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Conclusions and Future Perspectives 

1. Conclusions

The objective of modern clinical pharmacology is to improve the 
effectiveness of current treatments and to provide new medicines to treat 
as many diseases and conditions as possible.  In addition, its goal 
encompasses the development of methods and tools that allow for 
optimisation of evidence generation and evidence synthesis, ensuring 
appropriate prescription, delivery and use of medicines. Since the 1960s, 
with the Kefauver-Harris amendment to the Food Drug and Cosmetic Act in 
the USA in 1962 [1] and, with the European Directive harmonising 
requirements for marketing authorisations in 1965 [2], the action of 
national and supranational governments has established the need for 
appropriate scientific evidence on efficacy and safety of all new drugs 
before their approval for clinical use. These principles already take into 
account the concept of interindividual variability and recognise the fact the 
requirements to treat vulnerable patients may differ from the general 
population. Indeed, the recognition that therapeutic response is affected by 
intrinsic and extrinsic determinants of variability sets the foundations for 
personalised treatment, separating patients into different groups—with 
medical decisions, practices, interventions and/or products being tailored 
to the individual patient based on their predicted response or risk of 
disease. While the tailoring of treatment to patients goes back to the time 
of Hippocrates [1], the development of new diagnostic, mathematical and 
statistical approaches along with computer and informatics allows the 
implementation of dosing algorithms based on detailed understanding of 
disease and underlying exposure-response relationship. 

In this thesis, we set out to show how understanding of pharmacokinetics, 
pharmacodynamics and exposure-response relationships may be used in 
conjunction with modelling and simulation to personalise antiepileptic drug 
treatment in paediatric epilepsy. In the first section we reflect on the key 
issues in the diagnosis and treatment of epileptic seizures. An extensive 

259



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 260PDF page: 260PDF page: 260PDF page: 260

review of current practices in paediatric epilepsy is presented together with 
the implications of different sources of variability for treatment outcome. A 
clear picture emerges regarding the consequences of empirical 
experimental evidence and the opportunities for the characterisation of 
exposure-response relationships using quantitative clinical pharmacology. It 
also becomes evident that knowledge regarding pharmacokinetics and 
pharmacodynamics is not being used to support clinical decisions, with 
titration, tapering and switching of drugs and dosing regimens as the 
method of choice to tackle inter-individual differences in treatment 
response. In the second section, we review the use of pharmacokinetic and 
pharmacokinetic-pharmacodynamic modelling for the most commonly used 
antiepileptic drugs. These data provides a baseline for the development and 
implementation of personalised treatment using model-based dosing 
algorithms, where we show that parameterisation of the impact of intrinsic 
and extrinsic factors (i.e., covariate effects) can already be used to guide 
dose selection and/or stratify patients. Focus was given to the role of 
demographic differences and drug-drug interactions, as they represent 
common causes of variability in drug exposure. These analyses have shed 
light into the gaps in knowledge, and in particular the lack of data regarding 
the exposure-response relationships of anti-epileptic drugs. In the third 
section, we make use of a paradigm compound, lamotrigine, to illustrate 
the requirements for the development of model-based dosing algorithms 
and their application in drug development and in clinical practice. We show 
how insight into covariate effects in pharmacokinetics and 
pharmacodynamics, along with the underlying exposure-response 
relationship allows further optimisation of treatment in children. We take 
the opportunity to highlight the experimental challenges associated with 
current research and propose possible solutions to overcome these issues. 
In this concluding chapter, we re-iterate the questions posed at the onset of 
this thesis, reflect on the results obtained, including some of the main 
limitations, and future steps required to implement personalised 
pharmacotherapy in paediatric epilepsy. 
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1.1 Knowledge integration 

Neurologists have around 20 anti-epileptic drugs (AEDs) in their armament 
against epileptic seizures. Regardless, up to 30-40% of patients do not 
respond sufficiently to pharmacotherapy [2,3]. With the alternatives being 
invasive treatment such as vagus nerve stimulation or epileptic focus 
resection, there is a need for the optimal utilisation of existing AEDs as well 
as better experimental protocols for the evaluation of new compounds. 
Modelling and simulation techniques offer an opportunity for 
personalisation of treatment due to its ability to identify relevant sources of 
variability and integrate existing knowledge regarding the contribution of 
multiple factors to variation in exposure, pharmacological effect and clinical 
response. Of note is the possibility of using prior information, i.e. evidence 
synthesis, and exploration of hypothetical scenarios in silico, i.e., clinical 
trial simulations (CTS).  

In other fields such as oncology, infectious diseases, and diabetes, 
modelling and simulation has advanced to a stage where models are 
starting to approximate the relevant physiology and pathology to a 
significant degree, leading up to systems pharmacology. In epilepsy, 
however, the complexity of the disease, the lack of biomarkers along with 
the use of the discrete measures of the clinical symptoms have resulted in a 
status quo, in which there appears to be no alternative to treatment 
optimisation through trial and error, as defined by titration, tapering and 
treatment switch guidelines [4]. Evidence exists for the selection of some 
AEDs over others in specific seizure types, syndromes, or in few cases 
known aetiologies. Yet, these guidelines only provide very rough guidance 
in terms of first-, second- and sometimes third-line AED choices. There 
appears to be no need for insight into the underlying exposure-response 
relationships, as it is assumed that variability in response to treatment 
cannot be, at least in part, assigned to specific factors. Once an AED is 
selected, information regarding dose titration across a predefined range of 
doses is considered as sufficient to establish whether a patient will respond 
to treatment or not. Again, no quantitative guidance is linked to these 
procedures other than therapeutic drug monitoring, which is often used to 
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determine treatment adherence as opposed to its use for dose 
personalisation. 

In chapter 1, we argued that PKPD and disease modelling are essential to 
cope with this complexity and to eventually achieve rational epilepsy 
pharmacotherapy. In this context, paediatric epilepsy stands out from adult 
epilepsy and other disease areas due to the existence of specific paediatric 
types of epilepsy, even larger lacunas in paediatric evidence, and the fact 
that some paediatric epilepsy phenotypes exhibit more severe disease 
progression than that typically observed in adults. These factors are often 
used to justify the choice for polytherapy in paediatric cases. As such, 
prescribing physicians need to make careful assessment of combinations 
and dose adjustments, but these are often based on adult doses expressed 
in mg/kg body weight. It is now common knowledge that drug clearance 
scales non-linearly with weight [5]. Moreover, doses in children younger 
than 2 years of age need to account for ontogeny processes and other 
developmental changes, which are not characterised by the effect of body 
weight.  Likewise the role of drug-drug interactions cannot be overlooked.  
In Chapter I, we reviewed different sources of variability in treatment 
outcome in epilepsy. 

One of the questions we aimed to answer in this thesis was whether inter-
individual differences in exposure to AEDs and inadequate response in 
some patients can be explained by size and age-related covariate factors. 
To address this question, in Chapter 3 we have summarised all available PK 
and PKPD models in the published literature for AEDs. By doing so, an 
overview was created of the different model parameterisations and 
covariate effects, such as drug-drug interactions (DDIs), effect of body 
weight and age, genotype, and other covariates. While size and age-related 
covariate factors explained differences in exposure to some degree, a 
considerable proportion of the overall variability in pharmacokinetics 
remains after adjusting for these factors. Typically, the variability in 
clearance, expressed as coefficient of variance (CV%), is roughly 50% for 
most models for most AEDs. The review in chapter 3 also showed that most 
AED PK models were in the form of one-compartment model with first-
order absorption and elimination. Notable exceptions were models for the 
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correlation between bound and unbound concentrations of valproic acid 
and phenytoin, and the physiology-based PK (PBPK) models for valproic acid 
[6]. Not many PD models were found in literature, and those that are 
available model the correlation between exposure and parametrically 
secondary outcome measures such as the time to first seizure analysis for 
topiramate efficacy. A database of predictive models was created, which 
allows looking up possible approaches to model pharmacological data in 
epilepsy, it aids in identifying the most relevant covariates to screen for in 
an analysis, and it reveals the models that are currently available for clinical 
personalisation of treatment and dose. 

 

1.2 Model-based dosing algorithms 

In Chapters 4 and 5 we address three other important questions proposed 
at the start of this thesis, namely whether evidence of drug-drug 
interaction studies in adults can be used to assume similar effects in the 
paediatric population and evaluate the implications of commonly 
recommended empirical dosing in mg/kg in children. Using simulations and 
a selection of literature models from chapter III, we show the impact of 
DDIs on clinically relevant measures of drug exposure. Through these 
simulations, we also demonstrate the implications of adding one or more 
other AEDs onto the existing therapy, i.e., dose adjustments are typically 
required to ensure maintenance of comparable exposure levels to the 
primary AED. Furthermore, under the assumption of similar exposure-
response, our results show important differences in terms of the magnitude 
of the effect of DDIs in children. This evidence reinforced the relevance of 
model-based dosing algorithms as a tool for dose personalisation. In 
chapter V, we use simulations to explore the impact of integrating 
therapeutic drug monitoring (TDM) with model-based concepts to define 
the dose rationale for individual paediatric patients. Variability in the time 
to achieve a predefined target AED exposure, as well as the variability in 
exposure during the maintenance phase were significantly reduced by an 
approach based on a combination of models and TDM, when compared to 
other approaches.  These findings provided the basis for an answer to the 
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fourth question included in the objectives of this thesis, namely that model-
based dosing algorithms can minimise the need for treatment switch and 
combination therapy. 

 

1.3 Evidence generation and evidence synthesis in epilepsy trials 

In subsequent chapters VI, VII and VIII, we aimed to determine, amongst 
other things an answer to the two remaining questions included in the 
scope of this thesis, namely which data are required and which criteria 
should guide the selection and personalisation of paediatric doses. Using a 
paradigm compound we explored experimental requirements assuming 
comparable and different exposure-response between adults and children. 
A special case of prior information is allometry, a theory that states that 
certain PK parameters correlate to body weight according to pre-defined 
mathematical rules. Using allometry, we investigated our ability to predict 
paediatric PK of lamotrigine (LMT) using a model built on adult data. As 
previously suggested, below the age of 2 years, allometry does not 
adequately adjust for the observed changes in clearance and thus a 
maturation function was developed to adjust for these findings. The result 
was a model that is able to predict for patients ages 1 month to 91 years of 
age. The model was built on data from several major ethnicities (Black, 
Asian, Caucasian), for which no significant differences were found in PK. As 
a result, the developed model may be one of the most versatile models for 
LMT available. Due to its ability to predict for this wide range of 
populations, simulations were performed to optimise the typical dose for all 
ages, under the assumption of similar exposure-response. This is the first 
attempt to derive, through modelling & simulations, a dose of LMT in 
patients aged 1-24 months of age. While this dose will achieve average 
steady-state concentrations within the therapeutic range for most of these 
patients, large variability remains. Further personalisation and 
individualisation is still indicated to adjust for the unpredictable variance in 
the PK parameters, such as the 56.1% of variance in clearance after 
correcting for covariates. Furthermore, differences in exposure-response 
between adults and children may require setting a different target 
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exposure. Using the covariates presented with the PK model of chapter VI 
in combination with therapeutic drug monitoring and individual parameter 
estimation approach showcased in chapter V will allow further accuracy 
and precision in the personalisation of LMT dosing. 

As discussed in chapter I, the definition of a clinical endpoint, and thus 
efficacy, determines the data required to accurately and precisely estimate 
parameters such as potency and maximum efficacy. Previous work 
described the estimation of pharmacodynamic models on clinical endpoints 
such as the ability to achieve at least a 50% reduction in seizure frequency, 
or the occurrence of a first seizure after start of treatment. These endpoints 
are binary and thereby the information from seizure diaries is reduced to 
simple yes and no outcomes. This simplification leads to a large loss in 
information, which is often compounded in the analysis of clinical trials by 
thereafter taking means and standard deviations of the study populations. 
These endpoints are in fact derived from the underlying endpoint which is 
seizure counts over time. With the description of seizure counts, one may 
determine the other, more often used, endpoints as they are the automatic 
result of it. Thus, it is recommended to model seizure counts, as it is closer 
to the pathophysiology and thus should be more sensitive to disease 
progression and treatment effect. Chapter VI outlined the use of a 
population Poisson model for the description of seizure counts in adult 
patients with partial onset (PO) and primary-generalised tonic-clonic (PGTC) 
seizures. Our investigation revealed that these patients differ in sensitivity 
to treatment, and we quantified the correlation between exposure and 
response. Apart from the typical inter-individual variability, as is normally 
taken into account by mixed-effects modelling, we also used Markov 
properties and stochastic differential equations (SDEs) to adjust for changes 
in the disease activity over time within the individual (intra-individual 
variability). Now that a PKPD model is available for LMT, individual 
sensitivity to treatment may be estimated in the clinical population, based 
on seizure diaries and TDM. More rudimentary dosing applications may be 
developed using nomograms or stratification of patient groups. 

The Poisson model was further evaluated on a paediatric cohort of patients 
with PO seizures aged 1-24 months. These patients showed a higher 
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baseline disease activity, but also showed a higher sensitivity (as EC50) to 
LMT compared to that previously found in adults with PO seizures. On the 
other hand, a small difference was found with regard to placebo and 
maximum treatment effect. We used clinical trial simulations to investigate 
the required number of patient to show efficacy in this population (power 
calculations), assuming similar PKPD as estimated from the data. It was 
found that a minimum of 200 patients were needed to achieve sufficient 
power, a number much higher than what was considered in the original 
trial. In other words, the original trial of LMT used in this analysis was found 
to be underpowered, even if LMT in this population can be quite effective. 
Future clinical trials of AEDs, especially in a patient group where patient 
inclusion is difficult such as in these young children, may want to use 
modelling & simulation approaches such as those showcased in chapter VIII 
to a-priori optimise the trial design for sufficient power. 

In summary, we have created a model library and overview of PK and PKPD 
models for AEDs, allowing easy implementation and adaptation of the 
available literature information. Furthermore, we have shown that 
personalised and individualised medicine based on modelling approaches is 
not only feasible, but has a significant impact on achieving pre-set exposure 
targets, thereby reducing variability in treatment outcome. Finally, new 
models for the PKPD of lamotrigine were provided, which, assuming their 
validity in clinical populations, may allow pharmacodynamic personalisation 
and individualisation, as well as clinical trial simulations for the optimisation 
of future trial designs. 

 

2. Limitations 

In addition to the discussed thesis results and conclusions, a discussion of 
its limitations is warranted. Our work on the impact of drug-drug 
interactions and dosing algorithms through PK simulations in chapters IV 
and V required us to make certain choices in the use of PK models for anti-
epileptic drugs in literature from chapter III. Due to the nature of the 
investigation with regard to drug-drug interactions, models were selected in 
which many of these interactions were taken into account. Such selection 
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criteria limited us in the possibility of selecting models that were able to 
predict for different races and sometimes age groups (notably lamotrigine 
and valproic acid). Also, by selecting models for this purpose, their 
appropriateness for parameter estimation in chapter V may have been 
affected. A more thorough, but much more time-consuming approach 
would have been to perform a full meta-analysis of the available models 
listed in chapter III, or to first create an integrated PK model for each AED 
based on the available literature models and validate it against simulated 
data from the original models, or ideally, against actual data. This was, in 
part, performed in chapter VI for the PK of lamotrigine, where we used 
literature information regarding the relevance of allometric scaling, drug-
drug interactions, and changes in PK according to age to construct a model 
that was validated on actual PK data from several clinical trials. Such an 
exercise was not feasible for all AEDs discussed in chapter III due to a lack of 
time and data, but may be performed in the future using the materials 
provided in the supplements of chapter III.  

A further limitation of chapters IV and V is the use of plasma AED 
concentrations as a substitute marker for cerebral exposure. As mentioned 
in chapter I, cerebral PK is largely determined by the blood-brain-barrier, 
which limits the amount of drug that enters the brain. Moreover, evidence 
exists for steep concentration gradients between different brain 
compartments, which may lead to differences in the effect of an AED 
depending on where in the brain it distributes to, further complicating our 
ability to link AED exposure to effect [7,8]. These issues are a source of 
variability in correlations between systemic exposure (observed as plasma 
concentrations) and clinical effect, compounding the disbelief amongst 
many clinicians regarding the clinical relevance of TDM in anti-epileptic 
drug therapy. More physiology-based PK models may improve the 
correlation between the PK of AEDs in plasma and at the target site, 
resulting in the ability to better correlate exposure to effect. Steps are 
already being undertaken to the establishment of generic brain PK models 
to allow the characterisation of system-specific and drug-specific 
parameters [9,10]. 
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When it comes to the pharmacodynamic analysis in chapters VII and VIII, 
some major hurdles may also be identified. It has been reported that self-
reporting of seizures, as was performed in the clinical trials from which data 
was used in chapters VII and VIII, may be subject to large under-reporting of 
seizure counts of up to 50% [11]. If this under-reporting has occurred fully 
at random time-points and in random patients, i.e. no underlying 
mechanism drove the under-reporting, then the impact on our conclusions 
in these chapters may be small to negligible. Although parameter values 
may in that case be affected, the models as reported would still predict 
adequately for numbers of seizures observed and treatment effect, albeit 
that they do not predict for seizures unobserved or unreported. However, if 
there is some mechanism of seizure under-reporting, unbeknownst to us, 
that skews the under-reporting in certain moments or types of patients, we 
may not be able to accurately determine treatment effect in a 
subpopulation of our data. For example, if seizure reporting is affected 
more in patients with PO seizures compared to those with PGTC seizures, or 
vice-versa, our estimated treatment effect may not compare between the 
two groups as was our conclusion in chapter VII, even though the models 
may still predict reported seizure counts in both populations to an 
acceptable degree. Several devices exist for the direct registration of 
seizures based on EEG patterns, but the use of these is invasive. It is at this 
point unrealistic to make predictions on the impact of modelling seizure 
counts as registered by these devices compared to the patient-reported 
seizure count. 

Unfortunately, apart from seizure types PO and PGTC, no other covariates 
were found to influence baseline seizure counts, placebo effect, or LMT 
potency and maximum efficacy (although LMT exposure was found to 
predict for clinical efficacy). As a result, personalisation of treatment may 
only be done by a relatively small degree, and the current status-quo with 
regard to individualisation, i.e. adjustments of AED choice and dose after 
the start of treatment, will remain necessary until biomarkers may be 
identified that are sensitive to drug effect. Furthermore, our models were 
built on data of adults and children that were not treatment-naïve and 
were already under treatment when enrolled in their respective clinical 
trials. As mentioned in chapter I, this practice, which is the standard in 
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paediatric trials, does not allow us to estimate the parameters that 
determine treatment effect. The thereby increasingly therapy-resistant 
population that is subjected to these trials may bias drug development in 
the direction of drugs that work in a small resistant section of patients while 
the development of drugs that are safer in the general treatment-naïve 
population may be discarded. In essence, the treatment effect observed in 
clinical trials may not be directly translatable to the general clinical 
population, thereby possibly leading to an unfair advantage for the older 
AEDs that were tested in populations more representative of the typical 
clinical populations. 

Apart from the issue of extrapolation of drug efficacy from add-on trials to 
the general patient population, there is the matter of drug-drug 
interactions (DDIs), both in terms of PK and PD. It has been shown in animal 
models that AEDs show significant PD DDIs [12–14]. While PK DDIs of AEDs 
are extensively described in literature (chapter III), these are only adjusted 
for to a limited degree in clinical trials. For example, in the evaluation of 
LMT in adult patients in our data, patients receiving valproic acid during the 
trial were given a lower dose, as it was already known that VPA decreases 
LMT clearance. There is however also variability in the DDIs themselves, i.e. 
not every patient shows DDIs to the same degree. When this is not taken 
into account during dose optimisation, observed drug interactions with 
regard to treatment outcome cannot accurately be attributed to PD. 
Further, the investigation of PD DDIs requires specific trial designs 
optimised for the ability to detect DDIs. This may include the start of the 
second AED after sufficient data has been collected to estimate the PD 
parameters of the primary AED, and the optimisation of dose levels to make 
sure sufficient DDIs will be found. Current trial designs do not consider such 
trial modalities and thus often do not allow the estimation of PD DDIs (if 
any) and the assumption in practice seems that, if it hasn’t been found, it is 
simply not there. Future trials may be optimised by performing CTS and the 
application of optimal design criteria using specific software [15,16]. 

Finally, a major limitation exists with the use of seizures as a clinical 
endpoint, and by proxy its modelling. Disease activity often exists even 
when a patient has not had a seizure on a given day. In fact, some patients 
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only exhibit few seizures per month or even per year. Defining successful 
treatment in these cases becomes problematic due to a lack of data; how 
long do we need to wait in these types of patients before we can speak of 
treatment success? Similar to this issue, the Poisson model may only 
estimate lambda, i.e. the seizure frequency, if sufficiently long follow-up 
data is available.  

Break-through seizures due to patient non-adherence may then easily be 
wrongly attributed to resistance to medication, resulting in unnecessary 
treatment changes. It also limits our ability to accurately estimate drug 
effect from clinical trials. Biomarkers that are able to accurately detect 
epileptic activity in patients with a low frequency of seizures may solve this 
issue in the future. 

 

3. Future Perspectives 

Given the conclusions and limitations, some possible future investigations 
may be discussed. An important question in epilepsy research is whether it 
is possible to predict disease progression. One notable example of disease 
progression modelling was undertaken by Berg et al. [17] In their work, 
three Markov states were defined, in remission, no longer in remission, and 
never in remission. Based on this model, they were able to describe the 
chance of achieving remission over time. They showed that, over the 
timespan of up to eight years, disease progression may be observed. In our 
investigations in chapter VII and VIII, we did not detect any noticeable 
direction of time-dependent changes in disease activity, nor did we find 
predictors for disease progression, even if many patients in our data 
showed large changes in seizure activity over time. This may be due to the 
limited time-scale in the data with regard to baseline, leading to the 
inability to differentiate disease progression from a small or negligible 
treatment effect.  Contributing to our inability of measuring any significant 
disease progression may have been the relatively short follow-up of 
maximally two years, comparing to up to eight years in the Berg et al. data. 
Alternatively, predictors may exist, but these were not included in the data. 
Most probably however, predictors of disease progression will not be found 
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in demographic properties or easily observed variables. The question is 
then, how long does one need to have a base-line and follow-up data on a 
patient to adequately determine whether a started treatment is efficacious. 
In the following example, we investigate this using the Poisson models with 
and without SDE for PO type seizures from chapter VII. 

AED therapy often results in the occurrence of side-effects. In this thesis, 
we focused on the modelling of PD in terms of efficacy alone, but similar 
approaches may be applied w.r.t. PD modelling of the number of side-
effects, and their severity. Some novel methodologies are available, based 
on item response theory, that allow the simultaneous modelling of several 
clinical outcome markers including their severity scores, including the 
interaction between the scores [18,19]. Such methods may be further 
applied to the combined modelling of efficacy and side-effects, as it stands 
to reason that some correlations may exist between these outcomes. 

As described in chapter VII, a Poisson model was built that took into 
account time-dependent intra-individual changes in seizure activity using 
SDE. The SDE described random changes in seizure activity with no specific 
direction (i.e. the average change in seizure activity over the whole 
population remains 0), but 95% of individual changes in seizure activity 
(seizures/day, or frequency) were between -0.3 to +0.3 seizures/day 
(median: 0). In other words, starting at a seizure frequency of one per day, 
this could change to 1.3^7=6.3 seizures per day in one week. This is, 
however an extreme scenario, with most patients showing less dramatic 
changes over time. Efficacy of LMT was described using the typical 
sigmoidal curve dependent on maximum drug effect (Emax), potency (EC50) 
and LMT average daily concentrations. Using this model, simulations were 
performed based on the characteristics of the patients from the original 
study with regard to demographics, seizure baseline frequencies, placebo 
effect, and lamotrigine potency and maximum efficacy. Seizure counts were 
simulated for two baseline weeks and six treatment weeks. Lamotrigine 
was titrated to a dose of 300 mg/day in steps of two weeks (up-titration to 
50 and 100 mg/day) and one week (up-titration to 200 and 300 mg/day). 
During this treatment phase, one, two, or three pharmacokinetic 
therapeutic drug monitoring samples were simulated for subsequent PK 
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parameter estimation, using the methodologies from chapter V. Using the 
estimated PK parameters, or population-predicted parameters (no TDM 
samples), individual-predicted average LMT concentrations were derived 
for all days in all patients. Subsequently, PD parameters were estimated 
using the original model with and without SDE, and follow-up data of one, 
two, three, four, five or six treatment weeks. Relative error (RE) of PD 
parameters were then calculated using equation 1 and plotted between the 
different follow-up scenarios (between one to six weeks) and between 
number of TDM samples used (none to three). Plots were split between 
using the SDE model and non-SDE model. 

    (1) 

 
Figure 1. Results from application of the Poisson model with stochastic differential 
equations. Parameter estimation accuracy (RE%) of seizure frequency, maximum 
treatment effect, potency and absolute treatment effect between scenarios of 
different number of follow-up weeks, and differing number of TDM samples used 
for estimation. Positive values signify overestimation and negative values 
underestimation. 
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Figure 2. Results from application of the Poisson model without stochastic differential 
equations. Parameter estimation accuracy (RE%) of seizure frequency, maximum treatment 
effect, potency and absolute treatment effect between scenarios of different number of 
follow-up weeks, and differing number of TDM samples used for estimation. Positive values 
signify overestimation and negative values underestimation. 

 
Figure 3. Results from application of the Poisson model without stochastic differential 
equations. Parameter estimation accuracy (RE%) of seizure frequency, maximum treatment 
effect, potency and absolute treatment effect between scenarios of different number of 
baseline weeks, using 6 treatment follow-up weeks, and differing number of TDM samples 
used for estimation. Positive values signify overestimation and negative values 
underestimation. 
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Results of these simulations are not very encouraging. Neither the model 
with SDE nor that without SDE is able to accurately estimate the potency. 
Furthermore, using the model without SDEs resulted in large errors in 
estimation of absolute treatment effect, showing that the issue of 
individual parameter estimation is one based on parameter identifiability 
and not on model complexity. This finding may have grave implications in 
the analysis of clinical trial data, where trial design choices should take into 
account the long follow-up times required to accurately estimate these 
parameters. The simplification of analysis by disregarding the changes in 
seizure frequency over time may result in improper assessment of drug 
effect in some trials, although if a trial were to be repeated infinite times, 
the mean estimation of drug effect should still approach the true value 
(Figure 1). Conversely, depending on duration of treatment follow-up, the 
absolute treatment effect, i.e. the treatment effect observed in the patient 
may be estimated to an adequate degree using the model that includes 
SDEs, with a follow-up of six weeks showing good agreement with the 
absolute treatment effect that was simulated (Figure 2). Parameter 
estimation was not significantly improved by increasing the baseline period 
from 2 to 6 weeks (Figure 3). However, maximum treatment effect and 
potency are required to make for prediction of treatment outcome, as it is 
these two parameters in combination with actual exposure (as average 
daily concentration) which determine the absolute treatment effect. It 
seems that therapeutic drug monitoring did not improve our ability to 
estimate pharmacodynamic parameters, but it should not be dismissed, as 
accurate pharmacokinetic parameters will still be needed to derive the 
optimal target maintenance dose once the optimal target exposure has 
been determined. Possibly, it may be required to perform so-called probing 
tests, in which the potency and maximum effect of the individual patient 
are explored by testing multiple dose levels or lower doses of multiple 
drugs. By perturbing the system and collecting data through sensitive 
biomarkers, we may derive system-specific parameters that inform on the 
sensitivity of the system to changes induced by AEDs. When this is applied 
in a systematic manner that evaluates the relevant physiology, a rational 
decision of pharmacotherapy may be made on the basis of sensitivity of the 
individual patient. 

274



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 275PDF page: 275PDF page: 275PDF page: 275

This example highlights the need for biomarkers to provide a window into 
the pathophysiology. Such biomarkers may then provide early predictors of 
the maximum efficacy of the available AEDs, thereby allowing selection of 
the most probable efficacious treatment a-priori, and selecting the 
appropriate exposure level for the patient, after which techniques as shown 
in chapters IV and V may be used to optimise for dose. With relation to the 
Poisson model, these biomarkers (or perhaps other predictors) would 
adjust the value of lambda, where possible over time. With enough 
accurate biomarkers, the value of lambda will simply approach the number 
of seizures for that day. Such biomarkers would also solve the issue 
discussed in the limitations, regarding difficulties in the estimation of 
treatment effect in patients with low seizure frequencies. In this sense, the 
use of a Poisson model, or any of the related models (negative binomial, 
zero-inflated binomial, etc [20,21]), to model seizure counts is a middle-
outward approach to the problem. Using biomarkers, we may explain inter- 
and intra-individual variation in the lambda due to differences and changes 
in pathophysiology. Lambda may then be used to predict seizures in the 
future, from which the two major clinical endpoints seizure freedom and a 
reduction of at least 50% in seizure frequency may be derived. It is 
expected that pathophysiological biomarkers will be mostly relevant for 1) 
predicting sensitivity to treatment, and 2) the probability and amount of 
seizure frequency changes. On the other hand, biomarkers are required 
that inform on all links between basic pharmacology and clinical outcome.  

Biomarkers can be divided into several categories, based on their place in 
the cascade from low-level determinants of drug effect up to clinical 
outcome [22]. The currently available biomarkers were recently categorised 
according to this system [23]. Based on this categorisation, several 
important gaps in epilepsy biomarkers were identified. Many of the 
biomarkers found in literature are qualitative, i.e. based on the need to 
categorise patients into one of several convenient and easy-to-grasp groups 
such as responders and non-responders. However, for rational polytherapy, 
biomarkers are required that inform quantitatively on aspects such as 
target occupancy and activation. These types of biomarkers are essential to 
the estimation of AED sensitivity of the individual patient, corresponding to 
the EC50 in our Poisson models. When biomarkers enable the accurate 
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estimation of the individual patient’s EC50 before treatment, or early after 
initiation, a target maintenance dose can be set early and titrated towards. 
Conversely, if the EC50 is simply too high, a switch may be indicated to an 
AED that the patient will be more sensitive to. Similarly, such 
methodologies may be used to prevent the occurrence of side-effects. For 
the prevention of epileptogenesis, one needs quantitative information on 
pathophysiological processes occurring in the patient at risk of developing 
seizures. Assuming anti-epileptogenic efficacy exists for some AEDs, such 
information, combined with biomarkers on target sensitivity may be used 
to derive a low but sufficiently bioactive dose to prevent epileptogenesis 
while minimising the risk of side-effects. At the moment, determining 
whether a patient’s seizures are simply suppressed or their epilepsy has 
remitted is based on clinical presentation. Some patients will show 
renewed seizure activity after treatment cessation, resulting in severe risk 
of harm. Biomarkers on disease status may prove a rational decision tool 
for the cessation of treatment. The occurrence of seizures and exposure to 
AEDs can have significant impact on mental ability in children, which may 
result in worse school performance and stinted development. When 
biomarkers are available allowing us to predict epileptogenesis, disease 
progression and sensitivity to AEDs, seizures may be optimally prevented 
and AED exposure minimised by providing the minimum-required dose and 
stopping treatment as early as possible. 

Based on the methodologies described in this thesis, we may develop 
clinical trials more robustly; we may perform clinical trial simulations for 
power calculations, trial population selection (in terms of disease severity), 
duration of the trial and duration of baseline and treatment periods. 
Furthermore, we may be able to better investigate whether a drug is an 
actual anti-epileptic drug (i.e. does it treat the disease?) or an anti-
convulsant (i.e. does it suppress seizures?). Although we have used the 
term anti-epileptic drug throughout this thesis, no results from chapters VII 
and VIII suggested that lamotrigine has any disease-modifying effects. To 
accurately answer whether a compound has disease-modifying properties, 
study designs need to be very carefully considered. Another important 
question in epilepsy research is whether pharmacodynamic drug-drug 
interactions exist, and whether these are beneficial (i.e. synergy) or 
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detrimental (i.e. antagonism) to treatment outcome. Through CTS, we may 
develop special trials that are sufficiently powered and designed to answer 
these, and other questions. To be able to do so, it is required to first 
estimate the parameters of the Poisson model with regard to mono-
therapy in treatment-naïve patients. For now, the models provided in 
chapters VII and VIII showed no interactions between lamotrigine and the 
other existing AEDs involved in the studies. Whether these findings may be 
extrapolated to treatment-naïve patients remains to be shown in external 
validation studies. 

Our introduction was named “Pharmacotherapy in paediatric epilepsy: from 
trial and error to rational drug and dose selection – a long way to go”. This 
thesis provides signposts that highlight the path towards rational anti-
epileptic pharmacotherapy with the help of modelling and simulations. It is 
our hope that future investigations in paediatric epilepsy will recognise the 
importance of exposure-response relationships and take into account the 
methods, and approaches proposed and implemented throughout this 
thesis.  The use of PKPD principles and drug-disease models will lead to 
rational pharmacotherapy of AEDs in paediatric epilepsy. Our current 
prescription paradigm needs to evolve. Exposure considerations are 
important for assessing efficacy and safety. This point was raised by 
Paracelsus in 1538, and is stated in the adage, the dose makes the poison. 
Model-based dosing algorithms may make the medicine.  
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