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About the title and cover pages

The title is a word play on the common statement “don’t take it personal”. While this
saying may be good advice in many cases, there are distinct advantages to “take” medication
personal. Genetic differences between individuals can affect both diseases and drug action.
Therefore much research effort is focused on making medicine personalized, to tailor it
better to the individual patient or situation, to increase beneficial effects and decrease side-
effects.

The cover artwork was inspired by a quote from Jim Watson, the co-discoverer of DNA's
double helix structure, who told Time magazine in 1989: " We used to think our fate was in
our stars. Now we know, in large measure, our fate is in our genes." (Quoted in Time, “The
Gene Hunt”, by Leon Jaroff, March 20, 1989). The art on the cover was made from actual
experimental XxCELLigence data generated during this thesis while investigating the influence
of genetic differences on G protein-coupled receptors. In the decorations on the edges, the
xCELLigence data dissolves into a double helix as a further reference to the DNA that
underlies the data itself. The distribution of the stars resembles the distribution of cell
clusters, similar to how the lymphoblastoid cell lines, the cellular model system used
throughout this thesis, look like under a microscope when grown on xCELLigence plates. The
cover artwork also reminds of the season in which the defense of this thesis is held.

The artwork on the chapter title pages is an abstract representation of both DNA and the

strings of golden electrodes embedded in xCELLigence plates.
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CHAPTER 1

General Introduction



About this thesis

This thesis describes the study of the influences of genetic variation on a specific class of drug
targets, the G protein-coupled receptors (GPCRs), using a combination of personal cellular
models and novel label-free assay technology. The results obtained herein will likely assist in
the translation of early in vitro experiments to more clinically relevant studies in the course
of the drug discovery pipeline. Eventually, the findings in this thesis hopefully contribute to
the development of clinically more effective drugs and advance the current ‘one-size-fits-all’
paradigm into the realm of precision medicine. In this first chapter, | introduce the concepts
of precision medicine, importance of GPCRs as drug targets and prevalent sources of genetic
variation. Moreover, | discuss the advantages and opportunities that arise from combining a
novel label-free assay technology with personal cell lines. In the last section of this chapter,

| specifically outline the objectives of this thesis.

Precision medicine

Historically, conventional disease treatments have been based on diagnosing a patient with
a general disease state and providing a corresponding generalized drug treatment. However,
while successful to a degree, such one-size-fits-all treatments may be ineffective or harbor
dangers for the individual patient. Inter-individual variability in drug effectiveness poses a
significant challenge for the conventional strategies. Even today’s best sold, ‘blockbuster’
drugs, poster children of the current treatment paradigm, work in only 35% - 75% of patients
due to influences of genetics, lifestyle and environmental differences [1, 2]. Hence, modern
medicine is undergoing a paradigm shift towards a more personalized, patient-customized
treatment model, for which a large part is based on a deeper understanding at a molecular
level [3, 4]. For this emerging concept known as personalized or precision medicine, it is
paramount to better understand the effects of a drug not only in the overall population, but
in the individual patient as well [5]. Customization using a sub-population or patient's
individual characteristics, e.g. genetic information, could decrease risks of ineffective
treatment, dosing or side-effects [2, 6, 7]. Genetic testing is already available for
approximately 2000 clinical conditions today, most of which are in oncology. Two successful
examples are genetic tests for HER2-positive breast cancer which serve as a predictor of
response to the drug Herceptin, and CYP450 polymorphisms which affect the action and
metabolism of drugs such as selective serotonin-reuptake inhibitors [6-9]. Despite the

promise shown by these examples, most drug targets and disease mechanisms are still in
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dire need of further research to determine whether, and how, genetic variation affects both

pathology and drug responses.

GPCRs and genetic differences
The majority of drug targets today are GPCRs, a specific class of membrane proteins. In fact,
30-40% of all current drugs work by influencing GPCR function [10, 11]. This is no surprise as
approximately 800 GPCRs are encoded by the human genome. Over 300 of these are
considered druggable, i.e. they constitute current or future drug targets [12]. Due to their
ubiquity, GPCRs are involved in almost all aspects of human physiology from vision to
immune response [13]. In general terms, the role of a GPCR is to translate an extracellular
signal, which can range from photons to odorants, hormones or neurotransmitters, into a
cellular response. Depending on the nature of ligand and receptor, the cellular effect can
vary from changes in morphology to proliferation, differentiation and survival (Figure 1).
Due to their physiological importance, it is highly interesting to decipher the influence of
genetic variation in GPCR-mediated drug responses in the context of personalized medicine
[5, 14]. Several studies have already linked GPCR polymorphisms to diseases and drug
response variation [14-18], including for instance serotonin [15], dopamine [14, 16, 19-21],
adenosine [22-24], purinergic [25, 26] and cannabinoid [17, 18] receptors, and many other
commonly targeted GPCRs [14].

Single Nucleotide Polymorphisms

One prevalent source of genetic differences which can lead to an alteration in the drug target
are Single Nucleotide Polymorphisms (SNPs). SNPs make up 84 to 95% of the total human
genetic variation and are defined as single-base variations with a presence in at least one
percent of the population. Consequently, SNPs are quite common, with on average around
one SNP per 300 bases [27]. These variations can cause a multitude of differences in the end-
product of genes, depending on their location and nucleotide difference. For example, a SNP
can cause a new start- or stopcodon to appear, cause the transcript to be removed or even
change the encoded amino acid with a different one, i.e. a so called missense SNP. SNPs that
somehow change the amino acid sequence of the resulting protein are known as non-
synonymous SNPs. It is believed that such changes are the most prevalent source of
differences in GPCR response to drugs (Figure 2).

A common example is the association between SNPs on the chemokine 2 and 5
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Figure 1: GPCR signaling and in vitro assays. When a ligand binds to and activates a GPCR, the receptor
in turn activates the G protein. The trimeric G protein dissociates and can activate various secondary
messenger pathways, leading via a cascade of reactions to an eventual cellular response. Traditional
drug development programs are often target-focused, i.e. relying on in vitro assays which use reporter
systems for the investigated target. Such reporter systems include for instance the use of radioactive
labels or fluorescent dyes for ligand, target or effector labeling, or of more downstream reporter gene
constructs. Such modifications, however, may influence target pharmacology. Label-free whole-cell
assays are phenotypic assays that capture the biological cellular response in real-time, without focusing
on merely one pathway and without requiring any such modifications, potentially providing a better
physiological context. Image constructed using components from Servier Medical Art by Servier
(http.//www.servier.com/Powerpoint-image-bank).

receptors (CCR2 and CCR5) and the delayed or increased onset of AIDS after HIV infection
[28]. In another instance, a SNP-caused tryptophan to arginine change in the $3-adrenergic
receptor has been associated with obesity [29]. A set of four SNP locations on the dopamine
D3 receptor have been associated with schizophrenia, where the susceptibility to the disease
is most likely caused by the combined effect of these SNPs [30]. In the GRM1 glutamate
receptor, the presence of SNPs in the splice region between two exons causes a new splice
variant lacking one transmembrane domain, again associated with schizophrenia symptoms

[31]. These examples emphasize that the possible influence of SNPs on GPCRs can be quite
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Figure 2: Effects on individuals of SNPs in GPCRs. GPCR polymorphisms can lead to differences in drug
response between individuals, potentially changing drug effectiveness and risks of side-effects.

profound. However, the knowledge of polymorphism effects in GPCRs is still scant as of
today. Hence we sought to find out more on the influence SNPs have on ligand-induced GPCR

function in this thesis.

Lymphoblastoid Cell Lines

Most evidence supporting the influence of GPCR polymorphism effects are based on statistic
association with occurrence of a disease, or by functional characterization in artificial,
heterologous cell lines [14, 16, 17]. Both methods lack the final, well-defined physiological
link that would allow us to understand more precisely how a polymorphism changes GPCR
effects in an individual patient [32, 33]. Such understanding could be provided by directly
measuring drug responses in patient material or cells as a model system.

An upcoming phenomenon in the past two decades are biobanks, which collect and store
biological material to support modern medical research such as -omics approaches and
personalized medicine. For this purpose, biobanks provide biomaterial resources including
tissues, cells, blood, and serum from patients with specific diseases, specific populations or
individuals with specific traits [34-36]. One type of cells used in many biobanks as a preferred
choice for storing genetic material are lymphoblastoid cell lines (LCLs), which are derived
from a person’s B-Lymphocytes [37, 38]. Renowned consortia with LCL libraries include the
Centre d’Etude du Polymorphisme Humain, the International HapMap and 1000 genomes
projects [39-43]. In most cases, however, LCLs are merely used as a source of DNA or RNA
for genotyping, expression or methylation studies [16, 37].

In this thesis, we set out to show that LCLs can be used as a model system to directly

study polymorphism effects on GPCR function on a cellular level.
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Label-free technologies

Traditional GPCR assays are often label-based, which have definite disadvantages when
venturing to remain as close to the physiological situation as possible. These assays rely on
(chemical) engineering by, for instance, radioligand tagging or overexpression of the receptor
(Figure 1). All of such alterations to the cell may influence its physiology leading to for
instance identification of false-positive or false-negative hits [44]. Furthermore, such assays
are mostly pathway-biased as they typically focus on only one cellular event in a specific
signaling pathway [45]. Another drawback is that they often lack the sensitivity required for
receptors endogenously expressed in cell lines, as this is much lower level than in specifically
engineered cell lines. In short, such assays are not well-suited for investigating subtle
polymorphism changes on endogenous receptors in their native environment.

However, new assays are emerging that enable measurements in endogenous cell lines
and hereby provide greater, more relevant biological insight. By eliminating any need for
labels, label-free cellular biosensors have the capability of assessing endogenous receptor
function in their native physiological settings [46]. They are more sensitive, less invasive and
monitor drug effects on a whole cell in real-time [33, 47, 48]. Hence, label-free assays are
also more translational towards a correlation between in vitro and in vivo findings [49, 50].
Moreover, the sensitivity of these label-free assays allows monitoring of standard effects
such as GPCR activation or inhibition as well as detection of smaller changes such as biased
signaling [33, 51], which may also be affected by polymorphisms [5]. In short, label-free
technologies offer unique advantages for precision medicine as they offer the ability to

monitor small changes in GPCR signaling or drug responses in the native cellular context.

Objective and overview of this thesis

Aim and set-up

The aim of the study was to provide detailed insight in the influence of genetic variation on
ligand-induced GPCR function within the general human population. Our selection process
of SNP containing GPCRs to be investigated with label-free technology and LCLs is visualized
in Figure 3. In this thesis we focused on SNPs that are likely to have a profound effect on
GPCR signaling responses by changing the amino acid sequence, in particular the so-called
missense SNPs. The biobank employed in this research, the Netherlands Twin Registry (NTR;
http.//www.tweelingenregister.org/en/) [39], offered genotyped LCLs of individuals with a
family structure consisting of parents and twin siblings. We first established an overview of

such SNPs on each druggable, non-olfactory GPCR gene within these NTR individuals, after
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NTR in total:
19 763 454 SNPs, €/Ensembl |18/PHAR

LCLs of 78 individuals Gene and SNP data All druggable GPCRs (~380)

Cellular assays and qPCR:

TARGET LIST Personal cell lines
49 GPCRs Which GPCRs possible to

‘ characterize in LCLs?

72 444 SNPs in druggable GPCRs with
—id 99 SNPs g
686 non-synonymous SNPs . 83 GPCRs highly expressed .

Bioinformatics: Individual genetic data
Which SNPs are present in GPCRs?

Figure 3: Flowchart of target selection. The selection was aimed at identifying all druggable GPCRs
containing non-synonymous SNPs that were well enough expressed to allow functional characterization
in LCLs from the NTR. For the bioinformatics, the selection was limited to non-synonymous SNPs in
druggable GPCRs. The genotype data of the cell lines was provided by the NTR, as part of the Genomes
of the Netherlands (GoNL) consortium [39]. A list of all druggable non-olfactory GPCRs was downloaded
from the IUPHAR database. SNPs within each gene were extracted from the NTR data using PLINK, an
open-source whole genome association analysis toolset, and annotated with their SNP-consequence
types (gene data, SNP location and consequences were extracted from Ensembl). Cellular assays and
gPCR were used to determine which GPCRs were expressed above a threshold that allowed functional
responses to be measured using the label-free technology.

which we pursued several interesting cases in GPCRs commonly used in drug research.
Three separate cases of common polymorphisms that affect GPCR signaling and cellular
effects were discovered, each revealing different properties including the sensitivity of
partial versus full agonists, different chemical scaffolds and intron versus missense SNPs.
These examples should provide the reader with insights that will hopefully lead to the
development of clinically more effective drugs and drug treatment paradigms in the long

term.

Outline of this thesis
The concept of using patient-derived cell lines as model systems is introduced and discussed
in Chapter 2. This chapter furthermore highlights the advantages of label-free technology for
assays on such cell lines.

Chapter 3 focuses on the optimization and application of an impedance-based label-free
assay, the xCELLigence, to suspension cells such as LCLs to allow direct measurement of

cellular effects of GPCR signaling.
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Chapter 4 presents the case of the Adenosine Aya receptor, in which an intron SNP is
related to differential cellular effects of a partial agonist, but not full agonists or antagonists.
Chapter 5 summarizes the effects on a highly common non-synonymous polymorphism on
the Cannabinoid Receptor 2, to which different chemical scaffolds show different sensitivity.
Chapter 6 presents the case of the Glucose-Dependent Insulinotropic Polypeptide (GIP)
Receptor, in which a missense SNP that has often been associated with diseases changes the
cellular effects of the endogenous ligand.

The research presented in these chapters highlights that coding and non-coding,
common and less common genetic variations in GPCRs can affect endogenous signaling as
well as drug effects.

An overall conclusion from the results described in this thesis and forthcoming

opportunities for drug discovery and treatment are presented and discussed in Chapter 7.
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Abstract

Drug development requires physiologically more appropriate model systems and assays to
increase understanding of drug action and pathological processes in the human individual.
Specifically patient-derived cells offer great opportunities as representative cellular model
systems. Moreover, with novel label-free cellular assays it is often possible to investigate
complex biological processes in their native environment. Combining these two offers
distinct opportunities for increasing physiological relevance.

Here, we review impedance-based label-free technologies in the context of patient
samples, focusing on commonly used cell types including fibroblasts, blood components and
stem cells. Applications extend as far as tissue-on-a-chip models. Thus, applying label-free
technologies to patient samples can produce highly biorelevant data and with it unique

opportunities for drug development and precision medicine.
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Introduction

Two significant challenges in today’s drug development are the inter-individual variability in
drug effectiveness, and lack of translatability of preclinical results. Simultaneously, modern
medicine is shifting towards personalized or precision medicine, which proposes to use
individual characteristics of a specific patient or sub-population to tailor drug prescriptions,
hereby decreasing risks of ineffective dosing or side-effects [1]. Challenges to achieve this
are in a generally perceived lack of understanding of the molecular details of drug action and
of pathological processes in the human individual. This, in turn, is to a large degree brought
about by insufficient physiological representability of model systems and assays used in drug
research. Traditional drug research has relied on a target-focused approach by screening
compounds in in vitro assays. Such assays traditionally use reporter systems, for instance
radiolabeled or fluorescent probes, dyes, and reporter gene constructs, all of which are

modifications that may influence target pharmacology (Box 1, Fig. 1). In addition, cellular

BOX 1: Traditional label-based versus label-free assays.

Traditional label-based assays follow drug effects and cellular functions by chemical attachment of
a "label" to the drug molecule, drug target or downstream effectors. These can consist of for
instance radiolabeled or fluorescent probes or dyes. Reporter-based assays introduce specifically
regulated gene promoters as biomarkers for specific events. Commonly used reporter genes involve
visually identifiable characteristics such as fluorescent and luminescent proteins.

Label-free assays do not require any such modifications as they measure cellular changes by
alternative detection means, without the need for introducing chemical or bioengineered
modifications.

PAC TS

Pk

Drug
target

—

Figure 1. Traditional label-based assays. Stars highlight where effects are often measured by
introducing labels or reporters. Image constructed using components from Servier Medical Art by
Servier (http://www.servier.com/Powerpoint-image-bank).
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models and cell systems are often selected based on habit and technical feasibility rather
than disease relevance, resulting in physiologically less representative heterologous or
recombinant cells lines. Such renewable in vitro cell sources have been essential in facilitating
drug discovery and certainly have merits for studying target or drug action in more detail.
However, both assay and model systems are factors that can contribute to an eventual lack
of clinical effectiveness and thus the issues experienced in the drug development to date,
such as high attrition rates [2]. To fully comprehend the mechanisms underlying pathologies,
drug response and its variation in individuals, functional characterization on a physiologically
relevant molecular and cellular level is essential. Hence, the focus is shifting onto more
physiologically appropriate cellular models and readout systems. Specifically patient-derived
cells offer great opportunities when used directly as a model system. Novel label-free cellular
assays are a new type of phenotypic assay able to acquire the molecular-level understanding
from complex biological processes in their native environment [1, 2]. Applying them to
human primary cells can increase physiological relevance [3-5]. In this review, we highlight
the realm of these possibilities, by focusing on the application of one type of such label-free
cellular assays, based on impedance, on some of the most common types of human primary

cells derived from patient samples.

Advantages of Label-free cellular assay technologies

The two currently most used forms of label-free cellular biosensors are impedance- or optics-
based. Extensive reviews on the detection principles are provided elsewhere [6-8]. In short,
the ECIS, xCELLigence, and CellKey systems use an electrode array biosensor to measure
impedance changes in a cell monolayer (Fig. 2). Optical systems such as the EPIC and BIND
use resonant waveguide grating to detect dynamic mass redistribution in cells. Both optical
and impedance methods detect a wide spectrum of cellular changes, from cell adhesion to
life cycle processes such as proliferation, growth and death, as well as pathogen infections
and response, cell migration and signaling such as receptor signaling or cell-cell
communication [6]. Hence, these label-free assays are also known as phenotypic assays.

In this review, we focus on impedance-based assays which are applicable to a broad
range of samples, are highly versatile and can integrate many assays into one (see also Fig.
3). For instance, such assays record a variety of cellular parameters including proliferation,
adhesion and cellular morphology in one combined read-out in real-time(Fig. 3A). This is a
particular advantage over many traditional assays, which often interrogate one aspect only

of a given pathway or a cellular response (e.g., second messenger accumulation).
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Figure 2. Principle of impedance-based label-free cellular assays. Cell attachment to gold electrodes
generates impedance by changing the local ionic environment at the electrode-solution interface.
Relative changes in impedance (Z) are recorded in real-time. 1. Prior to the seeding of cells, baseline
impedance is Z0. 2. As cells adhere to the electrodes, impedance increases proportionally. 3. Changes
in cell number, adhesion, viability and morphology are directly reflected in the impedance profile.
Impedance-based label-free cellular assays can detect a wide range of cellular events including cell
proliferation, division, growth, death, migration and signaling. All these parameters can in turn be
affected by drugs. For instance, depending on the moment of drug treatment, drugs can result in
response A by initiating receptor signaling or drug response B by decreasing overall proliferation.

Impedance-based assays offer the distinct advantage of a direct read-out of drug action
in real-time. While there are also traditional assays which record specific functions in real-
time (e.g., Ca?*-mobilization assays) impedance measurements offer the benefits of real-time
measurements in both acute (eg. direct receptor signalling) and chronic settings (e.g., cellular
proliferation). Besides recording the abovementioned cellular functions, impedance-based
label-free assays also provide some specialist applications such as electrical stimulation for
pore formation (Fig. 3D) and co-culture without contact (Fig. 3H), though these may require
specialized recording or plate equipment (Fig. 3B, 3E, 3H). Overall, impedance-based assays
have already successfully been applied to an extensive list of targets, including highly
important drug target classes such as G protein-coupled receptors (GPCRs) [6, 9], nuclear
receptors [10] and receptor tyrosine kinases [11]. Applications extend as far as toxicity
screens on cardiac function [12] and migration of cancer cells in 3D cultures [13] (Fig. 3B and
3E). Furthermore, almost any cell type can be studied. Examples include standard
recombinant cell lines, primary and stem cells, both adherent as well as suspension cell types
[6, 9, 14] (see also Table 1). This is because in comparison to many traditional assays, label-

free technologies offer a sensitive, less invasive detection methodology that monitors drug
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Figure 3: Typical applications of impedance-based label-free cellular assays. (A) General label-free
cellular assay formats are capable of monitoring many cellular functions such as adherence,
proliferation, viability and morphology. Additional specialized assay applications exist for instance to
(B) monitor cell migration (e.g. through a porous membrane, xCELLigence), (C) measure barrier
functionality for instance in a wound scratch assay, (D) apply electrical impulses e.g. to increase cellular
permeability (ECIS) and (E) measure (cardio)-myocyte contractility (xCELLigence CARDIO system). (F)
Besides adherent cells, label-free cellular assays are also applicable to suspension cells and capable of
monitoring interactions between two cell types, for instance by (G) cytotoxicity of effector cells on
another type of target cell, or (H) cell-cell communication without actual cellular contact (xCELLigence
co-culture set-up).

effects on a whole cell. Furthermore, without the need for tagging, labeling or recombinant
expression, cellular functions can be studied in a more physiological context, including a vast
amount of endogenously expressed targets and pathways. Simultaneously, sensitivity is
often high enough to distinguish subtle changes in mechanisms of action in e.g., GPCR
signaling bias [6, 14]. Receptors are linked to various downstream signaling pathways,
termed signaling pluridimensionality. Ligands can be biased towards one or some particular
downstream pathways, potentially resulting in different pharmacological effects. For
instance, closely related agonists for the f2- adrenergic receptor induced subtly yet distinctly
different response signatures as a consequence of such bias [15, 16].

Hence, as a number of reviews have already summarized, label-free technologies can
offer distinct advantages for drug development. They capture compound action in a dynamic
time-resolved manner, allow for identification of leads independent of prior assumptions of
signaling pathways and enable the use of more native systems at higher through-put. As a
cell-phenotypic screen, they can be used for target identification, compound screening, lead
selection, investigating mechanism of action and testing drug safety and toxicity [14, 17]. In
this review we particularly focus on applications involving patient cells. This offers
opportunities both for drug development and precision medicine research by sensitively
detecting an extensive variety of pharmacological effects under minimally invasive conditions

in a clinically relevant endogenous context of primary cells, and even patient samples.
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Nowadays, such samples are increasingly available to support research, for instance by their

systematic collection in biobanks.

Advantages of primary human cells
Over the past decades, numerous biobanks have emerged to support medical research by
programmed storage of biological material and corresponding data. These biomaterials
include tissues, (stem) cells, blood, and serum, all of which have played a critical role in
medical research. These materials are actively used from translational and personalized
medicine research to target and drug discovery [18, 19]. For human physiology, primary
human cells are considered a much better model system than the more traditional cellular
models such as rodent, recombinant, or immortalized non-tissue specific human cell lines,
and even better than in-vivo rodent models [20-22]. While the mentioned cellular models
certainly have merits, for instance ease-of-use or to attain initial understanding of pathways,
their physiological relevance is questioned increasingly. In recombinant cell lines, target
overexpression, differences in intracellular metabolic conditions and products from other
genes could modify cellular responses [5]. Well-established cell lines derived from a patient
with a particular disease can be more representative of that specific pathological condition.
However, these are generally immortalized cell lines derived from one particular patient
sample a long time ago. Prolonged cell culture frequently leads to problems such as
contamination or genotypic and phenotypicinstability. These issues unfortunately contribute
to irreproducibility in preclinical research, which is an increasingly well-recognized problem
[23].

In general, primary cells express signaling pathways and retain many cellular functions
that are seen in vivo, thus providing a more relevant context. Tissue or cell samples from
healthy or patient volunteers are even more representative for (patho)physiology and closer

to the situation in the clinic.

Application to patient samples and primary human cells

Many patient-related biomaterials can and have already been studied using impedance-
based label-free technologies, of which some prominent examples are discussed here. The
sample types most commonly studied include fibroblasts and blood components, but
applications also extend to endothelial, epithelial and stem cells (Table 1). In these examples,
label-free impedance-based assays are employed to monitor a wide range of cellular effects,

including specific functions such as migration, epithelial barrier function or
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Table 1. Application examples of impedance-based label-free cellular technology to patient samples and
stem-cell related types.

Type Subtype Technology Material source Reference

Antibodies xCELLigence  Type | diabetes patients, type Il diabetes [37]
patients and healthy controls
PBMCs xCELLigence  From healthy volunteers but tested on [32,33]

:é: patient material
é Plasma and cells  ECIS Healthy volunteers vs. trauma patients [35]
g therein ECIS Hantavirus Cardiopulmonary Syndrome [36]
§ patients
©  Monocytes ECIS Patients with peripheral vascular disease [31]
- and abdominal aortic aneurysm
Neutrophils ECIS Critically ill septic patients [34]
Serum ECIS Scleroderma patients [27]
vo T cells xCELLigence  Healthy volunteers and B-lineage acute [60]
lymphoblastic leukemia patients
Glioblastoma cells xCELLigence  Paired tumoral and peritumoral tissue [54]
samples from glioblastoma patients
Malignant xCELLigence  Malignant melanoma of the ciliary body [55]
melanoma cells from a female patient
Malignant pleural xCELLigence  Patients with solid tumors [59]
»  effusions
3 Mesenchymal xCELLigence  Newly established cell line from patient [56]
é chondrosarcoma
o cells
-(% Mononuclear xCELLigence  Normal controls and breast [61]
2 cells cancer patients
§ Myxofibrosarcom xCELLigence  Myxofibrosarcoma patient [58]
§ acells
8 Non-small-cell xCELLigence  Non-small-cell lung carcinoma patient [57]

lung carcinoma

cells

Normal and xCELLigence  Patient-derived primary human breast (8]
neoplastic cancer epithelial cells

mammary cells

Ovarian cancer xCELLigence  Serous ovarian cancer patient and [53]
cells endometrioid peritoneal cancer patient
Chondrocytes

and cartilage xCELLigence  Osteoarthritic patients [32]

Chondro-
cytes

tissue
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Benign prostatic ~ xCELLigence  Benign prostatic hyperplasia patients [26]

o hyperplasia
‘g Dermal ECIS Scleroderma patients and normal controls  [27]
®  Orbital ECIS Patients with or without Graves’ disease [24]
f Synovial xCELLigence  Patients with rheumatoid arthritis or [28-30]
osteoarthritis
Adipose stromal/ ECIS Healthy human donors of varying age [51]
stem cells groups
xCELLigence  Female patients undergoing liposuction, [52]
model for obesity
Q iPSC xCELLigence  Healthy human donors or commercial from [12, 43-45]
5 cardiomyocytes Cellular Dynamics (CDI;
8 http.//www.cellulardynamics.com/products
g,EJ /cardiomyocytes.html)
;’ iPSC Retinal ECIS Age-related macular degeneration patient  [47]
E pigment and unaffected sibling
-é) epithelium
®  Mesenchymal ECIS and From bone marrow (three donors) and [48]
§ stromal/stem xCELLigence  adipose tissue (two donors)
T cells xCELLigence  From endometrial lining of the human [49]
uterus of premenopausal women
xCELLigence  Healthy human donors [50]
xCELLigence  Osteoarthritic patients [33]
Ly Skeletal muscle  xCELLigence  Chronic heart failure patients and age and  [62, 63]
g E myoblasts and gender-matched healthy donors
23 myotubes

cardiomyocyte beating (Fig. 3). Overall, the highlighted examples show that impedance-

based label-free technology is highly versatile with an extensive range of applications.

Fibroblasts
The earliest applications of label-free assays to fibroblasts date back to over two decades. In
one early example, prostaglandin E2 was shown to play a significant role in Graves’ disease
pathology by comparing morphological changes of orbital fibroblasts from patients with and
without Graves’ disease versus dermal fibroblasts (Fig. 3A). The authors chose ECIS over
traditional light microscopy after testing both methodologies head to head, as it offered
insight into the subtle, rapid cellular changes, especially into the underlying kinetics [24].
Since then, label-free cellular assays have been applied to other types of fibroblasts.

Fibroblasts are in fact the most common cell type in human connective tissue and can often
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retain memory of their previous tissue context, thus giving rise to numerous fibroblast types
(Table 1). They are also among the most commonly employed clinical and biobanked samples
in general [25]. For instance, Nolte et al. demonstrated a potential strategy against hyper-
proliferating fibroblasts by treating fibroblasts from benign prostatic hyperplasia patients
with small interfering RNA against the transcription factor serum response factor. Effects on
cell proliferation and growth inhibition were detected with the xCELLigence (Fig. 3A) [26].
Another notable study involved dermal fibroblasts and sera from scleroderma patients,
which is discussed later [27].

Finally, in a clinically relevant setting synovial fibroblasts from patients with rheumatoid
arthritis (RA) or osteoarthritis (OA) obtained during knee surgery were investigated. In the
most recent ones, Lowin et al. used the xCELLigence to show that the endocannabinoid
system is involved in regulating inflammatory effects in RA [28]. This suggested a potential
treatment for RA with synthetic cannabinoids, demonstrated in a later study [29]. Similar
studies showed further contributors to the pathogenesis of RA that modify cellular functions
and adhesion of synovial fibroblasts, the most recent of which are included in Table 1 [30].
The relevance and implications of these findings for potential treatment options are of

translational value as the cells were obtained from patients with the disease.

Blood cells

Blood is an easily obtained patient material and is thus often biobanked [25]. Hence, various
types of blood components or cells are used in medical research and have been investigated
using impedance-based label-free cellular assays.

Several studies involving monocytes have been published. Interestingly, monocytes are
often measured indirectly by quantifying their effect on another cell type. A layer of adherent
target cells is grown on the electrodes, after which they are exposed to the effector cells,
here monocytes, which induce for instance cytotoxicity in the target cells (Fig. 3G). Lee et al.
used ECIS to reveal differences between patients of peripheral vascular disease and
abdominal aortic aneurysm to find better methods for targeted therapy. Monocytes of
peripheral vascular disease patients induced higher endothelial barrier dysfunction [31].

Another particularly useful type of blood cells are peripheral blood-derived mononuclear
cells (PBMCs). Hopper et al. showed PBMCs enhanced osteoarthritic human chondrocyte
migration, which could be the basis for a treatment strategy for OA. The PBMCs were derived
from healthy volunteers, while chondrocytes and cartilage tissue explants were from patients

undergoing total knee replacement. Here, migration and chemokinetic potential of the cells
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were measured using a specialized migration assay format of the xCELLigence (Fig. 3B)
[32]. Later it was shown that PBMCs also enhanced migration and chondrogenic
differentiation of multipotent mesenchymal stromal cells (MSCs) from knees of OA patients
[33].

Other types of blood components have been assayed using label-free technology as well,
although most of them again rely on an indirect measurement through effects on another
cell type. For instance, neutrophils from critically ill septic patients were found to reduce
endothelial barrier integrity to a greater extent than untreated normal neutrophils in an ECIS
assay [34]. Human serum was also employed in some studies. In an early example by Huang
et al., ECIS was used to demonstrate differences in micromotions of dermal fibroblasts from
patients with scleroderma and normal controls, as well as the effect of sera from patients on
fibroblast behavior [27]. Rahbar et al. measured the effects of plasma samples from healthy
volunteers and severely injured trauma patients on human endothelial cells using ECIS.
Material of patients with low plasma colloid osmotic pressure caused an increase in cell
permeability [35]. In a similar manner, plasma samples of patients with Hantavirus
Cardiopulmonary Syndrome were shown to induce loss of cell-cell adhesion in epithelial and
endothelial cells in ECIS [36]. Finally, Jackson et al. employed xCELLigence to demonstrate
that anti-calcium channel autoantibodies from patients with type | diabetes inhibit the
adherence of Ratinsulinoma cells, while antibodies from type Il diabetes patients and healthy
controls did not [37].

The reason that all these blood components are measured indirectly is twofold. On one
hand, studying their effect on the function of other cell types provides more physiological
context. On the other hand, many of the cell types involved are suspension cells. Label-free
technology was long deemed incompatible with suspension cells, as the detection
mechanism positioned at the bottom of the well requires cells to adhere [7]. However, a
number of studies demonstrated that suspension cells are amenable to label-free
technologies as well, with both optical and impedance-based biosensors. Interestingly,
impedance-based assays appear less susceptible to decreased cellular adherence than
optical biosensors [7], and hence potentially applicable to an even broader range of cell
types. Examples include various types of blood cells, one notably involving personal cell lines.
For instance, CellKey was used to directly measure GPCR signaling in monocytes, neutrophils
and PBMCs, though these were not in fact patient material [38, 39]. The xCELLigence was
applied to lymphoblastoid cell lines (LCLs) from participants of the Netherlands Twin Register

to show effects of single nucleotide polymorphisms on GPCR signaling [9, 40]. On these
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occasions, increased cell densities and usage of adherence-mediating agents were sufficient
to allow measurements (Fig. 3F). LCLs are in fact used as a preferred choice for storing genetic
material, including in biobanks of renowned consortia such as the International HapMap
project [25, 41].

iPSC and common stem-cell types
Stem cells carry great promise for rendering physiologically more relevant cell models, in
particular induced pluripotent stem cells (iPSCs). By reprogramming of e.g. fibroblasts into a
pluripotent state, iPSCs can be derived that maintain the disease genotype and phenotype
indefinitely. These iPSCs then provide a source of models for an expansive range of adult
differentiated cells, possibly even for each individual patient, which has the potential to
personalize drug discovery [42]. Many of the cell types derived from such iPSCs can be
investigated using label-free technology. For one of these, a specific type of application has
been developed for the xCELLigence, namely a cardiomyocyte-based biosensor. Safety
pharmacology studies that evaluate potential cardiac (side) effects of drug candidates are an
essential part of drug development. The xCELLigence RTCA Cardio System detects the beating
rhythm of cardiomyocytes (Fig. 3E). It has been applied to human iPSC derived
cardiomyocytes (hiPS-CMs) on several occasions to investigate risks of drug-induced
arrhythmia and general cardiotoxicity, of which the most recent publications are listed in
Table 1 [12, 43-45]. Rhythmic beating is essential for cardiomyocyte function, but has
traditionally been hard to investigate in simple in vitro assays. Phenotypic measurements of
native cellular systems are more suited for this [46]. The xCELLigence Cardio System
capturing cardiac beating was in fact the most sensitive of various tests for detecting
compounds with known clinical cardiac risk [43], and can be used to evaluate potential
clinical drug candidates [12].

Another stem cell-based study involved iPSC-derived retinal pigment epithelium (RPE) as
a disease-model-on-a-chip of age-related macular degeneration (AMD). In general, epithelial
and endothelial cells are often studied using label-free technology, and some specific assay
formats related to formation and disruption of monolayers have been developed for these
(e.g. barrier function, Fig. 3C). Here, RPE cells from a patient with inherited AMD and an
unaffected sibling were examined using an ECIS electrical wound healing assay. Real-time
monitoring over a 25-day period demonstrated the establishment and maturation of RPE
layers on the microelectrode arrays, in which a spatially controlled damage to the cell layer
was introduced to mimic AMD. Apparently, label-free technology can be used to measure

long-term effects, and is apparently suited for tissue-on-a-chip technology. This offers
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translational value by enabling real-time, quantitative and reproducible patient-specific
studies [47].

Another stem cell type of interest are MSCs, which are attractive candidates for tissue
engineering due to their wide mesodermal differentiation potential. Angstmann et al.
compared ECIS and xCELLigence in search for standardized quality control assays to monitor
differentiation and high-throughput screening that is both non-invasive and time-resolved.
They studied MSCs isolated from two different tissues of various donors, namely bone
marrow and adipose tissue. Impedance measurements were used to discriminate osteogenic
from adipogenic differentiation, which showed modulating effects of extracellular matrix
components [48]. Label-free assays were also used to establish culture conditions for
expansion of endometrial MSC (eMSC) isolated from endometrial lining of the human uterus
of premenopausal women [49] or to test MSC labelling by a new type of nanoparticle [50].

In another instance, ECIS was used to monitor proliferation and osteogenic
differentiation of human adipose stem cells (hASC) from donor populations of different ages.
This assay could be used to predict the osteogenic potential for patient-specific bone tissue
engineering [51]. Finally, Berger et al. studied molecular mechanisms in human obesity in
hASCs from liposuctions of female patients. Studying lipid uptake and adipocyte
differentiation with the xCELLigence, the authors identified several dysregulated adipocyte-

specific genes involved in fatty acid storage or cell adhesion [52].

Other cell types
Label-free assays are suited for virtually any cell type and have in fact been applied to
numerous others besides the most commonly biobanked samples highlighted above.

A further category of particular interest are cancer and related cell types. Here,
impedance-based cellular assays are most often used to measure migratory and invasive
properties (e.g. Fig. 3B), which are key characteristics for any (metastatic) cancer type. For
instance, the xCELLigence was used to monitor the motility of primary human normal
mammary cells versus patient-derived breast cancer epithelial cells [8], migration in various
ovarian cancer patient samples [53] and proliferation and response to kinase inhibitors in
patients' glioblastoma samples [54]. Others have evaluated (potential) treatment options on
a patient’s malignant melanoma cells [55] and on a newly established mesenchymal
chondrosarcoma cell line from a patient [56]. Two other publications used the xCELLigence
for characterization of newly established cell lines from patient samples, offsetting them
versus parental tumor tissue or traditionally used carcinoma cell lines [57, 58]. Finally, Ruiz

et al. applied the xCELLigence to patients' own cancer cells for in vitro selection of the most
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promising treatment, in this case for human carcinoma cells from malignant pleural effusions
[59]. This is an illustrative example of possible applications in precision medicine.

Impedance-based technologies are also suited to test potential cell-based therapies (Fig.
3G). Seidel et al. demonstrated the therapeutic potential of y& T cells for antibody-based
immunotherapy in pediatric patients with B-lineage acute lymphoblastic leukemia (ALL). y&
T cells were derived from healthy blood donors as well as from a patient with common-ALL.
The xCELLigence was used to measure y& T cell lysis in a breast adenocarcinoma cell line in
real-time, and outperformed the traditional endpoint assay [60]. In a similar manner, others
studied the ability of mononuclear cells from normal and breast cancer patients to kill
different breast cancer cell lines in the presence or absence of trastuzumab [61].

Myoblasts from muscle biopsy samples are another cell type of interest. In a recent
example, Sente et al. studied pathological mechanisms of heart failure. Using the
xCELLigence, they observed myoblast adiponectin signaling, differentiation, proliferation and
viability in primary myoblasts and myotubes from chronic heart failure patients and age- and

gender-matched healthy donors [62, 63].

From drug discovery to precision medicine

Due to their versatility, label-free assays and patient cells, when combined, can be utilized at
various stages of medicines research. As a cell-phenotypic screen, label-free assays are well
suited for target identification, compound screening andlead selection. Likewise they allow
the investigation of mechanisms of action and the testing of drug efficacy and safety [14, 17].
In this review we provided typical examples involving patient cells, which offer increased
physiological context. As such patient samples are often in limited supply, this set-up is not
so much used for e.g., screening drug candidates but rather for understanding disease
mechanisms and testing potential treatments. This was done by Lowin et al. in the context
of rheumatoid arthritis to identify drug targets, to subsequently test compounds and to
define possible treatments [28, 41]. In a more integrated approach the combination of
patient cells and label-free assays resulted in tissue-on-a-chip technology, as demonstrated
by Gamal et al.[47]. It is to be expected that the advent of stem cell technology will radically
change the availability of patient-derived materials [42, 64], which would allow a further
integration of label-free assays. This would be an ideal starting point for the advancement of
precision medicine, if patient-derived material can be made available readily, on demand,
and in larger quantities. In this light the question arises whether label-free technologies can

be developed that take the three-dimensionality of advanced cellular models and organoids
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into account [65-67]. In drug safety and toxicity research, iPSC-derived cardiomyocytes can
be used in a label-free setting to evaluate potential cardiac (side) effects of drug candidates
[12, 43]. Finally, the combination of patient cells and label-free technology can be used for
clinical compound selection, for instance by measuring patient cell responses in vitro as
means of selecting the most promising treatment. This has been demonstrated by profiling
drug treatment responses of patient derived malignant pleural effusions in a study by Ruiz et

al. [59], with the aim to provide drug treatment of cancer in a personalized manner.

Conclusion

Physiologically more appropriate cellular models and readout systems are needed to
increase representability and translational value. Patient-derived cells can provide
pathological and physiological context, and biobanking has increased the availability of
human primary samples for research. Label-free impedance-based assays can and have been
applied to a wide range of such samples. These assays indeed increase physiological
representability by omitting reporter-based modifications and measuring physiological cell
function in real-time. Thus, combining label-free assays with human primary samples offers

a uniquely biorelevant set-up for the purposes of drug development and precision medicine.
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Abstract

Deciphering how genetic variation in drug targets such as G protein-coupled receptors
(GPCRs) affects drug response is essential for precision medicine. GPCR signaling is
traditionally investigated in artificial cell lines which do not provide sufficient physiological
context. Patient-derived cell lines such as lymphoblastoid cell lines (LCLs) could represent the
ideal cellular model system. Here we describe a novel label-free, whole-cell biosensor
method for characterizing GPCR-mediated drug responses in LCLs. Generally, such biosensor
technology is deemed only compatible with adherent cell lines. We optimized and applied
the methodology to study cellular adhesion properties as well as GPCR drug responses in
LCLs, which are suspension cells. Coating the detector surface with the extracellular matrix
protein fibronectin resulted in cell adherence and allowed detection of cellular responses. A
prototypical GPCR present on these cells, i.e. the cannabinoid receptor 2 (CB,R), was selected
for pharmacological characterization. Receptor activation with the agonist JWH133,
blockade by antagonist AM630 as well as downstream signaling inhibition by PTX could be
monitored sensitively and receptor-specifically. Potencies and effects were comparable
between LCLs of two genetically unrelated individuals, providing the proof-of-principle that
this biosensor technology can be applied to LCLs, despite their suspension cell nature, in
order to serve as an in vitro model system for the evaluation of individual genetic influences

on GPCR-mediated drug responses.
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Introduction

Inter-individual variability in drug action and clinical effectiveness forms a challenge in
today's drug treatment and development. In fact, variation in drug response that arises from
genetic, lifestyle and environmental differences causes even blockbuster drugs to work in
only 75% to merely 35% of all [1, 2]. Personalized medicine, or, more broadly defined,
precision medicine proposes to personalize drug prescriptions using a sub-population or
patient's individual characteristics, e.g. genetic information, and thereby decrease risks of
ineffective treatment, dosing or side-effects [2-4]. In order to achieve this, it is paramount to
determine whether, and how, genetic variation affects drug responses. Today, genetic
testing is available for around 2000 clinical conditions, particularly in oncology [3, 5]. Two
poster children of personalized medicine are HER2-positive breast cancer tests as a predictor
of response to the drug herceptin and screens for CYP450 polymorphisms that are known to
affect treatment with e.g. selective serotonin-reuptake inhibitors [3, 4].

The majority of therapeutic targets to date are formed by a class of membrane proteins,
the G protein-coupled receptors (GPCRs) [6]. More than 30% of all currently marketed drugs
exert their therapeutic effect by directly binding to and influencing GPCR function. Due to
their ubiquity GPCRs are involved in a plethora of physiological processes. It is therefore
highly interesting to decipher the influence of genetic variation in GPCR-mediated drug
responses [7, 8]. While several examples have linked GPCR polymorphisms to disease and
drug response variation, research has mostly focused on the statistics of genotype influences
followed by functional characterization in heterologous cell lines [8-10]. Heterologous cell
lines are, however, systems with artificial receptor expression and represent a non-
physiological, cellular context [11, 12]. To fully understand the underlying mechanism of
polymorphism influence, functional characterization on a physiologically relevant molecular
and cellular level is vital. An ideal setup would be to use patient-derived cell lines as a model
system to assess polymorphism influences on drug response.

A well-established example of such personal cell lines are lymphoblastoid cell lines
(LCLs), which to date are a preferred choice for storing a person's genetic material [13, 14].
Numerous consortia have built and actively utilize LCL libraries, including the Centre d’Etude
du Polymorphisme Humain (CEPH), the International HapMap and 1000 genomes projects
[15-19]. However, LCLs are mainly used as a source of DNA or RNA for genotyping, expression
or methylation studies [9, 13]. Functional cellular assays on LCLs have seldom been
performed [13, 20, 21] with virtually none for GPCRs. Only Morag and Gurwitz et al. studied

the influence of a few GPCR antagonists on LCL growth [20]. In fact, many traditional cellular
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assays, especially for GPCRs, are incompatible with LCLs as they require labeling and cell or
target engineering. Another drawback is that they generally lack the sensitivity required for
such endogenous cell lines which often have low target expression levels. Recently
developed label-free technologies offer a more sensitive, less invasive solution and can
monitor drug effects on a whole cell in real-time [12, 22, 23]. The sensitivities of these label-
free assays is high enough for standard applications such as GPCR activation or inhibition
down to detection of small changes such as biased signaling [12, 24]. It may very well be that
receptor polymorphisms induce subtle yet important changes in drug-target binding,
signaling bias and receptor subtype selectivity [7]. Label-free technologies are therefore ideal
for precision medicine purposes, as they harbor the ability to pick up small changes in GPCR
signaling or drug responses in the physiologically relevant context of endogenous cells. One
disadvantage, however, is that the detection method of label-free assays generally requires
cells to adhere to the detector surface at the bottom of the well {12, 23] and unfortunately,
LCLs are by nature non-adherent suspension cells [25]. However, several reports have been
published recently on the application of label-free technology to suspension cells, including
various types of blood cells [26, 27]. To solve the above listed challenges we developed a
methodology for a label-free, impedance-based whole-cell assay that allows characterization
of GPCR signaling in LCLs despite their suspension cell nature. This enables the use of LCLs as
an in vitro cellular model system to evaluate individual differences in GPCR-mediated drug

responses.

Material and methods

Chemicals and reagents

The LCLs were kindly provided within the framework of this collaboration [15]. Fibronectin
from bovine plasma, poly-D-lysine (PDL) and unsupplemented RPMI 1640 cell culture
medium were purchased from Sigma Aldrich (Steinheim, Germany). Collagen | from rat tail
was purchased from Fisher Scientific (lllkirch, France). The GPCR agonist JWH133 was
purchased from TOCRIS (Bristol, UK), ATP from Sigma Aldrich and AM630 from Cayman
Chemicals Company (Ann Arbor, Michigan, USA). RGD peptide (GRGDTP) and RGE peptide
(GRGESP) were purchased from AnaSpec/Tebu-bio (Heerhugowaard, the Netherlands).
Ga; blocking pertussis toxin (PTX) was purchased from Sigma Aldrich. All other chemicals

were of analytical grade and obtained from standard commercial sources.
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Lymphoblastoid cell line generation

The LCLs had previously been generated at the Rutgers Institute (Department of Genetics,
Piscataway, NJ, USA) using a standard transformation protocol [15]. In short, peripheral B-
lymphocytes were exposed to Epstein—Barr Virus (EBV) by treatment with filtered medium
from a Marmoset cell line in the presence of phytohemaglutinin (PHA) during the first week
of culture [13, 14, 28]. Cultures were maintained for 8-12 weeks to adapt and expand the

EBV transformed lymphocytes and subsequently cryopreserved.

Cell culture

Two LCLs from two genetically unrelated individuals were used for the experiments
presented in this manuscript. Cryopreserved cells were thawed, resuscitated and multiple
aliquots frozen for future use. Of note, LCLs were disposed of after culturing them for
maximally 120 days. LCLs were grown as suspension cells in culture medium consisting of
RPMI 1640 (25 mM HEPES and NaHCOs) supplemented with 15% Fetal Calf Serum (FCS),
50 mg/mL streptomycin and 50 IU/mL penicillin at 37 °C and 5% CO,. Cells were subcultured

twice a week at a ratio of 1:5 on 10 cm ¢ plates.

Label-free whole-cell biosensor analysis (xCELLigence RTCA system)

Detection principle

Whole-cell assays were performed using the xCELLigence RTCA system [12], a real-time cell
analyzer (RTCA) based on the electrical impedance generated by cells attaching to gold
electrodes embedded on the bottom of the microelectronic E-plates. Cell attachment
changes the local ionic environment at the electrode-solution interface, thereby generating
impedance. Such relative changes in impedance (Z) are summarized as a dimensionless
parameter, the so-called Cell Index (Cl), and displayed in a real-time plot. In detail, a very
weak electrical signal is applied to the sensor electrodes, where the AC excitation voltage
level is in the lower mV range and the resulting current is in the YA range (output test signal
is 22 mV rms * 20% with max. 5 mV DC offset at 10, 25 and 50 kHz). The RTCA analyzer
determines cell indeces at these three predetermined optimal midrange frequencies and the
average speed of measurement is approximately 150-250 ms for each individual well. In
order to increase usability and ease for the user, the RTCA system provided by the
manufacturer has pre-set conditions for amplitude, applied potential, frequency range and

used frequency for extrapolation of results [29, 30], which were used in all experiments
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presented in this manuscript. The Cl value at a given time point is defined by the formula
in Eq. (1):

Equation (1) Cl=(Z-20) Q/15Q

where Z;is the impedance at each individual time point and Zo represents the baseline
impedance in the absence of cells, which is measured prior to the start of the experiment.
The Cl in the absence of cells is therefore defined as 0. As cells adhere to the electrodes,
impedance and the corresponding Cl increase proportionally. Impedance changes thereby
reflect variations in cell number and degree of adhesion, as well as cellular viability and
morphology [12, 22]. Such cellular parameters are also affected upon activation of GPCR
signaling, thereby resulting in impedance changes and real-time monitoring of cellular
signaling events [12]. Typically, GPCR-mediated activation would result in an increase in cell

adhesion and overall increase in Cl, while a lower Cl would indicate loss of adhesion [31].

General protocol
The wells of 16 or 96 well E-plates were coated with 50 pl of fibronectin (10 ug/ml), unless
stated otherwise. After 30 min incubation at room temperature, the coating liquid was
removed and all plates were air dried for at least 1 h prior to use. LCLs were harvested by re-
suspending in cell culture medium after brief treatment with EDTA and centrifuged twice at
200g for 5 min. Background impedance (Z,) was measured after adding 45 L, or in case of
antagonist experiments 40 L, of culture media to 16 or 96 well E-plates, respectively. In all
cases, final well volumes after cell and ligand addition were 100 pL. Cells were seeded by
adding 50 L of cell suspension containing 50,000 cells per well, unless stated otherwise. To
ensure accurate seeding densities, cells were counted using Trypan blue staining and a
BioRad TC10 automated cell counter. After resting at room temperature for 30—60 min, the
E-plate was placed into the recording station situated in a 37 °C and 5% CO; incubator.
Impedance was measured every 15 min overnight. Cells were stimulated by a GPCR ligand or
vehicle control in 5 pl after 18-20 h, unless specified otherwise. To record GPCR activation,
Cl was recorded for at least 30 min with a recording schedule of 15 s intervals for 20 min,
followed by intervals of 1 min, 5 min and finally 15 min.

For assay optimization purposes, cells were stimulated with the purinergic P2Y receptor
agonist ATP at a saturating concentration of 100 M. As compound solubility of JWH133 and
AM630 required addition of dimethylsulfoxide (DMSO), the final DMSO concentration upon

ligand or vehicle addition was kept at 0.25% DMSO for all wells and assays. For agonist assays,
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cells were stimulated with increasing concentrations of JWH133. For antagonist assays, cells
were pre-incubated for 30 min with 5pul of the antagonist AM630 at increasing
concentrations or vehicle control. Subsequently, cells were challenged with a submaximal
agonist concentration equal to the agonist's ECgp value (100 nM for JWH133) or vehicle
control.

For coating trials, wells were coated with 50 pl of varying coatings such as poly-D-lysine
(0.1 mg/ml), collagen | (50 ug/ml), pure Fetal Calf Serum or fibronectin (0.1-50 pg/ml). Non-
coated wells were used as control condition. After removing coating liquid, only poly-D-lysine
plates were washed with 3x100 pl PBS before use.

To assess the specificity of LCL adherence to fibronectin, assay medium was
supplemented with increasing concentrations of the integrin blocking RGD peptide GRGDTP
[1 uM—1 mM] or the inactive control RGE peptide GRGESP [1 mM]. Normal assay medium
was used as control and non-coated wells were used for reference.

For studies on Ga; coupling, cells were seeded in assay medium containing 100 ng/ml
Pertussis Toxin (PTX).

Data analysis

Experimental data were obtained with RTCA Software 1.2 (Roche Applied Science) and
subsequently exported and analyzed using GraphPad Prism 5.0 (GraphPad Software Inc., San
Diego, CA, USA). For data analysis, ligand responses were normalized to A cell index (A CI)
after subtracting baseline (vehicle control) to correct for any agonist-independent effects.
Overall, a threshold of 0.01 A Cl was kept for considering responses different from baseline.
Peak responses were defined as highest A Cl observed within 30 min after compound
addition. Peak values and experimental A Cl traces were exported to Prism for further
analysis; construction of bar graphs or dose-response curves by nonlinear regression and
calculation of ICsg, ECsp and ECgp values. All values obtained are means of at least three
independent experiments performed in duplicate. Statistical significance was determined
using Student's t-test for two values or two column comparison, e.g. comparing pECsg values
between individuals. Comparison of the means of multiple data sets, e.g. the peak A Cl of
ATP responses of various coating conditions, was performed by one-way ANOVA, followed
by a Tukey's post test for comparison of all columns or a Dunnett's post test when comparing
to vehicle or non-coated control. To get an indication of statistical assay reproducibility under
optimized assay conditions, correlation analysis was performed for the dose-response

curves for both the CB;R agonist as well as antagonist for each cell line.
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Results

Coating allows detection of GPCR responses

At first various common coatings known to mediate cellular adherence were tested for their
ability to allow detection of GPCR signaling in LCLs, for which ATP was chosen as a typical
GPCR ligand. The result of a representative coating experiment is shown in Fig. 1. Following
LCL seeding, an initial increase in impedance related to cell adhesion, growth and division
was observed (Fig. 1A). The overall levels of impedance after 1 h and 18 h, i.e. shortly prior
to ligand addition, are summarized in Fig. 1B and C. Impedance levels after 1 h are likely to
reflect initial cellular adhesion, while impedance after 18 h is also influenced by cellular
proliferation or more prolonged changes in cellular morphology. Subsequent addition of the
agonist ATP induced changes in LCL morphology that were recorded in real-time (Fig. 1A and
D). Typically, ATP addition resulted in an immediate dose-dependent increase of impedance
to a peak level. Subsequently, the Cl trace gradually decreased towards a plateau within a
period of 30 min.

Lack of coating resulted in no adherence or detection of GPCR response. Even though
poly-D-lysine initially caused a high amount of cellular adherence equal to fibronectin
(Fig. 1B) this declined drastically over the course of 18 h (Fig. 1C) and allowed little to no
detection of GPCR response (Fig. 1D and E). Even though both poly-b-lysine and collagen
coating resulted in significant impedance levels in comparison to non-coated wells just
before ATP addition (18 h, Fig. 1C), both of them failed to allow detection of an ATP-induced
response (Fig. 1D and E) as growth curves had dropped to or below baseline levels (CI<0).
Fibronectin coating, on the other hand, did mediate cellular adherence over a longer time
course resulting in a stable growth curve and sufficient window for detection of GPCR
signaling (Fig. 1D and E).

Of note, coating experiments performed on LCLs from a second individual, individual 2,
gave virtually identical results (data not shown).

Subsequently, the amount of fibronectin required for stable impedance levels and GPCR
signal detection was further optimized. While initially all amounts of fibronectin resulted in
impedance above non-coated levels (Fig. 2A and B), only fibronectin levels from 5 pg/ml or
higher maintained impedance above non-coated up to 18 h (Fig. 2A and C). Significant ATP
signaling was detected from 10 to 50 pg/ml fibronectin coating (Fig. 2D and E). In fact, 25 and
50 ug/ml were indistinguishable in impedance level and ATP response window. 10 ug/ml

resulted in slightly lower effects, but still gave stable impedance levels and response window,
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which were both not statistically significantly different from 25 or 50 pug/ml. Fibronectin
concentration effects were comparable for another cell line from individual 2 (data not
shown). Therefore, a fibronectin concentration of 10 ug/ml was chosen for all further

experiments.
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Figure 1. Fibronectin coating mediates LCL adhesion to allow detection of GPCR response. Electrodes
were coated with various standard coatings, i.e. fibronectin (Fb; [50 ug/ml]), collagen | (Col; [50 pg/ml])
poly-p-lysine (PdL; [0.1 mg/ml]) and Fetal Calf Serum (FCS). Non-coated (NC) wells were used as a
control. Cells were stimulated with the agonist (ATP [100 uM]) after 18 h of growth. Representative
xCELLigence traces of a full experiment (A) and a baseline-corrected ATP response (D) are given. Time
point O represents the time of cell seeding (A) and agonist addition (D), respectively. Bar graphs
summarize the differences in cell index (Cl) shortly after seeding (B, 1 h) and prior to agonist addition
(C, 18 h), both normalized to fibronectin (100%) and non-coated (0%) wells. (E) Bar graph of baseline-
corrected A cell index (A Cl) of peak ATP response per coating condition, normalized to fibronectin
(100%) and non-coated (0%) wells. Data are mean + SEM from three separate experiments performed
in quadruplicate (B, C) and duplicate (E) using one cell line (individual 1, 50,000 cells/well). Significance
compared to control was tested using one-way ANOVA with Dunnett's post-hoc test. *=p<0.05,
**=p<0.01, ***=p<0.001.
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Figure 2. Titration of fibronectin coating concentration. Electrodes were coated with different amounts
of fibronectin from 0.1-50 pg/ml. Non-coated (NC) wells were used as a control. Cells were stimulated
with agonist (ATP [100 uM]) 18 h after seeding. Representative xCELLigence traces of a full experiment
(A) and a baseline-corrected GPCR agonist response (D) are given. Time point O represents time of cell
seeding (A) or agonist addition (D). Bar graphs indicate the cell index (Cl) shortly after seeding (B, 1 h)
and prior to agonist addition (C, 18 h), both normalized to fibronectin (100%) and non-coated (0%)
wells. (E) Bar graphs represent the baseline-corrected A cell index (A Cl) at peak ATP response,
normalized to fibronectin (100%) and non-coated (0%) wells. Data are mean + SEM from three separate
experiments performed in quadruplicate (B, C) and duplicate (E) using one cell line (individual 1, 50,000
cells/well). Significance compared to control was tested using one-way ANOVA with Dunnett's post-hoc
test. ¥*=p<0.05, **=p<0.01, ***=p<0.001.

LCLs specifically adhere to fibronectin

In order to confirm the specificity of LCLs' interaction with fibronectin, inhibition of
fibronectin adherence by small, integrin-targeting peptides containing the RGD motif was
characterized. Addition of RGD peptide to the assay medium decreased the LCLs' attachment
to fibronectin, as reflected by a decreased cell index (Fig. 3A and B), though not to levels as
low as the non-coated control. This inhibition was concentration-dependent (Fig. 3B).

However the effect decreased over time and was not noticeable after 18 h or, therefore, on
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Figure 3. Influence of peptides blocking the fibronectin interaction. Cells were seeded on fibronectin
coated plates (Fb; [10 pg/ml]) in assay medium containing varying concentrations of RGD peptide
[1 mM-1 uM], inactive reference peptide RGE [1 mM] or normal medium. Non-coated (NC) wells were
used as reference. Cells were stimulated by agonist addition (ATP [100 uM]) after 18 h growth. (A)
Representative full xCELLigence traces, where time point O represents the time of cell seeding. (B) Bar
graphs indicate cell index (Cl) 1 h after seeding, normalized to fibronectin (100%) and non-coated (0%)
wells. Data derived from six separate experiments performed in quadruplicate using LCLs of one
individual (individual 1, 50,000 cells/well). Statistical significance versus control RGE peptide was
determined using one-way ANOVA with Dunnett's post-hoc test. *=p<0.05, **=p<0.01, ***=p<0.001.

ATP response (data not shown). Treatment with the inactive RGE peptide at a high
concentration (1 mM) did not affect any part of the impedance readout, thereby confirming
that LCL adherence was affected by specific inhibition of integrin—fibronectin interactions.
Similar experiments performed on LCLs from a second individual, individual 2, gave

comparable results (data not shown).

Seeding density and stimulation time affect GPCR response

Next to optimization of coating, assay conditions were further optimized by evaluating
various LCL densities. The experimental results are summarized in Fig. 4. Both the height of
the growth curves (Fig. 4A and B) and the GPCR signal (Fig. 4C and D) increased accordingly
with the cell density.

The cell index after 18 h (Fig. 4B) was significantly different between all seeding densities,
except between 50,000 and 25,000 cells/well. While 25,000 and 50,000 cells/well showed
no statistically significant difference in growth curve, they did show significant differences in
detection of an ATP signal (Fig. 4D). 25,000 cells/well gave an insufficient window for full
pharmacological characterization and was not statistically different from the control. 50,000
Cells/well, however, was sufficient to allow a reliable detection of a GPCR signal.

Interestingly, the ATP response was not statistically different from the condition with
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Figure 4. Seeding density influences growth curve and window of GPCR response. Cells were seeded in
four different densities (25,000-200,000 cells/well). Cells were stimulated with the agonist (ATP
[100 uM]) after 18 h of growth. Representative xCELLigence trace of a full experiment (A) and a
baseline-corrected ATP response (C). Time point O represents the time of cell seeding (A) or agonist
addition (C). Bar graphs indicate the cell index (Cl) shortly prior to agonist addition normalized to Cl=0
(B, 18 h) and baseline-corrected A cell index (A Cl) at peak ATP response, normalized to vehicle control
(D). Data are mean + SEM from three separate experiments performed in quadruplicate (B) and
duplicate (D) using one cell line (individual 1). Statistical significance was determined using one-way
ANOVA with Tukey post-hoc test to compare all columns to each other (B) and Dunnett's post-hoc test
to compare values to vehicle control (D). ns=not significant (p>0.05), *=p<0.05, **=p<0.01,
***=p<0.001.

100,000 cells/well. Irrespective of specific statistical significances, both the basal level of
impedance as reflected in the growth curve and the ATP response increase in height along
with the seeding density. As 50,000 cells/well was the lowest cell density that allowed reliable
measurements of GPCR activation, this cell density was chosen for all further experiments.
Similar experiments performed on LCLs from a second individual, individual 2, gave
comparable results (data not shown).

Additionally, as the LCL's growth curve appeared to reach a stable plateau much earlier

than 18-20 h (Fig. 5A), stimulation after 5 h was also investigated. GPCR stimulation after

51 | Chapter 3



A 0.151 Celseeding 17 Agonist addition ‘l
x u
3 0.10 - 5 hours
5 -© 20 hours
8 0.05
0.00 — T —————————
0 2 4 6 8 10 12 14 16 18 20 22
Time (h)
B 0.06, Agonist addition c 1201
-e- 5 hours
-e- 20 hours 100
o
< 0.04 2 80
° o
£ < 604
= 0.02 o %
2 = 404
=®
0.004 T T v J °© _
15 30 20
Time (min) 0-
5 hours 20 hours

-0.02-

Figure 5. Influence of growth phase duration. Two cell lines were stimulated with the GPCR agonist ATP
[100 uM] immediately after reaching growth plateau at 5 h or after a longer duration of growth at 20 h.
Representative xCELLigence traces of a full experiment (A) and a baseline-corrected ATP response (B).
Time point O represents the time of cell seeding (A) or agonist addition (B). (C) Bar graphs indicate the
baseline-corrected A cell index (A ClI) at peak ATP response, normalized to vehicle control. Data
represents means of four separate experiments performed in duplicate using the LCLs of one individual
(individual 1, 50,000 cells/well). Statistical significance was determined using Student's t-test.
*2p<0.05, **=p<0.01, ***=p<0.001.

20 h gave a significantly higher response than stimulation after 5 h, despite the fact that the
growth curve plateau had been reached after 5 h (Fig. 5B and C). Comparable effects were

observed on LCLs from a second individual (individual 2, data not shown).

Detailed pharmacological characterization of GPCR signaling in LCLs is possible
After completing assay optimization, the resulting protocol was applied for full
pharmacological characterization of an example GPCR. For this purpose, a GPCR with well
characterized pharmacology and known to be expressed in LCLs was chosen, i.e. the
cannabinoid receptor 2 (CB,;R; Ensembl gene: ENSG00000188822). A result of a
representative experiment along with concentration-effect curves is provided in Fig. 6.
Responses from two cell lines from two unrelated individuals were recorded and compared.
Addition of a CB,R selective agonist JWH133 resulted in an immediate and
concentration- dependent increase of impedance (Fig. 6A and B), which was similar in shape
to the recorded ATP responses (Fig. 1, Fig. 2 and Fig. 3). The impedance increase was

concentration-dependently reduced by pretreatment with the CB,R selective antagonist
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Figure 6. Characterization of Cannabinoid receptor 2 responses in two genetically unrelated LCLs. Cell
lines were stimulated with a CB3R selective agonist JWH133 18 h after seeding (50,000 cells/well). (A)
Representative example of a baseline-corrected JWH133 response [1 uM-100 pM]. (B) Dose-response
curves of JWH133 derived from peak A cell index (A Cl) within 30 min after agonist
addition. pECso values of JWH133 were 7.82+0.07 (individual 1) and 7.71+0.04 (individual 2). (C) Cell
lines were pre-incubated for 30 min with increasing concentrations of AM630 [10 uM-100 pM] before
stimulation with JWH133 [ECg: 100 nM]. Dose-response curves of AM630 were derived from peak
A Cl within 30 min after agonist addition. plCsovalues for AM630 were 6.77+0.06 (individual 1) and
6.85+0.04 (individual 2). To test coupling to Gaiproteins, cells were seeded and grown in assay medium
with or without PTX [100 ng/ml] and stimulated with JWH133 [ECgo: 100 nM]. (D) Representative
example of baseline-corrected JWH133 response in the absence and presence of PTX. (E) Bar graphs
show the PTX effect on peak A cell index (A Cl) of JIWH133 response, normalized to vehicle control. Data
represents the means of four separate experiments performed in duplicate. Statistical significance was
calculated by  Student'st-test. ns=not  significant  (p>0.05), *=p<0.05, **=p<0.01,
***=p<0.001. pECso and plCsg values did not differ significantly between the two individuals.
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AM630 (Fig. 6C). Concentration-effect curves were obtained by peak analysis of
corresponding agonist-induced Cl changes. Potencies of JWH133, given as pECsp values, were
7.82+0.07 (15 nM) and 7.71+0.04 (20 nM) on individual 1 and individual 2, respectively.
Antagonist ICsg values for AM630 were obtained by stimulating cells with a submaximal (ECso)
concentration of JWH133 following antagonist pre-incubation. The plCso values for AM630
were 6.77+0.06 (169 nM) and 6.85+0.04 (141 nM) on individual 1 and individual 2,
respectively. Both agonist pECsp and antagonist plCsp values did not differ significantly
between the two individuals. In order to get an indication of overall assay reproducibility
under these optimized conditions, correlation analysis was performed for the dose-response
curves for both the CB;R agonist as well as antagonist. Experiments were reproducible with
a coefficient of correlation (Pearson's r) of minimum 0.95 (p<0.05) for both individuals and
at all concentrations of the agonist and 0.85 for the antagonist (p<0.01).

The influence of blocking the Gai-coupled pathway upon CB;,R activation was examined
for both cell lines, as shown in Fig. 6D and E. Addition of PTX to the assay medium effectively
diminished the CB;,R response to agonist JWH133 (Fig. 6D) in a similar manner for both cell
lines (Fig. 6E). This confirmed that the LCLs' response to the selective CB,R agonist was

dependent on the Ga; pathway.

Discussion

Personal cell lines, such as LCLs that are commonly used for storing an individual's genetic
material [13], can offer a model system to investigate individual differences in drug response
in a physiologically relevant, cellular context. The introduction of highly sensitive, label-free
technologies that allow cellular assays with minimal modifications makes harvesting this
potential possible. In the present study, we have setup and optimized a label-free
methodology for investigating GPCR-mediated drug responses in LCLs and characterized a
prototypical GPCR for proof-of-principle.

As P2Y receptors (Ensembl family: ENSFM00760001715026) are abundantly present on
virtually all cell types, including LCLs [32, 33], ATP was chosen as initial ligand for the
methodological setup. In fact, P2Y receptors represent one of the few examples with
functional characterization in LCLs. Lee et al. investigated ATP-induced P2Y receptor
responses in LCLs using a single-cell fluorescent microscopy technique. While this traditional,
label-based technique measured little response at an ATP concentration of 100 uM, the
label-free assay used in our study was able to measure a clear response at the same

concentration (Fig. 1, Fig. 2,Fig. 3, Fig. 4 and Fig. 5). This emphasizes the advantage and
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opportunity of using label-free techniques to measure GPCR signaling in LCLs over traditional,
label-based methodologies, as they offer highly increased sensitivity and lower detection
limits.

The initial experimental setup was based on previously published protocols for adherent
cell lines [24, 31, 34]. While label-free assays are often deemed incompatible with suspension
cells, some application examples exist for various label-free assays based on optical or
impedance detection. These include various types of blood cells. For instance, GPCR signaling
was measured in primary human neutrophils and THP-1 cells, a human monocyte cell line,
using an optics-based assay [27, 35]. The impedance-based CellKey technology was used to
measure GPCR signaling in monocyte cell lines (THP-1 and U937), neutrophils and primary
normal peripheral blood monocytes (PBMCs) [36, 37]. Both these technologies have the
disadvantage of being performed in buffer and at room temperature, while xCELLigence
assays use more physiologically relevant conditions like normal cell culture medium and a
temperature of 37 °C. Application of xCELLigence technology to suspension cells has been
reported, however not for investigating GPCR signaling. Obr et al. [38] applied the
technology to measure the effect of histone deacetylase inhibitors on hematopoietic
cells. Martinez-Serra et al. [26] investigated the cytotoxic effect of antineoplastic agents on
cells from hematological malignancies, which included the leukemia lymphoblast cell line
K562. Itis well known that the cell density and distribution on the electrodes can significantly
influence impedance and experimental readout [12, 22, 23]. In previous cases, fibronectin
was often used to achieve cell adherence combined with increased cell densities with an
optimal range of 60,000 to 45,000 cells/well [26, 27, 35, 38]. Accordingly, we first tested
various standard coating conditions and optimized cell density for impedance recordings in
LCLs and found similar conditions to be optimal for LCLs. In our hands, LCL densities of 50,000
cells/well were sufficient for detection of a robust GPCR response (Fig. 4), a number that is
merely 2.5-fold higher than common for adherent cells [24, 31, 34] and very comparable to
existing suspension cell protocols described above.

Following LCL seeding onto fibronectin-coated plates, an initial increase in impedance
related to cell adhesion, growth and division was observed, as is similar for any adherent cell
line [31, 34]. Fibronectin was capable of mediating LCL adherence sufficiently for the
measurement of a GPCR response after 18 h (Fig. 1) in a concentration-dependent manner
(Fig. 2). It has been shown that LCLs can attach to fibronectin [39] and that LCLs express the
a4B1 and avB3 type integrins [40], which are known to interact with fibronectin [41, 42].
Most fibronectin-binding integrins interact with a RGD tripeptide active site of fibronectin

[41-43]. Small soluble RGD peptides have been shown to compete for integrin binding [43,
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44] and one of those partially blocked the LCL's cellular interaction with the fibronectin
coating (Fig. 3). The inactivity of the RGE control peptide confirmed that adherence was due
to a specific interaction of LCL's integrins with fibronectin. Interestingly, around 50% of LCL
adherence remained even in the presence of a high concentration of the RGD peptide. This
remaining adhesion is most likely mediated through another motif in fibronectin, the LDV
motif, which is known to be the predominant binding site for the a4p1 integrin [42]. Poly-D-
lysine is known to mediate cellular adhesion by changing surface charges [45, 46], but failed
to maintain LCL adherence at sufficiently high levels for detection of an ATP response despite
an initially equally high adherence as fibronectin (Fig. 1). LCLs have been shown to attach to
poly-L-lysine at the same concentration, however, for a shorter timeframe than the 18 h in
our experiments, i.e. 4 h [33]. Moreover, collagen, which also mediates cellular adhesion
through specific integrins [41], failed to promote adhesion of LCLs. Collagen-interacting
integrins are thus likely not present in LCLs, while fibronectin-specific integrins are.
Furthermore, the findings agree with Martinez-Serra et al. who showed that cells from
hematological malignancies, including the leukemia lymphoblast cell line K562, attached
more efficiently to fibronectin than to collagen, laminin or gelatin [26].

Following the methodological optimization, we showed that in-depth pharmacological
characterization of GPCRs is possible in LCLs using the CB; receptor as a prototypical example
(Fig. 6). This receptor is well expressed in LCLs [47] and has been investigated in a
heterologous cell line on the xCELLigence [31], but has not yet been functionally
characterized in LCLs until now. With recombinant cell lines, it is straightforward to confirm
that an impedance signal is receptor-specific by using the untransfected parental cell line as
negative control [31, 34]. However, this is not possible for endogenously expressed
receptors, as is the case for LCLs used in this study. Therefore, proof of a receptor-specific
response was provided by the concentration-dependent receptor activation with a CB;
receptor selective agonist, JWH133, and inhibition of that response by a CB, receptor
selective antagonist, AM630 [31, 48, 49]. Both JWH133 and AM630 effects were comparable
between LCLs from two different individuals (Fig. 6), as was expected as both cell lines carried
the same genotype for all non-synonymous variants (data not shown). Furthermore, both
JWH133 and AM630 effects on LCLs were comparable to literature values obtained in
heterologous cell lines. Scandroglio et al. determined the potency of JWH133 and AM630 in
traditional and label-free assays using a for GPCR investigations typical heterologous cell
system, a recombinant CHO cell line. Agonist JWH133 had a comparable potency in both
impedance and traditional cAMP assays of 29.9+20.5 nM and 30+7.3 nM, respectively,

showing that label-free assays yield values equal to traditional techniques. Similarly,
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JWH133's potency determined in the present study on LCLs (pECso: 7.8240.07 (15 nM) for
individual 1, 7.71+0.04 (20 nM) for individual 2) were very comparable to Scandroglio et al.'s
values on the CHO-cells. Furthermore, these authors showed that AM630 was able to
antagonize JWH133's effects, however they did not report an ICsg value for this inhibition.
Literature values for AM630 include an ICso of 128.6+40.6 nM in a traditional CAMP assay on
a recombinant CHO cell line [48]. On LCLs, AM630 readily antagonized JWH133 effects with
a very comparable potency (plCso: 6.77+0.06 (169 nM) for individual 1, 6.85+0.04 (141 nM)
for individual 2).

Besides for measuring cellular effects on GPCR signaling by agonists or antagonists, the
label-free xCELLigence system is also well suited to monitor inhibition of downstream
pathways [31, 50]. The CB, receptor is known to predominantly couple to the Gaj-pathway
and it was previously shown that JWH133 signaling on CHO cells could be inhibited by Gaj-
blocker PTX [31, 51]. Similarly, PTX effectively diminished the CB;R response to JWH133 in
LCLs of both individuals (Fig. 6), which thereby confirmed that the LCLs' response to the
agonist was indeed dependent on the Gai-pathway. Taken together, the effects of JWH133
in LCLs are mediated by the CB; receptor. While the effects and potencies of the CB,R ligands
were comparable between the endogenous LCLs and the recombinant CHO cells, LCLs
represent a more relevant physiological context as they are cell lines with specific individual
genetic material.

LCLs already form a large resource for personalized medicine research, as they are
commonly used to investigate association of genetic variation to disease or drug response
[9, 13, 21]. Moreover, large libraries of LCLs have already been built and are actively utilized
in numerous consortia [15-19]. Investigation of GPCR drug responses in LCLs may further
help the advancement of precision medicine. Examples linking GPCR polymorphisms to drug
response to date are sparse and focus on statistic associations followed by validating
polymorphism influences by generating these variants in heterologous cell lines [10].
Heterologous cell lines, however, are labor intensive to make and represent a different, non-
physiological cellular context than cells of an individual [11, 12]. Receptor overexpression,
differences in intracellular metabolic conditions as well as products from other genes could
modify cellular responses. Therefore, screening receptor responses in LCLs from persons
with potentially interesting polymorphisms may offer a more direct way of validation.
Expression studies indicate that LCLs express a wide range of druggable GPCRs that are of
interest for drug research, besides the CB, and P2Y receptors investigated in this study [47].

Next to investigation of GPCRs, label-free technology offers a wide range of other
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applications and has similarly been applied to other important classes of drug targets, such

as receptor tyrosine kinases [52, 53].

Conclusion

In conclusion, the current paper shows that direct characterization of GPCR activity in LCLs is
possible with a highly sensitive label-free technology, the xCELLigence. Despite that such
biosensor technology is deemed only compatible with adherent cell lines, we were able to
optimize the assay for the suspension cell LCLs. Using the CB,R as a prototypical GPCR, we
were able to show that receptor activation by an agonist, blockade by an antagonist, as well
as inhibition of downstream signaling could be monitored sensitively and receptor-
specifically. The resemblance of cellular responses between LCLs from two unrelated
individuals confirms that the methodology is robust and applicable to LCLs in general. This
offers the ability to use LCLs not just as a mere source of DNA for genetic studies, but also as
a functional, physiologically more relevant cellular model system for detailed investigation of
GPCR pharmacology in vitro. Ultimately, a mechanistic link may be made between
polymorphisms and drug response variation in individuals. Thus combining the resolution
power of a whole-cell label-free method with LCLs opens vast possibilities for research on

precision medicine.
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Abstract

Genetic differences between individuals that affect drug action form a challenge in drug
therapy. Many drugs target G protein-coupled receptors (GPCRs), and a number of receptor
variants have been noted to impact drug efficacy. This, however, has never been addressed
in a systematic way, and, hence, we studied real-life genetic variation of receptor function in
personalized cell lines. As a showcase we studied adenosine Axa receptor (AaR) signaling in
lymphoblastoid cell lines (LCLs) derived from a family of four from the Netherlands Twin
Register (NTR), using a non-invasive label-free cellular assay. The potency of a partial agonist
differed significantly for one individual. Genotype comparison revealed differences in two
intron SNPs including rs2236624, which has been associated with caffeine-induced sleep
disorders. While further validation is needed to confirm genotype-specific effects, this set-
up clearly demonstrated that LCLs are a suitable model system to study genetic influences

on A AR response in particular and GPCR responses in general.
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Introduction

The majority of therapeutic drug targets to date are within the G protein-coupled receptor
(GPCR) superfamily, a class of membrane-bound proteins [1, 2]. As such, GPCRs have been
widely and intensively studied for the development of new therapeutics. Among the most
well-studied members of this group are the adenosine receptors, a family comprising of 4
different subtypes: A;, Aza, Azs and As [3]. The various subtypes have been implied in a broad
range of diseases and (patho)-physiological conditions, such as a variety of respiratory and
inflammatory conditions for the A,a or cardiovascular disorders for the A; [4]. Likewise, a
wide variety of compounds selectively activating, inhibiting or modulating these receptors
are available to date [3, 4]. Some of these have even been or are currently in clinical trials [3,
4]. Adenosine itself has been long approved for treatment of supraventricular tachycardia [3]
and one AaR antagonist, istradefylline, has made it to the market as adjuvant drug therapy
for Parkinson’s disease in Japan [5].

In the emerging era of personalized medicine, it is paramount for drug development to
better understand the effects of a drug not only in the overall population, but in the individual
patient as well [6]. Genetic differences between individuals can affect drug action.
Accordingly, several examples linking GPCR polymorphisms to diseases and drug response
variation already exist [7-11], which include many commonly targeted GPCRs [11] such as
purinergic [12, 13], cannabinoid [9, 10] and adenosine [14-16] receptors. Specifically for the
adenosine A2A receptor, Single Nucleotide Polymorphisms (SNPs) have been associated with
for instance anxiety [17, 18], caffeine intake [17], or vigilance and sleep [14]. Despite these
examples of statistical association of genotype and condition, as well as extensive mutational
characterization of the adenosine receptors, little is known about the direct functional effect
of receptor polymorphisms or SNPs. Therefore, an ideal set-up would be to use patient-
derived material as a model system to study the influence of polymorphisms on receptor
response.

Lymphoblastoid cell lines (LCLs) are one of the most common choices for storing a
person’s genetic material [19, 20] and can be used to study GPCR function as has been shown
in Chapter 3. For example, Morag, Kirchheiner [21] studied the influence of a few GPCR
antagonists on LCL growth. We recently published an even more direct way of measuring
receptor function, including agonist and antagonist concentration-effect curves (Chapter 3).
Using a newly developed, highly sensitive label-free cellular assay technology [22, 23], we
have shown in Chapter 3 that it is possible to measure an individual’s GPCR response in LCLs

using the cannabinoid receptor 2 as example . In such label-free assays one can monitor drug
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effects on an intact cell in real-time, rather than being limited to a static, one-molecule-
detection of ligand binding or second messenger accumulation, as is usually employed in
GPCR and adenosine receptor research [3, 22-24].

In the current study we have applied this label-free methodology to assess personal
adenosine Aya receptor function in LCLs. We characterized A,aR signaling with various types
of ligands including endogenous and synthetic agonists, partial agonist and antagonists,
among which istradefylline. To allow conclusions about genotype in relation to receptor
response, we compared responses between the individuals of a family of four from the
Netherlands Twin Register [25]. This family consisted of two genetically unrelated individuals,
the parents, as well as their children, which were monozygotic twins. Confirming the
comparability of monozygotic twins’ responses is one of the standard ways to control for
genotype-unrelated effects, and thereby assess a system’s suitability for genetic studies [25,
26].

Material and methods

Chemicals and reagents

Fibronectin from bovine plasma, Roswell Park Memorial Institute (RPMI) 1640 cell culture
medium (25 mM HEPES and NaHCO3), NECA, adenosine and ATP were purchased from Sigma
Aldrich (Zwijndrecht, The Netherlands). CGS21680, ZM241385 and CCPA were purchased
from Abcam Biochemicals (Cambridge, United Kingdom), CI-IB-MECA from Tocris Bioscience
(Bristol, United Kingdom) and istradefylline from Axon Medchem (Groningen, The
Netherlands). BAY60-6583 was synthesized in-house. LUF compounds were synthesized as
described by van Tilburg, von Frijtag Drabbe Kunzel [27] for LUF5448 and LUF5631, van
Tilburg, Gremmen [28] for LUF5549 and LUF5550 and Beukers, Chang [29] for LUF5834. All
other chemicals and reagents were of analytical grade and obtained from commercial

sources, unless stated otherwise.

Lymphobilastoid cell line generation

The lymphoblastoid cell lines (LCLs) were generated from participants of the Netherlands
Twin Register (NTR, VU, Amsterdam, The Netherlands) [25]. The LCLs were generated by the
Rutgers Institute (Department of Genetics, Piscataway, NJ, USA) using a standard
transformation protocol [25], as previously mentioned in Chapter 3. Peripheral B-
lymphocytes were transformed with Epstein—Barr Virus (EBV) by treatment with filtered

medium from a Marmoset cell line in the presence of phytohemaglutinin (PHA) during the
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first week of culture [19, 20, 30]. Cultures were maintained for 8-12 weeks to expand the

EBV transformed lymphocytes and subsequently cryopreserved.

Cell culture

LCLs from a family of four individuals, two parents (genetically unrelated; called Parent 1 and
Parent 2) and their monozygotic twin (genetically equal; called Twin 1 and Twin 2), were used
for the experiments presented in this manuscript. According to culture conditions described
in Chapter 3, cryopreserved cells were thawed and resuscitated. LCLs were grown as
suspension cells in RPMI 1640 (25 mM HEPES and NaHCO3) supplemented with 15% FCS, 50
mg/ml streptomycin, 50 IU/ml penicillin, at 37 °C and 5% CO2 and were subcultured twice a
week at a ratio of 1:5 on 10 cm @ plates. LCLs were disposed of after maximally 120 days in

culture.

gPCR

RNA from LCLs was isolated using RNeasy Mini kit (QIAGEN, Venlo, The Netherlands). The
RNA was treated with optional on column DNase digestion using DNase | (QIAGEN) and
converted to cDNA using Superscript Il (Invitrogen, Bleiswijk, The Netherlands). cDNA was
run on custom designed 384 well gPCR plates from Lonza (Copenhagen, DK), in accordance
with a previous publication [31]. These plates contained primers for 379 GPCRs as well as 3
RAMPs, together with primers for Rn18s and genomic DNA (Primers are listed in Engelstoft
et al. [31]). Genomic DNA sample was used as calibrator and the relative copy number was

calculated as stipulated previously [31].

Label-free whole-cell analysis (xCELLigence RTCA system)

Instrumentation principle

Cellular assays were performed using the xCELLigence RTCA system [22] in accordance with
previously published protocols (Chapter 3, [32]). Briefly, the real-time cell analyzer (RTCA)
measures the whole-cell responses using a detection system based on electrical impedance.
Impedance is generated through cell attachment to gold electrodes embedded on the
bottom of the microelectronic E-plates, which changes the local ionic environment at the
electrode-solution interface. Relative changes in impedance (Z) are recorded in real-time and
summarized in the so-called Cell Index (Cl), a dimensionless parameter. The Cl at any given
time point is defined as (Z; - Zo) Q/15 Q, where Z; is the impedance at each individual time
point. Zo represents the baseline impedance in the absence of cells, which is measured prior

to the start of the experiment and defined as 0. As cells adhere to the electrodes, impedance
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and the corresponding Cl increase proportionally. Changes in cell number and degree of
adhesion, as well as cellular viability and morphology are directly reflected in the impedance
profile [22, 23]. Such cellular parameters are also affected upon activation of GPCR signaling,

thereby allowing real-time monitoring of cellular signaling events [22].

General protocol

xCELLigence assays on LCLs were performed in accordance with a protocol previously
described in Chapter 3 with minor modifications. Briefly, cells were seeded onto fibronectin-
coated E-plates (10 ug/ml) at 80,000 cells/well. All cell counts were performed using Trypan
blue staining and a BioRad TC10 automated cell counter. E-plates were placed into the
recording station situated in a 37 °C and 5% CO2 incubator and impedance was measured
overnight. After 18 h, cells were stimulated by a GPCR ligand or vehicle control in 5 pl, unless
specified otherwise. As compound solubility required addition of dimethylsulfoxide (DMSO),
the final DMSO concentration upon ligand or vehicle addition was kept at 0.25% DMSO for
all wells and assays.

For agonist screening purposes, cells were stimulated with agonist concentrations
corresponding to 100 x K value for their respective receptors [4]. For the partial agonist
screen, all partial agonists as well as reference agonist CGS21680 were tested at a
concentration of 1 uM.

Agonist concentration—response curves were generated by stimulating cells with
increasing concentrations of the respective agonist. For antagonist assays, cells were pre-
incubated for 30 min with 5 pl of vehicle control or the respective antagonist at increasing
concentrations. Subsequently, cells were challenged with a submaximal agonist
concentration of CGS21680 that was equal to the agonist’s ECgo value (100 nM) or vehicle
control. Generally, compound dilutions for concentration—response curves were generated

using the digital TECAN dispenser (Tecan Group, Mannedorf, Switzerland).

Data analysis

Data were analyzed as stipulated in the previous protocol in Chapter 3. Briefly, experimental
data were obtained with RTCA Software 1.2 (Roche Applied Science). Ligand responses were
normalized to A cell index (A Cl) and exported to GraphPad Prism 6.0 (GraphPad Software
Inc., San Diego, CA, USA) for further analysis. Vehicle control was subtracted as baseline to
correct for any agonist-independent effects. Peak responses were defined as highest A Cl
(Max ACI) observed within 60 min after compound addition. When stipulated, area under

the curve (AUC ACI) within those 60 min was used as an additional parameter to analyze
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response height. Peak values and experimental A Cl traces were used for construction of bar
graphs or concentration—effect curves by nonlinear regression and calculation of ICso, ECsg
and ECgp values. Ki values for antagonists were calculated using the Cheng—Prusoff equation
[33] using the concentration of the agonist (CGS21680, 100 nM) and ECso value
corresponding to each cell line.

All values obtained are means of at least three independent experiments performed in
duplicate, unless stated otherwise. Statistical significance was determined by comparison of
the means of multiple data sets by a one-way ANOVA, followed by Tukey’s post hoc test for
comparison of all columns or a Dunnett’s post hoc test when comparing to control or

reference compound.

Processing of SNPs and genetic data

SNP data for the four individuals were obtained from the Genomes of the Netherlands
consortium (http.//www.nlgenome.nl/) of which the Netherlands Twin Register is part of and
analyzed in-house using PLINK, an open-source whole genome association analysis toolset
[34, 35].

Results

Label-free assays enable detection of adenosine Axa receptor signaling in LCLs

The standard applications of label-free technologies such as the xCELLigence for GPCRs
generally require adherent cell systems [22, 23, 32]. LCLs are suspension cells for which we
have developed a protocol in which fibronectin coating of the plate wells allowed the LCLs to
adhere (Chapter 3). With this approach we confirmed the presence or absence of adenosine
receptor subtypes by testing selective agonists using LCLs of one individual as example
(parent 2). These agonists included selective ligands such as CCPA for hA;aR, CGS21680 for
hA2.AR, BAY60-6583 for hA,sAR, Cl-IB-MECA for hAsaR and the unselective agonist NECA. To
ensure full receptor occupancy, we tested the compounds at concentrations corresponding
to 100 x K; value for their respective receptor [4]. An example of resulting xCELLigence traces
is provided in Fig. 1. Addition of the compounds induced changes in cellular morphology that
were recorded in real-time. Typically, agonist addition resulted in an immediate increase of
impedance to a peak level which gradually decreased toward a plateau within 30 min.
Responses were normalized to the subtype unselective agonist NECA for reference. Overall,
hA2.AR selective agonist CGS21680 gave the highest response which was close to the

response to NECA itself, as would be expected from the expression data which showed that
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Figure 1. Adenosine receptor agonist screen. Cells were seeded onto fibronectin-coated wells
(10 pg/ml) at 80,000 cells/well. After 18 h of growth, cells were stimulated with AR ligands at
concentrations corresponding to 100 x K; value for their respective receptor [4]. CCPA (83 nM) for
hA1AR at, CGS21680 (2.7 uM) for hA;aAR, BAY60-6583 (36 uM) for hA,sAR and CI-IB-MECA (140 nM)
for hAsAR were compared to the unselective hAR agonist NECA. Unselective NECA was tested a
concentration of 14 uM which is at least 100 x K; or more for all ARs. Representative xCELLigence traces
of a baseline-corrected ligand response are given of one individual (parent 2), where time point 0
represents the time of ligand addition. Data are from at least three separate experiments performed
in duplicate. Statistical differences of compound responses to NECA were analyzed using a one-way
ANOVA with Dunnett’s post hoc-test. “p<0.05, “p<0.01, *“p<0.001, “"*p<0.0001. Response
heights normalized to NECA (100 + 1%) were for CCPA: 35+ 5% , CGS21680: 67 + 11%, BAY60-6583:
40+ 14% and Cl-IB-MECA: 39+ 10% .

hA24AR is the highest expressed in LCLs while the other three subtypes were expressed to a
much lower extent (receptor expression family mean + SEM was hA,pAR 21.87 + 5.41, hA1aR
1.35+0.85, hA;3AR 0.88 + 0.35 and hA3AR 0.40 + 0.37, calculated using a normalization factor
derived from all genes expressed above genomic DNA levels, in accordance with a previous
publication by Engelstoft et al. [31]). In fact, CGS21680 was the only compound whose
response did not differ significantly from NECA. CCPA, the hA;4R agonist, and hAsAR agonist
CL-IB-MECA gave small responses (Fig. 1), most likely caused by a modest activation of AR
at the concentrations used. While all other agonists displayed a positive impedance
response, BAY60-6583 gave a small positive peak followed by a decline to a negative
impedance plateau. Responses to all agonists from LCLs of a second individual, parent 1, gave

comparable results in terms of conclusion of receptor subtype presence (data not shown).

AzaR agonist and antagonist responses compare well between monozygotic twins and their
parents

Subsequently, the label-free methodology was applied to compare adenosine Aareceptor
related responses between LCLs derived from the four different individuals. We
characterized A,aR signaling with various types of ligands, including the endogenous agonist

adenosine as well as the synthetic non-selective agonist NECA and A,aR selective agonist
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Figure 2. Characterization of full agonist responses in LCLs from a family of four from the NTR. The family
consists of two genetically unrelated individuals, parent 1 and 2, and their children which are a
monozygotic twin (twin 1 and twin 2). Cell lines were stimulated with endogenous agonist adenosine
[1 nM-=100 uM], synthetic agonists NECA or CGS21680 [100pM-1puM] 18 h after seeding
(80,000 cells/well). Representative example of a baseline-corrected concentration-dependent
CGS21680 response (A). Concentration—response curves for CGS21680 (B), NECA (C) and adenosine (D)
were derived from peak A cell index (A Cl) within 60 min after agonist addition (see Methods). Data in
B-D represent the means + SEM of at least three separate experiments performed in duplicate.

CGS21680. All three agonists displayed a similar shape of and height in response, both within
each cell line and between individuals. An example of such a response is depicted in Fig. 2A.
The corresponding concentration—response curves are shown in Fig. 2B-D. In a similar
manner, concentration-inhibition curves for AsaR antagonists ZM241385 and istradefylline
were obtained. An example trace of such an agonist/antagonist experiment is in Fig. 3A while
the concentration-inhibition curves are represented in Fig.3Band C. AllpECsoand
plCso values for the LCLs of the four individuals are summarized in Table 1. From the
plCso values we derived affinity (pkKi) values for both antagonists using the Cheng—Prusoff
equation. For ZM241385 these values were 8.29+0.11, 9.00+0.09, 8.88 + 0.05 and
9.08 + 0.08 for parent 1, parent 2, twins 1 and 2. pK; values for istradefylline were 6.84 + 0.17,
7.67 £0.07, 7.47 £ 0.05 and 7.88 + 0.07, respectively.

AxaR partial agonist responses are measurable in LCLs

Finally, we tested a number of partial agonists synthesized in house, all at a concentration of
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Figure 3. Characterization of AzaR antagonist responses in LCLs from a family of four from the NTR. The
family consists of two genetically unrelated individuals, parent 1 and 2, and their children which are a
monozygotic twin (twin 1 and twin 2). For antagonist curves, cell lines were pre-incubated for 30 min
with increasing concentrations of ZM241385 [10 pM—10 puM] before stimulation with CGS21680 [ECso:
100 nM] 18 h after seeding (80,000 cells/well). Representative example of a baseline-corrected
concentration-dependent response to ZM241385 (A). Concentration—response curves for ZM241385
(B) and istradefylline (C) were derived from peak A cell index (A Cl) values within 60 min after agonist
addition. Data in B and C represent the means + SEM of at least three separate experiments performed
in duplicate.

1 uM. An example trace of partial agonist and CGS21680 responses for LCLs of one individual
is in Fig. 4A. Some partial agonists (LUF5549 and LUF5631) displayed high efficacy in this cell
system, as their maximum response almost equaled that of the full agonist CGS21680 with
112 £ 9% and 95 £ 11%, respectively. LUF5448 and LUF5550 however showed robust partial
agonistic behavior of 64 +5% and 40 + 5% of maximal efficacy (Fig. 4A). Partial agonist
LUF5834 gave a different shape of response, which was marked by a negative peak followed
by a negative impedance plateau, which differed significantly from any other partial agonist
or reference full agonist CGS21680 (Fig.4A). Its maximum response was therefore at
17 £ 8%.

Aga partial agonist response differs between individuals

In order to further demonstrate the sensitivity of the label-free technology combined with

LCLs, one partial agonist was chosen to obtain concentration—response curves. LUF5448 was
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Figure 4.AxaR partial agonist responses in LCLs. Cells were stimulated 18 h after seeding
(80,000 cells/well) with AaR partial agonists as well as full agonist CG521680 [all at 1 uM] for reference.
(A) Representative example of a baseline-corrected response is given from one individual (parent 2).
Maximal responses of partial agonists compared to CGS21680 were 112 + 9% for LUF5549, 95+ 11%
for LUF5631, 64 + 5% for LUF5448, 40 +5% for LUF5550 and 17 +8%  for LUF5834. Statistical
differences from CGS21680 were assessed with a one-way ANOVA with Dunnett’s post hoc
test. “p < 0.05, ""p < 0.01,""p < 0.001, *""p <0.0001. (B) Representative example of a baseline-
corrected response of A;aR partial agonist LUF5448 [10 pM—1 uM] for one individual (parent 2). (C)
Concentration—response curves for all four individuals were derived from peak A cell index (A Cl) within
60 min after agonist addition, normalized to CGS21680 as reference. Data are representative examples
or means + SEM of at least three separate experiments performed in duplicate.

Hkk

chosen as a suitable candidate as it displayed robust partial agonistic behavior with a
maximum effect of approx. 50% of the reference full agonist CGS21680. An example
xCELLigence trace is provided in Fig. 4B while the corresponding concentration—response
curves for the four individuals are summarized in Fig. 4C. Interestingly, while three of the
individuals gave very comparable curves and pECsy values, one of the parents differed
significantly from all (Table 1), with an approx. tenfold higher potency (pECso value). LUF5448
behaved as a typical partial agonist on all cell lines with a % Max ACI of CGS21680 of 66 + 7%
for parent 1, 70 + 2% for parent 2 and 67 + 2% and 54 + 4% for twins 1 and 2, respectively.
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Table 1. Overview of the pECsp and plCso values of Adenosine, NECA, CGS21680, ZM241385, istradefylline
and LUF5448 for the tested individuals’ LCLs. Data represents the means of at least three separate
experiments performed in duplicate. Statistical analysis was performed with one-way ANOVA with
Tukey post-hoc test. Asterisks highlight statistical differences to the other individuals (P1 = parent 1; P2
=parent 2; T1 = Twin 1; T2 = twin 2). * p<0.05, ** p<0.01,*** p<0.001.

. PECso / pICso (M)
Ligand
Literature Parent 1 Parent 2 Twin 1 Twin 2
Adenosine 6.51 [36] 6.34 £0.32 5.59+0.13 594+0.12 5.82+0.16
Endogenous
agonist
NECA 8.60+0.02[32] 7.54 £0.07 8.06 £ 0.04 7.68 £0.04 7.92 £0.07
Full non-selective 7.59+0.33[37] *ATQ; *¥*%p2 AT, *¥**p1 *T2; **p2 *T1; ¥*P1
agonist
CGS21680 8.42 +0.05 [32] 7.61+£0.14 8.20 £ 0.09 7.76 £0.08 8.30+0.42
Full selective 8.18+0.36 [38]
agonist
ZM241385 8.80° [4] 7.52+£0.15 7.55+0.17 8.01+0.07 7.73+£0.10
Antagonist/
inverse agonist
Istradefylline 7.92%[39] 6.21£0.09 6.45+0.04 6.66 £ 0.02 6.59+£0.03
Antagonist/ *P2; **T1; *P1 **p1 *¥*p]
inverse agonist *EXT2
LUF5448 8.62+0.19 [32] 8.69+0.11 7.60+0.11 7.69+£0.08 7.76 £0.26
Partial agonist **all **p1 **p1 **p]

a. K/

Table 2. SNP genotype differences within the ADORA2A gene between the four individuals included in
this study. The heterozygous differences of parent 1 to the other individuals are underlined. Data
obtained from the NTR and analyzed in-house.

Genotype
SNP :

Parent 1 Parent 2 Twins
rs34999116 TC CccC CccC
rs5751869 AG AG GG
rs5760410 AG AG GG
rs5751870 TG TG GG
rs5751871 TG TG GG
rs9624470 AG AG GG
rs11704959 AC CccC AC
rs2298383 TC TC CccC
rs3761420 AG AG GG
rs3761422 CT CT TT
rs2267076 CT CT TT
rs11704811 TC CccC TC
rs17650801 GG AG GG
rs4822489 GT GT TT
rs2236624 CcC TC TC
rs5751876 CT CT TT
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Genotype differences between the four individuals

SNP data for the four individuals were obtained from the Genomes of the Netherlands
consortium and analyzed in-house using PLINK, an open-source whole genome association
analysis toolset [34, 35]. SNPs within the boundaries of the ADORA2A gene as defined by
human genome overview GRCh37 were selected. Based on GRCh37 and dbSNP information
(http://www.ncbi.nlm.nih.gov/SNP/), SNPs were further annotated according to position
(e.g., intron, exon) and SNP type (e.g., missense, synonymous). The genotype differences of

the individuals used in this study are summarized in Table 2.

Discussion

Itis well established that label-free technologies can be applied to investigate GPCR signaling
in heterologous as well primary adherent cell systems [22, 23, 32]. For instance, the
xCELLigence system has successfully been applied to study ligand effects on the cannabinoid
receptor 2 (CB2) and the metabotropic glutamate receptor 1 (mGIluR1) using recombinant
Chinese hamster ovary (CHO) cells [40]. Similarly, A;aR signaling has been studied in
HEK293hA,AR cells using selective agonists as well as partial agonists [32]. While only such
recombinant cell lines have been used to study A,aR signaling using label-free technology,
AzaR function has been studied in some endogenous cell types using other, more traditional
assays [38, 41, 42]. However, studying a person’s A;aR response using a personal cell line
such as the LCLs has not been possible up until now, and is therefore a translational step
further toward precision medicine.

Applicability of this label-free technology to LCLs is, however, not entirely
straightforward due to their suspension cell nature. Nonetheless, adherence levels after
coating of the wells with fibronectin were sufficient to allow monitoring of receptor
responses, as was demonstrated by testing adenosine receptor ligands (Fig. 1). Activation of
AR receptors led to a typical increase in impedance often seen for GPCR ligands in LCLs. For
instance, P2Y receptors (Ensembl family: ENSFM00760001715026) are abundantly present
on many cell types, including LCLs [43, 44], which has made ATP a reference agonist for
testing of functional LCL responses (Chapter 3). Interestingly, both adenosine receptor
agonists and ATP display the same shape of response, which was also comparable to the
response to cannabinoid receptor 2 (CB2) agonists as seen in earlier in Chapter 3. Herein we
showed that LCL densities of 50,000 cells/well were sufficient for detection of a robust CB,
as well as P2Y receptor response. In the present chapter seeding densities were increased to

80,000 cells/well to obtain a window sufficient for A,aR partial agonist characterization.
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Itis well known that A;aR are expressed in immune cells, including lymphocytes and LCLs
[41, 45], which was confirmed in this study by both receptor expression levels in the gPCR
experiments and the responses to selective adenosine receptor agonists in the label-free
assay (Fig. 1). The results from these tests indicated that A;aR are the only adenosine
receptors highly expressed in LCLs. This was further confirmed by the comparability of the
responses of all three full agonists tested in this paper. The endogenous ligand adenosine as
well as subtype unselective NECA and A,aR selective CGS21680 had comparable responses
(Fig. 2) suggesting these were all mediated through the AzaR. Similarly, antagonist responses
were also measurable for all four different individuals (Fig. 3), strengthening the conclusion
that responses are mediated through AzaR only.

While it is straightforward to confirm that an impedance response is a specific receptor-
mediated effect with recombinant cell lines, namely by simply using the untransfected
parental cell line as negative control [32, 40], this is not possible in cell lines with endogenous
receptor expression. Therefore, for LCLs the most reliable way is to confirm overall receptor
pharmacology with receptor subtype-selective agonists and antagonists. By showing that the
AsaR selective antagonists ZM241385 and istradefylline competed with and blocked the
signal of the AR selective agonist CGS21680 (Fig. 3), we confirmed that the impedance
effects indeed originate from an AzaR response.

Overall, agonist pECso values for agonists were within a log unit from previously reported
literature values obtained with standard functional assays on heterologous cell lines (Table
1). For instance, adenosine itself is within that range as it has been reported with an ECs
value of 310 nM in a cAMP assay on hA;sAR [36]. For the antagonists, the calculated pK;
values of ZM241385 and istradefylline were also within the range of previously published
values. This calculation corrects for the fact that the same concentration of agonist was used
during the assay, corresponding to the ECgy of CGS21680, while the efficacy of this agonist
differed slightly between cell lines.

Following this characterization of full agonists and antagonists to verify the presence and
functional relevance of A;aR, a number of partial agonists were tested to demonstrate the
sensitivity of the system. The set-up was well able to measure partial agonist effects on LCLs,
quite comparable to our previous study on HEK293hA,xAR cells [32]. Interestingly, while
most agonists induced an increase in impedance with a single peak in LCLs, there were two
agonists which gave rise to a different shape of response. Both BAY60-6583 and the partial
agonist LUF5834 responses were marked by a small peak followed by a negative impedance
plateau, rather than one positive peak (Fig. 1 and Fig. 4). Interestingly, both BAY60-6583 and

LUF5834 belong to a structurally distinct class of non-ribose agonists, as opposed to all other
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agonists tested in this paper. Hence, it seems that non-ribose agonists, while equally able to
activate the hAAR, give rise to a different cellular response than the more common ribose-
containing agonists. This was not observed in the heterologous HEK293hA,sAR cell line where
partial agonist LUF5834 had been tested previously [32], which highlights the differences of
using an unmodified human cell line when characterizing compound effects. In fact,
efficacies and signaling of ligands can differ under artificial or heterologous conditions due
to a number of factors [22, 46]. Receptor overexpression, differences in intracellular
metabolic conditions as well as products from other genes could modify cellular responses.
Unfortunately, most studies of receptor function involve artificially expressed receptors in
heterologous cell systems, such as CHO or HEK cells 3, 32]. While useful for high-throughput
screening and fundamental research, such systems are far from the real-life situation in an
individual. To move further toward the physiological situation, it is essential to study receptor
function in a more endogenous setting such as LCLs. This is especially true when attempting
to understand how polymorphisms may functionally affect the receptor and therefore the
drug response of an individual.

Employing the LCLs, we investigated genotype effects on receptor response by
comparing the effects of various types of A,aR ligands between the individuals of a family of
four from the Netherlands Twin Register, which consisted of two genetically unrelated
individuals, the parents, and their children, which were monozygotic twins. Overall, the
results were comparable between all individuals. Analyzing and confirming the comparability
of results obtained in monozygotic twins is one of the standard ways in genetic studies to
control for genotype-unrelated effects, and assess a system’s suitability for genetic studies
[25, 26]. As expected, the twins did not differ significantly from each other, with exception
of their pECsp values for NECA (p < 0.05; Table 1). Interestingly, NECA was also the only ligand
for which all individuals differed significantly in their pECso values. As monozygotic twins are
genetically identical, these differences could not be related to genetic effects and therefore
precluded any further conclusion about differences between the parents. However, parent
1 showed significant differences on two occasions, when all other three individuals, including
the monozygotic twins, were comparable. This was the case with istradefylline as well as with
the partial agonist LUF5448. While with istradefylline the difference was rather marginal
within half a log unit, the potency shift (approx. tenfold higher) for LUF5448 was much more
pronounced for parent 1. Partial agonists are deemed more sensitive to system-related
differencesin receptor function, for instance in receptor expression or downstream coupling,
than full agonists or antagonists [28]. Therefore, the difference in potency possibly reflects

subtle changes introduced by the genetic differences between individuals. While none of the
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four individuals had non-synonymous SNPs in the ADORA2A gene (Table 2), there were some
heterozygous differences present in non-coding SNPs. Two SNP differences were in line with
the pECso and plCso changes, namely in which only parent 1 differed while parent 2 and the
twins showed the same genotype and response. These were rs34999116 where parent 1 is
heterozygote for the minor allele and rs2236624 where parent 1 is homozygote for the minor
allele. Interestingly, the C-allele of rs2236624, which is located in intron 4 of the ADORA2A
gene, has been associated with vigilance and sleep, while the CC genotype has been
associated with anxiety in autism patients [14-16]. The TT genotype has been associated with
pharmacotherapy-related toxicities in acute lymphoblastic leukemia [47]. Several studies
have proposed a subtle effect on receptor expression as possible mechanism, as this intron
SNP has intermediate regulatory potential [16, 47]. As we did not observe significant
differences in receptor mRNA levels in our gPCR experiments, this regulation may affect the
subsequent translation. Changes in receptor expression may affect G protein coupling
efficiency, for which a partial agonist is more sensitive than a full agonist.

Although this genetic variation does not provide causal evidence that response
differences as observed in the LCLs from these individuals are directly related to these SNPs,
the experimental results show that the chosen methodology and set-up are capable of
picking up individual differences in receptor signaling for the A;aR. Although A,aR function
has been studied in endogenous cell types [38, 41, 42], we made a further step toward both
physiologically relevant conditions and personalized medicine by enabling the study of a
person’s A;aR response using a combination of LCLs from a family of four from the NTR and
a non-invasive label-free cellular assay.

It is increasingly recognized that genetic differences between individuals form a large
challenge in drug therapy indeed. In our study of real-life genetic variation of AR signaling,
we found that partial agonist potency differed significantly for one individual with genotype
differences in two intron SNPs, one of which has previously been associated with caffeine-
induced sleep disorders. While further validation is needed to confirm genotype-specific
effects, this set-up clearly demonstrated that LCLs are a suitable model system to study
genetic influences on A;aR and GPCR responses in general. LCLs express a wide range of other
‘drugable’ GPCRs, besides the AyaR, CB, and P2Y receptors investigated in this and earlier
studies (Chapter 3, [45]). Therefore, screening receptor responses in LCLs may help to
provide the mechanistic link between polymorphisms of various GPCRs and the individual

variation in drug response.
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Data access

The LCLs used in this study were kindly provided within the framework of this
collaboration [25] and are part of the Netherlands Twin Register
(NTR; http://www.tweelingenregister.org/en/), and part of the Center for Collaborative
Genomic Studies on Mental Disorders (NIMH U24 MH068457-06). Data and biomaterials
(such as cell lines) are available to qualified investigators, and may be accessed by following
a set of instructions stipulated on the National Institute of Mental Health (NIMH) website

(https.//www.nimhgenetics.org/access_data_biomaterial.php).
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Abstract
The Cannabinoid Receptor 2 (CB3R) is a G protein-coupled receptor (GPCR) investigated

intensively as therapeutic target, however no drug has reached the market yet. We
investigated personal differences in CB,R drug responses using a label-free whole-cell assay
(xCELLigence) combined with cell lines (Lymphoblastoid Cell Lines) from individuals with
varying CB;R genotypes. Responses to agonists, partial agonists and antagonists of various
chemical classes were characterized. Endogenous cannabinoids such as 2-AG induced
cellular effects vastly different from all synthetic cannabinoids, especially in their time-
profile.

Secondly, the Q63R polymorphism affected CB;R responses in general. Agonists and
especially partial agonists showed higher efficacy in a Q63R minor homozygote versus other
genotypes. Non-classical cannabinoid CP55940 showed the most pronounced personal
effects with highly reduced potency and efficacy in this genotype. Contrarily,
aminoalkylindole compounds showed less individual differences.

In conclusion, a label-free whole-cell assay combined with personal cell lines is a
promising vehicle to investigate personal differences in drug response originating from
genetic variation in GPCRs. Such phenotypic screening allows early identification of
compounds prone to personal differences (‘precision medicine’) or more suited as drugs for

the general population.

83 | Chapter 5



Introduction
The Cannabinoid Receptor 2 (CB3R) is a class A G Protein-Coupled Receptor (GPCR) which has
been investigated intensively, for instance as therapeutic target for novel
immunomodulators [1]. The Cannabinoid receptor family consists of CB;R, CB,R and as of
late, the former orphan receptors GPR55 and GPR18. Together with their endogenous
ligands, they form part of the endocannabinoid system which is involved in many
physiological processes. CB3R is a (predominantly) Gaj-coupled receptor which is expressed
mainly in cells of the immune system, such as T- and B-lymphocytes, as well as the central
and peripheral nervous system and the gastrointestinal tract [1-3]. As such, the CB,R is
involved in a wide range of pathological conditions ranging from atherosclerosis [4],
neuropathic pain [5], neurodegenerative diseases [6], osteoporosis [7] and autoimmune
diseases [8] to cancer [9-11]. Hence, the CB,R has been in the focus of drug development
efforts for over a decade. However, no selective drug targeting the CB3R has made it to the
market as of yet. There can be several reasons as to why drugs fail in clinical trials, one of
which is differences in individuals’ responses to the drug. In fact, even the most widely
prescribed and sold drugs, the so-called big ‘blockbuster” drugs, only work in 35-75% of all
patients [12], as individual drug response varies due to differences in genetics, lifestyle and
environment. Therefore, personalized or precision medicine aims to personalize drug
prescriptions based on a patient’s individual characteristics, e.g. genetic information, and
thereby decreases risks of ineffective dosing or side-effects [13, 14]. An abundant source of
genetic variation in humans is Single Nucleotide Polymorphism (SNP), which can lead to an
alteration in the amino acid sequence of a protein [15]. Many polymorphisms have been
documented in the CB;R, including three that change the amino acid sequence and occur
highly frequently in the population, namely Q63R, Q66R and H316Y [16]. Of these, both Q63R
and H316Y have been linked to various pathological conditions. Q63R is special, as it can be
caused by a SNP (rs2501432) as well as a dinucleotide polymorphism (rs35761398). Q63R
has been shown to be involved in schizophrenia and depression [17-19], alcoholism [20],
eating disorders [21], early menarche in obesity [22] and various immune system related
disorders [23-25], while H316Y has been associated with lowered bone mineral density [26].
We investigated personal differences in CB,R drug responses using a sensitive in
vitro assay, i.e. a label-free cellular assay using the xCELLigence system, in combination with
personal cell lines. With the xCELLigence, whole-cell responses are measured non-invasively
allowing for the investigation of drug responses in an unbiased way, i.e. without selecting

one signaling pathway or effect. The personal cell lines used in this study were
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Lymphoblastoid Cell Lines (LCLs) obtained from participants of the Netherlands Twin Register
(NTR), which are derived from B-lymphocytes and thus endogenously express the CB,R [27,
28]. Using LCLs from individuals with different CB,R genotypes, we tested a number of ligands
ranging from agonists and partial agonists to antagonists (Fig. 1), which have potential use in
different pathological indications. Firstly, endogenous cannabinoids are fatty acid derivatives
such as the eicosanoids 2-AG (2-Arachidonoylglycerol), the main endogenous ligand for CB3R,
and AEA (anandamide) [29, 30]. Synthetic cannabinoids can be divided into classical and non-
classical, such as JWH133 and CP55940, respectively. Another large class of synthetic
cannabinoid receptor ligands are the aminoalkylindoles, of which WIN55212-2 is the most
studied agonist and AM630 is one of the most utilized CB,R antagonists [1, 31]. Several
classes also contain partial agonists, such as aminoalkylindole GW405833 or BAY59-3074,
which belongs to a separate chemical class.

In this study, we show that the xCELLigence in combination with these personal cell lines
can be successfully applied to investigate personal differences in drug response originating
from, for instance, genetic variation in GPCRs. We furthermore demonstrate that while

certain classes of CB5R ligands show individual differences, others deliver consistent effects
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Figure 1. Chemical structures of CB;R ligands characterized in this manuscript.
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independent of genotype. Thus while taking personal medical effects into account, it is still
possible to identify potential ‘blockbuster’ drugs by using such phenotypic screening

methods with personal cell lines.

Material and methods

Chemicals and reagents

Fibronectin from bovine plasma, Roswell Park Memorial Institute (RPMI) 1640 cell culture
medium (25 mM HEPES and NaHCO3) and Pertussis Toxin (PTX) were purchased from Sigma
Aldrich (Zwijndrecht, NL). CB,R ligands AM630, GW405833 and CP55940 were purchased
from Sigma Aldrich, BAY59-3074, WIN55212-2 mesylate, JWH133 and AEA from Tocris
Bioscience (Bristol, UK) and 2-AG from Cayman Chemicals (Ann Arbor, MI, USA). All other
chemicals and reagents were of analytical grade and obtained from commercial sources,

unless stated otherwise.

Lymphoblastoid cell line generation

For all participants of the Netherlands Twin Register (NTR, VU, Amsterdam, NL) [27] included
in this study, lymphoblastoid cell lines (LCLs) were generated in accordance with Chapter 3
and 4 by the Rutgers University Cell and DNA Repository (Department of Genetics,
Piscataway, NJ, USA). According to a standard transformation protocol [27], peripheral B-
lymphocytes were transformed with Epstein-Barr Virus (EBV) by treatment with filtered
medium from a Marmoset cell line in the presence of phytohemagglutinin during the first
week of culture [32-34]. EBV transformed lymphocytes were expanded by culture for 8-

12 weeks and subsequently cryopreserved.

Cell culture

LCLs from a family of four individuals, two parents (i.e. genetically unrelated; individual 2 and
3) and their monozygotic twin children (i.e. genetically equal; individual 4 and 5), as well as
one other unrelated individual (individual 1) were used for the experiments presented in this
manuscript. Individual 2 and 3 have been part of previous Chapter 3, where we investigated
effects of JWH133, AM630 as well as PTX inhibition of JWH133. These data were
incorporated in the current Chapter to allow direct comparison to effects of other
compounds, individuals and genotypes. The LCLs were cultured as described
previously (Chapter 3). In short, LCLs were cultured as suspension cells in RPMI 1640 (25 mM
HEPES and NaHCO3) supplemented with 15% Fetal calf serum (FCS), 50 mg/ml streptomycin,

Phenotypic screening of cannabinoid receptor 2 ligands | 86



50 IU/ml penicillin, at 37 °C and 5% CO2. Cells were subcultured twice a week at a ratio of

1:50n 10 cm ¢ plates and disposed after maximally 120 days.

gPCR

For gPCR analysis of receptor expression, RNA of three independent samples of each cell line
was isolated by RNeasy Plus Mini (QIAGEN, Venlo, the Netherlands) and cDNA was randomly
primed from 500 ng of total RNA using ReverstAid H Minus First Strand cDNA synthesis Kit
(ThermoFisher, Breda, The Netherlands). The primer list is included in Table 1. Real-time
gPCR was performed in triplicate for each sample using SYBR Green PCR (Applied Biosystems,
part of ThermoFisher) on a 7500 Real-Time PCR System (Applied Biosystems). qPCR data
were collected and analyzed using SDS2.3 software (Applied Biosystems). Household gene B-
actin was used as internal control to normalize receptor expression and compare between
individuals. Relative mRNA amounts after correction for B-actin control mRNA were

expressed using the 2 #2“‘method.

Table 1. Primers for qPCR.

Gene Forward Reverse

B-actin ATTGCCGACAGGATGCAGAA GCTGATCCACATCTGCTGGAA

CNR1 GAGAAGATGACTGCGGGAGA GTTGTAAAATTCTGTAATGTTCACCTG
CNR2 CATGCTGTGCCTCATCAACT GATCTCGGGGCTTCTTCTTT

GPR55 GGAAAGTGGAAAAATACATGTGC CAGCGGGAAGAAGACCTTG

GPR18 AACGGGGGAGAACAGTTACA AACTTTTTCTGCGCATGCTT

Label-free whole-cell analysis (xCELLigence RTCA system)

Instrumentation principle

Cellular assays using the xCELLigence RTCA system [35] were performed in accordance with
previously published protocols (Chapter 3) and [36]. The real-time cell analyzer (RTCA) uses
a detection system based on electrical impedance to measure the whole-cell responses. Cell
attachment to gold electrodes embedded on the bottom of the microelectronic E-plates
changes the local ionic environment at the electrode-solution interface, which generates
impedance. Relative changes in impedance (Z) are recorded in real-time and summarized in
the Cell Index (Cl). This Cl, which is a dimensionless parameter, is defined at any given time
point as (Zi Zo) Q/15 Q. Ziis the impedance at each individual time point, whereas Zg is
defined as 0, as it represents the baseline impedance in the absence of cells measured prior
to the start of the experiment. Impedance and the corresponding Cl increase proportionally

as cell adhere to the electrodes. The impedance profile directly reflects any changes in
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degree of adhesion, cell number, viability and morphology [35, 37]. As such cellular
parameters are also affected upon activation of GPCR signaling, this allows real-time

monitoring of cellular signaling events [35].

General protocol
xCELLigence assays on LCLs were performed as described previously in Chapter 3 with some
minor modifications. Briefly, cells were seeded onto fibronectin-coated E-plates (10 pg/ml)
at 50,000 cells/well, unless stated otherwise. Cell counts were performed with Trypan blue
staining on a BioRad TC10 automated cell counter. E-plates were clicked in the xCELLigence
recording station in an incubator (37 °C, 5% CO2). Impedance was measured overnight for
18 h, after which the cells were stimulated with a cannabinoid receptor agonist or vehicle
control in 5 pul, unless specified otherwise. As compound solubility required addition of
dimethylsulfoxide (DMSQO) or acetonitrile (ACN), the final concentration upon ligand or
vehicle addition was kept at 0.25% DMSO or respectively 1% ACN for all wells and assays.

For agonist screening purposes, cells were stimulated with agonist concentrations
corresponding to approximately 100 x published pK; values for hCB,R [38, 39]. Agonist or
partial agonist concentration-effect curves were generated by stimulating cells with
increasing concentrations of the respective compound. For antagonist assays, cells were pre-
incubated for 30 min with 5 ul of vehicle control or the respective antagonist at increasing
concentrations. Subsequently, cells were challenged with a submaximal agonist
concentration of reference full agonist JWH133 equal to the agonist’s ECgp concentration
(100 nM) or vehicle control. Of note, for partial agonist curves, fibronectin coating was
increased (50 pg/ml) and cells were seeded at a higher density of 100,000 cells/well in order
to achieve a sufficient window. To allow comparison, full agonist JWH133 was always tested
alongside all partial agonists under equal conditions. For endocannabinoids, addition of the
protease inhibitor phenylmethylsulfonyl fluoride (PMSF) to prevent possible degradation was
tested, but as this did not change the responses or time-profile it was further omitted (data
not shown).

For studies on Ga; coupling, cells were seeded in assay medium containing 100 ng/ml
Pertussis Toxin (PTX) or vehicle control, and stimulated after 18 h with agonist at

corresponding ECgo concentration or vehicle control.
Data analysis
Data were analyzed as described previously in Chapter 3. Experimental data were captured

and processed with RTCA Software 1.2 (ACEA, San Diego, CA, USA), in which ligand responses
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were normalized to the last time point prior to compound addition resulting in the A Cell
Index (Delta Cell Index or A Cl). Data were exported to GraphPad Prism 6.0 (GraphPad
Software Inc., San Diego, CA, USA) for further analysis. Correction for any ligand-independent
effects was achieved by subtracting vehicle control as baseline. Peak responses were defined
as highest A Cl (Max A Cl) observed within 30 min after compound addition. For negative
impedance responses of 2-AG, Max-Min A Cl within 1 h was used, which is the amplitude
between the highest and lowest A Cl. Peak values and experimental A Cl traces were used
for construction of bar graphs or concentration—effect curves by nonlinear regression and
calculation of 1Cso (half maximal inhibitory concentration), ECsp (half maximal effective
concentration) and ECgo (80% maximal effective concentration) values. Emax (maximum
effect) values of compounds were derived from maximal responses within the analyzed
timeframe. Agonist and partial agonist curves of all individuals as well as the derived
Emax Values were normalized to Emax of CB;R-selective agonist JWH133 response on individual
1, first as this individual also showed the highest response for all agonists with the exception
of CP55940, and secondly as this was also the only case of a single individual per genotype
(only minor homozygote for Q63R, Q63).

All values obtained are means of at least three independent experiments performed in
duplicate, unless stated otherwise. When comparing multiple means or multiple instances of
two means, statistical significance was calculated using a two-way analysis of variance
(ANOVA) with Fisher’s LSD test, for example comparison of multiple ECspvalues or antagonist
inhibition of multiple compounds. Comparison of multiple means to one value was
performed with a two-way ANOVA with Dunnett’s post hoc test, for instance comparison of

JWH133 Peak A Cl response after pre-incubation with various antagonists.

Processing of SNPs and genetic data

As stipulated in the previous Chapter 4, SNP data for the NTR individuals included in this study
were  obtained from the Genomes of the Netherlands consortium
(GoNL; http://www.nlgenome.nl/) of which the NTR is part of [40] and analyzed in-house
using PLINK, an open-source whole genome association analysis toolset (PLINK
v1.07, http://pngu.mgh.harvard.edu.ezproxy.leidenuniv.nl:2048/purcell/plink/) [41]. All SNPs
within the boundaries of the CNR2 gene (Ensembl gene: ENSG00000188822) as defined by
human genome overview GRCh37 were analyzed further. Based on GRCh37 and dbSNP
information (http.//www.ncbi.nlm.nih.gov.ezproxy.leidenuniv.nl:2048/SNP/), SNPs were

annotated according to position (e.g. coding sequence, exon) and SNP type (e.g. missense).
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Data access

The LCLs used in this study were kindly provided within the framework of this
collaboration [27] and are part of the Netherlands Twin Register
(NTR; http://www.tweelingenregister.org/en/), and part of the Center for Collaborative
Genomic Studies on Mental Disorders (NIMH U24 MH068457-06). Data and biomaterials
(such as cell lines) are available to qualified investigators, and may be accessed by following
a set of instructions stipulated on the National Institute of Mental Health (NIMH) website

(https://www.nimhgenetics.org/access_data_biomaterial.php).

Results

LCLs predominantly express CB,R

To confirm the suitability of LCLs for studies of CB,R function alone, RNA expression levels of
the four receptors belonging to the cannabinoid family were assessed by gPCR. These results
showed that mRNA of all four cannabinoid receptors is present in LCLs to a similar degree,
both compared between receptors and between individuals. There were however some
differences. For instance, GPR18 was expressed higher in many individuals, though not
statistically significant in all. The corresponding expression data are summarized in Fig. 2. We
used the xCELLigence to further confirm the presence or absence of the different
cannabinoid receptor subtypes, specifically CB;R, by testing selective and non-selective

cannabinoid agonists and antagonists using the LCL of one exemplary individual
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Figure 2. Cannabinoid receptor subtype mRNA expression in LCLs. Results of real-time qPCR (three
independent samples measured in triplicate, mean £ SEM) show mRNA expression of four cannabinoid
receptor genes per individual (A—E for individual 1-5, respectively). Significant differences in expression
were determined with a two-way ANOVA Fisher’s LSD test. * = p < 0.05, ** = p <0.01, *** = p <0.001,
*¥*** = p <0.0001. Expression differences within each individual are indicated in the figure. Expression
differences between individuals were for CNR2: # = individual 1 with *to 3,5 and ***to 4. For GPR18
these were: T = individual 1 with *to 2; **to 5; ****to 4 and § = individual 3 with ****to0 2,4,5.
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(individual 4). To ensure full receptor occupancy, we tested the compounds at
concentrations corresponding to approximately 100x their Kjvalue at the respective
receptor [38, 39]. The agonists tested included selective CB,R agonist JWH133 as well as non-
selective agonists CP55940 and WIN55212-2, which are both known to activate CB;R as well
as CB,R. Neither of these three compounds are GPR18 agonists [42]. These agonists were
also chosen as they represent three distinct chemical classes (Fig. 1). Ligand-induced changes
in impedance were recorded in real-time, of which an example of resulting xCELLigence
traces is shown in Fig. 3. A full real-time trace of a complete experiment is shown in Fig. 3A,
and the corresponding vehicle-corrected compound responses are summarized in Fig. 3B.
LCL seeding resulted in an initial quick increase in impedance related to cell adhesion, after
which cells were allowed to proliferate and adjust for 18 h (Fig. 3A). Subsequent addition of
the agonists induced an immediate increase of impedance to a peak which gradually
decreased towards a plateau within 30 min (Fig. 3B). The responses of all three agonists were
highly similar both in shape and height (Fig. 3B, C), indicating that the effects were mediated
through the same receptor. AM251, which is known to be a GPR55 full agonist, partial GPR18
agonist and CB1R antagonist [42], gave little to no response. This indicates that the actual
protein expression of these receptors is absent or too low to contribute to any of the
compound responses measured here.

Furthermore, a CB;R-selective antagonist, aminoalkylindole AM630 was tested as well
to confirm that agonist responses were indeed CB,R-mediated. While AM630 gave little to
no response on its own, it was able to significantly block responses of all agonists at a
concentration of 100 x K. The level of blockade did not differ significantly between agonists,
irrespective of their receptor selectivity (Fig. 3D). Furthermore, comparable AM630 effects
were observed on LCLs from other individuals. For instance, AM630 showed strong inhibition
with a clear concentration-effect relationship that did not differ in potency between the five
individuals tested and ranged from 6.76 + 0.04 to 6.90 + 0.05 (Fig. 3E).

Finally, the effect of pertussis toxin (PTX) pre-treatment was investigated to confirm
downstream signaling through Ga,. PTX caused a significant decrease in cellular responses of
all three agonists for individual 4, which was to a similar degree as AM630 (Fig. 3F). In
addition, inhibition of the agonist JIWH133 by PTX was strong in all five individuals, with some
differences in the level of remaining effects ranging from 7.6 +3.6% up to 35.5+8.9%
(Fig. 3G). Taken together, the agonist, antagonist and PTX effects confirm that CB,R signaling

can be measured sensitively and specifically in these LCLs.
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Figure 3. Cannabinoid receptor ligand screen to determine receptor subtype expression. Representative
real-time traces of (A) a full experiment and (B) baseline-corrected responses in a screen of cannabinoid
agonists and antagonist. (C) Corresponding maximal responses of the screen (Max A Cell Index or Max
A Cl), normalized to response to CB;R-selective agonist JWH133. Concentrations used were JWH133
[1 uM], WIN55212-2 [10 uM], CP55940 [1 uM], AM630 [10 uM] and GPR55 agonist AM251 [10 uM].
All data shown were obtained with the LCLs of individual 4. (D) Inhibition of agonist effects by CB,R
specific antagonist AM630 in LCLs of individual 4, normalized to peak A Cl of untreated agonist
response. LCLs were pre-incubated with AM630 [10 uM] 30 min before stimulation with agonist at
ECso (JWH133 [100 nM], WIN55212-2 [10 nM], CP55940 [10 nM]). Degree of inhibition did not differ
significantly between agonists, as determined by two-way ANOVA with Fisher’s LSD post-hoc test. (E)
Individual AM630 concentration-effect curve obtained from peak A Cl of the baseline-corrected
JWH133 response antagonized by increasing concentrations of AM630. Antagonist potency values
were 6.76 + 0.04, 6.77 £ 0.06, 6.85 + 0.04, 6.90 + 0.05 and 6.77 * 0.04 for individuals 1-5, respectively.
No statistically significant differences between individuals were observed as determined by two-way
ANOVA with Fisher’s LSD post-hoc test. (F) Inhibition of agonist-induced Ga; downstream signaling by
pretreatment with PTX in LCLs of individual 4, normalized to peak A Cl of untreated agonist response.
LCLs were seeded in presence or absence of PTX [100 ng/ml] and treated with agonist at ECgp after 18 h
growth. Degree of inhibition did not differ significantly between agonists, as determined by two-way
ANOVA with Fisher’s LSD post-hoc test. (G) Individual effect of Ga; inhibition by PTX on CB;R response
to agonist JWH133. Response in the presence of PTX versus JWH133 alone was highly significantly
reduced within each individual (****). Statistical differences between individuals were determined by
two-way ANOVA with Fisher’s LSD post-hoc test. *=p<0.05 **=p<0.01, ***=p<0.001,
*¥*** = p <0.0001. Data represent mean + SEM obtained from three or four (B, C, E, G) independent
experiments of performed in duplicate. For (D, F) data represent mean = SD from two independent
experiments performed in duplicate from individual 4, used as representative example here, while
results on other individuals (2, 3, 5) were comparable (data not shown). #AM630 curves and PTX
inhibition for individuals 2 and 3 had been previously established (Chapter 3) but were incorporated to
allow direct comparison.

Phenotypic screening of cannabinoid receptor 2 ligands | 92



Individual differences in CB3R synthetic agonist responses in LCLs

Following the confirmation that cellular effects were specifically CB,R-related, agonist
concentration-effect curves were studied on LCLs from five individuals. Individuals 2 and 3
are the parents of individuals 4 and 5, their monozygotic twin children, while individual 1 is
unrelated. Examining their genotypes from DNA sequence data revealed that individual 1 is
a homozygote for the minor allele (genotype GG thus Q63) for Q63R polymorphism
(rs35761398), while individuals 2 and 3 are heterozygotes and individuals 4 and 5 are
homozygotes for the major allele (genotype AA thus Q63) (see also Table 2 and Table 3),
representing the most common genotype among the human population
(http.//www.ncbi.nlm.nih.gov.ezproxy.leidenuniv.nl:2048/SNP/). First, full concentration-
response curves were made for three compounds, typically referred to as full agonists, from
different chemical classes, JWH133, WIN55212-2 and CP55940. Example xCELLigence traces
of the JWH133 concentration-effect relationship are given in Fig.4A. The resulting
concentration-effect curves are summarized in Fig. 4B-D. Corresponding pECso values are
summarized in Table 2 while En.x values are given in Table 3.

As can be observed from the curves and pECsg values (Table 2), potencies for the three
agonists were similar for all individuals, with a notable exception for CP55940 on individual
1 (Fig. 4D). For this individual, who is the only minor homozygote for Q63R, CP55940 showed
a significantly increased ECso value of approximately 10-fold. In contrast, the efficacy of all
three agonists was much more divergent on the different cell lines. Interestingly, WIN55212-
2 which showed no significant differences in potency, showed a significant spread in efficacy
corresponding to genotype (Fig. 4C, Table 3). WIN55212-2 had the lowest efficacy on the two
heterozygous individuals 2 and 3, which in fact made it a partial agonist on these cell lines in
comparison to JWH133 (Table 3). For the other three individuals, WIN55212-2 had a similar
efficacy to JWH133, and both compounds had the highest efficacy on the LCLs of individual
1. The two synthetic cannabinoids JWH133 and CP55940 showed differences in efficacy that
did not correlate with genotype. However, compared to JWH133, CP55940 had a lower
efficacy in all individuals making it a partial agonist, with exception of individual 4. Even on
individual 1 CP55940 was a partial agonist, where for all other tested agonists the highest
efficacy was found. Taken together, CP55940 was the only synthetic agonist with clear
individual differences related to genotype (i.e. a decreased potency and efficacy in presence

of Q63), while aminoalkylindole WIN55212-2 was the least prone to individual variation.

Endogenous agonist induces different cellular response than synthetic agonists

To test whether signaling caused by endogenous agonists also showed individual differences,
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Figure 4. Individual CBZR responses to full agonists of three distinct chemical classes. Cell lines were
stimulated with different concentrations of full agonist JWH133, WIN55212-2 or CP55940 18 h after
seeding (50,000 cells/well). (A) Representative graph of the baseline-corrected JWH133 response
[1 uM — 100 pM] from individual 1. Concentration-effect curves of all individuals (1-5) of (B) classical
cannabinoid JWH133 (C) aminoalkylindole WIN55212-2 and (D) non-classical cannabinoid CP55940
obtained from Max A Cl, normalized to Emax of CB;R-selective agonist JWH133 response on individual
1. Data represent mean + SEM obtained from three or four independent experiments performed in
duplicate. ##/WH133 curves for individuals 2 and 3 have been previously established (Chapter 3) but
were incorporated to allow direct comparison.

the response induced by the two main endogenous CB;R ligands, eicosanoid 2-AG and AEA,
known as full and partial CB,R agonists respectively, were examined. In order to allow a
sufficient response window to characterize partial agonist AEA, conditions were optimized
by seeding more cells (100,000 cells/well) and coating with more fibronectin (50 ug/ml). Both
full agonist JWH133 and 2-AG were also tested under these adjusted conditions, and the
responses of JWH133 were used as reference compound to determine the level of partial
agonism. Interestingly, the resulting real-time trace differed significantly from all synthetic
agonists, as shown in Fig. 5A, B. While all synthetic agonists induced an immediate positive
impedance change, which was characterized by a fast peak and subsequent decline to
baseline in around 30 min, the endogenous 2-AG induced a negative change in impedance

with a much slower onset after about 20 min, and a much more prolonged response that still
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Figure 5. Individual CB3R responses to endocannabinoids. Cell lines were stimulated with 2-AG (50,000
cells/well, fibronectin 10 ug/ml) or AEA (100,000 cells/well, fibronectin 50 pg/ml) 18 h after seeding.
Representative graphs of the baseline-corrected (A) 2-AG [10 uM — 3.16 nM] and (B) AEA [10 uM —
1 nM] response from individual 1. (C) Concentration-effect curves of 2-AG were obtained from Max-
Min A Cl within 1 h of stimulation were normalized to Enax on individual 1. (D) Concentration-effect
curves of AEA were obtained from Max A Cl normalized to Emax of CB,R-selective agonist JWH133
response on individual 1. Next, bar graphs show the inhibition of the 2-AG effect by (E) CB,R-selective
antagonist AM630 [10 uM] and (F) Gaj-inhibitor PTX normalized to 2-AG’s effect at ECgo (3.16 uM). Data
represent the means + SEM from three or four (C, D) or means = SD of two (E, F) independent
experiments performed in duplicate. Significance of inhibitor effect versus 2-AG response only was
determined with a two-way ANOVA Fisher’s LSD test * =p <0.05, **=p<0.01. AM630 and PTX
inhibition did not differ significantly between individuals 1 (Q63) and 4 (Q63) as determined using a
two-way ANOVA with a Sidak post-hoc test.

persisted after 180 min (Fig. 5A). Interestingly, AEA showed a similar time-profile as 2-AG
with slower onset and prolonged response, but induced a positive impedance change like
the synthetic cannabinoids, albeit with a different shape (Fig. 5B). Thus, endogenous agonist
signaling through CB,R lead to vastly different cellular changes than any of the synthetic
agonists. To confirm whether these effects were also CB,R -mediated, we showed that the
2-AG response is blocked by CB;R -selective antagonist AM630, similar to the synthetic
agonists (Fig. 5E). Moreover, downstream signaling via Ga; was inhibited by PTX pre-
treatment as well (Fig. 5F). Of note, AM630 blockade and PTX inhibition did not differ
significantly between individuals, even with opposing Q63R genotype, as demonstrated in
the LCLs of individuals 1 and 4 (Fig. 5E, F).
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Furthermore, the concentration-effect relationship of 2-AG showed significant
differences between the five individuals, which were within half a log-unit and therefore
smaller than those observed for CP55940. However, these differences in potencies were not
consistent with the presence of Q63R (Fig. 5C, Table 2). Interestingly, the differences in
efficacy of 2-AG were consistent with genotype (Table 3), as the efficacy in heterozygous
individuals 2 and 3 was significantly lower than for all other individuals. Any differences
observed for AEA were not CB3R genotype-related (Fig. 5D, Table 2 and Table 3). In summary,
especially signaling by the main CB;R endogenous ligand 2-AG lead to different cellular
changes as opposed to synthetic agonists, and showed a genotype effect on efficacy as it

appeared to be highest in the Q63 homozygote, but lowest in Q63R heterozygotes.

Partial agonist responses differ between individuals

Subsequently, two partial CB,R agonists were tested on all five individuals to investigate the
presence of any differences in individual effects possibly linked to the Q63R genotype. Once
again, conditions were adjusted to more cells (100,000 cells/well) and fibronectin (50 pg/ml)
to allow a sufficient response window for these partial agonists. JWH133 was also tested
under these adjusted conditions as reference compound to determine the level of partial
agonism. The two partial agonists tested were aminoalkylindole GW405833 and BAY59-
3074, which belongs to a separate chemical class (Fig. 1). In all individuals, both agonists
induced positive impedance responses like the synthetic full agonists, and demonstrated
clear partial agonistic behavior in comparison to JWH133, irrespective of genotype
(Fig. 6A and B). The concentration-effect curves are represented in Fig. 6C and D, while the
resulting pECso and Emax values are summarized in Tables 2 and 3, respectively. GW405833
showed significant differences in potency which were within half a log-unit and were not
entirely consistent with genotype. However, the individual potencies for BAY59-3074
showed a larger spread close to a full log-unit. The lowest potency was observed on individual
1, though this statistical difference was not genotype consistent. In terms of efficacy, BAY59-
3074 had a higher efficacy than GW405833 for all individuals. Interestingly, the Enax value of
GW405833 on the LCLs of individual 1 (i.e. presence of Q63) was significantly higher than
that on all other individuals (Table 3), which was also observed for BAY59-3074. Taken
together, the partial agonists showed personal differences in response, which (in part)
appeared to be compound specific and less pronounced for the aminoalkylindole
GW405833.
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Figure 6. Individual CB;R responses from two partial agonists. Cell lines were stimulated with agonist
18 h after seeding (100,000 cells/well, fibronectin 50 ug/ml). Representative graph of the baseline-
corrected response to (A) GW405833 and (B) BAY59-3074 [1 uM — 100 pM] from individual 1. Resulting
concentration-effect curves of (C) GW405833 and (D) BAY59-3074 obtained from peak A Cl normalized
to JWH133 [1 uM] effect on individual 1. Data represent mean + SEM obtained from three independent
experiments performed in duplicate.

Discussion

CB3R is considered a potential therapeutic target for immune system related disorders such
as multiple sclerosis and allergy [43], neuropathic pain [44], cancer and osteoporosis [1, 43].
As genetic differences between individuals can induce large variations in drug response, we
studied such personal effects on a variety of CB,R ligands with a panel of personal cell lines,
the LCLs, from individuals with varying CB;R genotypes. These included genetically unrelated
individuals as well as monozygotic twins, who are deemed genetically identical. Hence,
confirming the comparability of their responses is a standard way to control for genotype-
unrelated effects [27, 45]. The individuals in this study represent all possible genotypes for
the polymorphism Q63R. Even though this polymorphism is present in roughly half of the
population and thus is extremely common, it has also been associated with various
pathological disorders [17-19, 22-25]. This makes characterizing the impact of this
polymorphism on drug responses an important issue for CB,R drug discovery.

We characterized the genotype-effect on responses of several individuals by applying

label-free cellular assay technology, namely the impedance-based xCELLigence apparatus.
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Such technologies allow sensitive non-invasive assays that enable the investigation of GPCRs
in endogenous cell systems, including LCLs for which we previously established an optimized
protocol (Chapter 3). The combination of such a non-invasive assay with a personal cell line
offers many advantages over traditional GPCR methodologies. In general, potencies of all
CB,R compounds tested in our research on the LCLs were within one log-unit range of
previously published values (Table 2)[38, 39]. Notable exceptions were 2-AG and
GW405833, which differed from published pECsp values by up to 17-fold (pECsp of 6.91 by
Gonsiorek et al. [46]) and 43-fold (pECsp 0f 9.19 + 0.09 by Valenzano et al. [47]), respectively.
This discrepancy is most likely due to differences in cell lines and assay type. Valenzano et al.
[47] used a typical endpoint cAMP accumulation assay in combination with a CHO-K1 system
overexpressing recombinant CB,R, while LCLs represent a more physiological cell system with
endogenous receptor expression. Furthermore, rather than just being a human cell line with
endogenous expression, LCLs are even one step closer to the physiological situation as they
are directly derived from individual persons. The use of a label-free whole-cell assay is
preferable over typical endpoint assays to minimize bias [48], especially when investigating
a GPCR with functional selectivity such as the CB;R, in which multiple pathways can be
activated to a different extent [49, 50].Before starting CB;R functional investigations in LCLs,
we studied expression levels and screened functional responses to confirm receptor subtype
presence. All cannabinoid receptors are expressed in LCLs at mRNA level (Fig. 2) with some
differences between individuals. However, these did not correspond to the general
differences we observed in compound potency or efficacy (Table 2 and Table 3). For example
for CB3R, mRNA expression differed for individual 1, especially as opposed to individual 4.
However, both individuals were among the highest responders on average for CB,R
compounds (Table 3). Furthermore, most individuals showed high GPR18 mRNA levels, but
AM?251 which targets GPR18 and GPR55 but not CB;R, showed no response (Fig. 3) [46]. This
indicates that functional GPR18 levels were in fact not high, if at all present in these LCLs,
which shows that mRNA expression levels do not necessarily correlate with functional
protein expression on the cellular membrane, a feature well appreciated in literature [51,
52]. Taken together, the data shown in Fig. 3 prove that CB;R is in fact the major receptor
responsible for compound responses, which is in accordance with previous literature that
states CB5R is the highest expressed receptor in LCLs [28]. Of note, any of the full agonists
tested in this manuscript such as WIN5512-2, JWH133, CP55940 and 2-AG are not known as
agonists of GPR18 [42].

After confirming that CB,R is well expressed in LCLs and that CB3R signaling can be

measured sensitively and specifically in LCLs (Fig. 2 and Fig. 3), we characterized responses
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of five individuals to various CB3R ligand types and classes (Fig. 1) which revealed that certain
chemical classes of compounds were more sensitive to genotype than others (Fig. 4, Fig.
5 and Fig. 6, Table 2 and Table 3). All tested aminoalkylindole compounds as well as the
classical cannabinoid JWH133 showed the least differences between individuals, in
comparison to compounds of other chemical classes. The notion that aminoalkylindole
compounds showed the least genotype-related effects was strengthened by testing three
pharmacological types of ligands of this chemical class. Similar to the aminoalkylindole
agonist, no individual differences were observed for the CB;R -selective antagonist AM630
(Fig. 3D). Even a partial agonist of this class (GW405833) was less prone to individual
differences than a partial agonist of another class. It has been suggested that partial agonists
are more sensitive to system-related differences in receptor function, for instance receptor
expression or downstream coupling, than full agonists or antagonists [53]. Consequently,
they may be more prone to genotype-related effects. In fact, we have demonstrated in a
previous Chapter that a partial agonist on the adenosine A,a receptor showed a clear
genotype-related difference in LCLs, while full agonists did not (Chapter 4). The two synthetic
partial agonists for the CB,R that we tested here exhibited similar sensitivity (Fig. 6, Table
2 and Table 3). In efficacy, they showed the clearest genotype-related effect as it was only
significantly elevated for the Q63 individual, as opposed to the full agonists where more
individuals differed.

Overall, CP55940 showed the most pronounced personal effects with highly reduced
potency and efficacy in presence of Q63, while all other agonists and partial agonists showed
the highest efficacy in presence of this genotype. Interestingly, Q63R has been reported to
cause diminished WIN55212-2 efficacy in HEK293h CB,R cells while CP55940 was not
affected [54]. Our results contradict these findings, which may be due to the difference in
model systems used. HEK293 cells are recombinant and receptor-overexpressing, whereas
LCLs are personal cell lines with endogenous levels of receptor expression, and therefore
may represent a more physiologically relevant system.

When investigating genotype effects on endogenous cannabinoid response, we noted
that 2-AG showed vastly different cellular effects than any other ligand tested here, despite
being clearly CB;R -mediated (Fig. 5). Another endocannabinoid, AEA, showed a similarly
changed time-profile as 2-AG, even though the direction of impedance change was more
similar to synthetic cannabinoids. These differences in cellular effects between endogenous
and synthetic cannabinoids may originate from downstream signaling differences resulting
in a different cellular response as measured by xCELLigence. For instance, Shoemaker et

al. [49] found that 2-AG was a more potent activator of MAPK whereas synthetic ligands
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more potently inhibited adenylyl cyclase activity. Moreover, our experiments with 2-AG do
not suggest that Q63R influences its responses, which contrasts with previous reports of
Carrasquer et al. [54] and Ishiguro et al. [17], where recombinant overexpressing cell
systems, HEK293 and CHO cells, were used. However, our findings are confirmed by Sipe et
al. [8] who used a more physiological setting of T-lymphocytes, as is the case in this study.
Taken all of the above together, this once more highlights the importance of using primary
or derived (i.e. endogenous immortalized) cell systems that offer more physiological
relevance versus recombinant systems.

There are several mechanisms by which a polymorphism may influence receptor
signaling. Q63R in the CB;R results from a dinucleotide conversion of AA to GG that
exchanges a glutamine for an arginine at position 63 in the intracellular loop 1, and as such
it is not in proximity of the putative CB;R ligand binding site [54, 55]. Therefore, its position
suggests that Q63R does not directly influence ligand binding. Rather, its effects on drug
responses may originate from differences in downstream signaling [17, 54]. CB,R has been
shown to signal through multiple pathways such as cAMP, B-arrestin, pERK and GIRK, to
which various agonists may be differently biased [30, 56, 57]. Moreover, it has been well
established that agonists can activate the various G protein-dependent and —independent
pathways modulated by CB;R to a different extent [49, 50]. In our LCLs, all CB;R agonists
signaled strongly through Ga; coupling as was demonstrated by potent inhibition through PTX
(Fig. 3 and Fig. 5), which on some instances showed differences in the levels of remaining
response (Fig.3D). While Ga;signaling therefore clearly represents the predominant
signaling pathway for CB5R in all individuals, the varying remaining responses could indicate
individual differences in coupling to other signaling pathways. Hence, Q63R related
differences observed between CP55940 and other agonists may be related to their specific
bias. Q63R could potentially affect coupling to one signaling pathway more than others, an
effect which is then only noted for agonists that preferably and potently activate that
pathway, in this case CP55940. Alternatively, Q63R could affect the bias of a particular ligand
as CP55940 towards different signaling pathways.

Another interesting genotype-related effect was that in overall efficacy
(Table 3), Q63 homozygous individual 1 generally ranked highest. Q63R heterozygotes (ind.
2 and 3) appeared to have the lowest efficacy for CB,R agonists, even compared
to Q63 homozygotes (ind. 4 and 5), rather than an intermediate or mixed cellular effect. This
was most pronounced for WIN55212-2 and 2-AG (Table 3). The effect could arise from, for
instance, a difference in signaling pathway bias between the two receptor forms. In a

heterozygote, where both receptor forms are present that each have different efficiencies
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in pathway-coupling, the overall signaling and cellular effect may be lower as opposed to
either receptor form as homozygote, that works synergistically.

In conclusion, our results demonstrate that aminoalkylindole compounds exhibited the
least sensitivity to genotypes while non-classical cannabinoid CP55940 showed the
most. Q63 genotype influenced CB;R ligand effects leading to higher efficacy of agonists and
especially partial agonists, but decreased potency and efficacy of the non-classical
cannabinoid CP55940, which was also the most pronounced ‘personal” effect measured here.
The LCLs, as personal cell lines, in combination with the sensitive label-free impedance-based
technology have the potential to represent a more physiologically relevant model system to
investigate individual differences in drug response. Their combination provided novel
insights into the impact of CBR polymorphism on drug response, which demonstrates on the
one hand the ability of this phenotypic screening method to identify ‘blockbuster’ drug
candidates that are less prone to individual differences. On the other hand, this approach
may advance precision medicine and stratify patient groups. Altogether, this will help in

reducing attrition rates of drugs in clinical trials.
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Abstract

The glucose-dependent insulinotropic polypeptide receptor (GIPR) is a G protein-coupled
receptor that plays an important role in whole-body metabolism. One missense Single
Nucleotide Polymorphism (SNP) rs1800437 coding for amino acid change E354Q in the GIPR,
has been associated with several diseases including diabetes and the risk of bone fractures.
We investigated the functional effects of this SNP in personal cell lines from a panel of
individuals with different genotypes for the polymorphism. Genotype effects were measured
using a sensitive in vitro assay, i.e. a label-free cell morphology-based assay (xCELLigence), in
combination with personal lymphoblastoid cell lines (LCLs) derived from Netherlands Twin
Register participants. Responses to the endogenous agonist GIP showed enhanced potency
in Q354 homozygous individuals, while heterozygotes showed mixed effects. A mutational
study of the E354 residue in recombinant HEK293 cells expressing GIPR did not show
differences in potency, but revealed a reduced duration of effect for Q354, which was not
observed in LCLs. Taken together, this study provides more insight into E354Q-related
physiological changes as they occur in the human individual, and thereby contributes to

precision medicine for GIPR-related pathologies.
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Introduction

The glucose-dependent insulinotropic polypeptide receptor (GIPR) is a class B G protein-
coupled receptor (GPCR) which is part of the glucagon receptor family [1]. It plays an
important role in whole-body metabolism, such as glucose homeostasis and particularly
insulin secretion, lipid uptake and bone density [2-4]. In the emerging era of precision
medicine, it is becoming apparent that genetic differences between individuals can affect
both drug action and susceptibility to disease. Several of such examples for GPCR
polymorphisms already exist [5-8]. For the GIPR, previous research has linked Single
Nucleotide Polymorphisms (SNPs) to various pathological conditions including obesity and
diabetes [9-12]. One SNP of particular interest is rs1800437, which is a missense SNP that
changes a glutamic acid to a glutamine at amino acid 354 of the receptor (E354Q). This E354Q
is the only frequent one of 227 known GIPR missense variants that occurs in more than 1%
of the population, namely with a Minor Allele Frequency (MAF) of 16% [13, 14]. Interestingly,
several studies have associated this SNP with insulin resistance, type |l diabetes,
cardiovascular disease and the risk of bone fractures [3, 12, 15, 16]. Furthermore, a number
of functional studies have indicated roles for this polymorphism in for instance receptor
(in)activation [17] and desensitization [3].

This polymorphism could therefore play an important role in disease susceptibility of, as
well as influence drug treatment. Mapping and understanding the effects of this
polymorphism not only in the overall population, but in the individual patient is therefore
paramount [18]. However, the E354Q polymorphism has so far been the subject of either
cohort or candidate gene studies, or of functional studies in which its effect was analyzed in
mouse cell lines or recombinant cell systems with artificially introduced mutations [3, 12, 15,
16, 19]. Despite their merits such cellular systems are further away from the physiological
condition in humans. To better understand the influence of polymorphisms on receptor
response in an individual, an ideal set-up would therefore be to use patient-derived material
as a model system.

One example of such are lymphoblastoid cell lines (LCLs), which are commonly used to
store a person's genetic material, as is done by many large scale genetic consortia such as
the International HapMap and 1000 genomes projects [20-24]. We recently published a
methodology that allows measurement of GPCR function in such LCLs, with which we were
able to detect the effect of polymorphisms in two other GPCRs, the adenosine A;a receptor

and cannabinoid receptor 2 (Chapter 4, 5). Responses were measured using the xCELLigence,
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a newly developed, highly sensitive label-free cellular assay technology. This assay measures
changes in cell morphology in real-time as opposed to techniques traditionally employed in
GPCR research such as ligand binding or second messenger accumulation assays, which use
static, one-molecule-detection [25-28].

In the current study we have applied this real-time morphological assay to assess effects
of the GIPR polymorphism E354Q in LCLs. We characterized GIPR responses in a selection of
individuals from the Netherlands Twin Register (NTR) [29]. Subsequently, we performed an
E354 mutational study in HEK293 cells using the same cellular assay technology as a

functional read-out to provide a direct comparison to the effects observed in the LCLs.

Material and methods

Chemicals and reagents

Fibronectin from bovine plasma, ATP, unsupplemented Roswell Park Memorial Institute
(RPMI) 1640 cell culture medium (25 mM HEPES and NaHCOs) and Dulbecco’s Modified
Eagles Medium — high glucose (DMEM) were purchased from Sigma Aldrich (Zwijndrecht,
The Netherlands). Fetal calf serum (FCS) was obtained from Thermo Fisher Scientific (Breda,
The Netherlands). GIP was purchased from Tebu-Bio (Heerhugowaard, The Netherlands),
while (Pro3)GIP was obtained from American Peptide Company Inc (Sunnyvale, CA, USA). All
other chemicals and reagents were of analytical grade and obtained from commercial

sources, unless stated otherwise.

Lymphoblastoid cell line generation

For all 78 individuals of the Netherlands Twin Register (NTR, VU, Amsterdam, NL) [29]
included in this study, lymphoblastoid cell lines (LCLs) were generated in accordance with
previous Chapters (eg. Chapter 3) by the Rutgers Institute (Department of Genetics,
Piscataway, NJ, USA). Briefly, peripheral B-lymphocytes were transformed with Epstein-Barr

Virus (EBV) using a standard transformation protocol [29] and subsequently cryopreserved.

Cell culture

LCLs were cultured as suspension cells in RPMI 1640 (25 mM HEPES and NaHCOs)
supplemented with 15% FCS, 50 mg/mL streptomycin, 50 IU/mL penicillin, at 37°C in a
humidified 5% CO, incubator, as described previously (Chapter 3). Cells were subcultured
twice a week at a ratio of 1:5 on 10 cm @ plates and disposed after maximally 120 days.

HEK293 cells were grown in culture medium consisting of DMEM supplemented with
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10% FCS, 50 mg/mL streptomycin and 50 IU/mL penicillin at 37°C in a humidified 7% CO,

incubator. Cells were subcultured twice a week at a ratio of 1:10 to 1:30 on 10 cm @ plates.

DNA constructs and mutant generation

cDNA encoding the human GIPR (ORF: NM_000164) with an N-terminal FLAG-tag cloned into
the pcDNA3.1(+) vector was purchased from GenScript (Hong Kong, China). Primers to
generate the E354Q mutant were designed using the online QuickChange Primer Design tool
[30] and produced by Eurogentec (Maastricht, The Netherlands). Primer sequences were
forward: GCTGGGTGTCCACCAGGTGGTGTTTGC, and reverse:
GCAAACACCACCTGGTGGACACCCAGC (5'-3’). The GIPR mutant was generated based on the
QuikChange site-directed mutagenesis method (Agilent Technologies, La Jolla, CA, USA) [31]
using pfu polymerase (Promega, Madison, WI, USA) in an 18-cycle mutagenic PCR.
Subsequently, template DNA was digested by Dpn/ (New England Biolabs, Ipswich, MA, USA)
treatment. PCR products were transformed into chemically competent DH5a cells (Life
Technologies, Carlsbad, CA, USA) and purified using a standard Qiagen Miniprep kit (QIAGEN
Benelux B.V., Venlo, The Netherlands). DNA concentration and purity were determined by
NanoDrop 2000 (Thermo Fisher Scientific) and mutations were confirmed through double
stranded DNA sequencing by the Leiden Genome Technology Center (LUMC, Leiden, The
Netherlands).

HEK293 transfection

hGIPR constructs were transiently transfected into HEK293 cells. HEK293 cells were cultured
in supplemented DMEM as stipulated above as a monolayer on 10-cm @ culture plates to 80—
90% confluency. Transfections were performed using Lipofectamine 2000 (Thermo Fisher
Scientific) and 8 pg of plasmid per 10-cm @ culture plate, in accordance with the
manufacturer’s instructions. As per these instructions, both plasmid and lipofectamine were
diluted in unsupplemented OptiMEM (Thermo Fisher Scientific), subsequently mixed and
incubated for 20 min at room temperature. Medium of HEK293 cells was exchanged to
unsupplemented OptiMEM, after which the plasmid-lipofectamine mixture was deposited

on the cells. After 6 hours of incubation with this mixture, cells were used for experiments.

Label-free whole-cell analysis (xCELLigence RTCA system)
Instrumentation principle

Cellular assays using the xCELLigence RTCA system [25] were performed in accordance with
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previously published protocols (Chapter 3, 4) [32]. The detection principle of this real-time
cell analyzer (RTCA) is based on electrical impedance. Gold electrodes are embedded on the
bottom of the microelectronic E-plates. When cells attach to these, they alter the local ionic
environment at the electrode-solution interface, thereby generating impedance. Relative
changes in impedance (Z) are recorded in real-time and summarized in the dimensionless
parameter Cell Index (Cl). The Cl at any given time point is defined as (Z-Zo) Q /15 Q, where
Z is the impedance at each individual time point. Zo is defined as O, as it represents the
baseline impedance in the absence of cells. The resulting time-resolved impedance profile
directly reflects any changes in degree of adhesion, cell number, viability and morphology,

which are also the typical cellular parameters that are affected by GPCR signaling [25, 26].

General protocol

Prior to any experiment, background impedance (Zp) was measured after adding 45 L, orin
case of antagonist experiments 40 L, of the respective culture media to the E-plate wells.
Subsequently, cells were harvested, centrifuged at 200g for 5min and resuspended in their
corresponding fresh medium. xCELLigence assays on LCLs were performed as described
previously (Chapter 3) with some minor modifications. Briefly, LCLs were harvested and
seeded onto fibronectin-coated glass-bottom E-plates (50 ug/ml) at 100,000 cells/well.
Transiently transfected HEK293 cells were harvested 4-6 hours following transfection by
trypsinization, spun down once and seeded onto uncoated PET E-plates at 80,000 cells/well.
Cell counts were performed with Trypan blue staining on a BioRad TC10 automated cell
counter. After cell seeding, E-plates were clicked in the xCELLigence recording station in an
incubator (37°C, 5% CO.). Impedance was measured overnight for 18 hours, after which the
cells were stimulated with a GPCR agonist or vehicle control in (5 ul), unless specified
otherwise. For GIP concentration-response curves in LCLs, ATP [100 uM] was taken along to
provide a receptor-independent reference of response height. As GIP and (Pro®)GIP were
stored as aliquots in Phosphate Buffered Saline (PBS), as per vendor instructions, PBS was
used as vehicle control. The final PBS concentration upon ligand or vehicle addition was kept
constant at 0.5 % PBS for all wells and assays. Agonist concentration-response curves were
generated by stimulating cells with increasing concentrations of GIP. For the (Pro®)GIP assay,
cells were pre-incubated for 30 minutes with 5 pl of vehicle control or a high concentration
of (Pro®)GIP [1 uM]. Subsequently, cells were challenged with vehicle control or a submaximal
agonist concentration of GIP corresponding to its ECgo value (concentration causing 80% of
maximal effect) of £354 and Q354, respectively (31.6 nM and 3.16 nM). All compound

responses were recorded for at least 3 hours following agonist or vehicle addition.
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ELISA

HEK293 cells were transiently transfected with the hGIPR E354, Q354 variant or mock as
described above. Flat-bottom sterile 96 wells plates were coated with 50 pl poly-D-lysine (20
mg/L) (Sigma Aldrich) for 10 minutes. Cells were harvested, counted and seeded at 80,000
cells/well as described under the xCELLigence protocol, and medium was exchanged to
normal culture medium. Cells were grown overnight at 37°C and 7% CO,. Twenty-four hours
post transfection, cells were washed once with PBS, fixed with 3,7% formaldehyde for 10
minutes and incubated in Tris-buffered saline (TBS) with 2% bovine serum albumin (BSA) for
30 minutes at room temperature. Cells were then incubated with 1:1000 anti-Q1-FLAG
monoclonal antibody (Sigma Aldrich) and 1:1250 goat-anti-mouse HRP conjugated IgG
antibody (Thermo Fisher Scientific) subsequently. Immunoreactivity was visualized by
addition of 3,3’,5,5’-tetramethylbenzidine (Sigma Aldrich). After 5 minutes the reaction was
stopped by addition of 0.2M H,S0,4. Absorbance was measured at 450 nm using a Victor plate

reader (Perkin Elmer, Groningen, The Netherlands).

gPCR

gPCR on LCLs was performed as described previously (Chapter 5). Briefly, for each cell line
RNA of three independent samples was isolated with RNeasy Plus Mini (QIAGEN, Venlo, the
Netherlands). cDNA was randomly primed from 500 ng of total RNA using ReverstAid H Minus
First Strand cDNA synthesis Kit (ThermoFisher, Breda, The Netherlands). The primers for GIPR
were CGTCTGCTGGGACTATGCTG forward and TCTCCAAAGTCCCCATTGGC reverse.
Household gene B-actin was used as internal control to enable comparison between
individuals, and the primers for this were ATTGCCGACAGGATGCAGAA forward and
GCTGATCCACATCTGCTGGAA reverse. Real-time gqPCR was performed in triplicate for each
sample using SYBR Green PCR (Applied Biosystems, part of ThermoFisher) on a 7500 Real-
Time PCR System (Applied Biosystems). gPCR data were collected and analyzed using SDS2.3
software (Applied Biosystems). The 2 22 method was used to express relative mRNA

amounts after correction for B-actin control mRNA.

Data analysis
XCELLigence
xCELLigence data were analyzed as described previously (Chapter 3). Experimental data were
captured with RTCA Software 1.2 (ACEA, San Diego, CA, USA). Ligand responses were
normalized to the last time point prior to compound addition resulting in a Normalized Cell
Index (NCI). For HEK293, this was done directly in the RTCA program, while for the LCLs the
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NCI was calculated in GraphPad Prism as the small (and sometimes negative) growth curves
of LCLs hindered this calculation in the RTCA program. The NCI corrects for non-receptor-
related variations that could for instance arise from a slight difference in seeding density,
individual differences in proliferation rate and well-plate ‘edge effects’. Data were exported
to GraphPad Prism 6.0 (GraphPad Software Inc., San Diego, CA, USA) for further analysis. The
lowest concentration of GIP was subtracted as baseline to correct for ligand-independent
effects. Responses after compound addition were analyzed using AUC within 30 minutes for
GIP and 60 minutes for ATP in LCLs, and 4 hours for GIP in HEK293hGIPR, due to the
differences in duration of response. For analysis of the duration of response in HEK293hGIPR,
responses were defined as highest NCI (Max NCI) observed at specific time points after
compound addition. Peak values, AUC and experimental ACI or NCI traces were used for
construction of bar graphs or concentration—effect curves by nonlinear regression and
calculation of ECso (concentration causing half maximal effect) and ECgy (concentration
causing 80% of maximal effect) values. Emax (maximum effect) values of compounds were
derived from maximal responses within the analyzed timeframe. All Enax values were
normalized to the £354 variant (individual E4 for LCLs).

Statistics

All values obtained are means of at least three independent experiments performed in
duplicate on the same cell line, unless stated otherwise. When comparing multiple means or
multiple instances of two means, statistical significance was calculated using a one-way
analysis of variance (ANOVA) with Fisher’s least significant difference (LSD) test, for example
comparison of multiple pECsg values for LCLs or percentage of response at certain time points
for HEK293 cells. Comparison of two values was done with Student’s t-test, for instance pECs
values of HEK293 cells.

Processing of SNPs and genetic data

As described in previous Chapter 4, the SNP data of the individuals included in the current
study were obtained from the Genomes of the Netherlands consortium (GoNL,
http://www.nlgenome.nl/) [33], in which the NTR takes part. The SNP data were analyzed in-
house using PLINK, an open-source whole genome association analysis toolset [34, 35]. For
the current study, SNPs within the boundaries of the GIPR gene (Ensembl gene:
ENSG00000010310) as defined by the human genome overview GRCh37
(http.//grch37.ensembl.org/index.html) were extracted. Subsequently, SNPs were annotated
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according to position (e.g. coding sequence, exon) and SNP type (e.g. missense) based on
GRCh37 and dbSNP (http://www.ncbi.nim.nih.gov/SNP/).

Results

Genotypes and NTR study

To study the effect of GIPR polymorphisms using LCLs of the NTR, we first determined the
GIPR genotypes in the NTR population. This constituted a selection of in total related and
unrelated 78 individuals of the NTR for whom both genetic information and corresponding
LCLs were available. Table 1 provides an overview of the SNPs present in the GIPR gene of
this NTR population. We found a total of 23 SNPs with varying location, type and frequency.
None were rare as all occurred in more than 10% of this NTR population, but two SNPs were
extremely frequent as they were found in more than 40% of the NTR individuals (i.e. SNPs
no. 22 and 23, rs9749225 and rs2238689, respectively). Of note, frequencies of most SNPs
within this population were similar to the global MAF, with some exceptions that were found
more frequently (e.g. SNP 22, rs9749225) or less frequently (e.g. SNP no. 14, rs35568293).
Most commonly, SNPs were located within introns, with the exception of three. Two of those
were located in other non-coding regions, namely the 3’-UTR. Finally, there was only one
missense variant, rs1800437, which is in fact the polymorphism causing E354Q by changing
a codon from GAG to CAG. Approximately 21% of the NTR individuals carried the minor allele
of this SNP (i.e. CAG), which therefore provided sufficient individuals to perform a study on
the effect of this polymorphism.

The preference for any genetic study is to include multiple unrelated individuals of each
genotype, and if possible of both genders. Here, we also used the unique family set-up of the
NTR for selecting individuals for inclusion into our study. The individuals from NTR included
in GoNL comprised of trio’s, with two genetically unrelated individuals, the parents, and an
offspring. In a small number of families, two children, which were monozygotic or dizygotic
twins, were included. As summarized in Table 2, we selected individuals to include: 1) one
family with two monozygotic twins (family 1), whose comparability of response is a basic
requirement to allow any conclusions from the experiments presented here in association
with genotype; 2) one family in which the parents were opposing homozygotes and their
offspring thus a heterozygote (family 2), where this special genetic relationship allowed
further conclusions on genotype-related effects, and 3) three additional individuals to be

able to study several unrelated individuals of each genotype. Of note, the maximum number
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Table 2. Selected set of NTR individuals studied for the E354Q GIPR polymorphism.

Identity E354Q
Group Individual Gender Code Genotype Amino acid
Father 1 Male El GG E
Mother 1 Female E2 GG E
Family 1
Twin 1A Female E3 GG E
Twin 1B Female E4 GG E
Father 2 Male ES GG E
Family 2 Mother 2 Female Ql cc Q
Twin 2A Male EQl CG E/Q
Additional 1 Female EQ2 CG E/Q
Additional Additional 2 Female EQ3 CG E/Q
Additional 3 Male Q2 cC Q

of Q354 individuals was investigated, as only two of such were available in the NTR
population. Moreover, both genders were represented in each group. Thus in total, we

studied responses of LCLs of 10 individuals (Table 2).

GIPR signaling can be measured sensitively in LCLs using xCELLigence

To confirm the suitability of LCLs for studying GIPR effects, we first performed an initial gPCR
as well as a response screen on the xCELLigence. The qPCR on a set of E354 and Q354
homozygous individuals revealed that mRNA of the GIPR was present in all individuals
(Fig. 1F). mRNA levels were not consequently linked to genotype as significant differences
were observed between individuals both with the same or different genotypes, and even
between monozygotic twins E3 and E4.

Subsequently, we assessed GIPR responses on the xCELLigence in comparison with
responses to ATP. The latter was used as a reference ligand as it is known to target GPCRs
that are highly expressed and activation of these leads to cellular responses in LCLs
(Chapter 3) [36, 37]. In Fig. 1A an exemplary experiment on the LCLs is presented, where
cellular growth and responses were recorded in real-time. LCL seeding resulted in an initial
increase in impedance related to cell adhesion, growth and division. Subsequent addition of
a GPCR agonist such as ATP or GIP induced an immediate increase of impedance to a peak

level of similar height, which gradually decreased towards a plateau. However, the duration
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Figure 1. Characterization of GIPR response in LCLs with varying E354Q genotypes. (A) Representative
example of a full real-time impedance plot and baseline-corrected responses of LCLs from one
individual (E3) to GIP [1 uM] and ATP [100 uM]. Representative examples of baseline-corrected real-
time impedance plot for one £354 (E3, B) and one Q354 (Q2, C) homozygous individual as a function of
different concentrations of the endogenous agonist GIP ranging from 1 uM to 10 pM. (D) GIP
concentration-response curves derived from AUC of NCI within 30 minutes after agonist addition,
normalized to £354 (E3). pECsp and Emax values are summarized in Table 3. (E) Inhibitory effect of
(Pro®)GIP [1 uM] on response to a submaximal dose of GIP ([3.16 nM] for Q354 and [31.6 nM] for £354).
(F) Results of real-time gPCR show mRNA expression of GIPR in 6 selected individuals with £354 or Q354
genotype. Statistic differences were determined by one-way ANOVA with Fisher’s LSD test. *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001. For F, differences to B-actin are indicated with asterisk.
Expression differences between individuals were #= E1 **** to E2, *** to E4 and Q2, **to Q1. § = E3
** to E2 and Q2, * to E4. In figures A, B and C, representative traces are shown. In figures D, E and F
means + SEM of three or more separate experiments performed in duplicate (D and E) or triplicate (F)
are shown.
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of response caused by ATP or GIP differed. For GIP, the response returned to baseline levels
within a period of 30 minutes, where ATP induced cellular changes lasting over 60 minutes.
This showed that LCL responses to GPCR agonists are receptor specific with regard to shape
and duration as measured using the xCELLigence technology.

Finally, we tested inhibition of GIP signaling effects in LCLs using the only commercially
available GIPR selective antagonist, (Pro®)GIP, which did not elicit a response on its own upon
addition to the LCLs (Supplemental Fig. S1). As shown in Fig. 1E, (Pro®)GIP was able to (partly)
diminish GIP responses.

Together, these results show that GIPR signaling in LCLs can be measured sensitively and

specifically using the xCELLigence methodology.

E534Q alters endogenous agonist potency of GIPR in personal cell lines
Subsequently, LCL responses of the selection of E354Q individuals by the endogenous agonist
GIP were determined. The resulting concentration-effect curves are summarized in
Fig. 1B-D. GIP efficacy and potency values for the entire set of 10 individuals are summarized
in Table 3. Responses between the monozygotic twins E3 and E4 were highly comparable,
confirming that the LCLs are a suitable model system to study genetic effects on the GIPR.
Shown in Fig. 1B and 1C are representative examples of the real-time baseline-corrected
responses of two unrelated individuals representing the two possible E354Q homozygous
genotypes, i.e. one £E354 and one Q354 homozygous individual, respectively. Irrespective of
genotype, these LCLs showed similar responses to GIP which did not differ significantly in
overall shape or duration. However, differences in GIP effects were observed, especially in
potency as can be seen in Fig. 1D where the concentration-response curves of these two
individuals are given. Furthermore, both £354 and Q354 homozygous individuals showed
highly similar effects in potency within their respective group of individuals with the same
genotype, but these groups differed significantly from each other. Specifically, pECsp values
of GIP on E354 individuals ranged from 7.90 + 0.07 (E4) to 8.34 + 0.08 (E2), while the same
values on LCLs of Q354 individuals were 8.96 + 0.25 (Q1) and 9.12 + 0.08 (Q2). Therefore,
GIP potency was significantly higher (i.e. 4-17-fold) in LCLs from Q354 homozygous
individuals (Q1 and Q2), as opposed to the E354 homozygotes. Interestingly, the LCLs of
heterozygotes showed mixed effects, as their potency values showed a large spread with a
range of 7.91+0.11 (EQ2) t0 9.32 + 0.14 (EQ1). Heterozygotes thus also differed significantly
from each other by 4- to 26-fold, which was similar to the difference between Q354 and £354

homozygous individuals. In general, heterozygotes were closer in potency to Q354
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(EQ1, EQ3) than to £354 individuals (EQ2 only). This was irrespective of gender, and not
smaller between related family members. In fact, in family 2 who encompassed a £354 father
and Q354 mother, GIP potency in LCLs of their child was not in between the two but instead
much closer to Q354.

Besides potency, we also assessed GIP efficacy for which we did not observe a genotype-
related trend, despite a wide range of efficacies with many significant differences (Table 3).
The individuals with the highest efficacy were three £354 homozygotes, followed by two
heterozygotes. Both Q354 individuals showed lower efficacy, with Q1 the lowest of all. The
trend was however not consistent, as other £354 homozygotes such as E2 showed efficacies
lower than some Q354. Furthermore, the monozygotic twin pair E3 and E4 differed largely
in efficacy. Thus, GIP efficacies were not consistent with genotype. Of note, GIP efficacy was
not related to gender either, as for instance for £354 the individuals with highest and lowest
efficacy were both female. Finally, there was also no clear relationship to GIPR mRNA levels,
as for example the two cell lines with the highest En.x, E4 and E1, differed greatly in their
mMRNA levels (Fig. 1F).

In conclusion, the responses of the NTR individuals’ LCLs revealed that the E354Q
polymorphism increased the potency of endogenous agonist GIP in Q354 homozygotes,
while heterozygotes showed mixed effects with respect to GIP potency. The efficacy of GIP

was not affected by this polymorphism.

Mutational study E354 in HEK293 cells shows differences in duration of effect

To provide a more direct comparison to our personal cell lines, we performed a mutational
study using transiently transfected HEK293 cells and measured their responses upon GIP
addition using the xCELLigence. An example of the real-time readout of cellular growth and
responses to GIP for HEK293 cells transiently transfected with mock, £354 and Q354 is
presented in Fig. 2A. Addition of GIP to mock-transfected HEK293 cells did not induce
significant changes in impedance, while it resulted in an immediate effect in £354 or Q354
transfected cells. In both cases, impedance increased to a peak level within 120 minutes and
subsequently declined towards baseline, which it did not reach though, even after 240
minutes. Thus, the GIP response dynamics of HEK293hGIPR cells are different from LCLs,
especially in response duration.

Fig. 2B and 2C display examples of the respective real-time traces of £354 and Q354
HEK293hGIPR cells responses to GIP from which concentration-effect curves were
constructed by analyzing the AUC over 4 hours of response (Fig. 2D). The overall effect of GIP
in this time period did not differ significantly between E354 and Q354 with respect to potency
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Figure 2. Characterization for hGIPR response in HEK293 cells transiently transfected with £354 or Q354
variant. Representative example of a full real-time impedance plot and baseline-corrected responses
of mock, £354 and Q354 transiently transfected HEK293 cells (A) and real-time baseline-corrected
concentration-responses curves for (B) E354 and (C) Q354 transfected HEK293 cells. (D)
Concentration-response curves derived of AUC from NCI within 4 hours after GIP addition for £354
and Q354 transfected HEK293 cells. pECsg values were 10.25 + 0.06 and 10.18 + 0.08, while Enmax
values were 100 £ 2.9 % and 56.9 + 6.4 %, respectively. Potency was not significantly different, while
Emax differed by **** as determined by Student’s t-test. (E) Percentage highest baseline-corrected
response to GIP [1 uM] of Q354 versus E354 at several time points. The overall highest response of
E354 was set to 100%. (F) Cell-surface expression of £354 and Q354 over mock transfected HEK293
cells as determined by FLAG-tag ELISA, which was not significantly different between the two variants.
All data are presented as means + SEM of three or more separate experiments performed in
duplicate. Statistic differences were determined by two-way (E) or one-way (F) ANOVA with Fisher’s
LSD test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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(pECsp of 10.25 + 0.06 and 10.18 + 0.08, respectively). Efficacy, however, defined as the
maximally achieved overall AUC, was significantly altered (Emax of 100+ 2.9 % and 56.9 + 6.4
%, respectively). Thus, the overall cellular effect through Q354 was lower than through £354,
which was mostly due to how the height of the cellular effect diverged over time (Fig. 2E).
Specifically, at 30 minutes after agonist addition £354 and Q354 showed virtually the same
height of response to GIP, while the effect on Q354 declined towards baseline more rapidly
after that time. At 4 hours after GIP addition, the effect on Q354 was only 49 % of £354.
Finally, we confirmed that any differences between E354 and Q354 receptor variants
transiently transfected in HEK293 cells were not due to differences in cell surface expression
by performing ELISA (Fig. 2F). In conclusion, the mutational study of E354Q in transiently
transfected HEK293 cells showed no differences in potency. In contrast, significant
differences were found in efficacy as the height as well as duration of response were
decreased in Q354.

Discussion

Genetic differences between individuals can affect both drug action and susceptibility to
diseases, as is increasingly recognized under the concept of personalized or precision
medicine [38]. The GIPR missense SNP E354Q has been associated with diseases including
diabetes and bone-fracture risk [12, 15, 16] and shown to have functional effects in mouse
cell lines or recombinant cell systems [3, 16, 19]. However, results from such animal and
recombinant cells may not be directly translatable to the human individual. Additionally,
several of these studies yielded conflicting results. To provide a better link with the
physiological situation we studied the effect of this SNP in personal cell lines, i.e. LCLs of a
set of individuals from the NTR [29].

The E354Q was present in 21% of NTR individuals, which was in accordance with its
global MAF [14]. Most of the other SNPs in the GIPR gene (Table 1) were located in introns,
as is common for intron-containing GPCRs due to the evolutionary conservation of the
different regions [39, 40]. Thus for functional studies in LCLs, we selected 10 individuals
including two or more unrelated individuals of both genders for each of the three E354Q
genotypes (Table 2). The set of monozygotic twins used as control for genotype-unrelated
effects [29, 41] showed highly comparable responses to the endogenous agonist GIP (Fig. 1,
Table 3), confirming LCLs are a suitable model system. Remarkably, E354Q affected GIP
potency consistently over all individuals, while being independent on gender and family-

relation. GIP had higher potency in all Q354 versus £354 homozygotes, while heterozygotes
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showed a wide spread in potency, differing between each other and from both homozygotes
(Fig. 1, Table 3). Interestingly, precisely this heterozygous variant but not the homozygous
Q354 has been associated with cardiovascular disease [15]. Conversely, only Q354
homozygotes were associated with reduced serum C-peptide concentrations, a parameter
related to insulin levels [16]. Finally, Torekov et al. found minor allele carriers had lowered
bone mineral density, but only Q354 homozygotes had increased risk for certain fractures
[12]. The effect of E354Q heterozygosity is therefore not straightforward, and could vary
depending on disease. Thus, investigating heterozygosity is imperative for deciphering
E354Q pharmacology.

In our study, the E354Q SNP showed clear (genotype-related) effects in LCLs of NTR
individuals, mainly on the potency of the endogenous ligand GIP. For instance, GIP potency
was highly comparable in the monozygous twins E3 and E4 (Table 3). In contrast, the efficacy
was not genotype-related (Table 3), as for example the same monozygous twins E3 and E4
differed greatly in their Enax. Efficacy was also not related to other characteristics such as
gender (Table 2, Table 3) or GIPR mRNA levels (Fig. 1F). For example, E4 and E1 were the two
cell lines with the highest Emax. Contrarily, E4 had high GIPR mRNA levels while E1 exhibited
the lowest of all individuals. It has to be kept in mind that mRNA expression levels do not
necessarily correlate with functional protein expression on the cellular membrane, a feature
well-known in literature [42, 43]. Thus, it appears that neither differences in mRNA levels or
Emax reveal any E354Q-related effects on functional GIPR expression. Notably, the maximal
effects of both GIP and another ligand which targets a completely different set of GPCRs,
namely ATP, showed a similar ranking of individuals (data not shown). Hence it is possible
that the differences in maximal effects reflect each individual’s overall cell properties such
as viability, proliferation rate and adherence to electrodes, which are not specifically GPCR-
related but are known to affect xCELLigence readout [25-28].

Overall, the E354Q SNP showed outspoken effects in LCLs of NTR individuals. It has been
suggested that E354, based on functionality of the same E®* in other class B GPCRs, has a
potentially important role in ligand binding and receptor (in)activation [17]. It was shown
that mutation to an alanine caused a loss of hydrogen bonding network interactions,
resulting in a constitutively active mutant with higher GIP affinity and potency, but
unchanged efficacy [17]. Mutation to glutamine may have similar effects by reducing
interaction strength, thus causing increased potency yet similar efficacy for agonists, which
isin accordance with the observations in LCLs. However, several studies examining functional
effects of E354Q in mouse cell lines or recombinant cell systems yielded conflicting results.

For instance, Fortin et al. noted that Q354 reduced induction of cAMP production in

125 | Chapter 6



recombinant HEK293 cells, while neither Almind et al. nor Mohammad et al. found any effect
on cAMP formation in CHO cells or mouse adipocytes, respectively [3, 16, 19]. A similar
discrepancy was observed for antagonism of GIPR in LCLs, which is considered a potential
treatment for GIPR-related metabolic abnormalities such as diabetes [44]. When we tested
(Pro)GIP, the only commercially available GPR antagonist, in LCLs, it partly inhibited GIP
activation (Fig. 1E) in correspondence to its reported low potency [45]. Interestingly, in our
hands (Pro3)GIP merely acted as an antagonist (Supplemental Fig. S1), while Sparre-Ulrich et
al. reported it to be a full or partial agonist [46]. It stands to notice that the above findings
were established in recombinant or non-human cell systems. On the other hand, LCLs are a
completely human system that endogenously expresses hGIPR. Lastly, all of these
observations were obtained using typical endpoint or second messenger assays, which focus
on one part of a cellular response only. Systems such as the xCELLigence offer the advantage
of measuring whole-cell responses in real-time as opposed to a static, one-molecule-
detection [25-28]. Hence, such label-free whole-cell assays are preferable over typical
endpoint assays to minimize bias [47].

To further investigate the influence of the model system used, we measured E354Q
mutational effects in a common recombinant system, namely transiently transfected HEK293
cells, using the exact same xCELLigence assay to provide direct comparison. As in LCLs, E354
and Q354 were not differentially expressed and we observed a receptor-specific impedance
signal (Fig. 2A, F). Interestingly, HEK293hGIPR cells showed a response duration vastly
different from LCLs (30 minutes for LCLs versus over 240 minutes for HEK293hGIPR). In
addition, overall GIP potency was at least 5-fold higher than in LCLs. However, previously
published potencies also span a wide range, even within the same cell type. GIP potencies
on transiently transfected HEK293hGIPR cells expressing £354 range from 0.9 pM [19] to 490
+30 pM [17], and even 3.63 nM on CHO cells [16], all of which values that were determined
in CAMP-based assays.

Besides differences in GIP effects in general, E354Q specifically showed divergent
pharmacological effects in HEK293hGIPR and LCLs. Specifically, E354Q did not affect potency
in HEK293hGIPR, but had a significant influence on efficacy in terms of height and duration
of cellular effects, which were both lower for Q354 than for £354 (Fig. 2). This is in accordance
with findings by Mohammad et al. in the same cell type, who established that Q354 slowed
receptor recycling to the cell surface following agonist stimulation [3]. This could lead to a
decreased availability of receptors to mediate the cellular effects as measured by the

xCELLigence, thus lower and declining more rapidly over time.
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It is well-established that the behavior of GPCRs is dependent on the cellular context [48,
49]. HEK293 cells are a prototypical recombinant system prone to receptor overexpression,
whereas LCLs are personal cell lines with endogenous levels of receptor expression. This
emphasizes the importance of using primary or derived (i.e. endogenous immortalized)
human cell systems that offer more physiological relevance to confirm any effects
established in other cell systems.

Irrespective of the model system, it is essential to consider findings in the light of
physiological and pathological conditions. Consumption of meals induces GIP blood
concentrations to approx. 100 pM, which return to previous levels around 20 pM within 3 to
4 h[3,50-52]. Itis clear that such physiological concentrations of GIP cannot reach a maximal
effect in E354 LCLs, where potencies are around 10 nM (Table 3). However, GIP potency on
Q534 LCLs was higher and in the pM range. This makes potency differences extremely
relevant for physiological effects, as receptors with increased potency such as the Q354
variant could mediate a larger response. If this variant additionally shows a shorter effect
duration or slower recycling to the surface after GIP stimulation, as pointed at by our results
and those of Mohammad et al. in HEK293 cells [3], the combination could contribute to
lowered GIP sensitivity and, for instance, increasing the risk of insulin resistance. Replicating
these findings in cell types directly involved in the physiological functions of GIP, such as
adipocytes from patients versus healthy volunteers containing both E354Q GIPR forms, could
offer more conclusive results.

In conclusion, our study with personal cell lines that endogenously express E354Q shows
that this polymorphism has a strong effect on receptor response, namely by increasing GIP
potency, which can affect the physiological function of the receptor. Furthermore, a
mutational study in recombinant HEK293 cells revealed a reduced effect duration for Q354,
which was not observed in LCLs. Thus, the effects of E354Q differ depending on the model
system used. By studying E354Q effects in personal cell lines, we aimed to increase the link
with the real-life situation and to provide more insight into physiological changes as they
occur in the human individual, and thereby contribute to precision medicine for GIPR-related

pathologies.

Data Access

The LCLs used in this study were kindly provided within the framework of this collaboration
[29] and are part of the Netherlands Twin Register (NTR;

http.//www.tweelingenregister.org/en/), and part of the Center for Collaborative Genomic
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Studies on Mental Disorders (NIMH EQ34 MH068457-06). Data and biomaterials (such as cell
lines) are available to qualified investigators, and may be accessed by following a set of
instructions stipulated on the National Institute of Mental Health (NIMH) website

(https.//www.nimhgenetics.org/access_data_biomaterial.php).
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Supporting information

Supplemental Table S1. Significant differences in endogenous agonist GIP potency and efficacy per
individual’s LCL. Data represent pECso = SEM and Emax = SEM of at least three experiments performed
in duplicate. Statistical analysis was performed by one-way ANOVA with Fisher’s LSD post-hoc test. For
pECso, a large difference between GG genotypes (E354) the CC genotype (Q354) compared to GG
genotypes and a mixed effect for the heterozygote genotype. The Emax showed little differences that

were not consistent with genotype. ns = not significant; *p<0.05, **p<0.01, ***p<0.001,
#¥%%<0.0001.
EC E

Individuals — L
Summary P Value Summary P Value
Elvs. E2 ns 0.1670 *k 0.0027
Elvs. E3 ns 0.8819 * 0.0250
Elvs. E4 ns 0.1156 ns 0.4986
Elvs. E5 ns 0.9651 ns 0.7103
Elvs.Ql okl <0.0001 *x 0.0015
Elvs. EQ1 oAk <0.0001 ns 0.6019
E1vs. EQ2 ns 0.1278 *x 0.0067
E1lvs. EQ3 Hokx 0.0002 ns 0.4815
Elvs. Q2 HA kK <0.0001 * 0.0103
E2 vs. E3 ns 0.1278 ns 0.3722
E2 vs. E4 *k 0.0049 Hkx 0.0004
E2 vs. E5 ns 0.2149 * 0.0128
E2 vs. Q1 Hkx 0.0005 ns 0.6423
E2 vs. EQ1 HkAK <0.0001 * 0.0183
E2 vs. EQ2 *x 0.0056 ns 0.7262
E2 vs. EQ3 * 0.0100 * 0.0105
E2 vs. Q2 ok <0.0001 ns 0.4081
E3 vs. E4 ns 0.1518 *x 0.0048
E3 vs. ES ns 0.8562 ns 0.0803
E3vs.Ql HkA K <0.0001 ns 0.2008
E3 vs. EQ1 HkAK <0.0001 ns 0.1078
E3 vs. EQ2 ns 0.1670 ns 0.5847
E3 vs. EQ3 Hkx 0.0001 ns 0.0860
E3vs. Q2 HkAK <0.0001 ns 0.8790
E4 vs. ES ns 0.1330 ns 0.3210
E4vs. Ql HkAE <0.0001 Hokx 0.0003
E4 vs. EQ1 oAk <0.0001 ns 0.2546
E4 vs. EQ2 ns 0.9569 *x 0.0011
E4 vs. EQ3 HEk <0.0001 ns 0.1617
E4vs. Q2 KA Ax <0.0001 *x 0.0015
E5vs.Ql HkAK <0,0001 *k 0.0066
E5vs. EQ1 HkAK <0.0001 ns 0.8877
E5vs. EQ2 ns 0.1456 * 0.0272
E5vs. EQ3 Hokx 0.0006 ns 0.7947
E5vs. Q2 HkAK <0.0001 * 0.0447
Q1 vs. EQL * 0.0406 *x 0.0094

E354Q polymorphism effects on GIP receptor signaling | 132



Qlvs. EQ2 HE K <0.0001 ns 0.4320

Q1 vs. EQ3 ns 0.1318 *k 0.0054
Qlvs. Q2 ns 0.2966 ns 0.2129
EQ1 vs. EQ2 *rkk <0.0001 * 0.0381
EQ1 vs. EQ3 HHk 0.0004 ns 0.9185
EQ1 vs. Q2 ns 0.1690 ns 0.0630
EQ2 vs. EQ3 *xkk <0.0001 * 0.0251
EQ2 vs. Q2 HkA K <0.0001 ns 0.6547
EQ3 vs. Q2 *x 0.0041 * 0.0415
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Supplemental Figure S1. (Pro®)GIP response in LCLs. Representative example of a baseline-corrected
responses to either (Pro®)GIP [1 uM] or GIP [31.6nM] of LCLs from one £354 individual, E3. Data is
representative for three or more separate experiments performed in duplicate.
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CHAPTER 7

Conclusions and future perspective



This thesis delves into examining the influence of genetic variation on GPCR function within
the human individual. In this concluding chapter, insights gained from case studies at three
different GPCRs are elaborated on, and suggestions for future investigations around

precision medicine for GPCRs are presented.

Conclusions

Assay methodology and model systems

GPCRs are traditionally investigated in reporter-based assays performed on heterologous cell
lines, which offer only limited translational value [1-6]. Physiologically more appropriate
model systems and assays are thus required (Chapter 2). LCLs, which are among the most
frequently biobanked samples used for storing genetic material [7-13], could form a highly
valuable resource for investigating genetic effects on drug action and receptor function. In
addition, label-free cellular assays offer increased physiological relevance over the assays
used traditionally in GPCR research, as discussed in Chapter 1 and 2 [4, 13-15]. Unfortunately,
these were originally deemed incompatible with suspension cells such as LCLs due to the
detection mechanism positioned at the bottom of the well [16]. In this thesis | present a
methodology with increased translational value by employing personal cell lines (the LCLs)
as a model system, in combination with a physiologically more appropriate label-free cellular
assay (the xCELLigence) to investigate GPCR function (Chapter 3). Adaptation to suspension
cells drastically widens the realm of application for label-free assays, while investigating GPCR

functionality in LCLs opens up an avenue for exploring precision medicine for GPCRs.

Genetic variation in GPCRs
Genetic variants in drug targets affect pathology and drug action [17]. Despite GPCRs being
the largest group of drug targets to-date [18], studies on their genetic variation are sporadic,
often only statistically associative and focus on one single target. Investigations generally
work with one consensus form of a receptor, the so-called Wild-type, hereby ignoring the
naturally occurring genetic variation in the population. However, other receptor variants may
be more relevant for certain diseases or drug effects. Three separate cases of common
polymorphisms that affect GPCR signaling are presented in this thesis, each revealing
different properties including the sensitivity to agonist type, chemical scaffold and variant
position in the gene.

Throughout this thesis | present examples that show genetic variations at different

positions in GPCRs can be of influence. Logically, single nucleotide polymorphisms (SNPs)
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most likely to have profound effects on receptor function are those that alter the amino acid
sequence of the receptor, the so-called non-synonymous SNPs. Indeed, the variants that
affected the Cannabinoid Receptor 2 (CB;R) and the glucose-dependent insulinotropic
polypeptide receptor (GIPR), Q63R and E354Q respectively, both changed an amino acid
(Chapter 5 and 6). In fact, many cases presented in the literature fall into this category [2, 19,
20]. However, changing amino acid sequence is not the only way in which a receptor can be
affected by polymorphisms. Chapter 4 presents the case of the Adenosine A;a receptor, in
which responses differ between individuals in the absence of any non-synonymous SNPs.
Genotype comparison revealed differences in two intron SNPs, one of which associated with
caffeine-induced sleep disorders [21-23]. Such SNPs could have regulatory potential, for
instance in affecting receptor expression which in turn may affect G protein coupling
efficiency [23, 24].

Interestingly, this particular A;aR SNP altered partial agonist potency, but not that of full
agonists or antagonists (Chapter 4). In a similar manner, the partial agonists for the CB,R
showed higher efficacy in a Q63R minor homozygote (Chapter 5). While either potency or
efficacy of partial agonists can be affected, it overall appears that partial agonists may be
more receptive to polymorphism-induced changes. This concurs with the theory that deems
partial agonists more sensitive to system-related differences in receptor function, for
instance in receptor expression or downstream coupling, than full agonists or
antagonists [25]. The nature of the ligand thus influences its sensitivity to e.g.
polymorphisms. In addition, the chemical scaffold of a ligand is likewise important. Chapter
5 presents how compounds of different chemical classes show more or less modulation due
to CB,R genetic variation. Non-classical cannabinoid CP55940 showed the most pronounced
personal effects, while aminoalkylindole compounds showed fewer individual differences.
Taking both ligand nature and chemical scaffold effects into account could allow early
identification of compounds prone to personal differences (‘precision medicine’) or
compounds that would be more suited as drugs for the general population.

Besides affecting drug action, SNPs can also alter the physiological function of a receptor
with potentially pathological consequences. Chapter 6 focusses on the investigation of the
GIPR, in which E354Q influenced endogenous agonist effects, in particular with respect to
potency in LCLs and duration of response when the receptor was expressed in recombinant
HEK293 cells. This SNP has previously been linked with various pathologies including insulin
resistance, diabetes and cardiovascular disease [26-29]. Interestingly, endogenous agonists
are not necessarily more sensitive to receptor polymorphisms than synthetic ligands, as the

study of adenosine on the A,sR and various endocannabinoids on CB,R show (Chapter 4 and
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5). While some SNPs are of pathological consequence, others may be more relevant for drug
effects. For instance, the A;aR SNP has been associated with caffeine effects and
pharmacotherapy-related toxicities in acute lymphoblastic leukemia as well as pathological
conditions including anxiety in autism [21-24]. Similarly, Q63R in the CB5R has been linked to
various pathological disorders [5, 30-35] as well as synthetic ligand effects (Chapter 5, [36]).
It is important to note that if a polymorphism affects an endogenous agonist, this may not
directly leading to pathology. However it can still drastically alter a system’s sensitivity to
drug treatment, even if the synthetic compounds are not directly affected themselves. In
conclusion, it is undoubtedly necessary to take physiology and pathology into account when
selecting ligands and conditions to study the influence of GPCR polymorphisms.

Finally, it could be argued that SNPs with profound effects on receptor function are likely
less frequent in the population due to evolutionary pressure. It is a common misconception
that a frequent SNP has likely little effect [2]. The frequencies of the SNPs in this thesis
however tell a different story, as the SNPs in the GIPR and CB,R with a global Minor Allele
Frequency of approx. 35% and 16%, respectively [37-39], are in fact quite frequent,
regardless of any functional effects. Many disease-related SNPs are quite rare, but some
common SNPs are also known to contribute to or cause certain disease phenotypes (2, 17].

In summary, the cases presented in this thesis demonstrate that for every GPCR, there
appears to be at least one polymorphism candidate to affect receptor function. The
particularities of each polymorphism can however differ, depending on the nature of the
ligand such as endogenous vs. synthetic, partial vs. full agonist, chemical scaffold as well as

the number of individuals potentially affected.

LCLs as model system for genetic effects on GPCRs

The examples summarized in this thesis (Chapter 3-6) demonstrate that LCLs are a suitable
model system to study genetic effects on GPCRs, and the applied methodology facilitates
phenotypic measurements of personal responses. LCLs thus enable direct measurement of
polymorphism effects in a physiological environment, without having to generate and
introduce a receptor mutant into a heterologous cell line as is generally done in the GPCR
field. Any such alterations can affect receptor pharmacology and decrease translatability
(Chapter 2). It is therefore unsurprising that the results presented in this thesis agree with
previous investigations to some degree, while contradicting others. In chapter 5 for instance,
Q63R influences on CB,R contrasted previous reports obtained in recombinant
overexpressing cell systems, while confirming findings in a more physiological cell type [5,
36, 40, 41]. E354Q effects on GIPR differed between LCLs and HEK293 cells even in our hands
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(Chapter 6), and results of either cell type were both in accordance and contrast with
previous studies [28, 29, 42]. Overall, it appears that LCLs are a well-suited system to measure
personal polymorphism effects on GPCRs in a physiological setting, and enable explorations
into the realm of GPCR precision medicine. While they increase translatability in comparison
to traditional cell systems, the relevance of effects established in this thesis depends on
further replication in e.g., more individuals for genotype effects, and/or primary cell types

directly involved in pathology.

Future perspectives

Altogether a variety of impact factors for GPCR research including model systems, assay
technology and genetic variation have been detailed throughout this thesis. The following
section will discuss the future perspectives precision medicine for GPCRs involving some of

these findings and additional aspects for further consideration.

Genetic variation landscape in druggable GPCRs

With the rise of personalized or precision medicine concepts, it is increasingly recognized
that genetic differences between individuals can affect both drug action and susceptibility to
diseases [17]. Examples of influential genetic variants of various types, frequencies and
physiological consequences are accumulating. However, which variants are pathogenic,
collateral of inconsequential is still largely undefined and subject of tremendous ongoing
research efforts.

When regarding any two unrelated individuals, 99% of their genomic DNA sequences are
identical. The other 1%, however, signifies in fact 38 million different genomic variations. In
turn, 90% of these variations are formed by SNPs, which makes these the most common
source of genetic variation in the human population [12, 32]. On average, around one SNP
occurs per 300 bases, meaning that each GPCRs should contain several SNPs, which occur
more or less frequently in the population [2, 43]. During our annotation process of SNPs in
druggable GPCRs (Chapter 1, Fig. 3), we noted several trends.

First, the total amount of SNPs is related to gene size (Fig. 1). The largest GPCR genes,
which belong mostly to Class C and Adhesion GPCRs, generally have the most genetic
variation. Table 1 shows the top and bottom 5 genes with most or least SNPs. Based on these,
SNPs of any kind occur within a GPCR gene on average around every 140 bp in the largest
genes and every 413 bp in the shortest genes. This increased distance in shorter genes is
unsurprising as, the shorter a gene, the larger the relative part that is coding sequence, which

is more evolutionary conserved.
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Figure 1. Total SNP count vs gene length for all 370 druggable GPCRs. A list of all druggable non-olfactory
GPCRs was downloaded from the IUPHAR database. The gene length and SNP information were
exported from Ensembl Biomart archived page (April 2013, version 71) corresponding to genome build
GCRh37.p10.

Secondly, most SNPs are located in non-coding regions and/or do not affect amino acid
sequence in any way. Non-synonymous SNPs only represented 0.7% of all SNPs found in
druggable GPCRs (total 152.000 SNPs on 370 GPCR genes). Synonymous SNPs which are
located in the coding region but do not change the amino acid sequence made up 25%.
Hence, GPCRs contain an abundance of SNPs predominantly in non-coding regions, with
42.5% in UTR and intron regions. This is common for any intron-containing GPCR due to the
evolutionary conservation of the different regions [43, 44].

Finally, SNPs with possibly profound effects on receptor function i.e. by altering the
amino acid sequence of the receptor, are more abundantly occurring than one might expect.
While the overall amount of SNPs increases with gene size (Fig. 1), on average each druggable
GPCR contains at least 1-5 non-synonymous SNPs, independent of gene size (Table 1). The
bottom line is that for each GPCR, there appear to be genetic differences which may impact
receptor and drug functionality. Hence it is paramount not to ignore the potentially
influential natural variation occurring in any GPCR or drug target for future pharmacological
research.

Although SNPs form the major source, there are other types of genetic variants present
in the human genome. These include bi-allelic short insertions or deletions, large deletions,
short repeats such as micro- and minisatellites, and copy number variants (CNV) which can

extend to repeats of entire genes [32]. While most have no detrimental clinical
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Table 1. GPCR genes with the top five most and least SNPs in total. The gene length and SNP information
were exported from Ensembl Biomart archived page (April 2013, version 71) corresponding to genome
build GCRh37.p10. The column labelled altering SNPs entails the number of SNPs that are either
missense-, start and stop codon, or frameshift variants for the respective receptor.

GPCR Gene Average SNP SNPs
Gene | Receptor type lenght (bp) di b
class enght (bp) distance (bp)  Total  Altering
GRM7 Class C Metabotropic glutamate 971527 118 8216 2
receptor 7
LPHN2 Adhesion Latrophilin receptor 2 686275 126 5430 5
LPHN3 Adhesion Latrophilin receptor 3 871208 160 5430 2
GRM8 Class C Metabotropic glutamate 814696 151 5388 5
receptor 8
BAI3 Adhesion Brain-specific 754144 144 5248 2
angiogenesis inhibitor
TAS2R16  Taste Type 2 taste receptor 16 995 332 3 2
GPR32 Class A Orphan receptor 1268 423 3 1
CHRMA4 Class A Muscarinic acetylcholine 1467 489 3 0
receptor 4
MC3R Class A Melanocortin receptor 3 1083 361 3 1
FFAR1 Class A Free fatty acid receptor 1 922 461 2 1

consequences, some form a pathological risk. For instance, several repeat polymorphisms in
the Arginine vasopressin receptor 1A have been associated with altered social, sexual and
reproductive behavior [45-47]. Also, the TAS2R receptor family that detects bitter taste of
compounds such as caffeine contains about 25 GPCRs, but the exact number per individual
varies due to copy number variation. Individual experiences of bitterness are altered by
genetic variation in these receptors [48, 49]. Finally, duplication of orphan receptor GPR101
has been shown to lead to X-linked acrogigantism [50]. Thus next to SNPs, it would be an
important addition to study other forms of genomic variations too, as these can also account
for a difference in GPCR response [51].

Of note, the Netherlands Twin Registry (NTR; http.//www.tweelingenregister.org/en/)
[7] from which the collection of LCLs utilized in this study originated, has served as data
source for many genetic studies, including SNPs as well as CNVs already [52-55]. Given the
appropriate samples are available, utilizing the set-up of LCLs and label-free technology could

offer additional insights into the functional influences of such other types of variants too.
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LCLs and emerging cellular model systems for drug research

Two of the major challenges in today’s drug development are the lack of understanding inter-
individual variability in drug effectiveness, and the translatability of preclinical results.
Inappropriate model systems have contributed to both issues, and consequently to lack of
reproducibility in preclinical research, lack of clinical effectiveness and high attrition rates [6,
56].

In this thesis | have presented a methodology utilizing LCLs from the NTR [7] as a model
system to investigate genetic effects on GPCR functionality. Applications of LCLs are however
by no means limited to the three exemplary GPCR cases discussed in this thesis (Chapter 4-
6), as LCLs express many more GPCRs as well as other drug targets [11, 57, 58].

In general, renewable in vitro cell sources have been essential in facilitating drug
discovery and pharmacogenomic studies. In fact, much of our understanding of the
influences of genetic variation in humans is based on studies utilizing LCLs [59]. LCLs are
already easily available in large variety as LCL repositories exist in abundance, some
representing specific disease populations or ethnicities [7-11, 59-61]. Hence they are utilized
in many aspects of pharmacogenomics, and examples include general genotype-phenotype
association, many genome-wide association studies (GWAS) for drug-induced phenotypes
and even follow-up studies of clinical findings [11, 57].

Notwithstanding the convenience and usefulness of LCLs as a cellular model system,
there are concerns that their immortalization and cell line maintenance could obscure
genetic findings [59, 62-64]. Certainly, it is well known that a large number of genes are
differentially expressed between primary cells and cell lines [59]. Opposed to this, primary
cells express signaling pathways and retain many cellular functions that are seen in vivo, thus
providing a more relevant context (Chapter 2). Over the past decades, numerous biobanks
have been set up to support medical research by programmed storage of biological material
and corresponding data. These biomaterials include LCLs as well as primary material such as
tissues, (stem) cells and blood, all of which are actively used from translational and
personalized medicine to target and drug discovery [65, 66]. Several approaches applying
label-free technology to utilize patient primary cells as model system are discussed in Chapter
2. While such cell types have increased translational value, the materials are often limited
due to culture and sampling issues. On the other hand, LCLs are a renewable source that is
already widely available, and offer genotypic and phenotypic information and stability that is
absent in many other renewable sources. How appropriate either model system is depends

largely on the application and question at hand.
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An alternative that could incorporate renewability, primary tissue properties and patient
origin are stem cells, which offer great potential as physiologically more relevant models. In
particular induced pluripotent stem cells (iPSC), which can maintain the disease genotype
and phenotype indefinitely, provide a source of models for an expansive range of adult
differentiated cells, possibly even for each individual patient. The ability to reprogram cells
of patients into disease-relevant cell types could provide more representative and predictive
cellular models for both disease modelling and drug discovery [60], and has the potential to
personalize pharmacological research [67, 68]. iPSC have already been used for drug
screening and disease modelling, particular as neural cells, haematopoietic cell types,
hepatocytes and cardiomyoctes [69, 70]. For some of such cell types, hiPSC-cardiomyocytes
in particular, there are also examples of their application in label-free assays (Chapter 2, Table
1) [71-73]. Interestingly, iPSC can be derived from a variety of cellular sources, including LCLs.
This taps into the invaluable resources of the already available, vast collections of LCLs. iPSC
derived from LCLs retain their disease mutation, exhibit identical characteristics as iPSC
derived from more common sources such as fibroblasts, and can be differentiated into
various cell types including neurons and even intestinal organoids [60, 61]. Organoids
constitute near-physiological 3D models of an organ with realistic micro-anatomy, and as
such enable more accurate study of many physiological processes [74]. Furthermore, iPSC
from LCLs even recover their donor-specific gene expression signature [59, 60]. While it is
unlikely that the lack of donor signature on gene expression in LCLs themselves would cause
false-positive findings of genetic influence, such as the ones presented in this thesis in
Chapter 3-6, regaining this signature in iPSC increases the ability to study inter-individual
differences in gene expression [59].

In summary, as these developments show, LCLs offer an enormous bioresource for both

drug discovery and disease modelling [60, 61].

Comeback of phenotypic assays for drug research

In addition to the need for more representative model systems, a preference is emerging for
minimally invasive, time-resolved and thus pharmacologically more relevant assays. As
principal criteria, new assay approaches for pharmaceutical drug discovery are to be more
efficient and multidimensional [19]. Amongst these are label-free cellular assays. As
discussed in Chapter 2, these assays offer a wide range of applications and have similarly
been applied to many important classes of drug targets, which include besides GPCRs also
receptor tyrosine kinases and nuclear receptors [75-78]. Their realm of application is large

and constantly expanding.
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This preference is part of a general trend back towards phenotypic screening. Phenotypic
screens were in fact the norm for drug discovery prior to the 1980s. Following the advent of
molecular cloning then, target-based screening became the standard approach for drug
discovery. This strategy includes cloning and functional expression of potential drug targets
in recombinant cell lines for study and screening of drug candidates (Fig. 2). While this
approach has delivered many drug candidates over the years, there were relatively few new
drugs. One reason is that this approach may work very well for monogenic diseases, however,
most human diseases are likely multifactorial. Rather than caused by a single genetic change,
they are complex diseases originating through an interplay of a multitude of genetic and
environmental factors. Hence they may require engagement of multiple targets to achieve
clinical efficacy [79-82].

In such instances, target-agnostic approaches as utilized in phenotypic screening assays
can offer advantages. In fact, significantly more small-molecule first-in-class drugs were
discovered through phenotypic screening than target-based approaches [83]. Instead of
focusing on engaging a specific target, phenotypic assays rely on finding molecules with a
particular biological effect in cell-based or animal models (Fig. 2) [80-82]. This approach does

however have its own hurdles to overcome, which include the need to identify a phenotypic

Target-based screening ‘1

;.

Target engagement

Compounds

Phenotypic screening

Phenotypic response

Time

Figure 2. Phenotypic assays versus target-based approach. Target-based drug discovery approach
focuses on engaging a specific target, often using molecular cloning and recombinant techniques.
Phenotypic assays identify molecules with a particular biological effect in cell-based or animal models.
Phenotypic assays can provide context that is closer to the clinical situation.
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endpoint appropriately associated with the disease of interest. Label-free assay technologies
offer additional advantages here, as they do not require assumptions about molecular
mechanisms and pathways but rather allow for a multidimensional and less biased
investigation [80]. In summary, label-free assay technology provides phenotypic assays that
are able to acquire molecular-level understanding of complex biological processes in their
native environment [6, 84]. When combined with the appropriate cellular model systems, as
discussed in this thesis in e.g. Chapter 2, the combination offers a powerful approach for

pharmaceutical research in general and precision medicine in particular.

Precision medicine prospective for GPCRs

The human genome mapping, the resulting pharmacogenetic discoveries and the ongoing
movement towards precision medicine have influenced drug development in general, and
hence also for GPCRs. It is increasingly recognized among the GPCR research community that
tailoring a drug candidate for a particular genetic variant of a GPCR could offer various
benefits [19] (Fig. 3). There are numerous examples of genetic variants in GPCRs altering
pharmacology or pathology. In 2001, Sadee et al. published an exemplary catalogue of
genetic GPCR variants and possible implications for drug therapy [64]. More than a decade
later, the tailoring of GPCR targeting drugs based on genetic variation in patients is still
deemed to be in the early stages of feasibility [34]. To name a particular example, the aga
adrenergic receptor antagonist yohimibine improved insulin secretion in type Il diabetes
patients that were carriers of a particular SNP in this receptor [20]. Other forms of genetic

variation besides SNPs have also been found to be of influence, for instance GPCR expression
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Figure 3. Precision medicine versus traditional treatment paradigm. Tailoring a drug (candidate) to

patient characteristics such as genetic information can offer several benefits including decreased risks
of ineffective treatment, of inappropriate dosing or of side effects [91-93].
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as a biomarker for the clinical efficacy of the A; adenosine receptor agonist IB-MECA, or the
conversion of P2Y;, receptor prodrug Plavix being impaired by the 2C16 isoform of CYP450
enzymes [85, 86] .

The progress in precision medicine for GPCRs has come in large part through
pharmacogenomic advances. Over the past two decades, the Human Genome Project,
HapMap project and 1000 Genomes project have been instrumental in identifying human
genetic variants contributing to common diseases [8, 79, 87]. The emergence of GWAS in
2005 has led to a surge in the successful identification of numerous disease-associated
genetic loci. However useful, with GWAS genetic variants are mostly associated, not
necessarily correlated with disease, as there is no clue to the underlying mechanism [79, 88].
Finally, in the past couple of years, whole-exome sequencing experiments which specifically
focus on coding regions related to proteins have become available [79]. The costs of such
techniques are decreasing, while patient willingness to participate is on the rise [79, 89].
Continuing these trends, first personalized whole-genome sequencing and finally, with
gaining the appropriate pharmacological understanding, various forms of precision medicine
may become standard clinical practice (Fig. 3). Before this becomes clinical reality however,
there are hurdles to be overcome such as the existing skepticism by clinicians, mostly related
to ethical concerns about privacy and potential discrimination of patients [79, 90]. First and
foremost however remains the appropriate identification of disease-related genetic variants
and corresponding implications for medical treatment. To deliver the required molecular-
level understanding of genetic influences on pathology and pharmacology, more
representative model systems and assay techniques are becoming available. Now is the time
to employ these tools to become more familiar with the key contributing factors, establish
the necessary key concepts, integrate these into target discovery and drug development and
hereby lay the path towards precision medicine for GPCRs, drug targets and patients in

general.

Final Notes

Altogether a novel cellular approach towards studying genetic effects on GPCR function has
been explored and detailed throughout this thesis. Several GPCRs and different types of
genetic variations were investigated, demonstrating together that personal cell lines in
combination with label-free technology are an appropriate tool to enable GPCR

pharmacogenetic studies. Incorporating aspects such as genetic variation in drug targets,
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representative model systems and appropriate assay technology are important factors for
advancing GPCR drug discovery. The data presented in this thesis contributes towards the

progress of applying precision medicine concepts to this class of drug targets.
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Summary

The traditional medical treatment paradigm focuses on prescribing one drug to treat all
patients with a specific disease or condition, so called ‘one-size-fits-all’. However, it has been
shown increasingly that differences between persons, such as in lifestyle or genes, can
change both the course of a disease and effect of a drug. In order to adapt medical treatment
and drug development to that, a concept know as precision medicine, it is essential to study
which and how genetic differences, i.e. polymorphisms, affect drug response. In this thesis |
studied of the influences of genetic variation on a specific class of drug targets, the G protein-
coupled receptors (GPCRs), by using a combination of personal cellular models and novel
label-free assay technology.

Chapter 1 introduces the main subjects and concepts around precision medicine, GPCRs
and genetic variation discussed in this thesis. Chapter 2 continues with discussing the concept
of using patient-derived cell lines as model systems and highlights the advantages of label-
free technology assays to investigate these. To better understand drug action and
pathological processes in the human individual, physiologically more appropriate model
systems are needed. For this, patient-derived cells can offer specific advantages. Traditional
GPCR assays are often label-based, which has disadvantages when aiming to represent the
physiological situation as closely as possible. Novel label-free cellular assays enable the study
of complex biological processes in their native environment. Examples and advantages of the
combination of these two are discussed in chapter 2.

Chapter 3 describes the optimization and application of an impedance-based label-free
assay methodology, the xCELLigence, to a type of personal cell line, the lymphoblastoid cell
lines (LCLs) from individuals of the Netherlands Twin Registry (NTR), to allow direct
measurement of cellular effects of GPCR signaling. Generally, this label-free assay technology
was deemed only compatible with adherent cell lines, while LCLs are suspension cells.
Therefore, the methodology was optimized and applied to study cellular properties and GPCR
signaling in LCLs. A prototypical GPCR present on LCLs, the cannabinoid receptor 2 (CB;R),
was selected for proof-or-principle. Effects of several compound types were studied and
proved comparable between LCLs of two unrelated individuals with the same genotype,
providing the first evidence that the technology and model system were well suited to

evaluate genetic influences on GPCR-mediated drug responses.
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Chapter 4 presents the case of another GPCR, the adenosine Axa receptor (A;aR). The
AR is a potential drug target for a variety of respiratory and inflammatory conditions,
including Parkinson’s disease, as well as the receptor for caffeine. After identifying which
adenosine receptor subtypes were present on LCLs, the cellular effects of various types of
compounds targeting the A;aR were compared between LCLs derived from a family of four
individuals, consisting of parents and their identical twin children. In the presence of a
specific type of genetic variation, an intron Single nucleotide polymorphism (SNP) that is
potentially linked to caffeine-induced sleep disorders, different cellular effects were found
for a specific type of compound, a partial agonist, but not for other compounds such as full
agonists or antagonists. Although this does not provide causal evidence that response
differences are directly related to this genetic variation, it does show that the chosen
methodology is capable of picking up individual differences in GPCR signaling.

After this demonstration, genetic differences in other GPCRs were studied. The CB;R is a
GPCR investigated intensively as therapeutic target due to its important role in the immune
system. In chapter 5, responses to agonists, partial agonists and antagonists of various
chemical classes were characterized in LCLs from individuals with varying CB,R genotypes.
One of the interesting findings was that endogenous cannabinoids such as 2-AG induced
cellular effects vastly different from all synthetic cannabinoids, especially in their time-
profile. More importantly, it was also found that compounds with different chemical
scaffolds showed different sensitivity to a highly common amino-acid altering polymorphism
in the CB;R, the Q63R variant. In a similar manner it may be possible to identify compounds
prone to personal differences, so for precision medicine, or more suited as drugs for the
general population early on in drug development.

Genetic differences may however not only influence drug effects, but can alter a
person’s susceptibility to disease or alter disease progression. Chapter 6 presents the case of
the Glucose-Dependent Insulinotropic Polypeptide Receptor (GIPR), in which an amino-acid
altering SNP that has often been associated with diseases changed the cellular effects of the
endogenous ligand. The GIPR plays an important role in whole-body metabolism, and its
amino-acid altering SNP E354Q has been associated with several diseases including diabetes.
When studying this receptor in a panel of LCLs of individuals with different genotypes for
E354Q, responses to the endogenous agonist GIP showed enhanced potency in Q354
homozygous individuals. This study hereby provides more insight into how GPCR
polymorphisms could change physiology in the human individual.

In summary, a novel cellular approach for studying genetic effects on GPCRs has been

explored and detailed throughout this thesis. Several GPCRs and different types of genetic
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variations were investigated, and the findings highlight that various kinds of genetic
differences in GPCRs, can profoundly influence drug response. These include differing effects
depending on compound type or chemical scaffold, as well as on endogenous signaling. The
overall conclusion from the results described in this thesis and forthcoming opportunities for
drug discovery and treatment are discussed in detail in chapter 7. In concert, the findings in
this thesis may contribute to the progress of applying precision medicine concepts to the
GPCR class of drug targets and hence the development of clinically more effective and more

tailored drugs.
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Samenvatting

Historisch gezien richt zich medische behandeling op het voorschrijven van één
geneesmiddel om alle patiénten met een specifieke ziekte of aandoening te behandelen, ook
bekend als 'one-size-fits-all'. Het wordt echter steeds duidelijker dat verschillen tussen
personen, zoals in levensstijl of genen, zowel het verloop van een ziekte als het effect van
een geneesmiddel kunnen veranderen. Om medische behandeling en medicijnontwikkeling
hierop aan te kunnen passen, een concept bekend als ‘precision medicine’, is het essentieel
om te identificeren hoe en welke genetische verschillen, d.w.z. polymorfismen, de
geneesmiddelrespons beinvloeden. Dit proefschrift richt zich op het bestuderen van
genetische verschillen in een bepaalde klasse van doelwitten voor geneesmiddelen, de G-
eiwit gekoppelde receptoren (GPCRs), door gebruik te maken van een combinatie van een
persoonlijk cellulair model en een recent ontwikkelde label-vrije meettechnologie.

In hoofdstuk 1 worden de hoofonderwerpen en concepten rondom precision medicine,
GPCRs en genetische verschillen, die in dit proefschrift aan bod komen, geintroduceerd.
Hoofdstuk 2 gaat verder met de discussie over het concept om persoonlijke cellulaire
modellen te gebruiken en belicht de voordelen die de label-vrije meettechnologie biedt om
deze te onderzoeken. Om de geneesmiddelwerking en ziekteprocessen in het menselijke
individu beter te kunnen begrijpen, zijn meer fysiologische representatieve model systemen
nodig. Hiervoor bieden cellulaire modellen afkomstig van patiénten specifieke voordelen.
Traditionele GPCR bepalingsmethoden zijn vaak gebaseerd op labels, wat nadelen met zich
meebrengt als het doel is om de fysiologische situatie zo goed mogelijk te benaderen. Recent
ontwikkelde label-vrije cellulaire bepalingsmethoden maken het bestuderen van complexe
biologische processen in hun natuurlijke omgeving mogelijk. Voorbeelden en voordelen van
de combinatie van deze twee worden in hoofdstuk 2 besproken.

Hoofdstuk 3 beschrijft de optimalisatie en toepassing van een dergelijke, op weerstand
gebaseerde label-vrije technologie, de xCELLigence, voor een bepaald type persoonlijke
cellijnen, de lymfoblastoide cellijnen (LCLs) van individuen van het Nederlandse Tweelingen
Register (NTR), voor directe meeting van de cellulaire effecten van GPCR stimulatie. Over het
algemeen wordt deze label-vrije technologie alleen toepasbaar op hechtende cellen geacht,
terwijl LCLs suspensie cellen zijn. Daarom werd de methodologie geoptimaliseerd en

toegepast om zowel de cellulaire eigenschappen en GPCR activatie in LCLs te kunnen
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bestuderen. Een GPCR die in LCLs aanwezig is, de Cannabinoide receptor 2 (CB,R), werd
geselecteerd als voorbeeld ter demonstratie. De effecten van verschillende typen chemische
verbindingen werden bestudeerd en bleken vergelijkbaar tussen LCLs van twee niet
verwante individuen met hetzelfde genotype, wat het proof-of-principle leverde dat deze
technologie en het cellulaire model systeem goed geschikt waren om genetische invloeden
op GPCR-gemedieerde geneesmiddelrespons te onderzoeken.

Hoofdstuk 4 laat het voorbeeld van een andere GPCR, de Adenosine Axa receptor (A2aR)
zien. De AzaR is een mogelijk aangrijpingspunt voor geneesmiddelen voor een breed aantal
van ademhalings- en ontstekingsaandoeningen, waaronder de ziekte van Parkinson, en is ook
de receptor voor cafeine. Na het bepalen van welke subtypes van adenosinereceptoren
aanwezig waren in LCLs, werden de cellulaire effecten van verschillende typen chemische
verbindingen die op de A;aR aangrijpen vergeleken tussen de LCLs van een familie van vier,
bestaande uit ouders en hun eeneiige tweelingkinderen. Bij aanwezigheid van een bepaalde
genetische variant, een Single Nucleotide Polymorphism (SNP) in een intron die eerder in
verband is gebracht met cafeine-gerelateerde slaapstoornissen, werden afwijkende
cellulaire effecten gezien voor een bepaald type verbinding, namelijk een partiéle agonist,
maar niet bij andere typen verbindingen zoals volle agonisten of antagonisten. Hoewel dit
geen direct causaal verband aantoont tussen de verschillen in respons en de genetische
variatie, laat het wel zien dat de gekozen methode geschikt is om individuele verschillen in
GPCR effecten te detecteren.

Na deze demonstratie weden genetische verschillen in andere GPCRs bestudeerd. De
CB;R is een GPCR die intensief onderzocht wordt als mogelijk therapeutisch doelwit vanwege
zijn belangrijke rol in het immuunsysteem. In hoofdstuk 5 werd de respons op agonisten,
partiéle agonisten en antagonisten van verschillende chemische klassen in LCLs van
meerdere individuen met verschillend CB,R genotype gekarakteriseerd. Een van de
interessante bevindingen was dat endogene cannabinoides zoals 2-AG duidelijk andere
cellulaire effecten induceerden dan alle synthetische cannabinoides, vooral in hun
tijdsprofiel. Nog belangrijker is dat ook werd gevonden dat verbindingen van verschillende
chemische signatuur verschillend reageerden op een veel voorkomende aminozuur-
veranderende polymorfisme in de CB;R, de Q63R variant.

Genetische verschillen kunnen echter niet alleen de effecten van geneesmiddelen
beinvloeden, maar ook de vatbaarheid van een persoon voor een ziekte of het verloop van
een ziekte veranderen. In hoofdstuk 6 wordt het geval van de Glucose-afhankelijke
Insulinotrope Polypeptide receptor (GIPR) gepresenteerd, waarin een aminozuur-

veranderende SNP, die al vaak met ziektes geassocieerd werd, de cellulaire effecten van het
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endogene ligand veranderde. De GIPR speelt een belangrijke rol in het metabolisme in het
hele lichaam, en deze aminozuur-veranderende SNP, E354Q, wordt onder andere met
diabetes geassocieerd. Tijdens het bestuderen van deze receptor in een panel van meerdere
individuen met verschillende genotype van E354Q, werd een verhoogde potentie van de
endogene agonist GIP op Q354 homozygote individuen aangetoond. Dit onderzoek verschaft
hiermee meer inzicht in hoe polymorfismen in GPCRs de fysiologie in een menselijk individu
kunnen veranderen.

Samengevat wordt in dit proefschrift een nieuwe cellulaire aanpak voor het bestuderen
van genetische effecten op GPCRs onderzocht en beschreven. Meerdere GPCRs en diverse
soorten genetische verschillen werden bestudeerd, en de bevindingen tonen aan dat
verschillende soorten van genetische variatie in GPCRs, bijvoorbeeld veel voorkomend of
juist zelden, verscheidende effecten kunnen hebben. Deze verschillende effecten kunnen
afhankelijk zijn van het type ligand of de chemische signatuur van een verbinding, en van
invloed zijn op de endogene signaalverwerking. De algemene conclusie uit de resultaten van
dit proefschrift en de daaruit ontstaande mogelijkheden voor geneesmiddelonderzoek en
behandeling wordt uitgebreid in hoofdstuk 7 besproken en van commentaar voorzien.
Samen kunnen de bevindingen in dit proefschrift bijdragen tot vooruitgang in de
mogelijkheden om ‘precision medicine’ op de GPCR-klasse der geneesmiddeldoelwitten toe
te passen en zo ook tot de ontwikkeling van effectievere, op de persoon toegesneden

geneesmiddelen.
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