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CHAPTER 5 

INDIVIDUALISED DOSING ALGORITHMS 
AND THERAPEUTIC DRUG MONITORING 

FOR ANTIEPILEPTIC DRUGS 
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Individualised dosing algorithms and 
therapeutic monitoring for 

antiepileptic drugs 

Sven C. van Dijkman, Sebastian G. Wicha, Meindert Danhof, 
Oscar E. Della Pasqua 

Clinical Pharmacology & Therapeutics, 2017 

SUMMARY 

Pharmacokinetic (PK) models exist for most antiepileptic drugs (AEDs). Yet, their 
use in clinical practice to assess inter-individual differences and derive 
individualised doses has been limited. Here we show how model-based dosing 
algorithms can be used to ensure attainment of target exposure and improve 
treatment response in patients. Using simulations, different treatment scenarios 
were explored for 11 commonly used AEDs. For each drug, five scenarios were 
considered: i. all patients receive the same dose. ii. individual clearance (CL), as 
predicted by population PK models is used to personalize treatment. iii-v. individual 
CL, obtained by therapeutic drug monitoring (TDM) according to different sampling 
schemes is used to personalise treatment. Attainment of steady-state target 
exposure was used as performance criterion to rank each scenario. In contrast to 
current clinical guidelines, our results show that patient demographic and clinical 
characteristics should be used in conjunction with TDM to personalize the 
treatment of seizures. 
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Study Highlights 

What is the current knowledge on the topic? Population pharmacokinetic 
models are available for many AEDs, most of which allow the 
characterisation of predictable (e.g. covariates) and random interindividual 
variability. 

What question did this study address? Standard dosing recommendations 
and titration procedures have important limitations. A model-based 
algorithm is proposed for AED dose individualisation, which may be of great 
benefit for patients whom fail to respond to initial first-line therapy. 

What this study adds to our knowledge AED dosing regimens based on 
typical population characteristics do not ensure attainment and 
maintenance of target exposure in patients. By contrast, model-based 
dosing algorithms result in significant reduction in the variability of AED 
levels at steady-state.  

How this might change clinical pharmacology or translational science Our 
approach shows how dosing algorithms can be implemented in the clinic to 
deliver personalised and individualised treatments. It also shows the 
advantages of integrating TDM with model-based platforms. 

1. Introduction

Epilepsy is a chronic neurological disease, manifesting as recurrent seizures. 
In spite of the efforts to identify novel, more effective antiepileptic drugs 
(AEDs), one-third of the patients are not responsive to the first treatment. 
Sadly, a considerable proportion of these patients eventually also fail after 
transition to alternative or second line treatment. Such inter-individual 
variability in the response to AEDs is a consequence of multiple interacting 
factors, including differences in the pathophysiology, pharmacokinetic, 
pharmacodynamic and genetic variation [1,2]. It is therefore acknowledged 
that rational prescribing of antiepileptic drugs (AEDs) requires not only an 
understanding of the seizure type and of the drugs' pharmacodynamic 
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properties, but also careful consideration of the factors known to affect 
drug disposition [3,4]. In fact, the impact of covariate factors on drug 
exposure and consequently on pharmacokinetic variability, efficacy and 
tolerability profile of AEDs has been highlighted in a recent publication by 
our group [5]. Our findings confirm the concerns raised by previous authors 
on the importance of accounting for covariate factors, particularly in 
patients at the extreme range of age, such as infants and elderly [6,7]. 
 
Given the impact of demographic, clinical and genetic covariate factors, one 
important question that remains unaddressed is whether the lack of 
response and subsequently switching to alternative first-line AEDs (or 
combination therapy) can be potentially avoided by a more robust dosing 
rationale. Many AEDs show large pharmacokinetic (PK) variability, especially 
when drug-drug interactions occur during combination therapy [5]. 
Nevertheless, despite the large number of investigations on the clinical 
pharmacokinetics of AEDs, limited attention has been given to the 
magnitude of such effects and their clinical implications. In most cases, 
covariate effects have been assessed as part of a population 
pharmacokinetic analysis, where the main objective is the characterization 
of the overall drug disposition properties and underlying sources of 
variability, rather than the optimisation of the therapeutic intervention in a 
wider patient population [8,9]. 

From a clinical point of view, the use of titration procedures, without taking 
into account the underlying inter- and intraindividual variability in 
pharmacokinetics, conflate PK variability with that of pharmacodynamics 
(PD) and disease progression. Usually, treatment is started at a low dose, 
followed by up-titration until adequate efficacy or unacceptable side effects 
are reached. Therapeutic drug monitoring (TDM) is eventually considered 
when side-effects are seen at a lower doses or inadequate efficacy is 
observed at a higher doses than expected. On the other hand, in some 
cases dosing regimens may be selected that aim at reaching steady state 
concentrations (Css) within a pre-defined therapeutic range [10,11]. 

Based on the aforementioned, it becomes clear that current guidelines for 
the selection and titration of AEDs overlook the impact of the underlying 
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variability in drug disposition. Even if only part of the variability in the PK of 
AEDs can be explained by demographic covariates such as weight and age, 
dose adjustments can provide a concrete opportunity for optimising 
therapy. Surprisingly, this contrasts with the fact that nomograms have had 
a place in the optimisation of AED therapy since the early 1970’s, especially 
for phenytoin, which shows large variability due to its nonlinear 
pharmacokinetic properties. Nomograms have, however, important 
limitations. They allow for adjustment of only a few variables (see examples 
in Hudson et al. [12]) or otherwise can become convoluted (e.g. Lee et al. 
[13]). In contrast, the use of PK models allows dose adjustment to be made 
a-priori based on any number of covariates (i.e. personalisation). The 
availability of models also enable subsequent optimisation of the treatment 
based on clinical follow-up procedures such as TDM (i.e. individualisation) 
without the need for empirical calculations or drawing lines on graphs by 
hand. An additional advantage of PK models is the incorporation of 
statistical distributions to describe measurement error, which can 
theoretically lead to more accurate and/or precise parameter estimates 
depending on the error model; in turn this results in more accurate dosing 
recommendations. Moreover, PK models are one of the building blocks of 
clinical trial simulations, which can provide the basis for the evaluation of 
alternative dosing scenarios in silico. 

Here we explore how clinical trial simulations and optimal design concepts 
can be used to identify suitable dosing algorithms and possibly personalise 
the treatment of seizures with the available AEDs. It can be anticipated that 
the implementation of model-based titration and dosing algorithms, as a 
criterion for dose adjustment and transition to alternative first-line or 
combination therapy, may prevent treatment failure in a considerable 
fraction of patients who currently do not respond to the first AED. Our 
approach may be of particular relevance for 10-20% of patients who still 
show unresolved seizures when their target dose has been achieved [3]. It 
may also allow the identification of individuals within the group of patients 
who would respond to optimised regimens, but currently remain refractory 
to treatment and are said to have drug-resistant epilepsy [4]. 
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Finally, we aim to show how TDM procedures can be combined with 
inferential methods based on modelling and simulation to optimise doses 
and dosing regimens. These concepts have been increasingly applied to 
other therapeutic areas (e.g., anti-tumour, immunosuppressant and anti-
infective drugs) where favourable treatment outcome depends on the 
attainment and maintenance of target drug exposure [14–18]. Such 
developments illustrate the effective introduction of individualised 
medicines to patients [19]. This diverges from current clinical practice in 
epilepsy, which relies on limited clinical evidence and somewhat randomly 
selected sparse pharmacokinetic sampling when TDM is used. In most 
cases, blood collection is performed without further understanding of the 
required number of samples or most appropriate time for collection to 
ensure accurate estimation of the clearance (CL), which is critical for 
subsequent dose individualisation. So far, no evidence exists on the 
optimality of such sampling strategies. Typically, optimal sampling is 
assumed to be at the end of the dosing interval (i.e. trough levels), but this 
is not always the case (e.g. sampling times between 2-6 hours post-dose in 
Yukawa et al. [20]). Moreover, there is often a large spread in sampling 
times in part due to factors such variable dosing time, patient availability, 
and blood withdrawal service opening times. 

For the sake of clarity, here we refer to personalisation when treatment 
decisions, including dose adjustment are based on covariate factors, 
including demographic, clinical and pathophysiological data. Such a 
definition is required to account for the contribution and interaction 
between multiple factors, other than genotype and phenotype [21]. We 
also make use of the term individualisation to refer to dose adjustments 
based on therapeutic monitoring (TDM) and subsequent estimation of the 
individual patient’s PK parameters (e.g., clearance). This distinction is 
important as in some cases treatment optimisation may be reached without 
the requirement for TDM. In fact, when used in conjunction with model-
based approaches TDM may form the basis for the individualisation of 
therapy, in particular in special populations such as children and pregnancy 
[22–24]. 
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2. Methods

Pharmacokinetic models and virtual patient demographics 
Models describing the adult and paediatric PK of carbamazepine (CBZ) [37], 
clobazam (CLBZ) [38], clonazepam (CLNZ) [20], lamotrigine (LMT) [39,40], 
levetiracetam (LVT) [41], oxcarbazepine (OXC) [42], phenobarbital (PHB) 
[43], phenytoin (PHT) [44], topiramate (TPM) [30], valproic acid (VPA) 
[45,46], and zonisamide (ZNS) [47] were collected from the published 
literature. Models were transcribed into the appropriate format in R v3.1.1 
[48], along with the parameter estimates and combined with analytical 
solutions of the mathematical equations describing the concentration over 
time profiles (equations 1 and 2.1-2.5 for one and two compartment 
models respectively) [12,49,50]. These equations were then implemented 
as scripts and used for all subsequent simulations. For each AED, separate 
adult and paediatric populations were evaluated (n=1000) using the 
baseline demographic characteristics described in table 1. Values of other 
influential factors, such as genetic polymorphisms were simulated 
according to their occurrence as in the original publication. Steady-state 
concentrations over 12 hour dose intervals and Css (equation 3) were 
simulated for typical adult and paediatric populations (table 1). 
Hypothetical dosing regiments were considered according to different 
dosing algorithms (table 2). Steady state concentrations (Css) were used as a 
surrogate marker for AED effect, with the therapeutic target Css (TCss) in 
each scenario set to the concentration half way between therapeutic 
minimum and maximum of the therapeutic window (table 3) [10]. 

 (1) 

(2.1) 

(2.2) 

(2.3) 
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(2.4) 

(2.5) 

(3) 

 (4) 
Equations 1-4. Ct: concentration at time t (mg/L or μg/L). D: Dose (mg or μg). V or 
V1: central volume of distribution (L). ka: absorption rate constant (h-1). CL: 
clearance (L/h). t: time (h). tD: time of dose (h). : dosing interval (h). Q: 
intercompartmental clearance (L/h). V2: peripheral volume of distribution (L). F: 
bioavailability (fraction of the dose that is absorbed). TC: target steady state 
concentration (mg/L or μg/L). i: individual i. 

Table 1 Baseline characteristics of the patient population used across the different 
simulation scenarios 

Demographic Adult values Paediatric values 
Age range in years
(uniformly distributed) 

18-65 4-14

Mean, CV% of weight (kg)
(normally distributed) 

Male: 75, 16%
Female: 65, 16% 

3·Age+7 †, 10% 

Gender Male: 50%
Female: 50% 

Male: 50%
Female: 50% 

†Based on the weight-by-age formula created by Luscombe & Owens in Arch Dis 
Child 2007: a child’s weight can be predicted by taking three times its age plus 
seven 
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Table 2 Model-based dosing algorithms tested in the different scenarios 
Dosing algorithm 
name 

Dose calculated using

Standard 
(Population) 

Population CL

Personalised Model-predicted CL, including covariate effects
Individualised (1) individual CL prediction based on TDM with 1 sample at 12:00 post-

dose 
Individualised (2) individual CL prediction based on TDM with 2 samples at 09:00 and 

12:00 post-dose 
Individualised (3) individual CL prediction based on TDM with 3 samples at 06:00, 

09:00, and 12:00 post-dose 
D-optimised (1) Individual CL prediction based on TDM with optimised sampling time 

(1 sample)  
D-optimised (2) Individual CL prediction based on TDM with optimised sampling 

times (2 samples)  
D-optimised (3) Individual CL prediction based on TDM with optimised sampling 

times (3 samples) 

Table 3 Dose levels simulated for the initial dosing scenario, along with the 
corresponding therapeutic windows and target steady-state concentration for each 
drug. 
Drug Adult 

standard dose
Paediatric 
standard dose 

Therapeutic 
concentration 
window [9] 

Target 
Steady-state 
concentration 

CBZ 700 mg/day 15 mg/kg/day 4-12 mg/L 8 mg/L
CLBZ 20 μg/day 0.4 μg/kg/day 30-300 μg/L 165 μg/L 
CLNZ 5 μg/day 0.08 μg/kg/day 20-70 μg/L 45 μg/L
LMT 400 mg/day 7 mg/kg/day 2.5-15 mg/L 8.75 mg/L 
LVT 2500 mg/day 50 mg/kg/day 12-46 mg/L 29 mg/L 
OXC 1000 mg/day 20 mg/kg/day 3-35 mg/L 19 mg/L 
PHB 150 mg/day 4 mg/kg/day 10-40 mg/L 25 mg/L 
PHT 300 mg/day 10 mg/kg/day 10-20 mg/L 15 mg/L 
TPM 300 mg/day 8 mg/kg/day 5-20 mg/L 12.5 mg/L 
VPA 1200 mg/day 20 mg/kg/day 50-100 mg/L 75 mg/L 
ZNS 300 mg/day 6 mg/kg/day 10-40 mg/L 25 mg/L 

164



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 165PDF page: 165PDF page: 165PDF page: 165

Personalised dosing algorithms 
Two different dosing algorithm scenarios were simulated based on the 
population pharmacokinetic models alone. In an initial scenario, 
exploratory simulations (not shown) were performed to select one dose for 
the whole population that resulted in exposures which were the closest to 
the target exposure in the largest proportion of the population. This 
population scenario was selected as a reference scenario. For subsequent 
comparisons under the assumption that the selected doses reflect the 
titration procedures used in clinical practice. By contrast, in the 
personalised dosing scenario, individual clearance estimates were 
calculated for each patient i (CLi) using the covariates included in the model. 
The difference between the initial population dose and personalised dosing 
scenarios represents the impact of inter-individual variability in clearance, 
which is explained by covariates. Finally, an additional dosing scenario was 
generated for PHT based on the nomogram of Ludden et al. [51]. This 
nomogram requires two samples at different steady-state doses. We have 
therefore used 300 and 200 mg/day for adults, and 10 and 6.7 mg/kg/day 
for children. Based on their nomogram, parameters Vmax and Km are 
calculated and an updated dose can be derived using the formula 
Vmax*TCss/Km+TCss. It should be noted that the nomogram will derive a 
negative Km when higher concentrations are observed for a lower dose as 
compared to that of the higher dose, in which case their median reported 
Km of 7.73 was used instead. 

Individualised dosing algorithms 
Given that the AEDs are titrated to steady-state conditions, the average 
plasma concentration at steady-state will vary according to the individual 
patient’s clearance (CL). Empirical Bayesian estimation (EBE) procedures 
can be used to obtain accurate predictions of the individual parameter of 
interest. The EBE determines the deviation ( , eta) from the population 
value ( , theta) of the parameters of interest (e.g. rate of absorption, 
volume of distribution, clearance, etc.), taking into account the residual 
variability ( , epsilon) [52]. Thus, AED concentrations derived from TDM can 
be used in conjunction with EBE to individualise the dose [10,11,53]. In 
theory, such an approach allows one to account for the variability in 
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clearance and other individual pharmacokinetic parameters which are not 
described by the underlying covariate effects. To date, it is unclear to what 
degree such a dosing algorithm yields higher proportions of patients 
achieving target Css (TCss) when compared to conventional dose adjustment 
for AEDs based on TDM only. 

Here we present three individualised dosing scenarios, in which EBEs were 
obtained for clearance (CLi), under the assumption of blood sampling being 
performed according to empirical sampling schemes, including 1, 2, or 3 
samples for each individual patient. When only one sample was collected, 
sampling was performed at the end of the dosing interval (12 h) to ensure 
information about the trough levels. When two samples were used, blood 
sampling was such that information was obtained about the elimination 
phase in addition to the trough sample at the end of the dosing interval, 
i.e., at 9 h and 12 h post dose. For three samples, data on the elimination
phase was obtained at 6, 9 and 12 h post dose. EBEs of clearance were 
obtained by minimising the Bayesian objective function (equation 5): 

 (5) 

where ij is the jth concentration prediction for individual I, Yij is the jth 
concentration observation for individual I,  is the variance of the residual error, ik 
is the deviation (eta) from population parameter k in individual I, and  is the 
variance of the kth eta. Although EBEs were estimated for all etas, only those for 
clearance were subsequently used for dose optimisation using equation 4. The 
difference between personalised and individualised dosing scenarios reflects the 
contribution of the parameter distribution describing an additional fraction of the 
unexplained inter-individual variability in clearance. 

Optimised blood sampling for TDM 
D-optimality concepts have been used across different therapeutic areas as a tool 
to improve parameter precision. This represents an important advantage when 
sparse sampling is for the purpose of population pharmacokinetic modelling. Here 
three D-optimised scenarios were considered, in which 1, 2, or 3 time points were 
optimised for the estimation of individual CL. Data analysis was performed using 
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the PFIM  software [49] to maximise the approximation of the Bayesian Fisher 
information matrix: 

(6) 

where  , , and  are sampling times 

with the constraint that only sample times were allowed to be taken 
between 0.5 and 12 hours after dose, at discrete points each half hour, 
resulting in a total of 24 possible sampling time points. Samples obtained by 
D-optimality were then used in the simulation scenarios. EBEs of CLi were 
derived as for the individualised dosing scenarios described previously. The 
difference between the individualised and D-optimised dosing scenarios 
reflects the impact of D-optimal design on the precision of individual 
clearance estimates. 

Graphical and statistical summaries of the simulated scenarios 
The ratio RTCss = Css/TCss was used to describe how well the Css resulting 
from a dosing algorithm compared to the theoretical TCss. Consequently, 
values for RTCss below or above 1 represent underdosing or overdosing, 
respectively. The observed differences between dosing algorithms for each 
drug and simulation scenario were graphically analysed using whisker-box 
plots of the median and 95% prediction intervals. In addition, the range of 
PFIM-derived sampling times was used to assess differences in parameter 
information content for the scenarios involving sampling time optimisation. 
Furthermore, bias and precision of RTCss were determined by calculating 
the relative error (RE%) as (Css – TCss) * 100%, and coefficient of variance 
(CV%) as mean(RTCss) / sd(RTCss) * 100% respectively. The impact of dosing 
algorithms on ability to attain TCss was determined by taking the difference 
in CV % and RE% estimates between simulated scenarios. 
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3. Results 

Implications of dosing algorithms for systemic exposure to AEDs 
Although dose levels were found that resulted in concentrations that are 
within the therapeutic window for eight out of eleven AEDs in at least 95% 
of the adult population, large inter-individual differences in CL resulted in a 
wide spread of Css relative to the target concentration, i.e., RTCss in the 
population (figures 1 & 2). Personalisation improved the precision of RTCss 
(CV% of population – CV% of personalised scenario) in adults for PHT 
(36.0%) and ZNS (8.5%). No relevant changes (between -5 to +5%) were 
found for CBZ, CLBZ, CLNZ, LMT, LVT, OXC, PHB, TPM and VPA. In children, 
personalisation also improved the precision of TCss for PHT (32.9%) and ZNS 
(5.9%). No relevant differences were found for CBZ, CLBZ, CLNZ, LMT, OXC, 
PHB, TPM, and VPA. The CV% for the personalisation scenario was worse 
for LVT (-15.6%). Personalisation procedures resulted in a reduction of the 
bias in TCss (RE% of population – RE% of personalised scenario) for PHT 
(8.2%), TPM (7.9%) and ZNS (13.5%) in adults, and CLBZ (6.3%), CLNZ (9.4%), 
OXC (12.8%) and TPM (8.7%) in children. Some bias was observed by 
personalised dosing of LMT (-6.0%) in children. No relevant differences in 
bias were found for any of the other AEDs. 

By contrast, the integration of model-based algorithms with EBE estimates 
from TDM using one sample showed that improvement in terms of target 
Css for nearly all AEDs. Reductions in CV% of TCss in adults varied between 
6.6% for CBZ and 20.9% for CLBZ. The effect of these procedures was found 
to be negligible only for TPM (4.6%). In children, similar reductions were 
observed in CV% of TCss, with values varying between 6.0% for CLBZ to 
19.9% for CLNZ. Further reductions in the variability in TCss could be 
achieved by evaluating two blood samples instead of one. 

Such an improvement was observed for LVT (7.5%) in adults and CLBZ 
(8.4%) in children. Finally, bias in the TCss estimates (RE%) in children could 
be reduced using one TDM sample only for LMT (6.9%). No improvement in 
bias was found for any of the other AEDs, irrespective of the number of 
TDM samples. 
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Implications of optimised sampling times for TDM 
The sampling times for characterisation of clearance (trough levels) in 
adults could be optimised for 6 out of 11 AEDs, whereas for two other 
compounds, sampling times optimisation was achieved by including data 
relative to the upswing portion of the concentration vs. time curve (figures 
3 & 4). Of note is the fact that optimisation procedures show a 
counterintuitive behaviour. When more frequent sampling is required or 
feasible, one should collect additional samples at time points close to the 
reference sampling times. The spreading of blood samples at wider 
intervals such as at 6, 9 and 12 hours after dose for once-daily regimens is 
often less informative than when the additional samples are collected at 
the end of the dosing interval. 

Despite the possibility of introducing optimised times for blood sampling 
and obtaining increased precision for individual clearance estimates, our 
findings reveal that such efforts do not warrant improved target 
attainment. In fact, comparison of CV% of TCss between the D-optimised 
and individualised scenarios (i.e. one vs. one, two vs. two and three vs. 
three samples) reveals no reductions larger than 5%. By contrast, a 
worsening was found for PHT in adults (-7.4, -8.5 and -5.1%) and children (-
5.4, -6.7 and -9.0%), and LMT (-5.3% for one sample) in children. In 
addition, bias was not reduced by taking samples at D-optimised sampling 
times. Surprisingly, D-optimised schemes introduced bias for LVT (-21.7, -
24.7, and -21.4%), PHT (-9.2, -9.7, and -9.2%), and VPA (-11.4 when taking 
three samples) in adults, and for LVT (-25.7, -25.9, and -24.6%), PHT (-9.8, -
10.7, and -8.3%), and VPA (-7.9, and -7.3% for two and three samples 
respectively).  
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4. Discussion 

The treatment of epileptic seizures with AEDs is based on the clinical 
classification of overt seizure type [20,21]. Whereas heterogeneity in 
disease is well known and treatment response varies considerably between 
patients, there has been a long debate about to what extent treatment 
should be complemented by therapeutic drug monitoring, which is aimed at 
establishing whether patients reach and maintain a predefined 
concentration or concentration range. 

Our results show that despite the limited attention given to the impact of 
covariate factors on drug disposition, model-based dosing algorithms can 
be developed in conjunction with TDM to individualise treatment. The use 
of such an integrated approach allows a significant reduction in the 
variability in drug exposure, which is observed after administration of 
standard doses, even when titration steps are used at the start of 
treatment [22,23]. In addition, our investigation shows that 
individualisation based on a single TDM sample at the end of the dosing 
interval resulted in large improvements in target attainment. Further 
improvements could be achieved with one or two additional TDM samples, 
but differences were not marked. 

Contrary to what one would expect, optimisation of sampling times by D-
optimality did not improve precision or bias, and paradoxically resulted in 
worsening for some AEDs. Based on our optimisation results, sampling time 
optimisation seems unnecessary and may in some cases even introduce 
bias. It may still be of use in situations where the accurate information on 
the parameter of interest (here: clearance) cannot be as easily derived, e.g. 
in the case of multiple, variable dosing regimens, or polytherapy with drug-
drug interactions. 

Our investigation also shows that implementation of TDM without further 
integration with model-based techniques does not warrant effective 
individualisation of the dose. In this regard, the lack of consensus about the 
clinical relevance and performance of TDM may be partly explained by its 
use as a diagnostic tool, i.e., TDM results are treated similarly to any other 
clinical laboratory data. Instead, TDM should be seen as the input variable 
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for a dosing algorithm, in which inferences from individual drug levels are 
used to establish the contribution of multiple interacting factors 
[10,14,16,25]. While some evidence exist for the lack of significant impact 
of AED TDM on treatment outcome, such investigations did not include 
model-based dosing algorithms. More clinical evidence is required to build 
a stronger case for the advantages of parametric methods to obtain 
accurate estimates of interindividual variability in drug disposition, as 
expressed by (pharmacokinetic) model parameters. Irrespective of the 
limitations which some of the pharmacokinetic models present, our 
approach clearly illustrates how therapeutic platforms can be implemented 
to support personalised and individualised treatment. It also shows how 
clinical decision criteria and therapeutic guidelines can benefit from 
quantitative clinical pharmacology methods. We anticipate that as the 
relationships between AED exposure and efficacy become elucidated [26–
30], this approach may be further refined by targeting individualized plasma 
concentrations to account for variability in pharmacodynamics. In any case, 
the assumption that standard doses and dosing regimens, whether or not 
corrected empirically by body weight or other covariate factor is no longer 
defendable for AEDs. 

Potential limitations 
Given that models were retrieved from the published literature, one cannot 
exclude possible limitations when using them for simulation purposes. First, 
it should be noted that some of these models were based on sparse data. 
This may have resulted in an inflated variability in clearance, as often 
variability in absorption or distribution volume was not included. 
Consequently, these models may have indirectly produce results in favour 
of the individualised and D-optimised dosing algorithms, as these 
approaches take into account these other sources of variability. Clearly, 
given some of the simplifications, some models may not adequately 
describe the relevant physiological processes when applied other 
conditions or scenarios, such as dosing during non-steady state conditions. 
By contrast, other models may be considered overparameterised. For 
instance, the models for CLBZ and ZNS incorporate information on genetic 
polymorphisms for the prediction of clearance, which requires DNA 
sequencing, a procedure which is not yet commonly used in current clinical 
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practice and may therefore be of limited clinical value. Another example of 
such limitations is the case of CLNZ, for which the relative target attainment 
approached unity for the individualised and D-optimised dosing algorithms; 
the population pharmacokinetic model for this drug does include 
interindividual differences in absorption or distribution processes. In real 
life, some variation would be detected even after integration of the TDM 
with population pharmacokinetic concepts. 

The discrepancies that were found in terms of precision and bias between 
dose individualisation using typical and optimised sampling times may also 
be due to model limitations, as in the case of LVT and PHT, for which 
information regarding the underlying correlation between clearance and 
volume of distribution and variability in the absorption kinetics was missing. 
A major difference between sampling time optimisation in adults and 
children was seen for drugs LMT and VPA. These differences are most 
probably caused by the fact that the pharmacokinetic models have been 
originally developed separately for adults and children. From a statistical 
perspective, the main difference between the two pharmacokinetic models 
was the use of additive (adults) and proportional (children) residual errors. 
When residual error is large and parameterised as proportional-only 
simulations will behave differently from combined error models. 

Lastly, we have not limited the dose adjustments to the approved dose 
ranges or available dosage strengths, as the scope our investigation was to 
establish the relevance of model-based principles for the personalisation of 
treatment with AEDs. Nevertheless, we do not anticipate any major 
differences in the conclusions drawn so far. The predicted doses were 
within the approved dose ranges even if doses were not adjusted for 
available strengths. 

The implementation of model-based dosing algorithms for individualisation 
of treatment in the clinic is subject to practical, technical and theoretical 
challenges, such as the characterisation of interindividual differences. As a 
consequence, historically AED dose adjustments have been restricted to the 
typical population parameter values, without taking into account the 
contribution of predefined covariate effects. In fact, exceptions are 
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illustrated by the requirements for dose adjustment in patients with varying 
degrees of renal and hepatic impairment. Treatment Individualisation or 
precision medicine has become goal of the clinical research community in 
other therapeutic areas such as oncology, but its wider acceptance seems 
to be hindered by limited evidence of its large-scale utility and impact [31]. 
Furthermore, the lack of user friendly software programs over the past 
decades has imposed the need for technical skills to access and use 
quantitative technologies. This situation has changed in recent times; 
advances in computing performance and continuous development of 
dedicated software packages, such as R and Shiny have allowed the 
development of dosing tools with user friendly graphical user interfaces 
[32]. For example, the use of TDM is popular in antibiotic treatment, and 
the application TDMx has been created to make use of the available PK 
models for TDM-based dosing adjustments [33]. Currently, no such 
software applications exist with the required functionality to integrate 
bioanalytical results from TDM with a population pharmacokinetic model 
and patient demographic, clinical and genetic information to derive 
individualised dose recommendations for AEDs. Given the availability of 
dosing algorithms in other fields of medicine, it appears that the lack of 
such applications for AEDs reflects the entrenched culture in clinical 
decision making, rather than a technical hurdle. Taking into account the 
possibility of performing TDM based on dried blood spot or saliva, it can be 
anticipated that the implementation of integrated platforms will not 
represent an increased burden to patient care in epilepsy [34,35]. A final 
obstacle for the uptake of TDM-based dosing individualisation applications 
is the validation of such a platform. This would constitute validation of the 
generic modelling framework into programming code (e.g. equations 1-5) 
and validation of predictions of models and parameters for specific drugs 
and situations (e.g. the AED models used here). Whereas the former may 
be simply validated by comparison of predictions for hypothetical scenarios 
with industry standards such as NONMEM© [36], validation of the latter 
may require external datasets, or clinical trials in which such applications 
are used to predict concentrations or optimal dosing in clinically relevant 
scenarios. At the moment, no clear guidelines exist for such validations, 
leading to a case-by-case evaluation of these applications and unnecessary 
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uncertainties for companies or institutes developing these tools. 
Standardisation of validation efforts may create a more secure environment 
for these applications to thrive in. 

In summary, some important recommendations arise from our 
investigation. First, that the use of wide blood sampling intervals for TDM 
has limited impact on the characterisation of individual pharmacokinetic 
parameters. Second, AED target exposure levels are unlikely to be attained 
without the use of dosing algorithms and individualised dosing 
recommendations. Third, available pharmacokinetic models have 
limitations which highlight the need for standardisation and validation 
procedures. Simplified models can lead to under- or over-appreciation of 
variability and thereby imprecise dosing. On the other hand, models that 
are too complex may lead to identifiability issues. In essence, a balance 
needs to be struck between complexity and usability. The work presented 
here adds to the increasing evidence that individualised therapy provides 
an opportunity to prevent failure of treatment with first line and alternative 
first-line AEDs, disentangling truly drug resistant patients from those who 
are labelled as non-responders, i.e., whose phenotype is a consequence of 
sub-optimal exposure. 
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