined towards baseline more rapidly 

after that time. At 4 hours after GIP addition, the effect on Q354 was only 49 % of E354.   

Finally, we confirmed that any differences between E354 and Q354 receptor variants 

transiently transfected in HEK293 cells were not due to differences in cell surface expression 

by performing ELISA (Fig. 2F). In conclusion, the mutational study of E354Q in transiently 

transfected HEK293 cells showed no differences in potency. In contrast, significant 

differences were found in efficacy as the height as well as duration of response were 

decreased in Q354. 

 

Discussion 

Genetic differences between individuals can affect both drug action and susceptibility to 

diseases, as is increasingly recognized under the concept of personalized or precision 

medicine [38]. The GIPR missense SNP E354Q has been associated with diseases including 

diabetes and bone-fracture risk [12, 15, 16] and shown to have functional effects in mouse 

cell lines or recombinant cell systems [3, 16, 19]. However, results from such animal and 

recombinant cells may not be directly translatable to the human individual. Additionally, 

several of these studies yielded conflicting results. To provide a better link with the 

physiological situation we studied the effect of this SNP in personal cell lines, i.e. LCLs of a 

set of individuals from the NTR [29].  

The E354Q was present in 21% of NTR individuals, which was in accordance with its 

global MAF [14]. Most of the other SNPs in the GIPR gene (Table 1) were located in introns, 

as is common for intron-containing GPCRs due to the evolutionary conservation of the 

different regions [39, 40]. Thus for functional studies in LCLs, we selected 10 individuals 

including two or more unrelated individuals of both genders for each of the three E354Q 

genotypes (Table 2). The set of monozygotic twins used as control for genotype-unrelated 

effects [29, 41] showed highly comparable responses to the endogenous agonist GIP (Fig. 1, 

Table 3), confirming LCLs are a suitable model system. Remarkably, E354Q affected GIP 

potency consistently over all individuals, while being independent on gender and family-

relation. GIP had higher potency in all Q354 versus E354 homozygotes, while heterozygotes 
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showed a wide spread in potency, differing between each other and from both homozygotes 

(Fig. 1, Table 3). Interestingly, precisely this heterozygous variant but not the homozygous 

Q354 has been associated with cardiovascular disease [15]. Conversely, only Q354 

homozygotes were associated with reduced serum C-peptide concentrations, a parameter 

related to insulin levels [16]. Finally, Torekov et al. found minor allele carriers had lowered 

bone mineral density, but only Q354 homozygotes had increased risk for certain fractures 

[12]. The effect of E354Q heterozygosity is therefore not straightforward, and could vary 

depending on disease. Thus, investigating heterozygosity is imperative for deciphering 

E354Q pharmacology.  

In our study, the E354Q SNP showed clear (genotype-related) effects in LCLs of NTR 

individuals, mainly on the potency of the endogenous ligand GIP. For instance, GIP potency 

was highly comparable in the monozygous twins E3 and E4 (Table 3). In contrast, the efficacy 

was not genotype-related (Table 3), as for example the same monozygous twins E3 and E4 

differed greatly in their Emax. Efficacy was also not related to other characteristics such as 

gender (Table 2, Table 3) or GIPR mRNA levels (Fig. 1F). For example, E4 and E1 were the two 

cell lines with the highest Emax. Contrarily, E4 had high GIPR mRNA levels while E1 exhibited 

the lowest of all individuals. It has to be kept in mind that mRNA expression levels do not 

necessarily correlate with functional protein expression on the cellular membrane, a feature 

well-known in literature [42, 43]. Thus, it appears that neither differences in mRNA levels or 

Emax reveal any E354Q-related effects on functional GIPR expression. Notably, the maximal 

effects of both GIP and another ligand which targets a completely different set of GPCRs, 

namely ATP, showed a similar ranking of individuals (data not shown). Hence it is possible 

that the differences in maximal effects reflect each individual’s overall cell properties such 

as viability, proliferation rate and adherence to electrodes, which are not specifically GPCR-

related but are known to affect xCELLigence readout [25-28].  

Overall, the E354Q SNP showed outspoken effects in LCLs of NTR individuals. It has been 

suggested that E354, based on functionality of the same E6.48 in other class B GPCRs, has a 

potentially important role in ligand binding and receptor (in)activation [17]. It was shown 

that mutation to an alanine caused a loss of hydrogen bonding network interactions, 

resulting in a constitutively active mutant with higher GIP affinity and potency, but 

unchanged efficacy [17]. Mutation to glutamine may have similar effects by reducing 

interaction strength, thus causing increased potency yet similar efficacy for agonists, which 

is in accordance with the observations in LCLs. However, several studies examining functional 

effects of E354Q in mouse cell lines or recombinant cell systems yielded conflicting results. 

For instance, Fortin et al. noted that Q354 reduced induction of cAMP production in 
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recombinant HEK293 cells, while neither Almind et al. nor Mohammad et al. found any effect 

on cAMP formation in CHO cells or mouse adipocytes, respectively [3, 16, 19]. A similar 

discrepancy was observed for antagonism of GIPR in LCLs, which is considered a potential 

treatment for GIPR-related metabolic abnormalities such as diabetes [44]. When we tested 

(Pro3)GIP, the only commercially available GPR antagonist, in LCLs, it partly inhibited GIP 

activation (Fig. 1E) in correspondence to its reported low potency [45]. Interestingly, in our 

hands (Pro3)GIP merely acted as an antagonist (Supplemental Fig. S1), while Sparre-Ulrich et 

al. reported it to be a full or partial agonist [46]. It stands to notice that the above findings 

were established in recombinant or non-human cell systems. On the other hand, LCLs are a 

completely human system that endogenously expresses hGIPR. Lastly, all of these 

observations were obtained using typical endpoint or second messenger assays, which focus 

on one part of a cellular response only. Systems such as the xCELLigence offer the advantage 

of measuring whole-cell responses in real-time as opposed to a static, one-molecule-

detection [25-28]. Hence, such label-free whole-cell assays are preferable over typical 

endpoint assays to minimize bias [47].  

To further investigate the influence of the model system used, we measured E354Q 

mutational effects in a common recombinant system, namely transiently transfected HEK293 

cells, using the exact same xCELLigence assay to provide direct comparison. As in LCLs, E354 

and Q354 were not differentially expressed and we observed a receptor-specific impedance 

signal (Fig. 2A, F). Interestingly, HEK293hGIPR cells showed a response duration vastly 

different from LCLs (30 minutes for LCLs versus over 240 minutes for HEK293hGIPR). In 

addition, overall GIP potency was at least 5-fold higher than in LCLs. However, previously 

published potencies also span a wide range, even within the same cell type. GIP potencies 

on transiently transfected HEK293hGIPR cells expressing E354 range from 0.9 pM [19] to 490 

± 30 pM [17], and even 3.63 nM on CHO cells [16], all of which values that were determined 

in cAMP-based assays. 

Besides differences in GIP effects in general, E354Q specifically showed divergent 

pharmacological effects in HEK293hGIPR and LCLs. Specifically, E354Q did not affect potency 

in HEK293hGIPR, but had a significant influence on efficacy in terms of height and duration 

of cellular effects, which were both lower for Q354 than for E354 (Fig. 2). This is in accordance 

with findings by Mohammad et al. in the same cell type, who established that Q354 slowed 

receptor recycling to the cell surface following agonist stimulation [3]. This could lead to a 

decreased availability of receptors to mediate the cellular effects as measured by the 

xCELLigence, thus lower and declining more rapidly over time.  
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It is well-established that the behavior of GPCRs is dependent on the cellular context [48, 

49]. HEK293 cells are a prototypical recombinant system prone to receptor overexpression, 

whereas LCLs are personal cell lines with endogenous levels of receptor expression. This 

emphasizes the importance of using primary or derived (i.e. endogenous immortalized) 

human cell systems that offer more physiological relevance to confirm any effects 

established in other cell systems. 

Irrespective of the model system, it is essential to consider findings in the light of 

physiological and pathological conditions. Consumption of meals induces GIP blood 

concentrations to approx. 100 pM, which return to previous levels around 20 pM within 3 to 

4 h [3, 50-52]. It is clear that such physiological concentrations of GIP cannot reach a maximal 

effect in E354 LCLs, where potencies are around 10 nM (Table 3). However, GIP potency on 

Q534 LCLs was higher and in the pM range. This makes potency differences extremely 

relevant for physiological effects, as receptors with increased potency such as the Q354 

variant could mediate a larger response. If this variant additionally shows a shorter effect 

duration or slower recycling to the surface after GIP stimulation, as pointed at by our results 

and those of Mohammad et al. in HEK293 cells [3], the combination could contribute to 

lowered GIP sensitivity and, for instance, increasing the risk of insulin resistance. Replicating 

these findings in cell types directly involved in the physiological functions of GIP, such as 

adipocytes from patients versus healthy volunteers containing both E354Q GIPR forms, could 

offer more conclusive results.  

In conclusion, our study with personal cell lines that endogenously express E354Q shows 

that this polymorphism has a strong effect on receptor response, namely by increasing GIP 

potency, which can affect the physiological function of the receptor. Furthermore, a 

mutational study in recombinant HEK293 cells revealed a reduced effect duration for Q354, 

which was not observed in LCLs. Thus, the effects of E354Q differ depending on the model 

system used. By studying E354Q effects in personal cell lines, we aimed to increase the link 

with the real-life situation and to provide more insight into physiological changes as they 

occur in the human individual, and thereby contribute to precision medicine for GIPR-related 

pathologies. 

 

Data Access 

The LCLs used in this study were kindly provided within the framework of this collaboration 

[29] and are part of the Netherlands Twin Register (NTR; 

http://www.tweelingenregister.org/en/), and part of the Center for Collaborative Genomic 
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Studies on Mental Disorders (NIMH EQ34 MH068457-06). Data and biomaterials (such as cell 

lines) are available to qualified investigators, and may be accessed by following a set of 

instructions stipulated on the National Institute of Mental Health (NIMH) website 

(https://www.nimhgenetics.org/access_data_biomaterial.php).  
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Supporting information 

Supplemental Table S1. Significant differences in endogenous agonist GIP potency and efficacy per 
individual’s LCL. Data represent pEC50 ± SEM and Emax ± SEM of at least three experiments performed 
in duplicate. Statistical analysis was performed by one-way ANOVA with Fisher’s LSD post-hoc test. For 
pEC50, a large difference between GG genotypes (E354) the CC genotype (Q354) compared to GG 
genotypes and a mixed effect for the heterozygote genotype. The Emax showed little differences that 
were not consistent with genotype. ns = not significant; *p≤0.05, **p≤0.01, ***p≤0.001, 
****p≤0.0001. 

Individuals 
pEC50 Emax 

Summary P Value Summary P Value 

E1 vs. E2 ns 0.1670 ** 0.0027 

E1 vs. E3 ns 0.8819 * 0.0250 

E1 vs. E4 ns 0.1156 ns 0.4986 

E1 vs. E5 ns 0.9651 ns 0.7103 

E1 vs. Q1 **** <0.0001 ** 0.0015 

E1 vs. EQ1 **** <0.0001 ns 0.6019 

E1 vs. EQ2 ns 0.1278 ** 0.0067 

E1 vs. EQ3 *** 0.0002 ns 0.4815 

E1 vs. Q2 **** <0.0001 * 0.0103 

E2 vs. E3 ns 0.1278 ns 0.3722 

E2 vs. E4 ** 0.0049 *** 0.0004 

E2 vs. E5 ns 0.2149 * 0.0128 

E2 vs. Q1 *** 0.0005 ns 0.6423 

E2 vs. EQ1 **** <0.0001 * 0.0183 

E2 vs. EQ2 ** 0.0056 ns 0.7262 

E2 vs. EQ3 * 0.0100 * 0.0105 

E2 vs. Q2 **** <0.0001 ns 0.4081 

E3 vs. E4 ns 0.1518 ** 0.0048 

E3 vs. E5 ns 0.8562 ns 0.0803 

E3 vs. Q1 **** <0.0001 ns 0.2008 

E3 vs. EQ1 **** <0.0001 ns 0.1078 

E3 vs. EQ2 ns 0.1670 ns 0.5847 

E3 vs. EQ3 *** 0.0001 ns 0.0860 

E3 vs. Q2 **** <0.0001 ns 0.8790 

E4 vs. E5 ns 0.1330 ns 0.3210 

E4 vs. Q1 **** <0.0001 *** 0.0003 

E4 vs. EQ1 **** <0.0001 ns 0.2546 

E4 vs. EQ2 ns 0.9569 ** 0.0011 

E4 vs. EQ3 **** <0.0001 ns 0.1617 

E4 vs. Q2 **** <0.0001 ** 0.0015 

E5 vs. Q1 **** <0,0001 ** 0.0066 

E5 vs. EQ1 **** <0.0001 ns 0.8877 

E5 vs. EQ2 ns 0.1456 * 0.0272 

E5 vs. EQ3 *** 0.0006 ns 0.7947 

E5 vs. Q2 **** <0.0001 * 0.0447 

Q1 vs. EQ1 * 0.0406 ** 0.0094 
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Q1 vs. EQ2 **** <0.0001 ns 0.4320 

Q1 vs. EQ3 ns 0.1318 ** 0.0054 

Q1 vs. Q2 ns 0.2966 ns 0.2129 

EQ1 vs. EQ2 **** <0.0001 * 0.0381 

EQ1 vs. EQ3 *** 0.0004 ns 0.9185 

EQ1 vs. Q2 ns 0.1690 ns 0.0630 

EQ2 vs. EQ3 **** <0.0001 * 0.0251 

EQ2 vs. Q2 **** <0.0001 ns 0.6547 

EQ3 vs. Q2 ** 0.0041 * 0.0415 
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Supplemental Figure S1. (Pro3)GIP response in LCLs. Representative example of a baseline-corrected 
responses to either (Pro3)GIP [1 µM] or GIP [31.6nM] of LCLs from one E354 individual, E3. Data is 
representative for three or more separate experiments performed in duplicate. 
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This thesis delves into examining the influence of genetic variation on GPCR function within 

the human individual. In this concluding chapter, insights gained from case studies at three 

different GPCRs are elaborated on, and suggestions for future investigations around 

precision medicine for GPCRs are presented. 

 

Conclusions 

Assay methodology and model systems 

GPCRs are traditionally investigated in reporter-based assays performed on heterologous cell 

lines, which offer only limited translational value [1-6]. Physiologically more appropriate 

model systems and assays are thus required (Chapter 2). LCLs, which are among the most 

frequently biobanked samples used for storing genetic material [7-13], could form a highly 

valuable resource for investigating genetic effects on drug action and receptor function. In 

addition, label-free cellular assays offer increased physiological relevance over the assays 

used traditionally in GPCR research, as discussed in Chapter 1 and 2 [4, 13-15]. Unfortunately, 

these were originally deemed incompatible with suspension cells such as LCLs due to the 

detection mechanism positioned at the bottom of the well [16]. In this thesis I present a 

methodology with increased translational value by employing personal cell lines (the LCLs) 

as a model system, in combination with a physiologically more appropriate label-free cellular 

assay (the xCELLigence) to investigate GPCR function (Chapter 3). Adaptation to suspension 

cells drastically widens the realm of application for label-free assays, while investigating GPCR 

functionality in LCLs opens up an avenue for exploring precision medicine for GPCRs.  

 

Genetic variation in GPCRs 

Genetic variants in drug targets affect pathology and drug action [17]. Despite GPCRs being 

the largest group of drug targets to-date [18], studies on their genetic variation are sporadic, 

often only statistically associative and focus on one single target. Investigations generally 

work with one consensus form of a receptor, the so-called Wild-type, hereby ignoring the 

naturally occurring genetic variation in the population. However, other receptor variants may 

be more relevant for certain diseases or drug effects. Three separate cases of common 

polymorphisms that affect GPCR signaling are presented in this thesis, each revealing 

different properties including the sensitivity to agonist type, chemical scaffold and variant 

position in the gene.  

Throughout this thesis I present examples that show genetic variations at different 

positions in GPCRs can be of influence. Logically, single nucleotide polymorphisms (SNPs) 
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most likely to have profound effects on receptor function are those that alter the amino acid 

sequence of the receptor, the so-called non-synonymous SNPs. Indeed, the variants that 

affected the Cannabinoid Receptor 2 (CB2R) and the glucose-dependent insulinotropic 

polypeptide receptor (GIPR), Q63R and E354Q respectively, both changed an amino acid 

(Chapter 5 and 6). In fact, many cases presented in the literature fall into this category [2, 19, 

20]. However, changing amino acid sequence is not the only way in which a receptor can be 

affected by polymorphisms. Chapter 4 presents the case of the Adenosine A2A receptor, in 

which responses differ between individuals in the absence of any non-synonymous SNPs. 

Genotype comparison revealed differences in two intron SNPs, one of which associated with 

caffeine-induced sleep disorders [21-23]. Such SNPs could have regulatory potential, for 

instance in affecting receptor expression which in turn may affect G protein coupling 

efficiency [23, 24].  

Interestingly, this particular A2AR SNP altered partial agonist potency, but not that of full 

agonists or antagonists (Chapter 4). In a similar manner, the partial agonists for the CB2R 

showed higher efficacy in a Q63R minor homozygote (Chapter 5). While either potency or 

efficacy of partial agonists can be affected, it overall appears that partial agonists may be 

more receptive to polymorphism-induced changes. This concurs with the theory that deems 

partial agonists more sensitive to system-related differences in receptor function, for 

instance in receptor expression or downstream coupling, than full agonists or 

antagonists [25]. The nature of the ligand thus influences its sensitivity to e.g. 

polymorphisms. In addition, the chemical scaffold of a ligand is likewise important. Chapter 

5 presents how compounds of different chemical classes show more or less modulation due 

to CB2R genetic variation. Non-classical cannabinoid CP55940 showed the most pronounced 

personal effects, while aminoalkylindole compounds showed fewer individual differences. 

Taking both ligand nature and chemical scaffold effects into account could allow early 

identification of compounds prone to personal differences (‘precision medicine’) or 

compounds that would be more suited as drugs for the general population. 

Besides affecting drug action, SNPs can also alter the physiological function of a receptor 

with potentially pathological consequences. Chapter 6 focusses on the investigation of the 

GIPR, in which E354Q influenced endogenous agonist effects, in particular with respect to 

potency in LCLs and duration of response when the receptor was expressed in recombinant 

HEK293 cells. This SNP has previously been linked with various pathologies including insulin 

resistance, diabetes and cardiovascular disease [26-29]. Interestingly, endogenous agonists 

are not necessarily more sensitive to receptor polymorphisms than synthetic ligands, as the 

study of adenosine on the A2AR and various endocannabinoids on CB2R show (Chapter 4 and 
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5). While some SNPs are of pathological consequence, others may be more relevant for drug 

effects. For instance, the A2AR SNP has been associated with caffeine effects and 

pharmacotherapy-related toxicities in acute lymphoblastic leukemia as well as pathological 

conditions including anxiety in autism [21-24]. Similarly, Q63R in the CB2R has been linked to 

various pathological disorders [5, 30-35] as well as synthetic ligand effects (Chapter 5, [36]). 

It is important to note that if a polymorphism affects an endogenous agonist, this may not 

directly leading to pathology. However it can still drastically alter a system’s sensitivity to 

drug treatment, even if the synthetic compounds are not directly affected themselves. In 

conclusion, it is undoubtedly necessary to take physiology and pathology into account when 

selecting ligands and conditions to study the influence of GPCR polymorphisms. 

Finally, it could be argued that SNPs with profound effects on receptor function are likely 

less frequent in the population due to evolutionary pressure. It is a common misconception 

that a frequent SNP has likely little effect [2]. The frequencies of the SNPs in this thesis 

however tell a different story, as the SNPs in the GIPR and CB2R with a global Minor Allele 

Frequency of approx. 35% and 16%, respectively [37-39], are in fact quite frequent, 

regardless of any functional effects. Many disease-related SNPs are quite rare, but some 

common SNPs are also known to contribute to or cause certain disease phenotypes [2, 17].  

In summary, the cases presented in this thesis demonstrate that for every GPCR, there 

appears to be at least one polymorphism candidate to affect receptor function. The 

particularities of each polymorphism can however differ, depending on the nature of the 

ligand such as endogenous vs. synthetic, partial vs. full agonist, chemical scaffold as well as 

the number of individuals potentially affected.  

 

LCLs as model system for genetic effects on GPCRs 

The examples summarized in this thesis (Chapter 3-6) demonstrate that LCLs are a suitable 

model system to study genetic effects on GPCRs, and the applied methodology facilitates 

phenotypic measurements of personal responses. LCLs thus enable direct measurement of 

polymorphism effects in a physiological environment, without having to generate and 

introduce a receptor mutant into a heterologous cell line as is generally done in the GPCR 

field. Any such alterations can affect receptor pharmacology and decrease translatability 

(Chapter 2). It is therefore unsurprising that the results presented in this thesis agree with 

previous investigations to some degree, while contradicting others. In chapter 5 for instance, 

Q63R influences on CB2R contrasted previous reports obtained in recombinant 

overexpressing cell systems, while confirming findings in a more physiological cell type [5, 

36, 40, 41]. E354Q effects on GIPR differed between LCLs and HEK293 cells even in our hands 
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(Chapter 6), and results of either cell type were both in accordance and contrast with 

previous studies [28, 29, 42]. Overall, it appears that LCLs are a well-suited system to measure 

personal polymorphism effects on GPCRs in a physiological setting, and enable explorations 

into the realm of GPCR precision medicine. While they increase translatability in comparison 

to traditional cell systems, the relevance of effects established in this thesis depends on 

further replication in e.g., more individuals for genotype effects, and/or primary cell types 

directly involved in pathology. 

 

Future perspectives 

Altogether a variety of impact factors for GPCR research including model systems, assay 

technology and genetic variation have been detailed throughout this thesis. The following 

section will discuss the future perspectives precision medicine for GPCRs involving some of 

these findings and additional aspects for further consideration. 

 

Genetic variation landscape in druggable GPCRs 

With the rise of personalized or precision medicine concepts, it is increasingly recognized 

that genetic differences between individuals can affect both drug action and susceptibility to 

diseases [17]. Examples of influential genetic variants of various types, frequencies and 

physiological consequences are accumulating. However, which variants are pathogenic, 

collateral of inconsequential is still largely undefined and subject of tremendous ongoing 

research efforts.  

When regarding any two unrelated individuals, 99% of their genomic DNA sequences are 

identical. The other 1%, however, signifies in fact 38 million different genomic variations. In 

turn, 90% of these variations are formed by SNPs, which makes these the most common 

source of genetic variation in the human population [12, 32]. On average, around one SNP 

occurs per 300 bases, meaning that each GPCRs should contain several SNPs, which occur 

more or less frequently in the population [2, 43]. During our annotation process of SNPs in 

druggable GPCRs (Chapter 1, Fig. 3), we noted several trends.  

First, the total amount of SNPs is related to gene size (Fig. 1). The largest GPCR genes, 

which belong mostly to Class C and Adhesion GPCRs, generally have the most genetic 

variation. Table 1 shows the top and bottom 5 genes with most or least SNPs. Based on these, 

SNPs of any kind occur within a GPCR gene on average around every 140 bp in the largest 

genes and every 413 bp in the shortest genes. This increased distance in shorter genes is 

unsurprising as, the shorter a gene, the larger the relative part that is coding sequence, which 

is more evolutionary conserved. 
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Figure 1. Total SNP count vs gene length for all 370 druggable GPCRs. A list of all druggable non-olfactory 
GPCRs was downloaded from the IUPHAR database. The gene length and SNP information were 
exported from Ensembl Biomart archived page (April 2013, version 71) corresponding to genome build 
GCRh37.p10. 

 

Secondly, most SNPs are located in non-coding regions and/or do not affect amino acid 

sequence in any way. Non-synonymous SNPs only represented 0.7% of all SNPs found in 

druggable GPCRs (total 152.000 SNPs on 370 GPCR genes). Synonymous SNPs which are 

located in the coding region but do not change the amino acid sequence made up 25%. 

Hence, GPCRs contain an abundance of SNPs predominantly in non-coding regions, with 

42.5% in UTR and intron regions. This is common for any intron-containing GPCR due to the 

evolutionary conservation of the different regions [43, 44]. 

Finally, SNPs with possibly profound effects on receptor function i.e. by altering the 

amino acid sequence of the receptor, are more abundantly occurring than one might expect. 

While the overall amount of SNPs increases with gene size (Fig. 1), on average each druggable 

GPCR contains at least 1-5 non-synonymous SNPs, independent of gene size (Table 1). The 

bottom line is that for each GPCR, there appear to be genetic differences which may impact 

receptor and drug functionality. Hence it is paramount not to ignore the potentially 

influential natural variation occurring in any GPCR or drug target for future pharmacological 

research.  

Although SNPs form the major source, there are other types of genetic variants present 

in the human genome. These include bi-allelic short insertions or deletions, large deletions, 

short repeats such as micro- and minisatellites, and copy number variants (CNV) which can 

extend to repeats of entire genes [32]. While most have no detrimental clinical 
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Table 1. GPCR genes with the top five most and least SNPs in total. The gene length and SNP information 
were exported from Ensembl Biomart archived page (April 2013, version 71) corresponding to genome 
build GCRh37.p10. The column labelled altering SNPs entails the number of SNPs that are either 
missense-, start and stop codon, or frameshift variants for the respective receptor. 
 

Gene 
GPCR 
class 

Receptor type 
Gene 

lenght (bp) 
Average SNP 
distance (bp) 

SNPs 

Total Altering 

GRM7 Class C Metabotropic glutamate 
receptor 7 

971527 118 8216 2 

LPHN2 Adhesion Latrophilin receptor 2 686275 126 5430 5 

LPHN3 Adhesion Latrophilin receptor 3 871208 160 5430 2 

GRM8 Class C Metabotropic glutamate 
receptor 8 

814696 151 5388 5 

BAI3 Adhesion Brain-specific 
angiogenesis inhibitor 

754144 144 5248 2 

TAS2R16 Taste Type 2 taste receptor 16 995 332 3 2 

GPR32 Class A Orphan receptor 1268 423 3 1 

CHRM4 Class A Muscarinic acetylcholine 
receptor 4 

1467 489 3 0 

MC3R Class A Melanocortin receptor 3 1083 361 3 1 

FFAR1 Class A Free fatty acid receptor 1 922 461 2 1 

 

consequences, some form a pathological risk. For instance, several repeat polymorphisms in 

the Arginine vasopressin receptor 1A have been associated with altered social, sexual and 

reproductive behavior [45-47]. Also, the TAS2R receptor family that detects bitter taste of 

compounds such as caffeine contains about 25 GPCRs, but the exact number per individual 

varies due to copy number variation. Individual experiences of bitterness are altered by 

genetic variation in these receptors [48, 49]. Finally, duplication of orphan receptor GPR101 

has been shown to lead to X-linked acrogigantism [50]. Thus next to SNPs, it would be an 

important addition to study other forms of genomic variations too, as these can also account 

for a difference in GPCR response [51].  

Of note, the Netherlands Twin Registry (NTR; http://www.tweelingenregister.org/en/) 

[7] from which the collection of LCLs utilized in this study originated, has served as data 

source for many genetic studies, including SNPs as well as CNVs already [52-55]. Given the 

appropriate samples are available, utilizing the set-up of LCLs and label-free technology could 

offer additional insights into the functional influences of such other types of variants too.  
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LCLs and emerging cellular model systems for drug research 

Two of the major challenges in today’s drug development are the lack of understanding inter-

individual variability in drug effectiveness, and the translatability of preclinical results. 

Inappropriate model systems have contributed to both issues, and consequently to lack of 

reproducibility in preclinical research, lack of clinical effectiveness and high attrition rates [6, 

56].  

In this thesis I have presented a methodology utilizing LCLs from the NTR [7] as a model 

system to investigate genetic effects on GPCR functionality. Applications of LCLs are however 

by no means limited to the three exemplary GPCR cases discussed in this thesis (Chapter 4-

6), as LCLs express many more GPCRs as well as other drug targets [11, 57, 58].  

In general, renewable in vitro cell sources have been essential in facilitating drug 

discovery and pharmacogenomic studies. In fact, much of our understanding of the 

influences of genetic variation in humans is based on studies utilizing LCLs [59]. LCLs are 

already easily available in large variety as LCL repositories exist in abundance, some 

representing specific disease populations or ethnicities [7-11, 59-61]. Hence they are utilized 

in many aspects of pharmacogenomics, and examples include general genotype-phenotype 

association, many genome-wide association studies (GWAS) for drug-induced phenotypes 

and even follow-up studies of clinical findings [11, 57].  

Notwithstanding the convenience and usefulness of LCLs as a cellular model system, 

there are concerns that their immortalization and cell line maintenance could obscure 

genetic findings [59, 62-64]. Certainly, it is well known that a large number of genes are 

differentially expressed between primary cells and cell lines [59]. Opposed to this, primary 

cells express signaling pathways and retain many cellular functions that are seen in vivo, thus 

providing a more relevant context (Chapter 2). Over the past decades, numerous biobanks 

have been set up to support medical research by programmed storage of biological material 

and corresponding data. These biomaterials include LCLs as well as primary material such as 

tissues, (stem) cells and blood, all of which are actively used from translational and 

personalized medicine to target and drug discovery [65, 66]. Several approaches applying 

label-free technology to utilize patient primary cells as model system are discussed in Chapter 

2. While such cell types have increased translational value, the materials are often limited 

due to culture and sampling issues. On the other hand, LCLs are a renewable source that is 

already widely available, and offer genotypic and phenotypic information and stability that is 

absent in many other renewable sources. How appropriate either model system is depends 

largely on the application and question at hand.  



 
 

Conclusions and future perspective | 142  

7 

An alternative that could incorporate renewability, primary tissue properties and patient 

origin are stem cells, which offer great potential as physiologically more relevant models. In 

particular induced pluripotent stem cells (iPSC), which can maintain the disease genotype 

and phenotype indefinitely, provide a source of models for an expansive range of adult 

differentiated cells, possibly even for each individual patient. The ability to reprogram cells 

of patients into disease-relevant cell types could provide more representative and predictive 

cellular models for both disease modelling and drug discovery [60], and has the potential to 

personalize pharmacological research [67, 68]. iPSC have already been used for drug 

screening and disease modelling, particular as neural cells, haematopoietic cell types, 

hepatocytes and cardiomyoctes [69, 70]. For some of such cell types, hiPSC-cardiomyocytes 

in particular, there are also examples of their application in label-free assays (Chapter 2, Table 

1) [71-73]. Interestingly, iPSC can be derived from a variety of cellular sources, including LCLs. 

This taps into the invaluable resources of the already available, vast collections of LCLs. iPSC 

derived from LCLs retain their disease mutation, exhibit identical characteristics as iPSC 

derived from more common sources such as fibroblasts, and can be differentiated into 

various cell types including neurons and even intestinal organoids [60, 61]. Organoids 

constitute near-physiological 3D models of an organ with realistic micro-anatomy, and as 

such enable more accurate study of many physiological processes [74]. Furthermore, iPSC 

from LCLs even recover their donor-specific gene expression signature [59, 60]. While it is 

unlikely that the lack of donor signature on gene expression in LCLs themselves would cause 

false-positive findings of genetic influence, such as the ones presented in this thesis in 

Chapter 3-6, regaining this signature in iPSC increases the ability to study inter-individual 

differences in gene expression [59].  

In summary, as these developments show, LCLs offer an enormous bioresource for both 

drug discovery and disease modelling [60, 61]. 

 

Comeback of phenotypic assays for drug research 

In addition to the need for more representative model systems, a preference is emerging for 

minimally invasive, time-resolved and thus pharmacologically more relevant assays. As 

principal criteria, new assay approaches for pharmaceutical drug discovery are to be more 

efficient and multidimensional [19]. Amongst these are label-free cellular assays. As 

discussed in Chapter 2, these assays offer a wide range of applications and have similarly 

been applied to many important classes of drug targets, which include besides GPCRs also 

receptor tyrosine kinases and nuclear receptors [75-78]. Their realm of application is large 

and constantly expanding. 
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This preference is part of a general trend back towards phenotypic screening. Phenotypic 

screens were in fact the norm for drug discovery prior to the 1980s. Following the advent of 

molecular cloning then, target-based screening became the standard approach for drug 

discovery. This strategy includes cloning and functional expression of potential drug targets 

in recombinant cell lines for study and screening of drug candidates (Fig. 2). While this 

approach has delivered many drug candidates over the years, there were relatively few new 

drugs. One reason is that this approach may work very well for monogenic diseases, however, 

most human diseases are likely multifactorial. Rather than caused by a single genetic change, 

they are complex diseases originating through an interplay of a multitude of genetic and 

environmental factors. Hence they may require engagement of multiple targets to achieve 

clinical efficacy [79-82].  

In such instances, target-agnostic approaches as utilized in phenotypic screening assays 

can offer advantages. In fact, significantly more small-molecule first-in-class drugs were 

discovered through phenotypic screening than target-based approaches [83]. Instead of 

focusing on engaging a specific target, phenotypic assays rely on finding molecules with a 

particular biological effect in cell-based or animal models (Fig. 2) [80-82]. This approach does 

however have its own hurdles to overcome, which include the need to identify a phenotypic  

 

Figure 2. Phenotypic assays versus target-based approach. Target-based drug discovery approach 
focuses on engaging a specific target, often using molecular cloning and recombinant techniques. 
Phenotypic assays identify molecules with a particular biological effect in cell-based or animal models. 
Phenotypic assays can provide context that is closer to the clinical situation. 



 
 

Conclusions and future perspective | 144  

7 

endpoint appropriately associated with the disease of interest. Label-free assay technologies 

offer additional advantages here, as they do not require assumptions about molecular 

mechanisms and pathways but rather allow for a multidimensional and less biased 

investigation [80]. In summary, label-free assay technology provides phenotypic assays that 

are able to acquire molecular-level understanding of complex biological processes in their 

native environment [6, 84]. When combined with the appropriate cellular model systems, as 

discussed in this thesis in e.g. Chapter 2, the combination offers a powerful approach for 

pharmaceutical research in general and precision medicine in particular. 

 

Precision medicine prospective for GPCRs 

The human genome mapping, the resulting pharmacogenetic discoveries and the ongoing 

movement towards precision medicine have influenced drug development in general, and 

hence also for GPCRs. It is increasingly recognized among the GPCR research community that 

tailoring a drug candidate for a particular genetic variant of a GPCR could offer various 

benefits [19] (Fig. 3). There are numerous examples of genetic variants in GPCRs altering 

pharmacology or pathology. In 2001, Sadee et al. published an exemplary catalogue of 

genetic GPCR variants and possible implications for drug therapy [64]. More than a decade 

later, the tailoring of GPCR targeting drugs based on genetic variation in patients is still 

deemed to be in the early stages of feasibility [34]. To name a particular example, the α2A 

adrenergic receptor antagonist yohimibine improved insulin secretion in type II diabetes 

patients that were carriers of a particular SNP in this receptor [20]. Other forms of genetic 

variation besides SNPs have also been found to be of influence, for instance GPCR expression  

 
Figure 3. Precision medicine versus traditional treatment paradigm. Tailoring a drug (candidate) to 
patient characteristics such as genetic information can offer several benefits including decreased risks 
of ineffective treatment, of inappropriate dosing or of side effects [91-93].  
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as a biomarker for the clinical efficacy of the A3 adenosine receptor agonist IB-MECA, or the 

conversion of P2Y12 receptor prodrug Plavix being impaired by the 2C16 isoform of CYP450 

enzymes [85, 86] . 

The progress in precision medicine for GPCRs has come in large part through 

pharmacogenomic advances. Over the past two decades, the Human Genome Project, 

HapMap project and 1000 Genomes project have been instrumental in identifying human 

genetic variants contributing to common diseases [8, 79, 87]. The emergence of GWAS in 

2005 has led to a surge in the successful identification of numerous disease-associated 

genetic loci. However useful, with GWAS genetic variants are mostly associated, not 

necessarily correlated with disease, as there is no clue to the underlying mechanism [79, 88]. 

Finally, in the past couple of years, whole-exome sequencing experiments which specifically 

focus on coding regions related to proteins have become available [79]. The costs of such 

techniques are decreasing, while patient willingness to participate is on the rise [79, 89]. 

Continuing these trends, first personalized whole-genome sequencing and finally, with 

gaining the appropriate pharmacological understanding, various forms of precision medicine 

may become standard clinical practice (Fig. 3). Before this becomes clinical reality however, 

there are  hurdles to be overcome such as the existing skepticism by clinicians, mostly related 

to ethical concerns about privacy and potential discrimination of patients [79, 90]. First and 

foremost however remains the appropriate identification of disease-related genetic variants 

and corresponding implications for medical treatment. To deliver the required molecular-

level understanding of genetic influences on pathology and pharmacology, more 

representative model systems and assay techniques are becoming available. Now is the time 

to employ these tools to become more familiar with the key contributing factors, establish 

the necessary key concepts, integrate these into target discovery and drug development and 

hereby lay the path towards precision medicine for GPCRs, drug targets and patients in 

general. 

 

Final Notes 

Altogether a novel cellular approach towards studying genetic effects on GPCR function has 

been explored and detailed throughout this thesis. Several GPCRs and different types of 

genetic variations were investigated, demonstrating together that personal cell lines in 

combination with label-free technology are an appropriate tool to enable GPCR 

pharmacogenetic studies. Incorporating aspects such as genetic variation in drug targets,  
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representative model systems and appropriate assay technology are important factors for 

advancing GPCR drug discovery. The data presented in this thesis contributes towards the 

progress of applying precision medicine concepts to this class of drug targets. 
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Summary 

The traditional medical treatment paradigm focuses on prescribing one drug to treat all 

patients with a specific disease or condition, so called ‘one-size-fits-all’. However, it has been 

shown increasingly that differences between persons, such as in lifestyle or genes, can 

change both the course of a disease and effect of a drug. In order to adapt medical treatment 

and drug development to that, a concept know as precision medicine, it is essential to study 

which and how genetic differences, i.e. polymorphisms, affect drug response. In this thesis I 

studied of the influences of genetic variation on a specific class of drug targets, the G protein-

coupled receptors (GPCRs), by using a combination of personal cellular models and novel 

label-free assay technology.  

Chapter 1 introduces the main subjects and concepts around precision medicine, GPCRs 

and genetic variation discussed in this thesis. Chapter 2 continues with discussing the concept 

of using patient-derived cell lines as model systems and highlights the advantages of label-

free technology assays to investigate these. To better understand drug action and 

pathological processes in the human individual, physiologically more appropriate model 

systems are needed. For this, patient-derived cells can offer specific advantages. Traditional 

GPCR assays are often label-based, which has disadvantages when aiming to represent the 

physiological situation as closely as possible. Novel label-free cellular assays enable the study 

of complex biological processes in their native environment. Examples and advantages of the 

combination of these two are discussed in chapter 2.  

Chapter 3 describes the optimization and application of an impedance-based label-free 

assay methodology, the xCELLigence, to a type of personal cell line, the lymphoblastoid cell 

lines (LCLs) from individuals of the Netherlands Twin Registry (NTR), to allow direct 

measurement of cellular effects of GPCR signaling. Generally, this label-free assay technology 

was deemed only compatible with adherent cell lines, while LCLs are suspension cells. 

Therefore, the methodology was optimized and applied to study cellular properties and GPCR 

signaling in LCLs. A prototypical GPCR present on LCLs, the cannabinoid receptor 2 (CB2R), 

was selected for proof-or-principle. Effects of several compound types were studied and 

proved comparable between LCLs of two unrelated individuals with the same genotype, 

providing the first evidence that the technology and model system were well suited to 

evaluate genetic influences on GPCR-mediated drug responses. 
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Chapter 4 presents the case of another GPCR, the adenosine A2A receptor (A2AR).  The 

A2AR is a potential drug target for a variety of respiratory and inflammatory conditions, 

including Parkinson’s disease, as well as the receptor for caffeine. After identifying which 

adenosine receptor subtypes were present on LCLs, the cellular effects of various types of 

compounds targeting the A2AR were compared between LCLs derived from a family of four 

individuals, consisting of parents and their identical twin children. In the presence of a 

specific type of genetic variation, an intron Single nucleotide polymorphism (SNP) that is 

potentially linked to caffeine-induced sleep disorders, different cellular effects were found 

for a specific type of compound, a partial agonist, but not for other compounds such as full 

agonists or antagonists. Although this does not provide causal evidence that response 

differences are directly related to this genetic variation, it does show that the chosen 

methodology is capable of picking up individual differences in GPCR signaling. 

After this demonstration, genetic differences in other GPCRs were studied. The CB2R is a 

GPCR investigated intensively as therapeutic target due to its important role in the immune 

system. In chapter 5, responses to agonists, partial agonists and antagonists of various 

chemical classes were characterized in LCLs from individuals with varying CB2R genotypes. 

One of the interesting findings was that endogenous cannabinoids such as 2-AG induced 

cellular effects vastly different from all synthetic cannabinoids, especially in their time-

profile. More importantly, it was also found that compounds with different chemical 

scaffolds showed different sensitivity to a highly common amino-acid altering polymorphism 

in the CB2R, the Q63R variant. In a similar manner it may be possible to identify compounds 

prone to personal differences, so for precision medicine, or more suited as drugs for the 

general population early on in drug development. 

Genetic differences may however not only influence drug effects, but can alter a 

person’s susceptibility to disease or alter disease progression. Chapter 6 presents the case of 

the Glucose-Dependent Insulinotropic Polypeptide Receptor (GIPR), in which an amino-acid 

altering SNP that has often been associated with diseases changed the cellular effects of the 

endogenous ligand. The GIPR plays an important role in whole-body metabolism, and its 

amino-acid altering SNP E354Q has been associated with several diseases including diabetes. 

When studying this receptor in a panel of LCLs of individuals with different genotypes for 

E354Q, responses to the endogenous agonist GIP showed enhanced potency in Q354 

homozygous individuals. This study hereby provides more insight into how GPCR 

polymorphisms could change physiology in the human individual. 

In summary, a novel cellular approach for studying genetic effects on GPCRs has been 

explored and detailed throughout this thesis. Several GPCRs and different types of genetic 
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variations were investigated, and the findings highlight that various kinds of genetic 

differences in GPCRs, can profoundly influence drug response. These include differing effects 

depending on compound type or chemical scaffold, as well as on endogenous signaling. The 

overall conclusion from the results described in this thesis and forthcoming opportunities for 

drug discovery and treatment are discussed in detail in chapter 7. In concert, the findings in 

this thesis may contribute to the progress of applying precision medicine concepts to the 

GPCR class of drug targets and hence the development of clinically more effective and more 

tailored drugs. 
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Samenvatting 

Historisch gezien richt zich medische behandeling op het voorschrijven van één 

geneesmiddel om alle patiënten met een specifieke ziekte of aandoening te behandelen, ook 

bekend als 'one-size-fits-all'. Het wordt echter steeds duidelijker dat verschillen tussen 

personen, zoals in levensstijl of genen, zowel het verloop van een ziekte als het effect van 

een geneesmiddel kunnen veranderen. Om medische behandeling en medicijnontwikkeling 

hierop aan te kunnen passen, een concept bekend als ‘precision medicine’, is het essentieel 

om te identificeren hoe en welke genetische verschillen, d.w.z. polymorfismen, de 

geneesmiddelrespons beïnvloeden. Dit proefschrift richt zich op het bestuderen van 

genetische verschillen in een bepaalde klasse van doelwitten voor geneesmiddelen, de G-

eiwit gekoppelde receptoren (GPCRs), door gebruik te maken van een combinatie van een 

persoonlijk cellulair model en een recent ontwikkelde label-vrije meettechnologie. 

In hoofdstuk 1 worden de hoofonderwerpen en concepten rondom precision medicine, 

GPCRs en genetische verschillen, die in dit proefschrift aan bod komen, geïntroduceerd. 

Hoofdstuk 2 gaat verder met de discussie over het concept om persoonlijke cellulaire 

modellen te gebruiken en belicht de voordelen die de label-vrije meettechnologie biedt om 

deze te onderzoeken. Om de geneesmiddelwerking en ziekteprocessen in het menselijke 

individu beter te kunnen begrijpen, zijn meer fysiologische representatieve model systemen 

nodig. Hiervoor bieden cellulaire modellen afkomstig van patiënten specifieke voordelen. 

Traditionele GPCR bepalingsmethoden zijn vaak gebaseerd op labels, wat nadelen met zich 

meebrengt als het doel is om de fysiologische situatie zo goed mogelijk te benaderen. Recent 

ontwikkelde label-vrije cellulaire bepalingsmethoden maken het bestuderen van complexe 

biologische processen in hun natuurlijke omgeving mogelijk. Voorbeelden en voordelen van 

de combinatie van deze twee worden in hoofdstuk 2 besproken. 

Hoofdstuk 3 beschrijft de optimalisatie en toepassing van een dergelijke, op weerstand 

gebaseerde label-vrije technologie, de xCELLigence, voor een bepaald type persoonlijke 

cellijnen, de lymfoblastoïde cellijnen (LCLs) van individuen van het Nederlandse Tweelingen 

Register (NTR), voor directe meeting van de cellulaire effecten van GPCR stimulatie. Over het 

algemeen wordt deze label-vrije technologie alleen toepasbaar op hechtende cellen geacht, 

terwijl LCLs suspensie cellen zijn. Daarom werd de methodologie geoptimaliseerd en 

toegepast om zowel de cellulaire eigenschappen en GPCR activatie in LCLs te kunnen 
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bestuderen. Een GPCR die in LCLs aanwezig is, de Cannabinoïde receptor 2 (CB2R), werd 

geselecteerd als voorbeeld ter demonstratie. De effecten van verschillende typen chemische 

verbindingen werden bestudeerd en bleken vergelijkbaar tussen LCLs van twee niet 

verwante individuen met hetzelfde genotype, wat het proof-of-principle leverde dat deze 

technologie en het cellulaire model systeem goed geschikt waren om genetische invloeden 

op GPCR-gemedieerde geneesmiddelrespons te onderzoeken. 

Hoofdstuk 4 laat het voorbeeld van een andere GPCR, de Adenosine A2A receptor (A2AR) 

zien. De A2AR is een mogelijk aangrijpingspunt voor geneesmiddelen voor een breed aantal 

van ademhalings- en ontstekingsaandoeningen, waaronder de ziekte van Parkinson, en is ook 

de receptor voor cafeïne. Na het bepalen van welke subtypes van adenosinereceptoren 

aanwezig waren in LCLs, werden de cellulaire effecten van verschillende typen chemische 

verbindingen die op de A2AR aangrijpen vergeleken tussen de LCLs van een familie van vier, 

bestaande uit ouders en hun eeneiige tweelingkinderen. Bij aanwezigheid van een bepaalde 

genetische variant, een Single Nucleotide Polymorphism (SNP) in een intron die eerder in 

verband is gebracht met cafeïne-gerelateerde slaapstoornissen, werden afwijkende 

cellulaire effecten gezien voor een bepaald type verbinding, namelijk een partiële agonist,  

maar niet bij andere typen verbindingen zoals volle agonisten of antagonisten. Hoewel dit 

geen direct causaal verband aantoont tussen de verschillen in respons en de genetische 

variatie, laat het wel zien dat de gekozen methode geschikt is om individuele verschillen in 

GPCR effecten te detecteren. 

Na deze demonstratie weden genetische verschillen in andere GPCRs bestudeerd. De 

CB2R is een GPCR die intensief onderzocht wordt als mogelijk therapeutisch doelwit vanwege 

zijn belangrijke rol in het immuunsysteem. In hoofdstuk 5 werd de respons op agonisten, 

partiële agonisten en antagonisten van verschillende chemische klassen in LCLs van 

meerdere individuen met verschillend CB2R genotype gekarakteriseerd. Éen van de 

interessante bevindingen was dat endogene cannabinoïdes zoals 2-AG duidelijk andere 

cellulaire effecten induceerden dan alle synthetische cannabinoïdes, vooral in hun 

tijdsprofiel. Nog belangrijker is dat ook werd gevonden dat verbindingen van verschillende 

chemische signatuur verschillend reageerden op een veel voorkomende aminozuur-

veranderende polymorfisme in de CB2R, de Q63R variant.   

Genetische verschillen kunnen echter niet alleen de effecten van geneesmiddelen 

beïnvloeden, maar ook de vatbaarheid van een persoon voor een ziekte of het verloop van 

een ziekte veranderen. In hoofdstuk 6 wordt het geval van de Glucose-afhankelijke 

Insulinotrope Polypeptide receptor (GIPR) gepresenteerd, waarin een aminozuur-

veranderende SNP, die al vaak met ziektes geassocieerd werd, de cellulaire effecten van het 
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endogene ligand veranderde. De GIPR speelt een belangrijke rol in het metabolisme in het 

hele lichaam, en deze aminozuur-veranderende SNP, E354Q, wordt onder andere met 

diabetes geassocieerd. Tijdens het bestuderen van deze receptor in een panel van meerdere 

individuen met verschillende genotype van E354Q, werd een verhoogde potentie van de 

endogene agonist GIP op Q354 homozygote individuen aangetoond. Dit onderzoek verschaft 

hiermee meer inzicht in hoe polymorfismen in GPCRs de fysiologie in een menselijk individu 

kunnen veranderen.  

Samengevat wordt in dit proefschrift een nieuwe cellulaire aanpak voor het bestuderen 

van genetische effecten op GPCRs onderzocht en beschreven. Meerdere GPCRs en diverse 

soorten genetische verschillen werden bestudeerd, en de bevindingen tonen aan dat 

verschillende soorten van genetische variatie in GPCRs, bijvoorbeeld veel voorkomend of 

juist zelden, verscheidende effecten kunnen hebben. Deze verschillende effecten kunnen 

afhankelijk zijn van het type ligand of de chemische signatuur van een verbinding, en van 

invloed zijn op de endogene signaalverwerking. De algemene conclusie uit de resultaten van 

dit proefschrift en de daaruit ontstaande mogelijkheden voor geneesmiddelonderzoek en 

behandeling wordt uitgebreid in hoofdstuk 7 besproken en van commentaar voorzien. 

Samen kunnen de bevindingen in dit proefschrift bijdragen tot vooruitgang in de 

mogelijkheden om ‘precision medicine’ op de GPCR-klasse der geneesmiddeldoelwitten toe 

te passen en zo ook tot de ontwikkeling van effectievere, op de persoon toegesneden 

geneesmiddelen.
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