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ABSTRACT 

For many years the focus of prophylactic vaccines was to elicit neutralizing antibodies 
but it has become increasingly evident that T cell-mediated immunity plays a central 
role in controlling persistent viral infections such as HIV, CMV, and HCV. Currently, 
a variety of promising prophylactic vaccines, capable of inducing substantial vaccine-
specific T cell responses, are investigated in preclinical and clinical studies. There is 
compelling evidence that protection by T cells is related to the magnitude, breadth and 
quality of the T cell response as well as the type of the activated T cell subsets, and their 
characteristic homing properties, cytokine polyfunctionality, and metabolic fitness. In 
this review, we evaluate the main factors that determine the qualitative and quantitative 
properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and 
prophylactic vaccine development. Elucidating the mechanisms through which T cells 
mediate protection against chronic viral pathogens will facilitate the development of 
more potent, durable and safe prophylactic T-cell based vaccines. 
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INTRODUCTION 

Our body is persistently exposed to a variety of pathogens present in the environment. 
The immune system is fortified with physical barriers and with diverse immune cell 
populations that play an integral role in protection from disease. Long-term immune 
protection is mediated by antigen-specific lymphocytes and antibodies that are formed 
upon pathogen entry. Memory B and T cells are numerically and functionally superior 
to their naïve-antigen precursors cells that are present prior to infection, and upon 
encounter with the same pathogen memory immune cells are able to induce a more 
rapid and powerful recall response (i.e., immunological memory) [1,2].

The majority of prophylactic vaccines against viral infections have focused on 
the induction of neutralizing antibodies. Indeed, potent antibody inducing vaccines 
against virally-induced diseases are available. Nevertheless, failures are demarcated 
in the case of providing long term efficacy and protection against certain complex 
chronic viruses. A series of studies in mice, non-human primates and humans provide 
evidence that effective prophylactic vaccines against chronic (low-level and high-level) 
replicating viruses (i.e. herpesviruses, HIV, HCV) should engage strong cellular T cell 
immunity [3,4,5]. The development of T cell-eliciting prophylactic vaccines has gained 
increasing attention despite that such vaccines are not always able to provide sterilizing 
immunity. The latter may relate to the fact that the immune mechanisms related to 
protection against chronic infections have not been clearly defined. There is still a lack 
of knowledge to be able to tailor vaccines to induce long-lasting CD4+ and/or CD8+ T 
cell responses of sufficient magnitude and phenotype that effectively contributes to 
pathogen clearance. Oftentimes, the memory cellular immune response provoked by 
vaccines is not sustained and frequently fades in time [6,7]. Elucidating the mechanisms 
through which antigen-specific T cell populations mediate long-term protection 
against viruses at body surfaces and (lymphoid) tissues remains an important goal, and 
will facilitate the development of more effective and safe prophylactic T cell-eliciting 
vaccines. Here we review determinants and mechanistic factors of T cell responses 
implicated in vaccine efficacy against chronic viral infections, and discuss how this 
knowledge can be utilised to maximize the possibility of creating effective vaccine 
platforms for persistent viral infections.

THE COMPLEXITY OF THE ANTIGEN-SPECIFIC T CELL RESPONSE 

DURING INFECTION

T cells acquire their activation signals as the interaction with the DCs becomes stable 
and reaches a duration of 12 h [8,9]. For proper activation of naïve CD4+ and CD8+ T cells, 
cognate antigenic signals through the TCR (signal 1), costimulatory signals (signal 2) 
and signals provided by inflammatory cytokines (signal 3) is required [10,11]. Expression 
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of particular chemokine receptors such as CCL19 and CCL21 by fibroblastic reticular 
cells (FRCs) enhance immune responses by stimulating the interactions between T 
cells and DCs during antigen presentation [12,13,14,15]. Additionally, the secretion of 
the CCL3 and CCL4 chemokines by activated DCs and CD4+ T cells enhances CD8+ T cell 
accumulation and help attract rare antigen-specific T cells [16,17]. The activation of T 
cells results in alteration of the expression of various molecules including integrins, 
selectins and chemokine receptors, resulting in modulating key intracellular signalling 
events that promote proliferation, differentiation and migration of T cells to inflamed 
tissues [18,19,20]. 

After resolution of the infection the majority (90-95%) of the effector T cells are 
eliminated by the immune system due to programmed cell death (PCD) and only a small 
diverse pool of memory cells remains [21,22]. Traditionally, memory T cells were classified 
into two major categories based on their proliferation capacity, phenotypic features 
and migration potential [23]. Specifically, effector-memory T (TEM) cells are identified 
based on combined expression and/or lack of certain cell surface markers including 
KLRG1hi/CD44hi/CD127lo/CD62Llo. These cells have limited proliferation capacity upon 
TCR triggering, yet rapidly produce effector molecules and cytokines such as IFN-γ and 
TNF [24,25]. Central-memory T (TCM) cells are distinguished by the expression of KLRG1lo/
CD44hi/CD127hi/CD62Lhi surface markers, exhibit a superior proliferation capacity and 
produce cytokines that are directly associated with better secondary expansion such as 
interleukin (IL)-2. Secondary lymphoid organs are the main homing tissues of TCM cells 
whereas TEM cells are more dominantly present in tissues [26,27,28,29]. Both TCM and 
TEM cells can circulate, whereas a recently discovered new category of T cells present 
in tissues lacks migration capacities [30]. These cells, named tissue-resident memory T 
(TRM) cells, permanently reside in peripheral tissues after an infection is cleared and are 
present in most organs and tissues. TRM cells can be defined based on the expression of 
CD62Llo/CD44hi/CD69hi/CD103hi surface markers, yet the composition of these markers 
depends on the tissue-specific cues [31,32,33]. Furthermore, a small subset of memory 
T cells exhibit advanced stem-cell like qualities and proliferation capacities compared 
to the conventional T cells [34]. These memory T cells, which were designated stem cell 
memory T cells (TSCM cells), display a phenotype highly similar to naïve T cells (TN cells), 
KLRG1lo/CD44lo/CD127hi/CD62Lhi/CD69lo, but they co-express stem cell antigen (Sca-1), 
the β chain of the IL-2 and IL-15 receptor (CD122, IL-2Rβ), and the chemokine receptor 
CXCR3 [34,35,36,37,38,39]. 

Notably, T cell immunobiology is fundamentally similar between human and 
mice, and the concepts of TCM, TEM, TRM, and TSCM cells are matching. Evidently, both live 
attenuated and synthetic or subunit vaccines are able to elicit TCM, TEM, and TRM cells 
[30,33]. With respect to live attenuated vaccines, the vaccine-induced T cells subsets are 
in general similar to those subsets that develop upon infection [40]. However, the T cell 
subsets that develop upon immunization with synthetic or subunit vaccines is highly 
dependent on the route of administration and the adjuvant [41]. Whether sufficient 
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amounts of TSCM can be generated with live attenuated or synthetic vaccines needs 
further exploration.

THE MAGNITUDE OF THE T CELL RESPONSE IS IMPORTANT FOR 

OPTIMAL PROTECTION 

The magnitude of the viral-specific T cell responses is highly dictated by the infectious 
dose and route of infection [42]. Higher infectious dosages lead generally to higher 
peak values of effector T cells and correspondingly larger amounts of memory T cells 
in the circulation are found. However, if the immune system is overwhelmed and virus 
replication is uncontrolled this leads to immunopathology and subsequently this leads 
to exhaustion of T cells and poor memory formation [43]. 

Given the frequently observed correlation between the magnitude of T cell 
response and establishment of immunity during infections, in vaccination settings 
simply determining the magnitude of the vaccine-elicited T cell response may already 
serve as a predictor of efficacy. A number of studies have shown a direct association 
of the vaccine-elicited T cell response size and the ability for virus control [5,44,45,46]. 
Several parameters directly impact the magnitude of the vaccine-induced T cell response. 
Clearly, in case of live (attenuated) viruses the size of the initial dose of the inoculum 
correlates to the magnitude until a threshold is reached [47]. To reach the same level 
as compared to virulent virus, the inoculum sizes are, not surprisingly, higher for 
replication-deficient or single-cycle viral vectors. In case of synthetic vaccines, however, 
the saturation threshold may not be reached because of lack of sufficient inflammatory 
signals. However, recent discoveries in adjuvant development and synthetic (nano)
particles provide promising results [48,49,50]. Besides the initial inoculum dosage, 
booster vaccine regimens impact evidently the magnitude of the T cell response, and 
are likely essential for the majority of vaccines including live vaccines [51].   

MEMORY INFLATION AND THE MAGNITUDE OF RESPONSES TO 

RECOMBINANT VACCINES

An alternative mechanism which leads to an increased magnitude of memory T cells 
(especially CD8+ T cells) is observed for certain specific responses following infection by 
CMVs - described as memory “inflation” [52,53]. Here, antigen-specific T cell responses 
to a subset of peptides show an unusual dynamic, whereby they expand gradually 
over time and are maintained at high frequencies as TEM populations - as opposed to 
the classical expansion and contraction described above. These inflationary responses 
show maintained effector functions, tissue homing and can provide protection against 
challenge. Interestingly in the case of mouse cytomegalovirus (MCMV) there are two 
classes of response, a subset of inflationary responses and some which show classical 
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contraction and TCM phenotype [52,54]. Memory inflation has also been observed for 
CMV-specific antibodies, which levels gradually incline over time [55]. Although the rules 
that determine which kind of memory have not been fully defined, it is clear that for 
inflation to occur viral antigen must persist long term and since CMV is reactivating 
from latency this condition is clearly fulfilled. Inflation appears to be restricted by 
antigen presentation, since peptides which are dependent on the interferon-inducible 
molecule LMP7 to form the immunoproteasome are not apparently presented long term, 
although such responses may be primed [56]. Modifying the context of the peptide can 
convert a classical response to an inflationary one [57]. 

Recombinant CMVs may provide important  vectors for vaccines, although they are 
highly complex viruses, containing multiple immune evasion genes. In rhesus macaque 
experiments, the T cell responses induced against a recombinant CMV expressing 
SIV antigens include, in addition to CD8+ T cell inflationary responses, responses 
mediated by class II-restricted CD8+ T cells and also HLA-E restricted cells [58,59]. These 
unconventional responses likely arise because of the restrictions placed on normal 
antigen presentation by the attenuated CMV vectors used. More work is needed to 
identify which of these populations is critical for protection, and whether this additional 
protection – which can be very robust – is mediated via magnitude, function, breadth or 
targeting of particular peptides not normally presented. 

Memory inflation is not restricted to CMV-induced responses. Similar phenomena 
have been seen with other viruses, including vaccine vectors. The most relevant of 
these are responses induced by adenoviral vectors. In mouse models, adenovirus-based 
vectors can lead to induction of inflationary responses which closely resemble those 
induced by CMV [60,61]. In this vaccine platform it is possible to generate inflationary 
responses against otherwise non-inflationary epitopes by removing the requirements for 
processing and presenting it in the form of a “minigene” [62]. Human adenoviral vectors 
are in use in a range of settings, including HCV, malaria and Ebola vaccines[4,63,64]. 
Although these do not show numerical inflation, the responses are sustained over 
time and phenotypically and functionally resemble those seen in mice and also those 
induced by CMVs [61]. 

THE BREADTH OF THE INDUCED IMMUNE RESPONSE IMPACTS ON 

PROTECTION

An increased breadth of the vaccine-induced T cell response has been found beneficial 
against many chronic viral pathogens [5,65,66,67,68]. Development of T cells with 
multiple antigen-specificities correlated with advanced capacity for virus control or 
even complete eradication during primary infection with HCV and superior protection 
upon reinfection [69]. Similarly, the breadth of Gag-specific responses was linked with 
low viremia as shown by analysing the CD8+ T cell responses of untreated HIV-infected 
subjects [70].



Requirements for effective T cell-inducing vaccines  | 153

6

Successful induction of potent and broad T cell responses has been reported 
with DNA plasmid vaccines [71,72] and adenovirus serotype 26 vector-based  
vaccines [73]. The latter approach incorporated a combination of subdominant and 
dominant epitopes of rhesus macaques SIV, known as a HIV equivalent in monkeys, 
in a prime-boost vaccination schedules. In parallel with these findings, synthetic long 
peptide (SLP) T cell based vaccines, which induce memory CD8+ T cells, exhibited 
increased protection against mouse cytomegalovirus (MCMV), when vaccination was 
performed with combinations of several distinct SLPs. The efficacy of the SLP vaccines 
to protect against MCMV was mainly driven by the breadth of the antigen-specific T 
cell response rather than the magnitude of the individual SLP vaccine-induced T cell 
responses [5]. These findings indicate that cytotoxic CD8+ T cells with a broad repertoire 
of specificities are more capable for effective killing of virus infected cells than T cells 
of a single specificity. Possible explanations are that multiple encounters with T cells 
of diverse specificity results directly in enhanced killing of virus-infected cells or limits 
immune escape mechanisms. Moreover, an increase in epitope recognition may also 
contribute to protection against infection with heterologous viruses via cross-reactive 
responses [74]. Although the underlying mechanisms are still unclear the importance 
of the immune repertoire diversity should be taken into account while designing 
prophylactic T cell-based vaccines. As a consequence selection of the correct antigens 
that will steer the immune response at the correct direction is a very critical step of 
the vaccine development process. In this respect, it also of importance to mention that 
competition of antigens is apparent [5], warning that antigen selection is not simply 
the more the better. Overall, epitope-specific T cell repertoires elicited upon vaccination 
might serve as an evidence of vaccine efficacy, which will apply to many infections and 
not be limited to chronic viruses. Furthermore, not all antigen-specific T cell populations 
have the same efficacy. For example, T cell populations specific for CMV antigens that 
provoke inflationary responses show superior protective capacity [5]. Thus antigens 
provoking the most effective antigen-specific T cell populations should be selected to 
include in designing vaccine vectors or synthetic vaccines. 

While both magnitude and breadth of the T cell response is of importance there 
is no direct association between protection and the frequency of the T cells in  
the circulation [75]. In mouse models it is becoming increasingly clear that, depending 
on the route of infection, T cells present in the mucosal or in the tissues (Tem and/
or Trm) control the infection, and sufficient numbers are required [33]. Note, however, 
that besides the quantity and breadth also the quality of the T cell response is of  
crucial importance.
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CYTOKINE POLYFUNCTIONALITY OF T CELLS IS AN IMPORTANT 

PARAMETER FOR VACCINE EFFICACY

Cytokine production is an important effector mechanism of T cell mediated immunity. 
Upon most viral and bacterial infections protective immunity consists of CD4+ and 
CD8+ T cells  with a Th1 cytokine profile that is characterized by (co-)production of 
IFN-γ, TNF and IL-2 [76]. IFN-γ and TNF are pleiotropic cytokines with direct anti-viral  
properties [77,78,79]. Their receptors are broadly expressed, and signal via distinct 
pathways, which may explain why reciprocal production of IFN-γ and TNF leads to 
synergistic actions [80]. The predominant assessment method of vaccine-induced 
responses is the frequency of IFN-γ producing T cells. However, there are many examples 
showing that the magnitude of the IFN-γ secreting T cell response is not a sufficient 
immune correlate of protection. Single positive IFN-γ producing T cells can comprise 
a relatively large fraction of the total cytokine-producing CD4+ and CD8+ T cell population 
after immunization. Such T cells have a limited capacity to be sustained as memory T 
cells and are at the final stage of T cell differentiation [81]. Vaccines that elicit a high 
proportion of single, IFN-γ producing T cells would not be likely protective. On the other 
hand, studies characterizing vaccine elicited T cell responses against HIV, CMV and HBV 
revealed a strong correlation between the protection level of the vaccine regiments 
and their capacity to induce high frequencies of polyfunctional T cells (e.g. coproducing 
IFN-γ, TNF and IL-2 [4,82,83,84,85]. Similar results have been described in the course 
of infection with hepatitis C virus, CMV, influenza or M. tuberculosis [4,86,87,88,89]. 
Importantly, some of these studies showed that measuring the magnitude of IFN-γ 
producing CD4+ and CD8+ T cells alone was not sufficient to predict protection, and 
provided evidence that measuring the quality of the CD4+ and CD8+ T cell response, 
vis-à-vis polyfunctional T cells, is required. 

IL-2 signals through a trimeric receptor comprised of CD25 (IL-2Rα), CD122 
(IL-2Rβ) and the γc [90]. CD25 is not constitutively expressed but instead is transiently  
upregulated upon activation following exposure to certain inflammatory cytokines such 
as IL-12 [91]. Evidence examining he role  of CD4+ and CD8+ T cells in HIV infected showed 
increased levels of T cells expressing IL-2 and IFN-γ in long-term non-progressors, or 
those on anti-retroviral treatment, but increased levels of T cells producing IFN-γ only 
in individuals with high viral loads (processors)[92]. Although IL-2 has no direct anti-
viral function, it promotes proliferation and secondary expansion of antigen-specific  
T cells [93,94,95,96,97,98]. The ability of T cells to secrete IL-2 also relates to superior 
survival properties of these cells [81,99]. Additionally, IL-2 increases expression of 
the effector proteins perforin, granzyme B and IFN-γ that are all important for mediating 
cytolytic function [100,101]. IL-2 signals may also enhance NK cell activity that could 
contribute to the early control of infection following challenge [81,102,103,104,105]. 

In summary, the efficient vaccine protection medicated by CD4+ and CD8+ T cells 
is moderated by multiple mechanisms. First, CD4+ and CD8+ T cell have the highest 
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secretion rate of IFN-γ per-cell. Second, T cells that secrete both IFN-γ and TNF have 
enhanced effector activity compared with T cells that secrete IFN-γ alone. And third, 
autocrine IL-2 production promotes the secondary expansion of memory T cells, and is 
linked to other beneficial properties. Therefore, IL-2, TNF and IFN-γ comprise a simple 
set of cytokines that can be used to define the quality of the vaccine-elicited response 
against specific infections that require T cells for protection. As will be discussed 
hereafter, one way to improve the polyfunctionality of vaccine-induced T cells is by 
targeting of T cell costimulation It remains nevertheless necessary to better understand 
how the cytokine polyfunctionality is regulated during the programming of CD4+ and 
CD8+ T cell responses. Further dissecting these issues might provide fundamental 
insights into how T cell responses are controlled and may reveal potential strategies for 
superior vaccine-mounted T cell responses.

IMPROVING VACCINATION BY TARGETING T CELL METABOLISM?

The transition of naïve T cells to an active effector cell and to the formation of 
memory cells involves dynamic and coordinated metabolic modifications [106]. This 
reprogramming of the cellular metabolism is not a consequence of activation but is 
linked to the differentiation and activation processes, and reflect the fuel and substrates 
necessary to support the differentiation stages of a T cell [107,108]. Both naïve T cells 
and memory T cells rely primarily on oxidative phosphorylation (OXPHOS) and fatty 
acid oxidation (FAO) for fuel. This reflects the low level yet persistent need for energy 
as such cells are long-lived. Effector T cells on the other hand have extraordinarily 
high energetic and synthesis demands. These cells have enhanced glycolysis and 
employ the mitochondrial tricarboxylic acid (TCA) cycle to support their demand for 
de novo proteins, lipids and nucleic acids synthesis. It is becoming increasingly clear 
that metabolic reprogramming plays a critical role in T cell activation, differentiation 
and function. The distinct metabolic demands of different T cell subsets make them 
exquisitely sensitive to pharmacologic inhibitors of metabolism [109]. The different 
metabolic requirements of T cell subsets provide us with a promising therapeutic 
opportunity to selectively tailor (vaccine-induced) immune responses. Thus, targeting 
T cell metabolism affords the opportunity to additionally regulate vaccine-induced 
responses. 

Upon T cell activation, there is an immediate uptake of amino acids such as glutamine 
and leucine that is critical for proper metabolic reprogramming. This is accompanied 
with the upregulation of amino acid transporters involved in glutamine (SLC1A5) and 
leucine (SLC7A5/SLC3A2 heterodimer) [110,111]. It is essential that these processes 
operate well to avoid suppression of the differentiation of TH1 effector T cells while 
maintaining Treg differentiation. Whether this can be improved pharmacologically in 
vivo remains however to be further examined.
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CD28-mediated costimulation leads to PI3K-dependent upregulation of surface 
GLUT1 to facilitate enhanced glucose influx [112]. This upregulation of GLUT1 is critical 
for T cell function, as genetic deletion of GLUT1 markedly inhibits effector T cells [113]. 
Concomitant with increased expression of glucose transporters is the upregulation of 
key glycolytic enzymes [114]. This metabolic reprogramming occurs simultaneously 
with T cell activation and is facilitated by mTOR [115]. mTOR activation promotes 
glycolysis, fatty acid synthesis and mitochondrial biogenesis. As such, targets upstream 
and downstream of the mTOR signaling pathway are potential therapeutic targets. 
Rapamycin, although known as an ‘immunosuppressive’ drug due to its ability to slow 
down T cell proliferation, promote robust responses to vaccination by enhancing 
CD8+ T cell memory formation [116]. Correspondingly, deletion of the mTORC1 
inhibitory protein TSC2 leads to enhanced mTORC1 activity and increased effector  
function [117]. Targeting of TSC2 or other molecules in the mTOR pathway might 
accordingly enhance immunity. 

Targeting of glycolysis to inhibit immune responses in the setting of autoimmune 
disease and transplantation rejection is evolving, and this strategy is also used to 
enhance anti-tumor immunity by promoting long-lived memory cells ex vivo [118]. 
Whether this can be used in vaccination strategies remains to be examined. Although 
most studies have focused on the critical role of glycolysis in promoting effector T cell 
generation and function, it has become clear that mitochondrial-directed metabolism 
also plays an important role. Memory T cells rely for their energy upon OXPHOS and FAO. 
Because these metabolic pathways are dependent on mitochondria, the abundance 
and the organization of the mitochondria are instrumental for development of 
fit memory cells [119]. Alterations in the mitochondrial biogenesis can influence 
the differentiation of T cells, thereby providing opportunity to augment T-cell mediated  
immunity [120,121]. The transcription factor PGC1α promotes mitochondrial  
biogenesis and function [122]. Hence, pharmacologically or genetically enhancing 
PGC1α represents a potential strategy for improving vaccine-induced T cell responses. 
In ex vivo systems, it has already been shown that enforced overexpression of 
PGC1α, leads to improved metabolic fitness and effector cytokine function of CD8+ T  
cells [123]. Again, whether in vivo targeting is possible remains to be examined, 
and in this respect a major challenge may be the specificity of metabolic inhibitors/
enhancers as they may affect all cells of the body. However, inhibitors of glycolysis may 
preferentially affect effector T cells given their enhanced glycolytic need. The future 
will tell if indeed metabolic targeting is possible to enhance vaccines. Nevertheless, 
the metabolic profiles of (vaccine-induced) T cells are surely of interest and correlate to 
vaccine-mediated immunity [124].
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COSTIMULATION EMPOWERS T CELL ELICITING VACCINES 

Costimulatory signals transduced via the CD28 family members CD28 and ICOS, and via 
the tumor necrosis factor receptor (TNFR) family members CD27, 4-1BB, and OX40 play 
dominant roles in orchestrating the required signal 2 [125]. While CD28 and CD27 are 
constitutively expressed on naïve T cells ICOS, 4-1BB and OX40 are upregulated upon 
T cell activation [125,126]. The ligands for these costimulatory receptors are highly 
expressed on APCs upon activation, yet expression is also found on T cells, suggesting 
that these molecules may also mediate communication between T cells [127,128]. 
Synergy between these costimulatory molecules is expected [125,129], and is confirmed 
in experimental models [130]. 

There is extensive literature addressing the influence of the TNF/TNFR family 
interactions during a virus specific immune response. For instance, CD28 signals 
are required for sufficient T cell priming during the primary phase of an infection 
[131,132,133,134,135], while OX40 and 4-1BB gain importance during the late effector 
and memory stage of antigen-specific T cells either by providing pro-survival signals or 
by enhancing the quality of the memory T cells [136,137,138,139,140]. Thus, although 
an optimal immune response is the result of many receptor-ligand interactions, 
costimulatory signals dominate differentially during the diverse phases of the immune 
response (e.g. early versus late) to ensure optimal expansion and contraction of primary 
CD8+ T cells and the generation of memory CD8+ T cells. 

Agonistic Abs against costimulatory receptors have shown efficacy in various 
preventive and therapeutic preclinical vaccination settings. Enforced engagement of 
costimulatory molecules results in improved T cell activation, expansion, survival and 
establishment of long-term memory [139,141,142,143,144,145,146], and has thus 
the potential to serve as effective immunomodulatory components of prophylactic 
vaccines against chronic viruses [143,147,148]. Indeed, this has already been observed 
for DNA and adenovirus based vector vaccines in which enforced expression of 
4-1BBL, OX40L and CD70 leads to increased T cell expansion, enhanced CTL activity 
and antibody response [149,150]. Strikingly, agonistic antibodies to OX40 combined 
with synthetic peptide vaccines prompt robust effector and memory CD4+ and CD8+ 
antiviral T cell responses, improve T cell cytokine polyfunctionality and prophylactic 
vaccine efficacy against lytic MCMV infection [145]. Chronic viral infections are 
characterized by accumulation of functionally impaired antigen-specific CD8+ T cells. 
Studies have shown that activation via 4-1BBL alone or in combination with CD80 can 
enhance the generation of primary CD8+ T cell responses and induce expansion of 
the antigen-specific CD8+ T cells from this pool of impaired T cells [136,151]. Similarly, 
4-1BB stimulation has been shown to enhance the generation of primary CD8+ T cell 
responses [139,152,153] and synergizes with attenuated vaccinia virus (VACV) vectors 
to augment CD8+ T cell responses [139] .



158 | Chapter 6

Targeting of inhibitory molecules on T cells such as PD-1 and CTLA-4 have been 
shown to restore the effector function of activated T cells in settings of chronic viral 
infections and cancer [154,155,156,157]. Inhibitor blockade synergizes in combination 
with therapeutic vaccines [158]. Targeting of inhibitory pathways during primary 
immunization with prophylactic vaccines may advance  the vaccine efficacy as well 
[159,160], but whether this results in significant improved vaccine efficacy remains to 
be established. 

Although the use of antibodies targeting costimulatory/inhibitory molecules 
as immunostimulatory modalities in vaccines can facilitate antigen-specific T cell 
responses, the use of such Abs, however, is associated with toxicity as demonstrated 
in selected settings in rodents and in clinical settings [157,161,162,163]. Nevertheless, 
given the potential benefit to significantly increase the effectiveness of vaccines, both 
the efficacy and safety of targeting costimulation is currently extensively examined in 
various immunotherapeutic approaches against persistent viral infections. Examining 
the timing and/or the dosing is in this respect an important aspect to not only prevent 
unwanted side-effects but this may also lead to improved effectiveness. In addition, 
CD28 costimulation modulates T cell metabolism via activation of PI3K pathways, and 
this is essential to control effector cytokine production [112,164]. TNFR family members 
are also able to metabolically program T cells [165,166]. Collectively, targeting of T 
cell costimulation can impact the important quantitative (magnitude, breadth) and 
qualitative (cytokine polyfunctionality, metabolic fitness) determinants of vaccine-
induced T cells, and provides thus major opportunities for further exploration in future 
vaccine designs. 

CONCLUSIONS AND PERSPECTIVES FOR VACCINE DESIGN 

The design of vaccines that imprint T cells with the ability to boost host defense against 
persistent viral pathogens has gained remarkable progress. An understanding of 
the appropriate initial programming signals is a key step, as is how the route of priming 
or boosting influences the development of effective memory T cells. A combination 
of several metrics such as the type of the vaccine elicited T cell response, breadth, 
polyfunctional quality and metabolic characteristics demonstrate a valid toolbox to 
define when a T-cell mediated response is protective. Unanswered questions about 
the anatomy, activation and differentiation of memory T cells in lymphoid compared to 
non-lymphoid organs need to be addressed. Costimulatory signaling pathways mediate 
basically all of the important T cell memory properties, and may serve as interesting 
targets for vaccine improvement. Experimental and clinical insight into their complex 
synergistic or antagonistic processes may identify requisite pathways and potentially 
other targets for immunotherapy. Identification of the best correlations of immunity 
with protection for persistent viral pathogens will enable the development of effective 
vaccination regimes.
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