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CHAPTER 4 

PHARMACOKINETIC INTERACTIONS AND 
DOSING RATIONALE FOR ANTIEPILEPTIC 

DRUGS IN ADULTS AND CHILDREN 
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Pharmacokinetic interactions and dosing 
rationale for antiepileptic drugs  

in adults and children 

Sven C. van Dijkman, Willem M. Rauwé, Meindert Danhof, 
Oscar Della Pasqua 

British Journal of Clinical Pharmacology, 2017 

SUMMARY 

Aim: Population pharmacokinetic modelling has been widely used across many 
therapeutic areas to identify sources of variability, which are incorporated into 
models as covariate factors. Despite numerous publications on pharmacokinetic 
(PK) drug-drug interactions (DDIs) between antiepileptic drugs (AEDs), such data 
are not used to support the dose rationale for polytherapy in the treatment of 
epileptic seizures. Here we assess the impact of DDIs on plasma concentrations and 
evaluate the need for AED dose adjustment. 
Methods: Models describing the pharmacokinetics of carbamazepine, clobazam, 
clonazepam, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, 
topiramate, valproic acid, and zonisamide in adult and paediatric patients were 
collected from the published literature and implemented in NONMEM v7.2. Taking 
current clinical practice into account, we explore simulation scenarios to 
characterise AED exposure in virtual patients receiving mono-, and polytherapy. 
Css, Cmax and Cmin were selected as parameters of interest for the purpose of this 
analysis. 
Results: Our simulations show that DDIs can cause major changes in AED 
concentrations both in adults and children. When more than one AED is used, even 
larger changes are observed in the concentrations of the primary drug, leading to 
significant differences in Css between mono- and polytherapy for most AEDs. These 
results suggest that currently recommended dosing algorithms and titration 
procedures do not ensure attainment of appropriate therapeutic concentrations. 
Conclusions: The effect of DDIs on AED exposure cannot be overlooked. Clinical 
guidelines must take into account such covariate effects and ensure appropriate 
dosing recommendations for adult and paediatric patients who require 
combination therapy.  

129



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 130PDF page: 130PDF page: 130PDF page: 130

WHAT IS KNOWN ABOUT THIS SUBJECT 
• First-line and alternative first line anti-epileptic drugs (AEDs) are

often used in combination with second-line line drugs (i.e., add-on).
• Many AED combinations lead to pharmacokinetic (PK) drug-drug

interactions (DDIs), which may result in large changes in drug
exposure.

• The implications of such DDIs have not been characterised in
existing clinical guidelines.

WHAT THIS STUDY ADDS 
• We evaluate how demographic and clinical factors, including co-

medications (polytherapy), affect systemic exposure to AEDs in the
target patient population. In addition, we demonstrate that AED
dosing regimens can be optimised to ensure drug concentrations
are maintained within a reference therapeutic range.

• DDIs can lead to significant changes in AED exposure and
potentially alter the efficacy and safety profile of AEDs in adult and
paediatric patients.

• These results form the basis for a comprehensive review of clinical
guidelines for the use of first and second line AEDs, including novel
algorithms for dose adjustment.
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1. INTRODUCTION

Epilepsy is a collection of syndromes characterised by the occurrence of 
paroxysmal seizures. Many patients require prolonged and often life-long 
treatment with anti-epileptic drugs (AEDs), which are developed and 
approved based primarily on the evidence of efficacy in specific seizure 
types. From a clinical perspective, this has led to treatment choices based 
on a classification system that discriminates AEDs into first and second-line 
treatment. A first-line treatment is tried first and usually used on its own. If 
first-line treatment does not work, then another drug (i.e., an alternative 
first-line treatment) may be tried on its own. First-line treatment drugs may 
also be used as combinations (i.e., add-on treatment) if seizure control is 
not achieved or a given regimen is not tolerated [1]. 

At the moment approximately 20 AEDs are available including first and 
second line treatment options. Different guidelines have been proposed to 
guide health care professionals and prescribing physicians on the use of 
AEDs, with special focus on the criteria for selection of newer drugs. In 
addition to providing recommendations for the treatment of specific 
populations such as women and HIV patients, attention is also given to the 
importance of dose titration and tapering procedures. Nevertheless, it has 
been shown that 10-20% of the patients whose target dose has been 
achieved, still show unresolved seizures and can benefit from dose-
adjustments [2,3]. Despite evidence on the role of pharmacoresistance and 
progression of the underlying pathological processes, the lack of response 
can be partly explained by inter-individual variability in the 
pharmacokinetics (PK) [4]. The impact of such variability is particularly 
important in the paediatric population, where maturation processes and 
developmental growth are known to affect drug disposition [5–7]. In 
addition, children who do not adequately respond to first-line treatment 
are given multiple AEDs in combination, which can incur PK (and 
pharmacodynamic (PD)) drug-drug interactions (DDIs).  

Population PK modelling has been widely used across many therapeutic 
areas to describe drug exposure and identify sources of variability, which 
are then incorporated into models as covariate factors [8,9]. Consequently, 
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differences in drug exposure due to explanatory factors such as DDIs or 
demographic and clinical parameters can be predicted before treatment is 
initiated. The availability of such models also allows us to perform clinical 
trial simulations (CTS) and not-in-trial simulations (NITS) and explore the 
potential implication of covariate effects on individual patients or 
subgroups of the target patient population [3,10]. When performed in a 
systematic manner, the use of simulation scenarios becomes a powerful 
tool for the evaluation of the impact of multiple, concurrent factors on drug 
exposure, providing the rationale for dose adjustment purposes [11,12]. 
Here, we show how clinical trial simulations can be used to characterise 
pharmacokinetic DDIs for the most widely used AEDs at clinically relevant 
doses and regimens. Scenarios are evaluated which reflect the impact of 
titration steps, different maintenance doses and add-on treatments. 
Bearing in mind current clinical practice, we aim to assess the impact of 
DDIs on the exposure to AEDs and establish the need for further dose 
adjustment. We anticipate that our analysis will assist the review of clinical 
guidelines, taking into account the role of covariate factors in future dosing 
recommendations. Most importantly, it will provide clinicians further 
insight into the role of PK variability in the overall efficacy and safety profile 
of AEDs. 
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2. METHODS

Pharmacokinetic models and virtual patient demographics 
Models describing the PK of carbamazepine (CBZ) [13], clobazam (CLBZ)
[14], clonazepam (CLNZ) [15], lamotrigine (LMT) [16,17], levetiracetam 
(LVT) [18], oxcarbazepine (OXC) [19], phenobarbital (PHB) [20], phenytoin 
(PHT) [21], topiramate (TPM) [22], valproic acid (VPA) [23,24], and 
zonisamide (ZNS) [25] were collected from the published literature. Given 
the primary objective of our analysis, models were selected if covariate 
effects were identified for one or more AEDs and study population included 
> 50 patients. In addition, whenever possible, preference was given to 
models based on PK data from both adult and paediatric patients. 
Furthermore, parameterisation of the covariate effect (i.e., DDI) should be 
based on changes in clearance to allow easier differentiation between 
treatment conditions, i.e., the presence of the co-medication. An overview 
of the model structure, including details on the parameterisation of the 
covariate effects for each AED is presented in tables 1A and 1B. 

Further information on the clinical protocols used to develop the 
pharmacokinetic models and identify the covariate effects is provided in the 
supplemental material (downloadable from the online version of this 
article). As modelling codes were not available in the original publications, 
models were transcribed manually into standard control-stream file format 
in NONMEM v7.2 [26]. For the sake of accuracy and quality, model 
transcription was assessed one by one before the implementation of the 
simulation scenarios by comparing model-predicted concentrations for the 
original patient population to the reported results in the corresponding 
publications (see supplemental material). If no deviations were observed 
during this initial quality check, the PK model code was subsequently 
transcribed into the appropriate format for simulation purposes in R v3.1.1 
[27]. Simulation scenarios, comprising treatment conditions at different 
dose levels and DDIs were selected for both adult and paediatric patients. 
For each scenario, a population of 1000 virtual patients was simulated using 
the demographic baseline characteristics listed in table 2. It was anticipated 
that spurious correlations between covariates would be negligible using 
random sampling for such a large number of patients. One exception was 
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the correlation (colinearity) between weight and age in children, which is 
highly relevant for the characterisation of pharmacokinetics in this 
population. This was particularly important for TPM, which had both weight 
and age as covariate factors in the model. In addition to demographic 
factors, other influential covariate factors such as genetic polymorphisms 
were also simulated if included in the original publication. To ensure 
accurate characterization of the covariate effects, demographic and other 
relevant clinical variables were sampled according to a uniform distribution. 
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Table 1A O
verview

 of the population pharm
acokinetic m

odels used for the evaluation of drug-drug interactions for carbam
azepine, 

clobazam
, clonazepam

, lam
otrigine, levetiracetam

, and oxcarbazepine 
M

odel 
Carbam

azepine 
Clobazam

Clonazepam
Lam

otrigine
Adults 

Lam
otrigine 

Children 
Levetiracetam

O
xcarbazepine

First author 
Jiao

13 
Saruw

atari 14
Yukaw

a
15

Rivas 16
He

17
Toublanc

18
Park

19

Population 
Chinese 

Japanese
Japanese

G
erm

an/
Spanish 

Chinese
Japanese (m

odel 
building), U

S (validation) 
Korean

Sam
ple size  

(N
o.of patients) 

585 
85 

137
284

600
259 

199

Sam
ple size  

(N
o.of patients) 

687 
128 

259
404

1699
1833 

254

Age (years) 
1.2-85.1 

1-52 
0.3-32.6

26.8-51.3
0.5-17

4-55 
3-80

W
eight (kg) 

5-115 
8-102

5-90
61.8-85

6-98
14-107

10-95
Sam

ples at 
Trough 

0-10h
post-

dose 
2-6h post-
dose 

TDM
TDM

Random
TDM

G
raphical representation 

 
 

 
 

 
 

 
 

 
 

 
 

Param
eters 

K
a , V

c  ,CL 
K

a , V
c ,CL

K
a , V

c ,CL
K

a , V
c ,CL

K
a , V

c ,CL 
K

a , V
c  ,CL

K
a , V

c ,CL

Betw
een-subject variability 

V
c , CL 

K
a , V

c ,CL
V

c , CL
CL

CL
K

a , V
c  ,CL

CL

Covariates CL 
W

T, Dose, PH
B, 

PHT, VPA, Elderly 
(>65) 

W
T, PHB, 

PHT, ZN
S, 

CYP2C19 &
 

PO
R*28 

genotypes 

W
T, CBZ, VPA

W
T, CBZ, PH

B, 
VPA 

W
T, CBZ, PH

B, 
VPA 

W
T, Clearance 

Com
edication (CBZ, PHB, 

PHT, VPA) 

W
T, EIAED 

(com
edication 

CBZ/PHB/PHT) 

Covariates V 
W

T 
W

T 
W

T
W

T
W

T
W

T 
W

T

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L
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Table 1B O
verview

 of the population pharm
acokinetic m

odels used for the evaluation of drug-drug interactions for phenobarbital, 
phenytoin, topiram

ate, valproic acid, and zonisam
ide 

M
odel

Phenobarbital 
Phenytoin 

Topiram
ate

Valproate
Adults 

Valproate 
Children 

Zonisam
ide 

First author 
G

oto
20

O
dani 21

G
irgis 22

Blanco-Serrano
23 

Blanco-Serrano
24 

O
kada

25 

Population
Japanese

Japanese
N

A (Caucasian presum
ably) 

Spanish 
Spanish 

Japanese 

Sam
ple size  

(N
o.of patients) 

79
116

1217
255

208
99

Sam
ple size  

(N
o.of patients) 

260
531

4640
770

534
282

Age
0.8-44

1-37
2-85

14-95
0.1-14

1.36-39.24

W
eight

8-80
42.4±16.5

N
A

4-74
27-100

10-117

Sam
ples at 

TDM
 

Peak/Trough 
N

A 
TDM

 
TDM

 
4.3±2.8h post-dose 

G
raphical 

representation 

Param
eters

K
a , V

c  ,CL 
V

c  ,CL (V
m

ax , K
m ) 

K
a , V

ss  (V
1  +V

2 ), K
12 , K

21 , CL 
K

a , V
c  ,CL 

K
a , V

c  ,CL 
K

a , V
c  ,CL 

Betw
een-subject 

variability 
V

c , CL 
V

c , V
m

ax , K
m

K
a , V

c  ,CL 
CL 

CL 
CL 

Covariates CL 
W

T, PHT, VPA 
W

T, Daily PHT 
Dose, ZN

S 
Age, W

T, Inducers (CBZ/PHB/PHT), 
VPA, N

EM
D (ZN

S) 
W

T, Dose, CBZ, PH
T, 

PHB 
W

T, Dose, CBZ 
W

T, Dose, CYP2C19 
genotype, CBZ, PH

B, PHT 

Covariates V 
- 

W
T 

W
T 

W
T 

W
T 

W
T 

V
c 

K
a 

C
L

V
c 

C
L

V
1 

K
a 

C
L

V
2

K
12

K
21

V
c 

K
a 

C
L

V
c 

K
a 

C
L

V
c 

K
a 

C
L
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Table 2 Patient baseline demographic characteristics used for the simulation 
scenarios, in which a virtual cohort of patients was treated with one or more AEDs. 
 

Population adults children 
Age (years) 18-65, uniformly 

distributed 
4-14, uniformly 
distributed 

Mean weight (kg) 75 (male) 
65 (female) 
 

(Age 3)+7† 

Coefficient of variance on 
weight 

16 % 10 % 

Dose interval (hr) 12 12 
Dose mg/day mg/kg/day 

 
†Based on the weight-by-age formula proposed by Luscombe & Owens[28] 

 
 
Table 3 Simulated doses, co-medications, and corresponding reference therapeutic 
range for each AED Reference AED concentration ranges were taken from Patsalos 
et al 2008 [31]. See main text for further details on the abbreviations and 
supporting references. 

Drug Doses adults 
(mg/day, * 
μg/day) 

Doses children 
(mg/kg/day, * 
μg/kg/day) 

Add-on medication simulated Therapeutic 
window 31 

(mg/L, * μg/L) 
CBZ 400, 800, 1200  10, 15, 20  PHB  PHT  VPA 4-12  
CLBZ 10, 20, 30 * 0.2, 0.3, 0.4 * PHB  PHT  ZNS 30-300 * 
CLNZ 2, 5, 8 * 0.05, 0.075, 0.1 * VPA 20-70 * 
LMT 200, 300, 400  4, 6, 8  ((CBZ  PHB  PHT)  INDa)  

VPA 
2.5-15 

LVT 1000, 2000, 3000 20, 30, 40  Inducersb 12-46 
OXC 600, 1200, 1800  15, 20, 25  CBZ  PHB  PHT 3-35 
PHB 60, 150, 240  2, 4, 6  PHT  VPA 10-40 
PHT 200, 300, 400  5, 7.5, 10  ZNS 10-20  
TPM 200, 300, 400  5, 7.5, 10  Inducersc  VPA 5-20 
VPA 400, 800, 1200  10, 20, 30  CBZ  PHB  PHT 50-100 
ZNS 200, 300, 400  5, 7.5, 10  CBZ  PHB  PHT 10-40 

 all combinations are possible,   only one combination is possible  

a For LMT, if more than 1 of CBZ, PHB, or PHT is added, only the effect indicated by 
IND (and/or VPA) affects LMT clearance 
 b For LVT the original paper17  mentions inducers “such as carbamazepine” 
 c For TPM, clearance is induced by adding any of the following: CBZ, PHB and PHT, 
no distinction is made between adding one or more of these 
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Simulation scenarios  
One and two compartment models were implemented in R according to 
equations 1 and 2.1-2.5, as described in the PFIM optimal design tool 
documentation [29]. The concentration versus time profiles of each AED 
were simulated at steady state for the typical adult and paediatric 
populations (table 2), following the administration of a range of clinically 
relevant doses (table 3). Given the objectives of the current investigation, 
we have decided not apply bridging and extrapolation concepts to scale 
pharmacokinetic parameters from adults to children as basis for the 
paediatric dose selection [30]. Instead, paediatric doses were scaled by 
body weight on a mg/kg basis, as typically done by prescribing physicians in 
clinical practice. Secondary PK parameters were then derived, including 
average steady-state (Css), peak (Cmax) and trough (Cmin) concentrations. 

A key premise for the evaluation of the different simulation scenarios is the 
set of assumptions used, which include the following points: 
1. Attainment and maintenance of AED exposure within a target range is
desirable for optimal treatment response, irrespective of drug use as a 
single agent (monotherapy) or as combinations. The reference target 
concentration ranges published by Patsalos et al [31] were considered as 
relevant for the adult and paediatric populations. 
2. In addition, it was assumed that interindividual variability in
pharmacodynamics, i.e., different individual sensitivity to individual drug 
effects are captured by the proposed target range, whereas resistance to 
treatment would impose exposure to higher drug concentrations, which are 
likely to be associated with poor tolerability. 
3. Model misspecification was deemed to be minimal and parameter
distributions to be precise and accurate to a sufficiently high degree to 
allow realistic simulations.  
4. Covariate effects are reasonably well captured by the models, despite the
limited number of patients included for the development of the models 
(table 1A/B).  
5. Bias in the estimates of the covariate effects is minimal even if DDIs are
treated as discrete covariates in the model.  It is acknowledged, however, 
that discrete covariate effects may impair one’s ability to adjust the dose, 
as variability in exposure or the use of different dose levels of the add-on 
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drug may alter the magnitude of the interaction. This is particularly 
important in the case of multiple DDIs.  
6. Whereas discrete parameterisation of DDIs may not fully capture the
range of conditions or variation in clinical practice, it does provide a 
stronger basis for the dose rationale, as compared to scenarios where DDIs 
are completely overlooked. 

Simulations were performed in two steps. First, we aimed to identify the 
dose or dose levels that maximised the fraction of virtual patients whose Css 
values remained within the target exposure range for each drug. 
Subsequently, the impact of DDIs on the systemic exposure of the first-line 
or alternative first-line AED was simulated (table 3).  In total 76 scenarios 
were considered, taking into account the most clinically relevant dosing 
regimens and combinations. This resulted in a total of 33 scenarios for 
monotherapy and 43 scenarios for different AED combination. As scenario 
included 1000 virtual patients, our analysis comprises a population of 76000 
patients.  

 (1) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(3) 
Equations 1-3. Ct: concentration at time t. : dosing interval. D: Dose of dose 
interval . DD: Daily dose. V or V1: central volume of distribution. ka: absorption rate 
constant. CL: clearance. t: time. tD: time of dose. Q: inter-compartmental clearance. 
V2: peripheral volume of distribution. As none of the models included intravenous 
data, bioavailability estimates were not available; clearance and volume values 
used in the analysis were therefore based on apparent estimates. 
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Assessment of the impact of covariate effects on drug exposure 
The target Css value used for optimisation purposes was set to the drug 
concentration half-way between the minimum and maximum values of the 
therapeutic window for each AED (table 3). Details of the rationale for this 
approach are described in a previous publication by our group, where 
different dosing algorithms have been assessed for personalisation of AED 
therapy [3]. In brief, the ratio between predicted Css and target Css was 
calculated (ratio=predicted/target) and results were subsequently 
summarised in tabular and graphical format. Whisker-box plots were 
generated separately for adults and children to describe the dispersion in 
drug exposure across the population, including the median and 95% 
prediction interval for each dose and DDI scenario. To facilitate the 
interpretation of the findings and visualise the impact of dosing titration 
and/or optimisation procedures, the percentage of the population with 
concentrations outside the therapeutic range was also summarised 
numerically along with the whisker-box plots. In addition, the percentage 
adjustment needed to bring the median Css values back to the target 
concentration was calculated and provided for each AED.  

3. RESULTS

A preliminary analysis of the pharmacokinetic models showed acceptable 
performance for the purposes of our investigation. Different dose and 
dosing regimens were simulated for each AED according to the scenarios 
shown in table 3. For the sake completeness, an overview of the 
concentration vs. time profiles for each AED in adult and paediatric patients 
is presented in the supplemental material (see online version of this 
article). These results are complemented by a summary of the procedures 
used for evaluation of model performance, including the results relative to 
the secondary PK parameters (Cmax, Cmin). 
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Monotherapy: impact of standard dose regimens on systemic drug 
exposure 
For most drugs the simulated average steady-state concentrations (Css) fall 
within the reference values for a large fraction of the adult and paediatric 
populations. Notable exceptions were PHT and VPA, where significant 
proportion of patients is at risk of achieving sub- or supra-therapeutic drug 
concentrations (figures 1 and 2). In fact, the deviations from the reference 
range are evident when considering the median estimates. Likewise, 
despite the use of dosing regimens in mg/kg, PHT concentrations in children 
fall outside the therapeutic window in at least 50% of the patients. For VPA 
the situation is somewhat more favourable, with roughly 20% of the 
simulated population falling outside the reference therapeutic range. In the 
case of PHT, the deviation in exposure is compounded by the known 
nonlinearity and large inter-individual variability in pharmacokinetics. There 
are important clinical implications for patients on PHT when plasma 
concentrations are > 20 mg/L. In reality, the evidence that a significant 
proportion of the population is exposed to drug concentrations above the 
therapeutic range may explain the incidence of adverse events. 

Polytherapy: impact of DDIs on systemic drug exposure 
The use of simulations reveals that DDIs can cause major changes to AED 
concentrations both in adults and children (figures 3 and 4). When more 
than one AED is added to the combination therapy, changes in the 
concentrations of the primary drug may be even larger. This contrasts with 
the results observed for monotherapy, where drug concentrations for the 
majority of the AEDs remained within the reference therapeutic range. In 
many cases, AED interaction results in median Css values which lie outside 
the reference therapeutic window. On the other hand, in certain cases the 
interaction of multiple co-medications may partially or completely 
counteract each other, resulting in a 0% net change in the exposure to the 
first line drug. An example of the latter is the interaction of LMT with 
combination therapy including PHT and VPA. A preliminary evaluation of 
the effect of DDIs suggests that the doses of the first line and possibly 
second line drugs used as add-on treatment need to be adjusted, 
sometimes by even more than 200% (table 4). 
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Figure 1 M
edian (circles) and 95%

 prediction interval (bars) for the steady-state concentrations (C
ss ) achieved in 

adults for different AEDs and dosing scenarios. Shaded area represents the reference therapeutic range; num
bers 

show
n below

 each bar are percentages of the population w
ith C

ss  values outside the reference therapeutic range. 
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Figure 2 M
edian (circles) and 95%

 prediction interval (bars) for the steady-state concentrations (C
ss ) achieved in 

children for different AEDs and dosing scenarios. Shaded area represents the reference therapeutic range; num
bers 

show
n below

 the bars are percentages of the population w
ith C

ss  values outside the reference therapeutic range. 
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Figure 3 M
edian (circles) and 95%

 prediction interval (bars) for the steady-state concentrations (C
ss ) achieved 

in adults for different AEDs and DDI scenarios. Shaded area represents the reference therapeutic range; 
num

bers show
n below

 the bars are percentages of the population w
ith C

ss  values outside the reference 
therapeutic range. 
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Figure 4 M
edian (circles) and 95%

 prediction interval (bars) for the steady-state concentrations (C
ss ) achieved in 

children for different AEDs and DDI scenarios. Shaded area represents the reference therapeutic range; num
bers 

show
n below

 the bars are percentages of the population w
ith C

ss  values outside the reference therapeutic range. 
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4. DISCUSSION 

Given the incidence of epileptic seizures across a wide age range in the 
patient population, rational prescribing of AEDs requires not only an 
understanding of the drugs' pharmacodynamic properties, but also careful 
consideration of the factors known to affect drug disposition [6]. Despite 
numerous publications in which demographic, clinical and genetic covariate 
factors have been identified, limited attention has been given to the 
magnitude and variability of such effects and their clinical implication. In 
most cases, covariate effects are assessed as part of a population PK 
analysis, where the main objective is the characterization of overall drug 
disposition properties, rather than the optimisation of therapeutic 
interventions in a wider patient population [32,33]. 

In a recent publication we have shown how model-based approaches can 
be used in conjunction with therapeutic drug monitoring to personalise AED 
therapy [3]. The current investigation was aimed at exploring the 
implications of covariate effects on systemic exposure, with special focus on 
drug-drug interactions (DDIs), i.e., when patients transition from 
monotherapy to combination treatment with alternative first line or second 
line therapy (polytherapy). We found that covariate effects on the 
disposition of levetiracetam, phenytoin, and valproic acid leads to 
considerable variation in drug exposure and consequently to a large 
proportion of patients reaching average steady-state concentrations 
outside the therapeutic window (15%, 54%, and 21% respectively). The 
impact of covariate effects on the disposition of the other 8 drugs included 
in the analysis appears to be less strong, resulting in a smaller proportion of 
patients outside the therapeutic window. By contrast, when DDIs come into 
play, exposure to most AEDs deviates from the reference therapeutic 
window (up to 98% for valproic acid), most notably when more than one 
co-medication was added. Moreover, there was no clear correlation 
between the mechanism of interactions and their  effect size [34]. 

Whilst the analysis and interpretation of the simulation results rely on a set 
of important assumptions regarding covariate effects, it is clear that the 
relevance of DDIs should not be overlooked in clinical practice, as first-line 
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treatments are often accompanied by second-line drugs, which are 
combined as add-on therapy in patients who fail to show acceptable clinical 
response on monotherapy. We have assumed that the models described 
the DDIs to a sufficiently accurate degree to learn about their impact on 
exposure in the population. However, it should be highlighted that DDIs 
have been implemented as discrete covariates on clearance, i.e., clearance 
estimates change depending on whether a co-medication was given or not. 
We cannot exclude the possibility that despite steady-state concentrations  
the magnitude of such interactions may be dose-dependent [35]. To take 
into account the multiple inter-dependencies in the case of AED poly-
therapy, the application of more physiology-based pharmacokinetic (PBPK) 
models may more accurately predict complex DDIs. On the other hand, if 
metabolic interactions (e.g., CYP enzymes) reflect high or maximum 
induction or inhibition when the co-medication exposure is at 
therapeutically relevant concentrations, further variation in dose or 
concentration may not affect the magnitude of the interaction any more. In 
this light, the predicted dose changes of first line drugs in table 4 should be 
seen as typical values, based on commonly used dose levels of first-line and 
co-medication AEDs. These results do not exclude the fact that there may 
be additional variability, which is unaccounted for, depending on the dose 
of the co-medication(s). 

Currently, clinical guidelines do not consider the need to assess in a 
quantitative manner the contribution of covariate factors on drug exposure 
and consequently on the rationale for dose selection or titration algorithms 
[3]. Whereas some product labels provide dosing recommendations for 
individuals with renal and hepatic impairment, no specific dose adjustment 
is proposed to account for other relevant factors. Often DDIs are mentioned 
but no formal dosing recommendation is provided, taking into account AED 
disposition and other relevant patient characteristics. This is particularly 
important in infants older than 2-3 months and children, in whom systemic 
clearance is higher than adults after normalization for differences in body 
weight. This general pattern has been shown for various AEDs [36,37]. At 
the other extreme of age, in the elderly, systemic clearance is generally 
reduced compared with younger adults because of less efficient 
metabolism, reduced renal function, or both [36]. Likewise, patient 
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demographic characteristics, such as obesity, also lead differences in drug 
disposition, with significant changes in hepatic blood flow and/or metabolic 
activity (e.g. increased CYP enzyme expression), which have not been taken 
into account in our analysis, as weight range simulated did not include 
obese patients [38].  It should also be noted that despite known 
polymorphism in drug metabolism, there may be an interaction between 
genotype and degree of DDI that was not captured in the models that 
included CYP genotypes (table 4). We have assumed that such a CYP 
genotype – DDI interaction may have a limited role in the overall shift from 
the target exposure when compared to the degree of DDI itself. Additional 
data from in silico systems, such as SIMCYPTM would be required to explore 
phenotypical and genotypical differences in a systematic manner [39]. 
Another potential factor leading to variability in systemic exposure, which 
has not been included in the current analysis, is plasma protein binding. In 
the presence of competing moieties, changes in unbound fraction may 
affect drug disposition and eventually treatment response, as has been 
described for VPA and PHT. 

It should be highlighted that the lack of guidance regarding DDIs may be 
partly explained by the lack of consensus on the benefit of therapeutic drug 
monitoring, especially when performed in an empirical manner [7,40–42]. 
Another point to consider is that clinicians tend to focus on age as the 
explanatory factor influencing the PK profile of AEDs. However, systemic 
exposure at any age may depend on different covariate factors, such as 
body weight, genetics, co-morbidities, organ function and metabolic 
capacity. Clearly, in the presence of these multiple interacting factors, it 
may not be possible to disentangle the contribution of each one 
independently. Often unless quantitative clinical pharmacology methods 
are implemented, such a situation prevents us from proposing dosing 
adjustment algorithms that correctly account for the effect of DDIs. This 
concept has been illustrated by the integration of therapeutic drug 
monitoring with Bayesian algorithms to support dose adjustment for 
carbamazepine (CBZ) and/or valproate (VPA) [42], resulting in with 
increased seizure control, better safety profile and reduced treatment 
costs. 
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Our investigation does not focus on the advantages of any specific 
approach. Rather, it draws attention to the fact that the characterisation of 
covariate effects and  variability in drug exposure is essential for dose 
optimisation [43–45]. However, we acknowledge that not all clinically 
relevant DDIs have been evaluated or parameterised (e.g. the effect of VPA 
co-administration on PHT pharmacokinetics ) [46,47]. We also recognise 
that even though many of the published models have been derived from 
limited clinical data and often lack a rigorous validation procedure in terms 
of parameter precision and predictive performance, some interesting 
lessons can be learnt from the simulation scenarios presented here. First, 
thanks to the identification of interindividual parameter variability, it is 
possible to select target (monotherapy) doses for most AEDs, which yield 
plasma concentrations that are within a reference therapeutic range, which 
is applicable to the majority of the population. This does not exclude the 
possibility that each patient may have an optimal target concentration and 
benefit from dose individualisation [3].  Second, DDIs can cause significant 
changes in the systemic exposure to first line drugs, and this also applies for 
many add-on drugs in a combination [48,49]. In theory, this implies that the 
observed treatment response, or lack thereof, when adding one or more 
drugs to the backbone first line AED cannot be directly attributed to the 
add-on drug. Instead, it may simply be the result of changes in exposure to 
the first drug in the combination. From a therapeutic perspective, one 
should envisage a scenario in which systemic concentrations of the primary 
drug are comparable when patients are switched from monotherapy to 
combinations. Such a scenario provides the appropriate basis for titration of 
the add-on drug. 

In conclusion, we have explored the effects of DDIs on the systemic 
exposure to AEDs when used in combination therapy. Whereas numerous 
factors may contribute to lack of efficacy and poor tolerability, the effect of 
interindividual pharmacokinetic variability and covariate factors on drug 
disposition cannot be ignored in clinical practice. Our analysis offers a 
strong basis for the review of clinical guidelines for the treatment of 
epileptic seizures with AEDs, taking into account the impact of DDIs on the 
dose rationale.  
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CHAPTER 5 

INDIVIDUALISED DOSING ALGORITHMS 
AND THERAPEUTIC DRUG MONITORING 

FOR ANTIEPILEPTIC DRUGS 
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