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CHAPTER 1 

PHARMACOTHERAPY IN  
PEDIATRIC EPILEPSY:

FROM TRIAL AND ERROR TO RATIONAL 
DRUG AND DOSE SELECTION –  

A LONG WAY TO GO 
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Pharmacotherapy in pediatric epilepsy: from 
trial and error to rational drug and dose 

selection – a long way to go 
 

Sven C. van Dijkman, Ricardo Alvarez-Jimenez, Meindert Danhof, 
Oscar Della Pasqua 

 

Expert Opinion on Drug Metabolism & Toxicology, 2016 

 

SUMMARY 

Introduction: Whereas ongoing efforts in epilepsy research focus on the underlying 
disease processes, the lack of a physiologically-based rationale for drug and dose 
selection contributes to inadequate treatment response in children. In fact, limited 
information on the interindividual variation in pharmacokinetics and 
pharmacodynamics of anti-epileptic drugs (AEDs) in children drive prescription 
practice, which relies primarily on dose regimens according to a mg/kg basis. Such 
practice has evolved despite advancements in paediatric pharmacology showing 
that growth and maturation processes do not correlate linearly with changes in 
body size. Areas covered: In this review we aim to provide 1) a comprehensive 
overview of the sources of variability in the response to AEDs, 2) insight into novel 
methodologies to characterise such variation and 3) recommendations for 
treatment personalisation. Expert Opinion: The use of pharmacokinetic-
pharmacodynamic principles in clinical practice is hindered by the lack of 
biomarkers and by practical constraints in the evaluation of polytherapy. The 
identification of biomarkers and their validation as tools for drug development and 
therapeutics will require some time. Meanwhile, one should not miss the 
opportunity to integrate the available pharmacokinetic data with modelling and 
simulation concepts to prevent further delays in the development of personalised 
treatments for paediatric patients. 
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Article highlights 

• Despite the development of therapeutic guidelines for the
treatment of epileptic seizures, AED selection and dose rationale
for children remains empirical.

• The use of dosing regimens in mg/kg does not correct for age-
related changes in pharmacokinetics and pharmacodynamics in
children, especially if one considers the use of polytherapy with two
or more AEDs.

• Inter- and intra-individual differences in pharmacokinetics and
pharmacodynamics of AEDs need to be taken into account for the
personalisation of treatment in paediatric epilepsy.

• Whilst the identification of predictive biomarkers remains a
challenging endeavour, quantitative clinical pharmacology methods
can provide guidance for both anti-epileptic drug and dose
selection. These methods allow for evidence synthesis, integration,
and extrapolation of findings across different age groups, enabling
better clinical decision-making and improved therapeutic response
in children.

1. Introduction

Epilepsy is a debilitating syndrome with an estimated 68 million people 
worldwide affected by it, which places the disease in the 7th position in 
terms of impact on disability and premature mortality among mental 
health, neurological, and substance-use disorders[1,2]. In addition, it takes 
the 19th rank out of 53 items accounting for the total costs for medical care 
generated in the area of neurology [3]. Whereas global figures may differ, 
recent prevalence data in the USA show that nearly 25% were children aged 
below 15 years of age [4]. 

Effective treatment and management of epileptic seizures has an important 
and direct impact on the quality of life of patients, especially those in the 
paediatric group. Despite the implementation and advancement of 
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therapeutic guidelines, achieving such results remains a challenging 
objective. This situation prevails in the face of increasing understanding of 
the progression of the disease after onset in different age groups and 
introduction of regulatory requirements for the evaluation of efficacy and 
safety of AEDs in children [5,6]. 

1.1 Current drug and dose selection rationale in paediatric epilepsy 

Various guidelines exist on the diagnostic, management and treatment of 
epilepsies. However, only a few of them have focused on the use of 
antiepileptic drugs (AEDs) in children [7-9]. In fact, the British National 
Institute for Health and Care Excellence (NICE) guideline on epilepsy in 
children is the only document based on extensive review of the evidence 
for differences in efficacy and safety of each AED between types of epilepsy 
[9]. Even though recommendations are supported by evidence arising from 
randomised controlled trials, shortcomings are still evident. Many studies 
have been performed to show differences in efficacy and safety between 
seizure types, but no effective predictors have yet been found for 
differences in efficacy and safety within the same seizure type. This is likely 
the consequence of symptom-based criteria, which remain the foundation 
for diagnosis and AED treatment selection. In addition, most paediatric 
trials rely on an “add-on approach”, with patients who may have more 
severe or refractory forms of epilepsy, which leads to inadequate evidence 
regarding the efficacy of monotherapy in treatment naive patients. This 
shortcoming is often compounded by the definition of response (clinical 
endpoint) in most clinical trials, which is based on a binary measure: 
responder (i.e., patients who show at least 50% of reduction in seizures 
compared to baseline) vs. non-responder. Dichotomisation of the response 
into two categories can be detrimental for the characterisation of dose-
exposure-response relationships, especially if one considers that 
pharmacokinetic data are not collected systematically in efficacy trials. 

Whereas limited understanding of the exposure-response relationships 
might be mitigated by the clinical requirement for up and down-titration or 
tapering of the dose. In addition to reducing side effects and withdrawal 
symptoms, tapering procedures offer an opportunity to factor in the effect 
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of interindividual pharmacokinetic and pharmacodynamic variability. Yet, 
this information is not fully integrated to support treatment 
personalisation. Currently, most formularies still rely on anecdotal 
(empirical) evidence of efficacy and safety in children. Dose 
recommendations in formularies, such as the Netherlands 
Kinderformularium or the British National Formulary for Children overlook 
the role of covariate factors and other sources of variability in 
pharmacokinetics and pharmacodynamics [10,11]. Clearly, there is a 
substantial amount of pharmacokinetic data regarding the use of AED in 
children, but even when taking into account correlations with weight and 
age, unexplained variability appears to remain high [12-14]. Similar 
challenges are faced when considering the adjustment of maintenance 
doses of AEDs. In spite of the use of therapeutic drug monitoring (TDM), 
which is widely accepted in paediatric epilepsy compared to adults, AED 
levels are checked against a therapeutic window, which was originally 
determined in adults. Moreover, these therapeutic ranges ignore known to 
covariate effects, which may cause variability in exposure and potentially in 
the exposure-response relationship. 

One should also note the impact of variability in the status of the disease at 
the time of diagnosis and its progression, which are a hurdle for improved 
therapeutics and may possibly be associated with the  unnecessary 
exposure of paediatric patients to AEDs for years after the seizures have 
remitted [15]. Thus, the combination of unexplained variability in 
pharmacokinetics, pharmacodynamic and disease leaves clinicians without 
a clear dosing algorithm, other than the option to taper and adjust doses 
based on the clinical symptoms. 
The challenges a clinician faces to select the drug and dose regimen are 
illustrated in numerous publications on the efficacy and safety of AEDs in 
children [16-18]. In the next paragraphs we will highlight how dosing 
algorithms can be used as a valuable therapeutic tool before switching 
treatment or progressing to polytherapy. 
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1.2 Personalised treatment of epileptic seizures: advancing clinical 
practice 

The ultimate goal of a (personalised) therapeutic intervention is to ensure a 
positive, if not optimal, balance between the expected benefits and risks of 
the treatment , taking into account the costs and the inherent uncertainties 
about favourable and unfavourable effects [19, 20]. This concept is 
particularly relevant when dealing with chronic diseases such as epilepsy, 
but little effort has been made to evaluate the impact of a one-size fits all 
approach on the overall effectiveness of antiepileptic drugs. In fact, one 
needs to recognise that heterogeneity in the disease makes it a case for 
exploring treatment options beyond current guidelines. For instance, some 
patients may achieve complete seizure remission with higher doses before 
adding on a second drug, but evaluation of higher doses requires more than 
empirical titration. It should be guided by dosing algorithms, which take 
into account the role covariate factors associated with inter- and intra-
individual variability in pharmacokinetics and pharmacodynamics. 

Unfortunately, formal assessment of the advantages of dosing algorithms 
for personalised treatment with AEDs is fraught with difficulties as it 
imposes the evaluation of changes in the benefit-risk balance (BRB). The 
determination of the BRB of a treatment requires precise, detailed 
information on the relationships between the dose, exposure and its 
favourable and unfavourable effects on the symptoms and signs of the 
disease. Given that the BRB of AEDs is not characterised in a quantitative 
manner during drug development, evidence arising from clinical practice 
may be too limited to allow accurate decision-making. Consequently, 
establishing criteria for the choice of the drug and the dose for the 
treatment of epileptic seizures in children cannot be performed adequately 
without quantifying the contribution of different sources of variability to 
heterogeneity in PK, PD, and disease, as discussed in previous paragraphs. 
Opportunities exist however to explore each of these factors (one by one 
and in combination) and subsequently evaluate the implications of different 
treatment options on the overall BRB. This can be achieved by means of 
model-based meta-analytical approaches including extrapolation and 
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simulation scenarios in which patient characteristics, drug properties and 
disease features are integrated [19,21,22].   

The aims of this review are therefore to 1) discuss the impact of known 
sources of variability in PK, PD, and disease and 2) explore how quantitative 
clinical pharmacology concepts can be used to support the development of 
dosing algorithms to ensure that treatment choice and dosing rationale for 
paediatric patients are as effective as possible. We show that some 
improvement may be achieved in spite of the limitations of  current 
diagnosis criteria, lack of biomarkers and poor understanding of the 
mechanisms of action of AEDs. To this end, a structured literature search 
was performed in conjunction with supporting material from clinical 
guidelines and regulatory documentation on the assessment of efficacy and 
safety of drugs in the paediatric population. The Pubmed search included 
MESH terms as well as individual and combined keywords. An overview of 
the initial search strategy is provided in Figure 1, where selection criteria 
are listed in a hierarchical manner to capture publications describing 
paediatric epilepsy, personalisation of treatment, pharmacokinetics, 
pharmacodynamics, pharmacogenetics, and biomarkers. Reviews as well as 
perspective papers were included in the analysis if relevant paediatric 
details were provided. When necessary, a separate search algorithm was 
used to identify publications on specific issues such as methodologies for 
data extrapolation and assessment of benefit-risk balance in children. If no 
relevant literature was retrieved, additional terms were included or 
excluded. The initial search resulted in a total of 145 articles, of which 56 
were selected after screening the abstracts for relevance. These were 
complemented by an additional 70 publications, which were obtained from 
secondary queries and interactions with experts in paediatric clinical 
pharmacology. 
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Figure 1. The diagram depicts the search strategy, including MESH terms and 
keywords used to select the publications included in this review. 

2. Intrinsic sources of variability and heterogeneity in
response to AEDs 

Numerous hurdles have contributed to the emphasis in current practice 
regarding the use of seizure reduction (i.e., clinical response) for switching 
treatment and monitoring of systemic drug levels as the basis for modifying 
or individualising the dose and dosing regimen. Sadly, the notion that 
plasma levels, even at steady state, may not reflect differences in target 
exposure or pharmacodynamics is unfamiliar to most prescribing physician. 
This limitation is also critical for the development of new AEDs, as the 
evaluation of dose-response in clinical trials relies primarily on the 
assumption of target plasma levels and a predefined therapeutic range. In 
the next sections, we will discuss the implications of variability in 
pharmacokinetics, pharmacodynamics and in relevant physiological factors 
for the personalisation of treatment. 
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2.1 Pharmacokinetics 

The pharmacokinetics of a drug is determined by up to four physiological 
processes, namely absorption, distribution, metabolism and excretion 
(ADME). Metabolism and excretion are usually summarised by systemic 
clearance (plasma volume being cleared of the drug per time unit; CL). 
Summary measures of drug disposition is often limited to the so-called 
secondary pharmacokinetics parameters such as peak concentration 
(Cmax), trough concentration (Cmin), and mean steady state (Css/Cavg) 
concentrations, as well as the area under the concentration vs. time curve 
(AUC). It is important to note that secondary parameters are derived from 
primary PK parameters. For instance, following extravascular 
administration, peak concentrations depend on absorption rate, and 
volume of distribution, whilst Css and AUC are directly related to clearance. 
From a therapeutic perspective, response to AEDs is most likely explained 
by the average exposure or trough concentrations, with acute and some 
chronic side effects primarily being determined by peak concentrations. 
Hence, variability in the processes that determine drug disposition may 
affect treatment response.  In this respect, one needs to consider that some 
of these ADME processes are incomplete or immature at birth and young 
age, especially in pre-term infants [23,24]  (Table 1). Despite the impact of 
these factors on drug exposure, in most cases they are not included into the 
dose rationale for children.  

Details on the differences in the pharmacokinetics of specific AEDs in 
children can be found elsewhere [23, 25]. In the next paragraphs we 
describe the main factors determining the differences in ADME between 
adults and children, and overall variability in the PK of AEDs. 
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Table 1. Pharmacokinetic characteristics of commonly used antiepileptic drugs 
(adapted from [24]). 
Drug Time to 

steady 
state (d) 

Half-
life 
(h) 

Tentative therapeutic 
rangea 

Major route of elimination 

(μmol/L) (μg/mL) 
Felbamate 3-5 14-22 125-250 30-60 Oxidation and renal excretion 
Gabapentin 2 5-7 70-120 12-20 Renal excretion 
Lamotrigine 3-15 8-33 10-60 2.5-15 Glucuronide conjugation 
Levetiracetam 2 7-8 35-120 8-26 Renal excretion and hydrolysis 
Oxcarbazepine 2-3 8-15 50-140b 12-35 Keto-reduction, then 

glucuronide conjugation of 
MHD 

Pregabalin 2 6-7 NE 2.8-8.2 Renal excretion 
Tiagabine 2 7-9 50-250c 20-100d Oxidation 
Topiramate 4-6 20-30 15-60 5-20 Renal excretion, oxidation 
Vigabatrin 1-2 5-8 NA NA Renal excretion 
Zonisamide 5-12 50-70 45-180 10-38 Glucuronide conjugation, 

acetytation, oxidation and renal 
excretion 

a The lower limit of the therapeutic range is of limited value, because many patients do 
well at serum concentrations below this limit. 
b Monohydroxy derivative. 
c nmol/L. 
d ng/mL. 
MHD = monohydroxy metabolite;  NA = not applicable;  NE = not established 

2.1.1 Drug distribution: differences between plasma and target site 
concentrations 

Plasma protein binding can be an important factor determining differences 
in pharmacokinetics, both with respect to drug distribution and clearance. 
In theory, only unbound drug concentrations distribute to the brain. Some 
authors have focused therefore on the free concentrations or free fraction 
of AEDs (for example carbamazepine [26], phenytoin [27], valproate [28]). 
In these publications, the free plasma concentration of the drug was found 
to better reflect the concentrations of the extracellular space and the 
brain’s interstitial fluid. However, brain distribution can be complex and 
variable depending on factors related to active transport mechanisms, 
disease-related changes in tissue permeability and other co-morbidities. For 
instance, Clinkers et al. studied the influence of epileptic seizures on the 
concentration of oxcarbazepine in the hippocampus and in plasma in a rat 
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model. [29]. Concentrations reached higher values in the interstitial space 
within the pilocarpine-induced acute seizures region and were even higher 
when oxcarbazepine was given in combination with a P-glycoprotein (Pgp) 
inhibitor. Most importantly, these differences were observed without 
significant changes in drug levels in plasma. These results illustrate the 
complex role of the functioning of the blood brain barrier (BBB) as a 
determinant of the target exposure. Indeed, up-regulation of the efflux 
transporter Pgp has been indicated as one of the possible explanations for 
the development of apparent tolerance [30]. 

Whereas active transport processes may determine tissue distribution, high 
variability in drug exposure can exist even between closely located areas in 
the brain. This was already described in 1978 in patients who had surgery 
after receiving carbamazepine in regular stable doses [31]. Rambeck et al. 
[32] analysed plasma, cerebrospinal fluid (CSF) and extracellular space (ECS) 
concentrations in to-be-excised live temporal brain tissue (in vivo with a 
microdialysis probe and ex vivo directly in the removed tissue) in patients 
refractory to treatment. As expected, brain extra-cellular concentrations 
were lower compared to plasma and CSF, which demonstrates that the 
assumption of equal concentrations in CSF and ECS in one well distributed 
homogenous compartment is unjustified [33]. A general lack of information 
regarding differences in drug distribution in children, and particularly in 
infants and toddlers, (i.e., in the developing brain), as compared to adults 
renders the interpretation of treatment failure quite challenging, as lack of 
efficacy may not be a matter of refractoriness to therapy, but rather a 
pharmacokinetic problem. 
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2.1.2 Clearance: influence of genotype, size, and maturation 

Inter-individual, and intra-individual variability in drug elimination 
processes mostly results from differences in the availability of the drug at 
the clearing organ, changes in the clearing capacity due to varying intrinsic 
clearance, and the size of the organ. 
Although it is known that organ perfusion varies with age [34], specific 
quantitative information regarding hepatic and renal changes are still 
sparse in some groups of the pediatric population. Consequently, it is 
unclear to what degree variability in organ perfusion determines the 
changes in clearance between adults and children. Similarly, very limited 
information is available regarding AED protein binding in young children 
and its implications for differences in systemic clearance between adults 
and children [35,36]. 

Intrinsic clearance can also be influenced by polymorphisms in genes coding 
for metabolising enzymes which may lead to significant differences in 
hepatic clearance of many AEDs [37], with increase or reduction in 
metabolic capacity resulting in  different phenotypes [38]. Similarly, renal 
clearance can be affected by differences in the expression level of renal 
transporters [39,40]. Whilst the impact of such genetic differences can be 
accounted for when defining the dose and dosing regimen, genotyping or 
phenotyping are not used in standard practice when initiating or changing 
therapy, and is most probably not encouraged in children. Apart from the 
differences in the genetic make-up of the clearing organ, age-dependent 
changes also affect the amount of drug that can be cleared. As a child grows 
organs develop both in terms of size and metabolic capacity (i.e., enzyme 
activity). It has been postulated that the influence of increasing size on 
clearance can, at least in part, be accounted for by adjusting for body 
weight. However, the relation between size (e.g. body weight) and 
elimination rate has been demonstrated to be non-linear. This implies that 
dosing in mg/kg does not accurately correct for the underlying differences 
[41]. In fact, unless explicit differences have been identified in the 
underlying pharmacokinetic-pharmacodynamic relationship, dose 
adjustment in children should aim at achieving comparable exposure or 
similar PK p rofile across the target population, irrespective of body 
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weight or age.  One needs to be aware that whereas the use of weight-
banded dosing regimens may be necessary to compensate for such 
nonlinearity, drug-drug interactions may have a higher impact on clearance 
than the effect of body size (Figure 2) [42–45]. 

Figure 2. An example of the complex interaction between multiple covariates on 
the clearance of lamotrigine. In this diagram lamotrigine dose-corrected 
concentrations (DCC) are stratified by groups: Group 1, samples with VPA co-
medication; Group 2, samples with LTG metabolic inducers (inducers) (CBZ, PHT, or 
PB); Group 3, samples with antiepileptic drugs other than VPA and inducers (CBZ, 
PHT, or PB); Group 4, samples with VPA and inducers (CBZ, PHT, or PB); and Group 
5, samples with LTG monotherapy.  The bottom and top of each box show the 25th 
and 75th percentiles, respectively. The horizontal line in each box indicates the 
median. The groups are indicated by the dotted lines. The horizontal lines in the 
upper part of the figure indicate significant differences between groups (*p < 
0.001, **p = 0.01).  Among patients with VPA (Group 1) and inducers (Group 2), the 
DCC of LTG is lower in cases under 6 years old (adapted from [42]) 
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2.2 Pathophysiology and pharmacodynamics 

Every brain is unique in its structure, connectivity, plasticity, and 
neurotransmitter homeostasis. As a result, wide intra- and inter-individual 
variation is observed in the response to CNS active drugs. Differences in 
physiology, whether genetic, congenital or acquired, can both give rise to 
epileptic seizures and affect one’s ability to respond to treatment. In fact, 
over the course of the disease, these differences as well as the progression 
of the underlying (patho-)physiological processes can change the way the 
brain responds to seizures, and consequently to therapy. In other words, 
variability in physiology begets variability in disease progression and 
treatment response, which in turn beget changes in physiology. 
Disentangling this circular web of interactions is perhaps the most 
challenging of the issues plaguing the field of AED therapy. Whereas 
characterising such interactions on an individual patient level may be 
unrealistic in the foreseeable future, personalisation of treatment may be 
achieved by identifying disease-specific factors that are age-related or 
common to subgroups in the population. The impact of such concepts has 
been illustrated in a recent investigation by Pellock and collaborators who 
showed that evidence of efficacy in partial-onset seizures (POS) in adults 
can be used to predict drug response in children [5]. Yet, in other childhood 
epilepsies that persist or evolve to adulthood, changes in pathophysiology 
are not yet understood well enough to allow individual prediction of 
outcome. 

Another challenging aspect in the characterisation of interindividual 
differences is the nature of the interaction between drug and receptor or 
target. From a pharmacological point of view, pharmacodynamics (PD) 
describes the interaction between a drug and its target or receptor and the 
transduction mechanisms leading to a change in function. PD processes are 
a major determinant of the efficacy/safety profile of AEDs, but little is 
known about their (molecular) mechanisms. This is partly due to the fact 
that most AEDs have been discovered on the basis of phenotypic screening 
at a time when brain imaging and other innovative functional protocols 
were not available. Moreover, drug development in epilepsy has 
traditionally aimed at evaluating efficacy in adults. Only recently, changes in 
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regulatory requirements have defined the need to characterise the efficacy 
and safety of AEDs in children. Such a sequential approach may however be 
inappropriate to address childhood-specific epilepsies. 

2.2.1 Assessment of anti-epileptic drug response: symptoms versus 
functional measures of brain activity 

In spite of the advances in imaging technologies, the evaluation of brain 
physiology in vivo remains a challenging undertaking. Although EEG is 
regularly used to identify pathological signs and confirm diagnosis, patients 
are not routinely subjected to a long-term biochemical and/or 
electrophysiological evaluation throughout the course of the disease and its 
treatment. Medical history (i.e. occurrence of seizures) rather than 
measurement of physiological endpoints is used to support clinical 
evaluation and decision making regarding the choice of drug and dosing 
regimens. 

Clearly, the lack of data regarding the correlation between AED exposure, 
pharmacological effects (i.e. biomarkers) and therapeutic response (i.e. 
seizure reduction or suppression) makes it difficult for a physician to predict 
which treatment, and which exposure level, will work best for an individual 
patient or group. Close monitoring of the variation in response between 
patients over the course of treatment time is required to understand the 
role of differences in brain physiology. Such a monitoring imposes the 
availability of biomarkers which are sufficiently sensitive to detect 
variations in response as well as to predict treatment failure or toxicity. To 
date, the only known valid antiepileptic drug biomarker is HLA-B*1502, 
which is a strong predictor of Stevens-Johnson syndrome in patients of 
specific Asian backgrounds taking carbamazepine [46]. No other parameters 
exist with sufficient predictive performance for efficacy. 

Another point to consider in paediatric epilepsy is the role of neuronal 
maturation in the progression of epilepsy. Maturation and neurological 
development are processes that take place during growth. Changes in the 
expression of voltage gate dependent ion channels as well as structural 
changes associated with growth can have an impact on the sensitivity of the 
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brain to a drug and consequently on the magnitude of drug effects [47]. 
Similarly, the time of diagnosis and initiation of AED therapy are potential 
causes of variability in treatment response. For example, the clinical 
management of seizures in the new-born has remained unchanged in spite 
of evidence that “classic” medications (phenobarbital and phenytoin) are 
largely ineffective (with more than half of the population being non-
responders for both drugs) and potentially neurotoxic [48]. Most 
symptomatic seizures in neonates are due to hypoxic-ischemic 
encephalopathy and do not persist beyond the first few days of life. Due to 
this natural improvement, any prompt intervention would appear effective 
and even curative. Such an apparent efficacy, which is wrongly attributed to 
the drug could be relevant across many types of epilepsy and result in AEDs 
being used more often than necessary, especially in the case of the 
developing brain of a new-born infant. This is particularly worrying if one 
takes into account the effect of AEDs on cognitive development and growth 
[49–53]. 

2.2.2 Disease progression and maturation 

In paediatric epilepsy, it is clearly the natural progression of disease varies 
not only between patients, but also between and within epilepsy subtypes 
and syndromes [54,55]. For instance, benign epilepsy with centrotemporal 
spikes (BECST) typically occurs between the age of 3 – 14 years of age and 
resolves by age 17 despite the incidence of cognitive and behavioural 
disorders [56].  By contrast, Lennox-Gastaut syndrome begins between the 
age of 1-6, with seizures that generally do not respond well to treatment 
[57] Schmidt et al. estimated that without intervention, 20-44% of 
untreated epilepsies remit within one to two years [58]. Of the remaining 
patients, around 60% will respond favourably to therapy and the rest will 
present an insidious or recurrent syndrome in which approximately half of 
this subpopulation will not respond to treatment. Unfortunately, the 
authors seem to pay little attention to the differences between types of 
epilepsy and their aetiology [59,60]. Even more controversial are the 
prognostic factors for response to treatment, as only around 11% of 
patients with lack of efficacy to the first AED will respond to the second 
treatment option [15]. Without relevant biomarkers it is impossible to 
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predict disease progression and/or treatment response. Consequently, 
clinical decisions regarding treatment choice and dose selection are 
determined by the disease status at time of the diagnosis or intervention. 

2.2.3 Target receptor polymorphisms, density, and adaptation 

Many AEDs are believed to share a common mechanism of action through 
the interaction at the receptor level, usually an ion channel on the surface 
of the target neurons [61]. In addition, it can be assumed that caeteris 
paribus the higher the target engagement the stronger the signal being 
transmitted or blocked. Consequently, the exposure-response curve of an 
AED in vivo will vary depending on the availability (density) of receptors 
[62]. Additional variability may arise from polymorphisms of target 
receptors (which can be caused by differences in the aetiology of epilepsy) 
as well as from variable binding kinetics at the target. Indeed, changes to 
binding kinetics can alter drug potency, which in turn affects the dosing 
requirements [63]. 

From a clinical perspective, it should be highlighted that epileptic patients 
often experience a decreased drug effect over the course of treatment, 
which cannot be explained by the aforementioned processes or 
mechanisms. This reduction may be a gradual process, but often occurs 
suddenly, possibly after discontinuation and reinstatement of drug therapy. 
One of the potential causes of pharmacoresistance is down/up regulation 
of the target receptors  [64–66]. In these circumstances, whereas increases 
in the dose may off-set the effects of down-regulation, higher drug 
exposure may lead to side effects, preventing achievement of satisfactory 
response levels. Pharmacoresistance has been reported to affect about 23% 
of paediatric patients [67], whom respond better to surgical intervention 
than adults. [68]. 
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3. Extrinsic sources of variability and heterogeneity in
response to AEDs 

Apart from the biological factors implicated in previous sections, some 
extrinsic factors limit our understanding of the PKPD relationships of AEDs 
and consequently may affect treatment choice and dose selection for the 
paediatric population. Here we focus on the implications of food-drug and 
drug-drug interactions, as well as on the impact of variable treatment 
adherence. 

3.1 Drug-food interaction and formulation variability 

Most used AEDs have been off-patent for some time and thus generic 
versions exist in all kinds of formulations. Although the pharmacologically 
active substance is the same, and bioequivalence studies should provide 
evidence for similar exposure to the drug, different formulations have been 
introduced, which are intended to modify drug release profile and as such 
can lead to faster or slower absorption  possibly resulting in different peak 
concentrations [69] and consequently in a different safety profile [70]. This 
issue can be compounded by small differences in the bioavailability 
(fraction of the dose that is absorbed and reaches the systemic circulation) 
of AEDs (Figure 3)[71]. For example, the bioavailability of carbamazepine is 
considered to be 80% on average, but ranges considerably [72]. In the case 
of gabapentin, bioavailability is inversely proportional to the taken dose, 
resulting in reduced increases in exposure with increasing doses [73]. 
Finally, absorption and first pass metabolism can be influenced by food 
intake and beverages, such as grapefruit juice [74]. These factors are 
difficult to control but can contribute to overall variability in the exposure 
to AEDs. Thus, to minimise the influence of absorption kinetics on the 
disposition of AEDs, many extended-release formulations have been 
developed for adult patients, which reduce peak/trough concentration 
ratios while maintaining similar overall exposure. By contrast, extended 
release tablet formulations are not always an option in children, as 
swallowing such tablets can be too difficult for younger patients. This 
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limitation could be overcome by specially designed liquid extended-release 
formulations [75]. 

Figure 3. (a) Dose and concentration relationship of (a) gabapentin (n = 189), ref. 
range (70–120 mmol/L) and (b) pregabalin (n = 167), ref. range (10–30 mmol/L) 
(with permission from [71]). 
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3.2. Drug combinations and drug-drug interactions

Current clinical guidelines recommend drug combination or polytherapy 
only in those cases in which monotherapy is proven to be insufficiently 
effective. In the case of effective polytherapy, it is suggested to taper off
the previous treatment to achieve monotherapy over a longer time interval. 
Monotherapy is therefore assumed to be the best treatment choice, but
this practice does not take into account the possibility of pharmacodynamic
interactions, and in particular, synergy, for which some evidence exists [76–
78]. Combining drugs with a different mechanism of action may offer the
best chance of achieving synergistic interactions, although there is scarce 
evidence for this concept from clinical trials [79]. These claims occur despite 
the lack of consensus on whether patients might benefit of an alternative 
drug or multiple AEDs [80]. On the other hand, pharmacokinetic drug-drug 
interactions (DDI) have been identified for many AEDs. Consequently, it
may be challenging to disentangle changes in drug effects due to a 
pharmacodynamic interaction from the effects associated with changes in 
the exposure due to the primary AED. Given safety and ethical constraints,
the characterisation of possible pharmacodynamic interactions remains 
difficult in a clinical setting.

3.2 Adherence to treatment

Treatment with AEDs often leads to cognitive, behavioural and physical
adverse effects [81]. When such effects are experienced as burdensome, it
is likely that a patient will not comply with the prescribed regimen and take
short or longer drug holidays, leading to poor persistence and eventually 
discontinuation of treatment [82]. Whereas some of these adverse effects 
can be prevented or reversed by adjusting the dose correctly for the
individual patient or group, limited information is available on the impact
that drug holidays have both on the efficacy and safety profile of AEDs. This
issue is further compounded in paediatric epilepsy, as adherence does not
involve on the patients themselves, but parents or caregivers who can also
interfere with drug intake. In fact, random missingness of the dose during a 
single day of treatment can already decrease exposure levels significantly. A 
recent study has found that approximately a quarter of the paediatric 
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patients are nonpersistent in taking their prescribed AED therapy, but the 
impact of variable adherence on treatment outcome was not evaluated 
[83]. 

Given that poor adherence is often not disclosed by patients, physicians 
may attribute a potential loss of efficacy to disease or pharmacodynamic 
factors, rather than to variation in drug exposure due to variable patterns 
of drug intake. In this case, patients may be recommended a dose increase 
or an alternative treatment, which may result in increased incidence of 
adverse effects [82]. Open, honest communication between physician, 
patients and parents when necessary is therefore critical to minimise the 
risk of inaccurate treatment decisions [84]. 

4. Conclusion

Children are not small adults and it is known that syndromes in paediatric 
epilepsy undergo variable progression and changes in the natural course of 
the disease due to neurodevelopment. Changes in pharmacokinetic, 
pharmacodynamic and physiological processes associated with maturation 
and developmental growth determine the differences in response to AED 
treatment in this population. Many of these changes occur concurrently, 
preventing accurate prediction of the response (and prognosis) at an 
individual patient level. An integrated approach, supported by potential 
biomarkers and dosing algorithms is needed to ensure appropriate 
selection of drug(s) and dose for a specific patient or group of patients. 
Regardless the large amount of data collected on existing and new AEDs, 
knowledge is not sufficiently integrated to support the implementation of 
treatment personalisation. This lack of integration prevails, despite efforts 
by health technology assessment organisations to establish the 
effectiveness of available medicines. Guidelines such as NICE rely on 
published evidence, which may lag considerably behind the introduction of 
a new medicinal product into clinical practice. Moreover, such guidelines 
are not fit-for-purpose, i.e., do not specifically focus on subgroups in such a 
way that fully supports the use of personalised treatments in children. 
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To allow paediatricians to better decide on which AED(s) to prescribe and at 
which dose, a novel approach is required that takes into account the 
aforementioned complexities of epilepsy [85]. A promising, readily available 
methodology for the selection of a drug and dosing regimen is PKPD and 
disease modelling [86]. However, to be an effective resource for treatment 
personalisation, biomarkers must be identified that are sensitive to the 
disease state and progression, so that efficacy and toxicity of drugs can be 
better characterised in clinical practice. Undoubtedly, the availability of 
biomarkers would also represent an advancement to diagnosis, minimising 
the need for a trial-and-error approach to pharmacotherapy [87–90]. In our 
expert opinion, we explore how the application of model-based algorithms 
may achieve these goals. 

5. Expert Opinion 

5.1. Definition of treatment response and assessment of efficacy 
and safety 

Seizure frequency or similar continuous measures be considered as primary 
endpoints for the assessment of efficacy. The use of number of responders, 
i.e., patients achieving a decrease in seizure count of at least 50% at the 
end of the study relative to baseline and the percentage of the population 
that achieves such “seizure control” compared to placebo or a control 
treatment are not sufficiently informative.  Such a dichotomisation of the 
response results in a loss of information, as it does not allow the 
characterisation of the drug effect at the individual patient level. As a 
result, personalisation of treatment, including dosing recommendations 
cannot be derived unless a broad dose range is tested and stratified for. 
Such a requirement is unrealistic as more patients would be required for 
adequate evaluation of response in a clinical trial. This limitation is further 
compounded by bias in the comparison between experimental and control 
treatments when applying the aforementioned response criteria [91]. 

In addition to the use an endpoint which offers more granularity to the 
evaluation of efficacy, experimental protocols need to be revisited. 
Typically, the efficacy of new AEDs is tested in a so-called “add on” trial 
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design, in which patients who are refractory to treatment receive the new 
drug. This complicates the interpretation of the results for a variety of 
reasons. First, it introduces selection bias in drug potency and on the 
required dose recommendations. In patients who are refractory to 
treatment, response is expected to be less than in non-refractory patients. 
Moreover, the observed response is the result of a combination of the 
direct effect of the drug and/or an interaction with the background 
treatment. As a result, interactions must be taken into account to establish 
the magnitude of the effect of the new drug in the absence of other AEDs. 
These limitations apply a fortiori in children. Ethical considerations make it 
virtually impossible to evaluate efficacy and safety in children according to 
typical Phase IIb dose ranging studies. 

5.2 Understanding and predicting variability 

L.B. Sheiner envisioned a learning-confirming paradigm [92] in which 
available prior information is first used to learn by prediction or 
extrapolation using modelling and simulation techniques (evidence 
synthesis), where possible taking into account multiple sources of 
information (integration). An experiment can then be optimised to address 
the gaps in knowledge (evidence generation), the outcome of which is then 
used to confirm the predictions and build new theories and models (Figure 
4). More specifically with regard to the use of AEDs in paediatric epilepsy, 
accurate predictions of treatment response may be achieved as a result of 
systematic integration of data on pharmacokinetics, pharmacodynamics 
and disease [93]. Such an approach may have direct implications for the 
implementation of personalised treatments, including dosing algorithms for 
paediatric patients. 

The use of PKPD and disease models relies on current understanding of the 
disease and pharmacology. Usually, one endeavours to describe the 
biological system of interest with sufficient detail to ensure accurate 
predictions for a range of possible interventions. This process relies on a set 
of assumptions is often referred to as parameterisation and is aimed at 
identifying descriptors of the physiological or pharmacological effects in a 
simple, but yet robust manner. For instance, using a PK model instead of 
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collecting and summarising drug concentrations only, it is possible to 
predict the time course of the drug concentrations following drug 
administration of different doses and dosing regimens, as well as better 
account for the impact of covariates such as body weight or age.  Similarly, 
PKPD and disease models provide the basis for the assessment of the 
interaction between drug and biological system, taking into account the 
progression or changes associated with the disease itself. Such 
parameterisation also allows one to quantify the impact of influential 
factors on parameter values and describe them as covariates. The 
incorporation of covariates into a PKPD or disease model has an important 
advantage in that it enhances the prediction of response for specific groups 
of patients [94–96]. In conjunction with clinical trial simulations, model-
based techniques offer an excellent opportunity for the evaluation of novel 
therapies [97] as well as personalisation of the dosing regimen for children 
[98]. 

Figure 4. Information on disease processes, pharmacodynamics and 
pharmacokinetics must be integrated to ensure accurate personalisation of AED 
treatment and rational dose selection in children. Whereas interindividual 
differences in disease and pharmacodynamics of AEDs play an important role in 
treatment selection, understanding of the effect of developmental growth and 
maturation processes is essential for the selection of the paediatric dosing regimen. 
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5.2.1 Personalised treatment 

Clinical  guidelines for epilepsy [99] still rely on diagnostic criteria which are 
primarily determined by symptoms, Consequently, AED treatment selection 
is based on the underlying epileptic syndrome, as defined by the type of 
epileptic seizures (e.g. partial, primary or secondary generalised, absence, 
etc.) and age (adults, children, etc.), with aetiology playing only a minor 
role. For each syndrome group, multiple lines of treatment are considered. 
Given the heterogeneity in the aetiology of the disease within each group, it 
is likely that the different treatment options simply reflect the uncertainty 
about the interindividual differences in response. 

A more mechanistic approach is required for the classification of seizures, 
as it would facilitate the distinction between AEDs which can modify the 
disease from those which act on symptoms [100]. The use of disease 
modelling can also contribute to another pressing issue, i.e., the nature and 
magnitude of the effect of drug-drug interactions. It has been proposed 
that combining AEDs with different mechanisms of action might have a 
synergistic effect compared to combining those with a similar mechanisms 
of action, but no research has conclusively supported this idea [101]. By 
contrast, others have suggested a more practical approach of exploring 
doses and combinations in difficult refractory cases [102]. A more 
aggressive pre-emptive intervention may very well be the answer to 
treatment resistant epilepsy, but no systematic studies are available to 
support this hypothesis. Despite concerns about the use polytherapy, the 
concept is appealing especially in children if evidence can be gathered of 
the implications of early interventions with multiple AEDs.  Advancements 
will only become tangible after sensitive biomarkers have been identified. 
In conjunction with disease modelling, biomarkers may also allow one to 
discriminate the contribution of one of more compounds to the overall 
response and determine whether AEDs affect disease progression. 

In the absence of biomarkers, long term longitudinal (observational) studies 
represent an important step to further characterise the pros and cons of a 
given intervention. It is regrettable that no attempts have been made to 
apply disease modelling concepts to (pharmaco)epidemiological studies. 
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Despite the retrospective nature of such an approach, important insight 
may be gained about predictors and determinants of response in children. 

5.2.2 Personalised dose and dosing regimen 

As previously stated, 10-20% of refractory patients can benefit from dose 
adjustments [15], but little discussion exists in the literature regarding 
appropriate dosing in non-refractory patients. In fact, it is likely that in 
numerous cases the lack of response to AEDs may occur due to inadequate 
dosing, whereas other patients may experience adverse events due to 
overexposure. Efforts from therapeutic drug monitoring have not 
addressed this issue and caused PK considerations to be misinterpreted 
during clinical decision about the dose and dosing regimen of AED. Most 
importantly, limited attention is given to the role of covariates that are 
known affect PK and potentially alter the efficacy and safety profile of an 
AED. 

Since therapeutic concentration ranges for each AED are available in 
literature, such data can be used with PK models, including the contribution 
of covariates to identify suitable titration and maintenance dosing 
algorithms. Unfortunately, these therapeutic concentration ranges were 
generally determined in the adult population, making their relevance for 
the different epilepsy subtypes in the paediatric population questionable. 
The development of dosing algorithms is particularly important for the 
paediatric population, irrespective of the lack of further data on exposure-
response and exposure-toxicity relationships. A major benefit from this 
approach is the opportunity to provide recommendations for dosing 
adjustment taking into account complex drug-drug interactions in a strictly 
quantitative manner; this issue is poorly addressed by current therapeutic 
guidelines. In this context, simulation scenarios can also be explored to 
predict the response to drug combinations also in refractory patients. 
Whilst one needs to acknowledge the role of disease progression over time 
in paediatric epilepsy, efforts to ensure comparable exposure to drugs, 
irrespective of their age or body weight, represent a more robust approach 
than trial and error in a vulnerable patient population. 
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We also note that despite the considerable number of publications aimed 
at PK modelling of AED, most authors offer this as a somewhat technical 
description of ADME properties of the drugs. Most publications lack insight 
into core clinical pharmacology issues and do not expand their analysis and 
interpretation to meet clinical needs such as dose rationale and 
implications for prescription practice. In summary, the information 
available is not being integrated and most importantly, the lack of a “big 
picture” regarding core clinical pharmacology principles seems to 
perpetuate the gaps in data generation, i.e., missing information is not 
being generated. Figure 4 depicts the steps required to ensure personalised 
treatment, with a stronger rationale for drug and dose selection. Clinical 
dosing could be enhanced by algorithms, which are more efficient than 
typical titration procedures and therapeutic drug monitoring (TDM). 
Combined with dried blood spot or saliva analysis techniques, the burden of 
TDM on the paediatric patient could be minimised. [103,104] The benefits 
of a model-based approach are illustrated in a simulation study 
[supplement 1, to be downloaded from the online version of this article], 
using published data as an example of what dosing algorithms can 
represent to clinical practice in paediatric epilepsy [105]. Clearly, effective 
implementation of dosing algorithms imposes further integration of existing 
and new evidence on the efficacy and safety of AEDs. It also demands for 
extrapolation tools and evidence generation based on more informative 
experimental protocols. The potential impact to such efforts is highlight in 
the following paragraphs. 

5.3 Evidence synthesis 

5.3.1 Integration of historical and new evidence 

One of the most powerful characteristics of model-based approaches is the 
possibility of integrating information from different sources and combining 
them with statistical concepts to make predictions about new scenarios, 
beyond the experimental evidence available from the data itself. Given the 
complexity of epilepsy’s many interacting factors, these techniques 
represent a valuable research tool in this field. Currently, its use remains, 
however, limited to pharmacokinetic data analysis. 
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5.3.2 Extrapolations 

Translational medicine can be defined as extrapolating findings from basic 
science and quickly making them useful for practical applications that 
enhance human health [106]. Whilst its implementation is often limited to 
stand-alone experimental protocols, translational steps can be achieved by 
the use of model-based extrapolations [107,108], The use of extrapolations 
based on clinically and biologically plausible assumptions can make 
translational medicine a valid and powerful tool. The approach involves 
appropriate scrutiny by simulation exercises  enabling the integration of 
different types of data, such as pre-clinical in vitro (cell lines, tissue, organs), 
in vivo (mice, rats, dogs, etc.) and clinical data [109, 110]. Of interest is the 
role that extrapolations can have to characterise differences and similarities 
between paediatric and adult patients [111-113].  As recently defined by 
the European Medicines Agency (EMA), extrapolation may be generally 
defined as: “Extending information and conclusions available from studies 
in one or more subgroups of the patient population (source population), or 
in related conditions or with related medicinal products, to make inferences 
for another subgroup of the population (target population), or condition or 
product, thus reducing the need to generate additional information (types 
of studies, design modifications, number of patients required) to reach 
conclusions for the target population, or condition or medicinal product” 
[6]. 

It should be clear that the primary rationale for extrapolation is to avoid 
unnecessary studies in children. However, extrapolations are not generally 
acceptable as a default approach (Table 2). As discussed previously, an 
interesting finding in epilepsy is the extrapolation of efficacy results in 
adults to predict a similar adjunctive treatment response in 2- to 18-year-
old children with partial onset seizure [5]. 
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Table 2. Acceptability of different extrapolation approaches for the prediction of 
disease progression, pharmacodynamics and pharmacokinetics between and within 
species. 
Extrapolation of From To Acceptability References 
Disease 
mechanisms and PD 

animals humans Unclear [57,58,98,101,102] 

Disease progression 
and PD with similar 
aetiology 

adults children Possibly [100,103] 

Disease progression 
and PD with 
different aetiologies 

adults children Not 
acceptable 

[104] 

Pharmacokinetics 
(allometrically) 

animals humans Possibly  [105] 

Pharmacokinetics 
(allometrically) 

adults children 
>3yo 

Probably [8,106,107] 

>3yo: older than 3 years 

 

5.4 Evidence generation 

An important shortcoming of the primary measure of efficacy is the fact 
that seizure reduction from baseline does not reflect changes in epileptic 
activity in the brain in a strictly quantitative manner nor does it relate to 
the mechanism of the drug on such processes. In fact, a more careful 
evaluation of this criterion may not be comparable across all 
subpopulations [114]. Clearly, early, sensitive biomarkers and endpoints are 
essential to accurately characterise interactions of drug(s) and disease. One 
needs to establish how drug effects interact with the underlying disease 
and explore whether longitudinal changes in such endpoints can be used to 
predict long term response to treatment. So far, very few attempts have 
been made to identify predictors of response or treatment failure; such 
investigations have however relied on seizure reduction or establish the 
potential prognostic rather than predictive value of the variables of interest 
(Figure 5) [115]. Therefore we strongly support the views that clinical 
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research protocols need to integrate clinical measures to markers of 
physiological and pharmacological effects of AEDs. In this context, imaging 
techniques need to be coupled to the evaluation of efficacy in clinical trials. 
Functional magnetic resonance imaging (fMRI) and positron emission 
tomography (PET) represent promising opportunities, but their evaluation 
as biomarkers in epilepsy has not yet been fully explored [116–118] and 
may be too burdensome to use in paediatric epilepsy. 

A final point to consider in evidence generation is the informative value of 
data, which should include, rather than exclude relevant covariates and 
influential factors on exposure-response relationships. Numerous examples 
exist where early adoption of modelling and simulation has led to better 
trial design, in particular with regard to the dose selection and 
characterisation of influential factors on PK , PD and response [121,122]. 
Although successful studies have been conducted to derive paediatric 
dosing based on empirical designs, others failed and possibly could have 
been successful based on modelling and simulation [123–125]. In summary, 
clinical researchers and regulators need to acknowledge the limitations of 
traditional protocols to evaluate efficacy and safety of AEDs in children 
[126–128]. Effective implementation of personalised treatment for the 
paediatric population requires concerted efforts to ensure that 
experimental data are generated and integrated beyond traditional 
statistical hypothesis testing. Lessons can be learned from recent 
developments in oncology [129], where clinical trials, treatment and dose 
selection have undergone major advancements both conceptually and 
clinically over the last decade. 
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Figure 5. In this example, plots show the relative hazard ratio for age and total 
number of seizures before randomisation for the time to treatment failure. Hazard 
ratio estimates with 95% CIs are shown for overall time to treatment failure, for 
age (A) and total number of seizures (B), and for time to treatment failure because 
of inadequate seizure control and because of unacceptable adverse events, for age 
(C) and total number of seizures (D). Ideally, biomarkers should be identified that 
can be used as predictors of response or failure without the need to measure the 
reduction in seizure frequency. 
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CHAPTER 2 

SCOPE AND INTENT OF INVESTIGATIONS 
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Scope and intent of investigations 

1. Introduction

Reference to epilepsy and epileptic seizures can be found in Assyrian texts, 
almost 2,000 B.C. [1]. However, it was not until the 18th and 19th century 
that medicine started the delineation of pathophysiology of epilepsy and 
the topographic localization of epileptic seizures. Unfortunately, at that 
time, the notion of interindividual and biological variation was far from the 
concepts defining the work on epileptogenesis, aetiology, and taxonomy of 
epilepsy. In fact, John Hughling Jackson’s definition of epilepsy in 1873 was 
limited to the ictal phase of the disease (“Epilepsy is the name for 
occasional, sudden, excessive, rapid and local discharges of grey matter”) 
[2].  

The possibility of non-surgical interventions, based on pharmacological 
principles started only in 1857, when the anticonvulsant and sedative traits 
of potassium bromide were identified. Potassium bromide became a choice 
treatment for humans with epileptic seizures until the 1912 discovery of 
phenobarbital. The next drug introduced in the therapy of epilepsy was 
phenytoin in 1938. Phenytoin became the first-line medication for the 
prevention of partial and tonic-clonic seizures and for acute cases of 
epilepsies or status epilepticus, giving an alternative therapeutic choice for 
patients not responding to bromides or barbiturates. During the 1950s, new 
drugs came up such as carbamazepine in 1953 [3], primidone in 1954, 
ethosuximide in 1958 [4], and sodium valproate in 1963 [5]. Despite such a 
progress, none of these drugs have undergone the scrutiny of randomised 
clinical trials at the time of approval, or considered the need to establish 
different treatment options in children as compared to adults. By contrast, 
over the last two decades the field continued to evolve, with a considerable 
number of molecules introduced into clinical practice based on controlled 
clinical studies. 
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The so called newer antiepileptic drugs such as vigabatrin (1989), 
lamotrigine (1990), oxcarbazepine (1990), gabapentin (1993), felbamate 
(1993), topiramate (1995), tiagabine (1998), zonisamide (1989 in Japan and 
2000 in the USA), levetiracetam(2000), stiripentol (2002), pregabalin (2004), 
rufinamide (2004), lacosamide (2008), eslicarbazepine (2009), and 
perampanel (2012), have all shown to meet regulatory criteria for efficacy 
and safety.  

In parallel to the availability of novel drugs, various clinical guidelines have 
been introduced that are aimed at improved diagnostics, management and 
treatment of epilepsies, with a few of them considering the need to define 
a different treatment rationale in children [6–8]. However, a careful review 
of the history of epilepsy along with the evolution of treatment guidelines 
reveals that the focus on diagnostics and taxonomy of epileptic seizures 
may have distracted researchers from the principles that underpin modern 
clinical pharmacology and therapeutics, i.e., the relevance of characterising 
exposure response relationships and quantifying the impact of different 
(intrinsic and extrinsic) factors on exposure and response variability. In this 
context, it is not surprising that despite the notion that differences in drug 
levels may be associated with therapeutic failure or adverse events, limited 
attention has been given to the use of quantitative clinical pharmacology 
methods as a tool for dose selection. Therapeutic drug monitoring was 
introduced in 1960, when Buchtal and Svensmark introduced the 
measurement of antiepileptic drug levels in the blood [9], but its use in 
clinical practice has remained an undesirable requirement. Most 
importantly, data collected during therapeutic drug monitoring has been 
linked to an empirical decision process, with trough plasma concentrations 
often confounded by other covariate factors. 

As discussed in Chapter 1, it is clear that inter- and intra-individual 
differences in pharmacokinetics and pharmacodynamics of AEDs need to be 
taken into account for the personalisation of treatment in paediatric 
epilepsy. Evidence of efficacy in a clinical trial, does not imply that 
individual patients will show optimal response in clinical practice or that the 
same dose and dosing regimen(s) will be appropriate for all patients, in 
particular, if one considers paediatric patients. In brief, the assumption 

54



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 55PDF page: 55PDF page: 55PDF page: 55

current limitations in the understanding of the exposure-response 
relationships can be mitigated by up and down-titration or tapering of the 
dose, appears to be flawed. Dose selection based on such procedures does 
not account for age-related changes in pharmacokinetics and 
pharmacodynamics in children, especially when dealing with polytherapy 
with two or more AEDs. In fact, dose recommendations in formularies, such 
as the Netherlands Kinderformularium or the British National Formulary for 
Children overlook the role of covariate factors and other sources of 
variability in pharmacokinetics and pharmacodynamics [10,11]. Moreover, 
in spite of the use of therapeutic drug monitoring (TDM), which is widely 
accepted in paediatric epilepsy compared to adults, AED levels are checked 
against a therapeutic window, which was originally determined in adults.  

A range of arguments has been used to explain the lack of such a systematic 
evaluation of the exposure-response relationships for antiepileptic drugs. 
First, treatment and dose recommendations make their way into clinical 
guidelines and formularies according to evidence-based principles (Figure 
1). However, the approaches currently available to establish the level and 
quality of evidence supporting therapeutic and clinical choices do not 
consider the pharmacological basis for an intervention. Whereas phase II 
dose ranging studies are aimed at defining dose rationale in phase III trials, 
these studies are not necessarily optimised to account for potential 
covariate effects on pharmacokinetics and/or pharmacodynamics. 
Subsequently, after drug approval in the primary target population, 
empirical evidence from randomised clinical trials, systematic reviews and 
meta-analyses does not necessarily provide insight into the underlying 
exposure-response relationship or clinical implications of covariate effects 
for the dose rationale. Second, it is not possible to control and stratify all 
factors contributing to variability in a clinical trial. Given that evidence is 
limited to the sampled population, it is not difficult to anticipate the 
challenges in quantifying the impact of inclusion and exclusion criteria. 
Third, the lack of biomarkers or effective predictors of response to 
treatment. This shortcoming is often compounded by the definition of 
response itself (clinical endpoint), which is based on a binary measure: 
responder (i.e., patients who show at least 50% of reduction in seizures 
compared to baseline) vs. non-responder. Dichotomisation of the response 
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into two categories can be detrimental for the characterisation of dose-
exposure-response relationships. 

Figure 1. Evidence pyramid supporting treatment choice, target patient population 
and dose rationale. Different experimental data (evidence generation) and 
inferential methods (evidence synthesis) are used during the evaluation of efficacy 
and effectiveness of drugs in clinical practice. In contrast to systematic reviews and 
meta-analyses, drug-disease models provide a framework to assess the 
implications of multiple interacting factors, taking into account the underlying 
exposure-response relationships as well as drug-, disease and patient-specific 
characteristics. (adapted from Murad et al. [12]) 

Based on the aforementioned, any attempt to optimise treatment in 
paediatric epilepsy requires an integrated approach in which the 
implications of multiple interacting factors are taken into account. To that 
purpose, the theoretical concepts presented in Chapter 1 will form the 
basis for the experimental work proposed in this thesis, which are described 
in the subsequent paragraphs in this chapter. Using a parametric approach 
along with data from a paradigm compound (lamotrigine), we aim to 
demonstrate how model-based dosing algorithms can be developed and 
implemented in clinical practice. For the sake of clarity, factors that 
determine treatment response and variability will be categorised into 
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disease, drug and patient-related factors. In order to illustrate the 
contribution of modelling and simulation as a tool for more effective 
evidence synthesis and better decision making regarding the dose selection, 
work presented in this thesis will be divided into three main sections, 
namely: 

• Section II (Knowledge integration), in which a compilation of the
available pharmacokinetic and pharmacokinetic-pharmacodynamic
models is presented along with details regarding the identification and
parameterisation of the effect of intrinsic (e.g., disease, age-related)
and extrinsic (e.g., drug interactions) factors on the exposure and
response to AEDs.

• Section III (Model-based dosing algorithms), where the magnitude of
covariate effects and requirements for personalised regimens in
paediatric epilepsy are evaluated using simulation scenarios under the
assumption of comparable target therapeutic exposure ranges in adults
and children.

• Section IV (Evidence generation and evidence synthesis), where a
pharmacokinetic and a drug-disease model are developed using a
population-wide approach for the characterisation of exposure and
exposure-response relationships in adults and children. In conjunction
with scaling and extrapolation principles, a model-based dosing
algorithm is then proposed for the optimisation of treatment response
in children.

The main features and steps of the approach that will be discussed 
throughout the different chapters in this thesis are summarised in Figure 2. 
As sketched out in the diagram, we attempt to reverse-engineer the 
process, by identifying the elements in the causal chain between treatment 
and response. We first explore the feasibility and impact of personalised 
treatment with AEDs using a model-based approach. These principles are 
illustrated for a range of drugs for which covariate effects have been 
identified and parameterised into pharmacokinetic models. This exercise 
aims to show the advantages of inferential methods over empirical dose 
selection. It also provides an opportunity to evaluate the impact of 
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combining different approaches to characterise interindividual differences, 
such as the use of therapeutic drug monitoring. Given the limited 
application of modelling and simulation in clinical research with AEDs, we 
select a paradigm compound to demonstrate how drug-disease models can 
be used with population-wide data to accurately characterise 
pharmacokinetics, exposure-response relationships and covariate effects in 
the target population. Taking into account its therapeutic indication in 
partial onset and primary generalised tonic-clonic seizures, the choice of 
lamotrigine as a paradigm compound offers insight into all the necessary 
elements required for the implementation of model-based dosing 
algorithms. It can be anticipated that the similar principles and 
parameterisation can be applied to other antiepileptic drugs. 

Figure 2. Diagram describing the different steps and themes presented in this 
thesis, which are required for the implementation of model-based algorithms 
aimed at the personalisation of the treatment of paediatric patients with epilepsy.  
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We anticipate that the concepts presented here offer more than just an 
opportunity for the optimisation of the treatment of paediatric patients. 
Our approach may provide answers to a range of clinical questions 
regarding the drug and dose selection. We endeavour to address the 
following:  

1) Based on current clinical practice, can interindividual differences in
exposure to AEDs and inadequate response in some patients be explained 
by size and age-related covariate factors? 

2) Assuming similar exposure-response relationships and target therapeutic
range in adults and children, what are the implications of the commonly 
recommended empirical dosing in mg/kg? 

3) Given that the vast majority of drug-drug interaction studies are
performed in adults can one assume similar effects in the paediatric 
population? 

4) Can model-based dosing algorithms minimise the need for treatment
switch and combination therapy? 

5) Assuming comparable exposure-response relationships in adults and
children, which data are required and which criteria should guide the 
selection and personalisation of paediatric doses? 

6) Assuming different exposure-response relationships in adults and
children, which data are required and which criteria should guide the 
selection and personalisation of paediatric doses? 

An outline of the scope of the research and details on the implementation 
of the different sections are presented in the next paragraphs. 

59



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 60PDF page: 60PDF page: 60PDF page: 60

Section II - Knowledge integration 

The development and therapeutic use of anti-epileptic drugs (AEDs) is 
encumbered by a number of complex interactions, involving 
pharmacokinetics (PK), pharmacodynamics (PD), and disease heterogeneity 
[13]. Some of the complexities are related to the episodic nature of the 
disease, the non-continuous nature of clinical measures of efficacy 
(endpoints), whereas others arise directly from the poor understanding of 
exposure-response relationships, which is further compounded by variable 
disease progression. Some of these complexities have been discussed 
previously in Chapter 1 and make evident the need for further knowledge 
integration if one aims to optimise treatment and dosing regimens. They 
also have implications for the design of clinical trials and the analysis of the 
resulting data.  

If model-based dosing algorithms are to be developed for personalisation of 
treatment with AEDs, it is essential to establish which covariate factors 
(intrinsic and extrinsic sources of variability) contribute to changes in 
exposure and response to AEDs. Taking into account sample size 
requirements, we assume that nonlinear mixed effects modelling is a 
sufficiently robust methodology to characterise covariate effects and 
establish the correlations between model parameter and covariate factor. 
Therefore, our research starts in Chapter 3 with a comprehensive review of 
the pharmacokinetic and pharmacodynamic models for anti-epileptic drugs 
in adults, children and neonates. Publications in which model-based 
methodologies have been applied to describe exposure and response to the 
most commonly used AEDs, including carbamazepine, clonazepam, 
gabapentin, lamotrigine, levetiracetam, oxcarbazepine (and metabolite 
MHD), phenobarbital, phenytoin, topiramate, valproic acid, and zonisamide 
will be identified and summarised. During data extraction, focus will be 
given to details regarding model parameterisation and evidence of 
predictive performance for subsequent application of the model in the 
evaluation of personalised or individualised therapy. In addition, a full 
tabular overview of model parameterisation will be provided, including 
details on the modelling approach, relevant parameter values and code 
syntax. Those who are unfamiliar with the principles of pharmacokinetic 
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and pharmacokinetic-pharmacodynamic modelling are invited to review 
some key references, in which clinical applications and impact of model-
based approaches are outlined [14–17]. Given the objectives of our 
investigation, data will be split into three categories, namely adults (> 16 
years), infants, children and adolescents (paediatric patients, age 1 month - 
16 years), and pre-term and term new-borns (neonates, age 0 – 1 month). It 
should become evident whether knowledge about parameter distributions 
and covariate effects is currently being used to select dosing regimens for 
an individual patient before the start of treatment, i.e., by taking into 
account patient specific characteristics. 

Section III - Model-based dosing algorithms 

Whilst it can be anticipated that limited evidence is available of the 
exposure-response relationships for AEDs in adults and children other than 
clinical data from efficacy trials, this does not need to represent a hindrance 
for the evaluation of the concepts underpinning the use of model-based 
dosing algorithms. In Chapter 4, we will assess the benefits and advantages 
of model-based dosing algorithms by exploring the clinical relevance of 
covariate effects, with special focus on the consequences of intrinsic 
sources of variability on pharmacokinetics. An assumption is made with 
regard to the therapeutic exposure ranges defined for adults, i.e., that 
these levels do reflect the desirable target levels in children. In addition, we 
hypothesise that for a given seizure type, the PKPD relationships are similar 
in adults and children. Using simulation scenarios and optimal design 
concepts we will attempt to identify suitable titration schemes and dosing 
algorithms and possibly personalise the treatment of seizures for the 11 
most commonly used AEDs. In addition to a reference regimen based on a 
standard dose for all patients, a series of scenarios will be considered in 
which doses are adjusted according to i. individual clearance estimates (CL), 
as predicted by population PK models, and ii. individual clearance 
estimates, obtained by therapeutic drug monitoring according to different 
sampling schemes. Attainment of steady-state target exposure will be used 
as performance criterion. It can be anticipated that the implementation of 
model-based titration and dosing algorithms may be of particular relevance 
for 10-20% of patients who still show unresolved seizures when their target 

61



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 62PDF page: 62PDF page: 62PDF page: 62

dose has been achieved. This approach may also allow the identification of 
individuals within the group of patients who would respond to optimised 
regimens, but currently remain refractory to treatment and are said to have 
drug-resistant epilepsy. 

Another important aspect in clinical practice, which should be considered in 
the development of model-based dosing algorithms, is the need for 
combination therapies. Despite evidence on the role of pharmacoresistance 
and progression of the underlying pathological processes, the lack of 
response can be partly explained by inter-individual variability in the 
pharmacokinetics. The impact of such variability can be particularly 
important in the paediatric population, where exposure may vary due to 
maturation processes and developmental growth [13,18,19]. In addition, 
children who do not adequately respond to first-line treatment are given 
multiple AEDs in combination, which can lead to pharmacokinetic and 
pharmacodynamic drug-drug interactions (DDIs). Bearing in mind current 
clinical practice, in Chapter 5 we aim to assess the impact of DDIs on the 
exposure to AEDs and establish the need for further dose adjustment for 
combination therapies. Using simulation techniques, a range of scenarios 
will be evaluated for 11 of the most commonly used AEDs, including 
different drug combinations and dose levels for both adult and paediatric 
patients. For each scenario, virtual patients will be simulated taking into 
account interindividual differences in clinical and demographic 
characteristics. We aim to identify the dose or dose levels that maximise 
the fraction of patients that reach and remain within the target exposure 
range for each drug. The impact of DDIs on the systemic exposure of the 
first-line or alternative first-line AED will be subsequently assessed based on 
clinically relevant dosing regimens and combinations. Here again we 
hypothesise that for a given seizure type, the PKPD relationships are similar 
in adults and children. In addition, we assume that differences in individual 
sensitivity to individual drug effects are captured by the proposed target 
range, whereas resistance to treatment would impose exposure to higher 
drug concentrations, which are likely to be associated with poor tolerability. 
We anticipate that our analysis will assist the review of clinical guidelines, 
taking into account the role of covariate factors in future dosing 
recommendations. Most importantly, it will provide clinicians further 
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insight into the role of PK variability in the overall efficacy and safety profile 
of AEDs. 

Clearly, our ability to evaluate the implications of interindividual variability 
in pharmacokinetics and pharmacodynamics of AEDs and identify covariates 
or predictors of exposure and response depends on the quality of evidence. 
As the work described in the first two sections of this thesis relies primarily 
on the published literature, it should be highlighted that many of the 
studies involved non-controlled observational data obtained from clinical 
practice, whereas the collection of pharmacokinetic data in the case of 
clinical trials is usually a secondary or even exploratory objective.  

In addition, with a few exceptions, the vast majority of the population 
pharmacokinetic modelling reported in the clinical literature lack stringent 
validation procedures, which support their prospective utilisation for 
simulations and/or prediction purposes. In fact, there appears to be no 
single example in neurology of the implementation of such concepts. In the 
next section of this thesis we will focus therefore on the use of approaches 
that ensure optimised evidence generation and improved assessment of 
the dose rationale for the paediatric population. 

Section IV - Optimised evidence generation and evidence synthesis 

The design and execution of clinical trials in adult patients with epilepsy is 
generally perceived as challenging. Restrictions exist on the type of patients 
that may be included; trials are required to apply a design where add-on 
medication is given to patients who have already unsuccessfully received 
multiple other treatments. Moreover, the pre-existing AEDs are generally 
not stopped before or during the trial. Consequently, these trial protocols 
are not designed to provide insight into exposure-response relationships or 
disentangle possible pharmacodynamic drug-drug interactions. As such, 
bias may occur regarding the efficacy and safety of the dose and dosing 
regimen under investigation. This situation usually complicates the 
extrapolation of study findings to a wider patient population. 
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In fact, the evaluation of pharmacokinetics and response is often limited to 
a statistical summary of the clinical endpoints along with the predefined 
statistical hypothesis test results. The primary endpoint is generally the 
percentage of patients that achieve treatment success, defined as a 
reduction in seizure frequency of at least 50% compared to baseline. Other 
(primary and secondary) endpoints include the time to first seizure, average 
population change in seizure frequency, probability of side-effects, etc. The 
analysis of seizure count data is complex and typical, non-parametric 
approaches are not suitable to describe individual patterns of response. 
These methods tend to weight response based on seizure frequencies over 
a time-period, which leads to the loss of information available for the 
characterisation of intra- and inter-individual variability, as well as eventual 
covariate factors or predictors. If a trial includes the evaluation of 
pharmacokinetics, data are usually summarised using non-compartmental 
methods, which limit the description of pharmacokinetic properties to total 
exposure with the area under the concentration vs. time curve (AUC), peak 
concentration, elimination by terminal half-life, etc. Interindividual 
variability in these analyses is captured by standard deviation of the 
parameters.  

The issues highlighted above are compounded by additional practical and 
ethical constraints when considering the design and execution of clinical 
trials in children with epilepsy. Consequently, the value of new data is 
tremendously higher than in a standard protocol involving adults. Yet, little 
attention has been paid to the role of methodologies that support evidence 
synthesis, whilst keeping the burden for the children to a minimum. 
Therefore, we propose to integrate evolving concepts in paediatric clinical 
pharmacology into the evaluation of the dose rationale for children. In a 
very simplistic manner, it can be said that three scenarios can be used to 
determine the rationale for paediatric clinical trials: 1) if differences 
between adults and children exist in disease and its progression, which 
cannot be predicted from data obtained in adults, then pharmacokinetic 
and efficacy data must be generated in children to establish the effective 
dose and dosing regimen; 2) if the disease and its progression can be 
deemed comparable across populations (or are considered different in 
children, but can be predicted from data obtained in adults) and the same 
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clinical endpoints are used to assess response in adults and children, then 
bridging concepts can be applied. In this situation, collection of 
pharmacokinetic and eventually pharmacodynamic data in children in 
conjunction with evidence of exposure-response relationship (and 
consequently of the efficacious exposure levels) in adults should be 
sufficient to define the dose rationale for the paediatric population; 3) in 
some cases it is also conceivable that pathophysiological processes and 
pharmacological mechanisms are sufficiently understood to allow full 
extrapolation of efficacy findings from the adult population without the 
need to generate efficacy data in children. In these circumstances, 
pharmacokinetic data in children should be used in conjunction with 
evidence of exposure-response relationship (and consequently of the 
efficacious exposure levels) in adults to adjust for differences in drug 
disposition and formulation to be used in the paediatric population. In all 
three cases the quality of the data collected is crucial to establish not only 
the effect size of a treatment, but also to define the dose rationale. 

Whilst historically, evidence of different types of epileptic seizures and 
consequently differences in the diagnosis of epilepsy have been used justify 
the need for efficacy trials in children, limited efforts have been made to 
establish whether exposure-response relationships are indeed different 
between the two populations. Consequently, this has hampered the 
evaluation and potential implementation of bridging and extrapolation 
concepts. Using lamotrigine as a paradigm compound, we attempt to 
characterise exposure-response relationship of lamotrigine in adults and 
explore the feasibility of extrapolating efficacy based on the attainment and 
maintenance of target exposure. 

First, in Chapter 6, we propose the use of a population-wide approach, in 
which pharmacokinetic data from patients from 0.2 - 91 years of age are 
pooled together, for an integrated analysis of the effect of covariates on the 
pharmacokinetics of lamotrigine. From a methodological perspective, 
allometric concepts will be used to describe the effect of age- and size-
related differences on the pharmacokinetics of lamotrigine. If needed, a 
maturation function will be considered to describe changes in CL in infants 
and toddlers. Given the limited range of dose levels used for companion 
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drugs in combination therapy, drug-drug interactions will be parameterised 
as discrete covariates. Assuming a common target therapeutic range in 
adults and children, we illustrate how the covariate effects can be 
characterised and validated using a model-based approach. In addition to 
standard diagnostics and goodness-of-fit criteria, the predictive 
performance of the model will be evaluated using internal and external 
validation procedures, including numerical predictive checks, normalized 
prediction distribution error (NPDE) and nonparametric bootstrapping of 
the parameter estimates obtained with the final model. This is a critical 
aspect of the implementation of model-based dosing algorithms, as 
evidence of predictive performance has not been the focus of publications 
aimed primarily at the estimation of relevant model parameters. Metrics of 
predictive performance provide insight into other important validation 
criteria for the proposed dosing algorithms, such as sensitivity and 
specificity [20–22]. 

After having identified relevant covariate effects on the pharmacokinetics 
of lamotrigine, the next obvious step is the assessment of the exposure-
response relationships of lamotrigine. In Chapter 7, we attempt to evaluate 
innovative modelling approaches to describe drug effects on episodic 
seizure events and identify clinically plausible influential factors affecting 
response in adult patients. Given the possibility to explore 
parameterisations in which drug- and disease-specific properties can be 
assigned to distinct parameters, we also aim to assess whether different 
exposure-response relationships are required to predict treatment 
response in partial onset and primary generalised tonic-clonic seizures. To 
this purpose data from clinical trials of lamotrigine, in which 
pharmacokinetics and efficacy were assessed in adults, will be pooled and 
analysed. In spite of the limited number of doses used during the 
maintenance phase, data obtained during the titration phase will be 
included in the analysis. It will be assumed that drugs effects are not 
delayed relative to the onset of treatment, i.e., that difference in response 
during titration is driven primarily by changes in exposure. 

66



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 67PDF page: 67PDF page: 67PDF page: 67

From a methodological perspective, instead of evaluating treatment 
response based on a dichotomous or binary measure (e.g decrease > 50% 
seizure rate), we propose to use mathematical concepts that are 
appropriate for the description of count data, as is the case for seizure 
frequency, which are usually described as numbers of events per interval. 
Naturally, zero event/count is also a possibility, especially in the case of 
efficacy, where antiepileptic drugs suppress all seizures [23–25]. 
Mathematically, a useful place to start modelling event-count data is the 
Poisson distribution. Count events can also be described by hazard 
functions. Hazard describes the instantaneous rate of the events and 
determining whether and how this hazard varies with covariates, including 
treatment effect, is typically the aim of the data analysis. However, in the 
case of epileptic seizures it is likely that time affects the hazard, i.e., the 
hazard is not constant, a repeated time to event analysis may be required.  

The most important count model is the Poisson model, but the assumption 
of a Poisson distribution implies equality of the mean and the variance [26]. 
This property does not seem to apply to seizure events. Using a hierarchical 
modelling we attempt to address the so-called overdispersion phenomenon 
and estimate parameters that describe the event rate. Conceptually, the 
treatment effect is handled as a covariate effect, i.e., treatment alters the 
parameter(s) describing the probability and rate of events. 

Given the chronic, episodic nature of epileptic seizures, we will also attempt 
to explore alternative methodologies, which enable characterisation of the 
underlying pathophysiological process and its progression (i.e., period of 
ictal activity followed by non-ictal intervals). Such an episodic process may 
also be described by multi-state models. In medicine, and more specifically 
in epilepsy, the states can describe conditions like healthy (non-seizure), 
seizure, worsening or complication of disease. Markov models and in 
particular hidden Markov models allow us to link the disease states (hidden 
layer) to the observed clinical symptoms (open layer) by means of statistical 
distributions. Hence, each state may be assigned to a clinically defined 
endpoint and may well have a pathophysiological analogue. Hidden Markov 
models (HMMs) have been successfully applied to model chronically 
recurring infections, such as herpes [27], and episodic diseases such as 
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migraine [28–30]. If necessary, stochastic methods will also be evaluated to 
ensure accurate characterisation of intra-individual variability over the 
course of treatment. Ultimately, these techniques provide us with the 
appropriate tools to assess whether differences in exposure only explain 
variability in response, or whether there are real differences in the 
underlying exposure-response relationship due to the different seizure 
types. 

Lastly, in Chapter 8, we will illustrate the application of modelling and 
simulation concepts for the evaluation of treatment response and possible 
extrapolation of the dose from adults to infants and toddlers [31]. Data 
from children aged 1-24 months with partial type seizures receiving 
lamotrigine as adjuvant therapy will be used in this analysis. Based on the 
parameters describing the underlying exposure-response relationship and 
on covariate effects known to affect drug disposition we will apply clinical 
trial simulations to define the dose rationale for this population and explore 
opportunities to optimise prospective clinical trials in this population [8,32]. 
Of interest in this group of patients is the possibility to establish whether 
potential (biologically plausible) differences in disease alter the underlying 
exposure-response relationship or whether other factors explain 
differences in the clinical response phenotype, such as baseline seizure 
frequency, placebo effect or prior treatment failure. Our final goal is to 
show that model-based dosing algorithms can also be used as a design tool 
during drug development, supporting clinical pharmacology efforts such as 
bridging and extrapolation studies [33–35]. 

The last section of this thesis provides an integral summary of the findings 
and conclusions from the investigations presented throughout the previous 
chapters. In Chapter 9, we focus on the consequences of inaccurate dose 
selection and the implications of model-based dosing algorithms to guide 
the dose rationale for paediatric patients, In this concluding chapter, we 
revisit the concept of personalised medicine and attempt to shed light on 
the need to assess exposure-response relationships during the evaluation 
of efficacy and safety of novel molecules. We make clear that the current 
clinical paradigm (in which evidence generation is based solely on 
statistically significant separation from placebo or comparator arm) is 
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inefficient for the personalisation of treatment, and in particular for 
establishing the dose rationale for children. In addition, concrete 
recommendations are made for improving protocol design and data 
analysis of paediatric trials with antiepileptic drugs in which 
pharmacokinetics and efficacy are evaluated. We acknowledge that many 
methodological aspects remain to be explored, which relate to the 
heterogeneity of the disease in adults and children. This is presented along 
with the limitations imposed by the lack of intermediate measures or 
markers of pharmacology, which restrict the opportunities for 
characterising antiepileptic activity in humans before embarking into 
expensive and often complex clinical trials.  

We anticipate that advancement of pharmacotherapy with antiepileptic 
drugs will require a different regulatory framework and a shift in the 
current clinical reasoning, with further attention to the so-called level of 
evidence needed for the assessment of pharmacokinetics, safety and 
efficacy and how model-based inferential methods can be applied to the 
analysis and interpretation of clinical findings. 
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CHAPTER 3 

PHARMACOKINETIC AND 
PHARMACODYNAMIC MODELS FOR 

ANTI-EPILEPTIC DRUGS IN  
ADULTS, CHILDREN, AND NEONATES 
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Pharmacokinetic and pharmacodynamic 
models for anti-epileptic drugs in 

 adults, children and neonates 

Sven C. van Dijkman, Ricardo Alvarez-Jimenez, Celine H. Lemoine, 
Francesco Bellanti, Meindert Danhof, Oscar E. Della Pasqua 

Submitted for publication to Clinical Pharmacokinetics 

SUMMARY 

There is no general consensus regarding the optimal dosing strategies for anti-
epileptic drugs (AEDs). Empirical guidelines have been developed to guide 
physicians, but the use of AEDs remains to be improved, especially in young 
children. On the other hand, numerous pharmacokinetic (PK) and 
pharmacodynamic (PD) models for AEDs have been published, which could be used 
as basis for more efficient personalised dosing algorithms. In this systematic review 
we aim to provide a comprehensive overview of the PK and PKPD models for the 
most commonly used AEDs. A PubMED search was performed to identify PK and 
PKPD models describing systemic exposure and response to carbamazepine, 
clonazepam, gabapentin, lamotrigine, levetiracetam, oxcarbazepine (and 
metabolite MHD), phenobarbital, phenytoin, topiramate, valproic acid, and 
zonisamide. Searches resulted in 1827 articles, of which 173 contained models for 
review. Data were extracted and summarised into tables including the 
demographics, model parameter values, and covariate factors. Model codes were 
subsequently re-created and several simulation scenarios were performed to 
illustrate the implementation of dosing algorithms, taking into account clinically 
relevant covariates. Our findings show that despite the changes in the paediatric 
legislation, the use of PK modelling remains limited in young children and 
neonates. Most strikingly is the absence of data on the PKPD relationships of AEDs 
in patients. Whereas optimal dosing is not a requirement for the approval of 
medicines, the lack of PKPD models appears to perpetuate trial and error in clinical 
practice, hindering the identification of suitable dosing algorithms for patients with 
epilepsy. 
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Key Points 

• Given that the PKPD relationships of most anti-epileptic drugs has
not been characterised, identification of improved dosing
algorithms remains challenging for most patients with epilepsy.

• Despite the evidence of covariate effects on the pharmacokinetics
of anti-epileptic drugs, approved doses and dosing regimens have
not been optimised to take such covariate effects into account.

• The lack of PKPD models appears to perpetuate trial and error in
clinical practice, especially in young children (<2 years) and
neonates.

1. Introduction

Seizure control forms the basis for the treatment of epilepsy, although not 
everyone with the condition will need to be treated. For a large number of 
patients, treatment of epileptic seizures often requires long-term 
pharmacotherapy with anti-epileptic drugs (AEDs). However, due to our 
limited ability to predict disease progression and poor understanding of 
individual exposure-response relationships, clinical guidelines rely upon the 
use of empirical titration to response, i.e., a typical patient is started at a 
safe low dose that is gradually increased until the seizure reduction is 
achieved or dose-limiting adverse events occur. Despite the use of an 
apparently cautious approach, titration and tapering procedures render it 
difficult to identify optimal doses, as treatment choices do not fully account 
for the underlying variability in pharmacokinetics (PK), pharmacodynamics 
(PD), and pathophysiology [1]. In fact, variability in the exposure-response 
relationship results in some patients experiencing side-effects already at 
sub-therapeutic concentrations, while some do not respond to treatment 
even at supra-therapeutic concentrations. This situation has led to the 
perception that therapeutic drug monitoring (TDM) may have limited value 
and consequently clinicians should better closely follow the observed 
response [2]. TDM use has been further discouraged by the international 
league against epilepsy (ILAE) except for a few specific circumstances [3]. 
Their suggestion is that TDM has relevance as a marker of the AED 
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concentration range at which an individual patient has achieved seizure 
freedom, so that when for some reason (e.g. aging, pregnancy, 
polypharmacy), changes in exposure occur, dose adjustments can be made 
to ensure attainment and maintenance of previously efficacious drug levels. 
Consequently, current pharmacotherapy guidelines do not provide 
clinicians with any other patient specific recommendations than the 
approved dose range for which efficacy has been demonstrated in clinical 
trials. As such, it remains impossible to prospectively select doses taking 
into account intrinsic (e.g., tolerance, co-morbidities) and extrinsic (e.g. 
drug-drug interactions) factors known to affect the exposure and response 
to AEDs. This situation also prevents better use of AEDs as prophylactic 
therapy in acute conditions, such as head trauma, or in febrile seizures in 
neonates. 

Clearly, the importance of dosing algorithms, rather than generic dosing 
recommendations cannot be overlooked in epilepsy, as concepts such as 
personalised medicine evolve into daily clinical practice. A number of 
examples are available across different therapeutic areas, which illustrate 
how dosing algorithms have been implemented to optimise treatment, 
thereby increasing efficacy and reducing the risk of adverse events in the 
target patient population [4–7]. Similar concerns regarding the start and 
maintenance dose of AEDs also apply to the onset of treatment with drugs 
known to have a narrow therapeutic window or in cases where delayed the 
overall treatment response is delayed relatively to the start of the 
therapeutic intervention. Of note is the role of covariate effects, particularly 
among those individuals who are at the extreme of the covariate 
distribution, such as in the case of age (e.g. new-borns and elderly), organ 
function or phenotype (e.g. poor and fast metabolisers). As indicated 
above, the current dosing recommendations for AEDs do not incorporate 
pharmacokinetic or pharmacodynamic factors that could affect AED-dose 
requirements. Knowledge of the extent to which these factors affect 
treatment response could help in the prediction of personalised and 
possibly individualized loading and maintenance doses and dosing 
regimens. In this context, model-based algorithms may offer a unique 
opportunity for the advancement of pharmacotherapy with AEDs. Some of 
the key principles underpinning the use of such algorithms have been 
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recently described by de Castro et al. [4], who show the implementation of 
a model-based dosing algorithm for busulfan in patients undergoing bone 
marrow transplantation. Similarly, various initiatives have been taking place 
to establish the predictive performance of different dosing algorithms for 
anticoagulants [8]. Moreover, in paediatric oncology, the identification of 
covariate effects on the pharmacokinetics of doxorubicin has raised 
awareness of clinical community and resulted in efforts that ensure 
prospective validation of proposed dosing algorithms, leading to a 
regulatory process and subsequent label changes [9]. The implementation 
of such principles in clinical practice is further highlighted by individualised 
treatment strategies which integrate Bayesian inference and control theory 
(e.g. the use of TDM for robust estimation of patient-specific parameters) 
with in-silico approaches such as model-based simulations [10]. Such efforts 
remain elusive in the field of epilepsy. 

Here, we aim to provide a comprehensive overview of the published PK and 
PKPD models for first and second line AEDs. Focus will be given to the 
model parameterisation and evidence of predictive performance for 
subsequent application in the evaluation of personalised or individualised 
therapy. Those who are unfamiliar with the principles of pharmacokinetic 
and pharmacokinetic-pharmacodynamic modelling are invited to read some 
key references, in which clinical applications and impact of model-based 
approaches are outlined [11–14]. It should become evident that one of the 
main reasons for the predictive performance of model-based algorithms is 
that PK, PKPD, and disease models do not only establish a defined 
correlation between dose, exposure, and response. In addition to the 
underlying parameter distributions, the hierarchical structure of population 
models also allows variability to be characterised both within and between 
patients. The availability of such a framework for AEDs offers the 
opportunity to personalise treatment a-priori, i.e. to select dosing regimens 
based on covariates before the start of treatment. It also enables 
individualisation of treatment by incorporating patient specific data on 
exposure and response. 
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2. Methods

According to Meyer et al. [15] the most commonly used AEDs for long-term 
seizure control are: carbamazepine (CBZ), clonazepam (CLNZ), ethosuximide 
(ETHS), gabapentin (GBP) and its prodrug gabapentin enacarbil (GBP-E), 
lamotrigine (LMT), levetiracetam (LVT), oxcarbazepine (OXC) and its main 
pharmacologically active metabolite monohydroxy derivative (MHD), 
phenytoin (PHT), topiramate (TPM), valproic acid or valproate (VPA) and 
zonisamide (ZNS). Given the scope of our review drugs prescribed solely for 
the treatment of status epilepticus (i.e., diazepam and lorazepam) were 
excluded from this list. Furthermore, phenobarbital (PHB) was included, as 
it is the first line treatment in neonatal epilepsy and it is still considered a 
first-line treatment for partial and generalized tonic–clonic seizures in 
developing countries by the World Health Organization [16],[17]. 
Based on this initial AED selection, a structured search strategy was 
implemented in PubMED to identify PK and PKPD modelling details. Search 
criteria included preselected MESH terms, software tool and compound 
name. Searches were performed with search string: (((PK OR PKPD OR 
PK/PD OR PK-PD) AND (model OR population)) OR (NONMEM OR 
MONOLIX)) AND [DRUG NAME]. An exception was made for valproic acid, 
where [DRUG NAME] was substituted with ((valproic acid) OR valproate). 
Searches were restricted to clinical data and compartmental modelling 
approaches, where available. Publications including detailed data analysis 
and model structure were selected as the source for subsequent data 
abstraction. Any gaps regarding drug disposition characteristics or 
pharmacological activity were complemented where necessary, by 
(parameter) information from additional publications on the 
pharmacokinetics and pharmacodynamics of each compound. Note that the 
PubMED search engine automatically includes pharmacokinetics when 
searching for “PK”, pharmacodynamics when searching for “PD”, etc. Our 
initial search resulted in a total of 1827 articles, from which 173 articles 
were found to include PK or PKPD modelling details (Fig.  1, Table 1). As no 
relevant articles were found for ethosuximide, this compound was excluded 
from subsequent steps. 
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Despite evidence of age-related differences in the prevalence of seizure 
types, and the availability of recommended classification of paediatric 
patients based on age groups [18,19], data were abstracted and been split 
where possible into three categories, namely adults (> 16 years), infants, 
children and adolescents (paediatric patients, age 1 month - 16 years), and 
pre-term and term new-borns (age 0 – 1 month). This selection takes into 
account the patient population included in the original analysis reported in 
the publications, as well as age groups for which data was not available. 
Relevant model parameters and covariate factors were summarised for 
each population, including a description of their impact on dose and dosing 
regimen. Given the objective of this review, i.e., the identification of 
opportunities for the implementation of model-based dosing algorithms, 
data were presented in a structured, hierarchical manner, namely 
pathophysiology, pharmacodynamics, and pharmacokinetics. This was 
complemented by the inclusion of the main, probable and possible 
pharmacological targets for each AED, as proposed by Kwan et al. [20], and 
by therapeutic ranges reported by the ILAE [3]. In addition to the summary 
findings in the results section, a full tabular overview of the available PK and 
PKPD models was included in as supplemental material. Each file contains 
details on the modelling approach and relevant parameter values, including 
model structure, the relevant code syntax for prospective use of the model, 
and the internal and/or external validation, where available.  
 

 
Fig.  1 Diagram of the search strategy including MESH terms used to systematically 
derive the literature included in this review. *Selection criteria were the 
description of a human PK, PD or PKPD model in the article. 
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Table 1 Literature search results and overview of the modelling approach and 
parameter values for each drug. Each supplemental file includes model structure, 
the relevant code syntax for prospective use of the model, and the internal and/or 
external validation, where available. An additional supplement is provided in which 
details of the methodology are outlined. Readers are invited to read this file to 
ensure appropriate interpretation of the modelling results in each supplemental 
file. Supplemental files may be downloaded from www.AEDapt.org/PKPDmod.zip 

Drug Number of 
ar cles† 

No. of patients included 
for modelling purposes‡ 

Carbamazepine (CBZ) 29/358 5656
Clonazepam (CLNZ) 5/63 543
Ethosuximide 0/18 -
Gabapentin (GBP) 5/87 2051
Lamotrigine (LMT) 22/112 4407
Levetiracetam (LVT) 9/68 2841
Oxcarbazepine (OXC) 6/47 2020
Phenobarbital (PHB) 16/311 1158
Phenytoin (PHT) 37/361 3612
Topiramate (TPM) 11/65 2347
Valproic Acid (VPA) 30/313 5609
Zonisamide (ZNS) 3/24 342
Total 173/1827 30586
† Number of selected ar cles/number of ar cles found using the search criterion, 
based on searches on the 26th of July 2016. ‡ The utmost care was taken to make 
sure data that was used in multiple studies was not counted multiple times; 
however, this cannot be guaranteed due to the number of papers and a lack of 
reporting in some of the original papers. 
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3. Results

3.1 Carbamazepine 

General (adult) pharmacology: Carbamazepine (CBZ) is a first-generation 
AED indicated for partial and tonic-clonic seizures. Its principal target is the 
voltage-gated Na+ channel. 

PKPD relationships: No data available in the published literature other than 
evidence of efficacy in clinical trials at the approved doses [20]. No PKPD 
model has been identified for CBZ that provides evidence of the 
relationship between exposure and response. To date, only one attempt 
has been made to correlate peak concentrations (Cmax) with the 
occurrence of typical side effects such as dizziness, headaches, ataxia, 
nausea, etc. [21]. Its therapeutic concentration window is 4-12 mg/L [3] 

Pharmacokinetics in adults: There has been controversy regarding the 
development of auto-induction of its metabolism [22–27]. While some 
reports suggest a negative correlation between dose and CBZ 
concentration/dose ratios [28–30] or a positive correlation between dose 
and CL values derived using such ratios [31,32], which are both indicators of 
auto induction, other publications do not seem to support that finding 
[21,33,34]. CBZ metabolism is thought to be induced within 20 to 30 days 
after the start of treatment or when co-administered with other drugs and 
enzyme inducers [23,32,35–37] and clearance is expected to increase until 
it reaches saturation [37]. A pharmacokinetic model describing metabolic 
induction indicated that differences in metabolic activity are detectable up 
to 2 weeks after the treatment is stopped [38].  

PHB, PHT and VPA are usually considered to influence CBZ clearance to a 
clinically relevant degree, although the magnitude of the effect of such 
interactions varies between models [34,36,39–42]. Given the differences in 
model building between studies, it is difficult to determine whether the 
magnitude of the effect is really different. In the few cases in which such 
the magnitude of drug-drug interactions was investigated, no significant 
differences were found [34,41]. In addition, it is unclear whether 
differences in clearance between ethnicities exist. In most studies PK has 
only been assessed on one ethnicity at a time.  
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Pharmacokinetics in children: Many publications have evaluated the PK of 
CBZ in cohorts including adults and children [39,41–45], and children only 
[31,32,40,46]. Although each model took into account the impact of age 
and body weight, this was implemented differently in each investigation, 
which does not allow a direct comparison of the results. While the impact 
of auto-induction has not been universally included in models for adults, 
this does seem to be the case in most models including paediatric patients. 
Moreover, PK drug-drug interactions have been described across different 
age ranges. Bondareva et al. [47] showed that Bayesian dose adjustments 
based on TDM samples can dramatically improve dosing regimens by 
reaching drug concentrations within the therapeutic range, even though it 
is not yet clear whether similar therapeutic ranges should be used in 
children as in adults. Similarly, the apparent lack of evidence for ethnic 
differences in PK may also apply to children, but there is no data to support 
this assumption. 

Pharmacokinetics in neonates: Tulloch et al. reported that “determining an 
‘ideal’ carbamazepine dose for neonates is difficult” [48]. Their review on 
the PK of AEDs in neonates shows how sparse is the information on the 
ontogeny of metabolic pathways of CBZ and many AEDs. There has been an 
attempted to describe the maturation of CBZ clearance in neonates [49], 
but the model could not adequately predict concentrations in new patients, 
possibly due to the lack of covariate effects and small sample size available 
for the development of the model. A case report has mentioned the 
possibility to use CBZ in neonatology with good results [50], but the 
incidence of liver related toxicity [51,52] calls for more evidence before CBZ 
can be used effectively and safely in neonates. 

3.2 Clonazepam 

General (adult) pharmacology: Clonazepam (CLNZ) is an anxiolytic 
benzodiazepine derivative and has been used as a first-generation AED for 
myoclonic epilepsy, Lennox-Gastaut syndrome, infantile spasms and status 
epilepticus. Its principal target is the GABAA receptor, and its mechanism of 
action is similar to other benzodiazepines [20]. Chronic administration of 
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CLNZ often results in the development of tolerance, probably due to a 
reduction in binding sites by downregulation of GABA receptors [53]. This 
tolerance occurs in around 30% of patients, with an onset between 1-6 
months after treatment initiation. Due to the development of tolerance, 
and the relatively strong adverse effects such as dysphoria and drowsiness 
that can occur even when exposures are maintained within the therapeutic 
range, CLNZ is only indicated for long term treatment in difficult-to-manage 
cases. 

PKPD relationships: No data available in the published literature other than 
the evidence of efficacy in clinical trials at the approved doses. No PKPD 
models exist for CLNZ that provides evidence of the relationship between 
exposure and response. The therapeutic range for its antiepileptic effects is 
believed to lie between 0.02-0.07 mg/L [3], This range must be interpreted 
with caution as linking high serum concentrations of CLNZ to adverse 
effects has proven difficult.  

Pharmacokinetics in adults: The pharmacokinetics and the interactions 
with other anti-epileptic drugs have been reported long ago in the 1980s 
[54,55]. However, the first models describing the PK of clonazepam in detail 
after administration of clonazepam as monotherapy or in combination with 
other AED were published much later [56–58]. It was shown that CLNZ 
clearance increased by 22% and 14%, when given in combination with CBZ 
and VPA respectively. A decrease in CLNZ exposure was reported in 
combination with phenobarbitone, presumably as a result of increased 
clearance, but the magnitude of change in clearance was not calculated. 
Inspection of the reported results suggest an increase in CL of up to 50% 
[59]. 

CLNZ clearance is dose-independent within the therapeutic concentration 
range, but shows a nonlinear relationship with body weight, which needs to 
be taken into consideration when determining individual doses. By contrast, 
the volume of distribution was determined to be linearly related to body 
weight [60]. In addition, as its absorption is highly variable, high peak 
concentrations may occur which result in adverse events in some patients. 
In this regard, a physiologically-based PK model was able to describe the 
absorption profile and thus might be useful to prevent toxic CLNZ levels 
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[61].. Given the aforementioned characteristics, CLNZ doses in mg/kg/day 
have been found to correlate well with steady-state concentrations. 
Consequently, prediction of maintenance doses based on a target steady-
state concentration is possible and to a reasonable degree could be derived 
even without modelling. The challenge remains the variable absorption 
profile, which requires extended-release formulations or the 
physiologically-based models to prevent toxic levels. However, the available 
models do not fully account for the nonlinear relationship between CLNZ CL 
and body weight, making predictions eventually biased in children. 

Pharmacokinetics in children: No specific paediatric models are available, 
despite the fact that models developed by Yukawa and collaborators 
included data that included children even younger than 1 year of age [56–
58]. In addition, data shows that serum concentrations in children were 
found to correlate linearly with the dose, which points to (near-) dose 
proportionality in paediatric patients. A dose between 0.1-0.2 mg/kg 
usually should result in therapeutic concentrations, although as mentioned 
before, this does not eliminate the risk of adverse events. This target range 
contrasts with the doses proposed by Dahlin et al., who showed treatment 
response and less adverse events with an even lower dose of CLNZ [62]. 

Pharmacokinetics in neonates: There is very limited PK data in the neonatal 
population. As in older children, CLNZ clearance in neonates seems to be 
affected by body weight., even though patients with a post-natal age lower 
than 7 days exhibited a reduction in clearance of 50-70% compared to older 
infants [63]. The tested dose range of CLNZ seemed equally effective in this 
population as in older patients, despite evidence of patients being 
refractory the first line medication for neonatal seizures, i.e., phenobarbital. 
In absence of any other investigation in the neonatal population, dose and 
dosing regimens are currently based on the recommendations of 0.1 mg/kg 
by André et al. [63]. 
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3.3 Gabapentin 

General (adult) pharmacology: Gabapentin (GBP) is a second-generation 
AED indicated for partial seizures. Its mechanism of action is not fully 
understood, but is antiepileptic effect is presumably related to the 
inhibition of HVA Ca2+ channels. In addition, interactions at voltage-gated 
Na+ channels and an effect on GABA turnover are believed to contribute to 
the therapeutic efficacy [20]. PKPD relationships: No detailed modelling 
data are available in the published literature other than the evidence of 
efficacy in clinical trials at the approved doses. To date, there is only one 
PKPD model has based on hidden Markov Poisson function that correlates 
exposure to GBP (expressed in terms of total dose) with reduction in seizure 
frequency [64], and another one describing the probability of side effects 
(i.e., dizziness and somnolence) associated with systemic exposure (i.e., 
AUCs). This model shows that values higher than 200 mg/L h 
(corresponding to a Css of roughly 8 mg/L) result in a 10% and 5% 
probability of dizziness and somnolence, respectively [65]. 

A wide therapeutic range has been identified for GBP, ranging between 2-
20 mg/L [3]. Despite this wide interval, the incidence of adverse events is 
low. In fact, the absolute maximum tolerated dose has not been identified. 
One case was reported where the ingestion of 49 grams of GBP resulted in 
supra-therapeutic GBP plasma level of 62 g/ml approximately 8 hours 
after ingestion, which was associated with only mild side effects (dizziness, 
lethargy) and no other clinically relevant abnormalities [66]., 

Pharmacokinetics in adults: The PK of GBP after intravenous administration 
may be best described by a three-compartment model with linear 
elimination [67]. By contrast, oral GBP PK has been described most often by 
a one-compartment model with first-order absorption and elimination 
[65,68,69], of which only one [68] included the nonlinear bioavailability 
relative to increasing dose levels [70]. The nonlinearity in the oral 
absorption of GBP is explained by a saturation of the l-amino acid 
transporter in the gut. Some models take such saturation into account, 
allowing calculation of the percentage of the dose that will actually be 
absorbed [68,70], Fig.  2 shows the relationship between the daily dose and 
absorbed fraction. From this correlation, we can assume that doses over 
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2000 mg/day do not result in significantly higher systemic exposure. GBP 
protein binding in plasma is very low and 95% of the circulating levels are 
excreted renally, resulting in no known PK drug-drug interactions with other 
AEDs during polytherapy. Nevertheless, potential interactions with other 
renally-cleared AEDs, such as levetiracetam and vigabatrin, may exist and 
dose adjustments should probably be considered in case of renal 
insufficiency or failure [71]. Because of its renal elimination route, GBP 
clearance is linearly correlated with creatinine clearance. Body weight 
influences both clearance and volume of distribution, either directly [69,72] 
or indirectly according to nonlinear relationships (allometry) or based on 
estimates of BSA and creatinine clearance [68]. Factors such as 
transporters, genotype or ethnic background do not seem to influence the 
disposition of GBP. 

Fig.  2 Relationship between administered gabapentin dose (x-axis both panels) and 
the absorbed fraction (y-axis panel A) or total absorbed amount (y-axis panel B). 
Profiles are simulations based on the meta-analysis of Chen [70]. 

Pharmacokinetics in children: PK models for children have identified body 
weight as the most important covariate on the clearance and volume of 
distribution of GBP [69,73,74]. In addition, clinically relevant differences in 
clearance have been found between children from different ethnic groups 
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[69], which suggests the need for different dose adjustments across ethnic 
groups, even though no such differences have been reported for adult 
patients. 

Pharmacokinetics in neonates: There is very limited PK data in the neonatal 
population. The use of GBP is not well documented in neonates, which can 
be explained by the fact that there are few indications for the use of this 
drug in this patient group. One case report has been published where a 
simple non-compartmental analysis of GBP at steady state concentrations 
was used to predict the dosing regimen for a single neonate with spinal 
issues resulting from drug abuse by the mother. Their goal was to alleviate 
pain while minimising the adverse effects such as sedation. The authors 
proposed a dose of 7 mg/kg once daily, which was predicted to result in a 
plasma concentration of 2 mg/L, a level which is deemed to be efficacious 
for pain relief in infants [75]. 

3.4 Lamotrigine 

General (adult) pharmacology: Lamotrigine (LMT) is a second-generation 
AED indicated for treatment of partial and generalised seizures. The 
primary molecular target of lamotrigine is the voltage-gated Na+ channel, 
with a probable activity on HVA Ca2+ channels [20].  

PKPD relationships: No data available in the published literature other than 
the evidence of efficacy in clinical trials at the approved doses. A PKPD 
model has been developed to assess the effect of LMT on QT interval 
prolongation, but at therapeutic doses no QT-prolonging effects are 
observed [76]. Although the originally reported therapeutic exposure range 
was 0.9- 2.3 mg/L [77], these values were later broadened to 0.9-3 mg/L 
[78] and it currently considered to lie between 2.5-15 mg/L [3]. 

Pharmacokinetics in adults: LMT is absorbed nearly completely, but its rate 
of absorption varies widely and is dependent on the formulation. Its volume 
of distribution has been normalised body weight, with values of 
approximately 1.5-2 L/kg [33,79,80]. However, no models have showed 
evidence of body weight as a covariate on volume of distribution [81–86]. 
LMT is eliminated by glucuronidation (both UGT-1A4 and UGT-2B7), with 
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genotype affecting its elimination rate [82]. Elimination is described by a 
first-order process with most authors reporting clearance values of 2-2.5 
L/kg/h. Many drug-drug interactions are known to affect clearance, most 
notably CBZ (+45%), PHB (+40 to +60%), PHT (+60 to +120%), VPA (-60%), 
and oral contraceptives (+25%). The manner in which the co-medication 
affects LMT clearance seems to suggest that they can cancel each other out, 
e.g. the addition of both PHB and VPA to the LMT regimen may result in no 
net change in CL. In addition, ethnic differences in LMT clearance were 
found to have relatively small effect on systemic exposure [83]. 

Pharmacokinetics in children: Various models have been published in 
which the PK of LMT has been characterised in children [79,87–91], but 
none of these were in children younger than 2 years of age. Interestingly, 
non-modelling literature describes a relatively higher clearance in this same 
group (when adjusted for weight) compared to adults. Therefore, no 
function is available that describes changes in drug disposition during the 
first few years of life. Currently, recommended dose adjustments are based 
on empirical evidence, with increases between 35%-125% in the dose in 
mg/kg/day yielding similar exposure as in older children and adults [92]. 

Pharmacokinetics in neonates: There is very limited PK data in the neonatal 
population. No models are available for LMT in neonates. It should be 
highlighted that thanks to its favourable safety profile, LMT is also used 
during pregnancy. Data from non-compartmental analysis shows that 
during pregnancy, LMT maternal clearance is significantly increased 
(approximately 186%) and returns to regular levels shortly after delivery 
[93]. Given the evidence that LMT has been found to be safe and well 
tolerated by the developing foetus and new-borns [94], this drug represents 
a realistic option in neonatology. In infants younger than 4 weeks, therapy 
has been successfully initiated with a dose of 2 mg/kg per day with a dose 
increase every week until a maximum dose of 10 mg/kg per day was 
reached. Good response rates were achieved in this small sample of 
children [95], with many reports describing very few side-effects and serum 
concentrations within the normal therapeutic range for neonates who are 
exposed to LMT during lactation [96–100]. 
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3.5 Levetiracetam 

General (adult) pharmacology: Levetiracetam (LVT) is a second-generation 
AED indicated for partial and generalised seizures, and its principal 
molecular target is the synaptic vesicle protein 2A, while possible additional 
targets include HVA Ca2+ channels and GABAa receptors [20].  

PKPD relationships: No detailed modelling data are available in the 
published literature other than the evidence of efficacy in clinical trials at 
the approved doses. Only one model has been developed by which the 
dose-response relationship was described for LVT [101]. Based on this 
model, a daily dose of 1408 mg was found to be 50% efficacious, indicating 
that this dose yields half the maximum effect of 69% seizure frequency 
reduction [102] (Fig.  3). The LVT therapeutic range lies between 12-46 
mg/L [3]. 

Fig.  3 Relationship between administered LVT dose (x-axis) and effect as 
percentage of change in seizure frequency compared to baseline (y-axis). Red line: 
median effect; blue dashed lines: 95% prediction interval of effect. Simulations 
based on Snoeck et al. [101] 

Pharmacokinetics in adults: The PK of LVT has been described by a one 
compartment model with first-order absorption and elimination, with 
weight and age as correlated with clearance and volume of distribution 
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[102]. According to this model, LVT doses of between 1000-4000 mg/day to 
an adult of 70 kg should result in a typical average Css well within the LVT 
therapeutic window of 12-46 mg/L.  

LVT is minimally metabolised and cleared primarily by renal processes. This 
leads to very limited potential for PK drug-drug interactions and allows 
clinicians to use LVT in combination with other AEDs without the need for 
adjustments in the dose regimen of either drug, even though PD 
interactions cannot be excluded (which may impose dose adjustments). The 
covariate found to most affect the clearance and volume of distribution of 
LVT is weight, although the weight-adjusted clearance differs greatly 
between studies [102–104]. In some cases creatinine clearance has also 
been used as predictor of LVT clearance [103,104]. The use of such models 
may be limited in very young children due to the nonlinear correlation 
between creatinine clearance, age and renal function [105]. 

Pharmacokinetics in children: Quite a few models are available that 
describe the PK of LVT in children [102,106–108]. Similarly to adults, weight 
was found to be the most important predictor of LVT clearance in children. 
Reported parameter values from different publications show comparable 
results, indicating that body weight is a strong covariate and as such can be 
used to optimize dosing regimens [107,108]. In contrast to the previous 
drugs, differences in clearance seem to be associated with ethnic 
differences [106], with very different values being reported for clearance in 
Chinese children as compared to Caucasians. 

Pharmacokinetics in neonates: There is very limited PK data in the neonatal 
population. One model has been identified, which describes the maturation 
of LVT clearance during the first week after birth, with CL increase from 0.7 
ml/min/kg on the day of birth to 1.33 ml/min/kg seven days thereafter 
[109]. On the other hand, another model has been developed in which 
clearance does not vary over time, with values of 1.21 ml/min/kg over the 
whole postnatal age of 0-32 days [110]. 

93



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 94PDF page: 94PDF page: 94PDF page: 94

3.6 Oxcarbazepine 

General (adult) pharmacology: Oxcarbazepine (OXC) is a second-
generation AED indicated for partial and generalised tonic-clonic seizures. 
Its principal target is considered to be voltage-gated Na+ channels [20]. In 
contrast to other AEDs, the active moiety responsible for the antiepileptic 
effects of OXC is its main metabolite, mono-hydroxycarbazepine (MHD).  

PKPD relationships: No detailed modelling data are available in the 
published literature other than the evidence of efficacy in clinical trials at 
the approved doses. The therapeutic window of MHD is considered to be 3-
35 mg/L [3]. 

Pharmacokinetics in adults: As OXC is rapidly and almost entirely 
(approximately 95%) metabolised to MHD after oral administration, MHD 
concentrations can be modelled directly, using a one compartment model 
with first-order absorption and elimination, without including intermediate 
OXC concentrations. In addition, MHD and its metabolites show chiral 
properties with stereospecific metabolism. A multi-compartmental model 
has been recently developed describing the disposition of r S-MHD and R-
MHD along with two major metabolites (S-MHD and R-MHD) [111]. MHD 
clearance has been correlated with age (peaking around 32 years [33]), 
gender, and weight. In addition, CYP450 enzyme-inducing drugs (e.g. CBZ, 
PHB, PHT) have been found to increase MHD clearance by roughly 30%, 
leading to dose adjustments [112–114]. MHD clearance usually lies 
between 2-2.5 L/h for a typical 70 kg adult. Whilst no clear differences have 
been observed between ethnic groups, it should be highlight that the 
number of patients from different ethnic groups may be limited to 
investigate such differences [114]. 

Pharmacokinetics in children: Most available PK models have included 
some data from different groups in the paediatric population. 
Consequently, the covariate effects described above for adults still holds 
true in this population. One exception, however, is a model including 
patients across the age range of 2 months to 17 years of age, in which 
clearance and volume of distribution were correlated with body surface 
area and height, respectively [114]. The relevance of these covariates was 
evaluated using a population of toddlers [115]. 
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Pharmacokinetics in neonates: There is very limited PK data in the neonatal 
population. However, Bülau et al. showed that OXC and its metabolite 10-
hydroxy-carbazepine pass the placenta barrier. Moreover, these authors 
showed that MHD is also transferred to a newborn through breastfeeding 
by mothers using OXC [116]. Based on the concentrations observed in this 
single neonate, a half-life of f 17 hours has been estimated for MHD, which 
corresponds to the values observed in older patients. 

 

3.7 Phenobarbital 

General (adult) pharmacology: Phenobarbital (PHB) is a first-generation 
AED indicated for partial and generalised seizures, neonatal seizures and 
status epilepticus. The principle target of phenobarbital is believed to be 
the GABA  receptor, with HVA Ca2+ channels and glutamate receptors as 
possible secondary targets [20]. Although it is approved in the 
aforementioned epileptic types, it is most prominently used in the 
treatment of neonatal seizures.  

PKPD relationships: No detailed data are available in the published 
literature regarding the exposure-relationships of PHB other than the 
evidence of efficacy in clinical trials at the approved doses. One PKPD model 
has been developed which describes the correlation between PHB plasma 
concentrations with EEG signals. As this model was built in conjunction with 
pharmacokinetic modelling of data exclusively in neonates, details are 
provided below with the pharmacokinetics in neonates. The therapeutic 
window for PHB is considered to lie between 10-40 mg/L [3]. 

Pharmacokinetics in adults: PHB has a near-complete bioavailability (>95%) 
with a fast absorption reaching maximum concentrations between 0.5 and 
4 hours [117]. In addition, PHB is eliminated mostly hepatically, with a 
minor contribution from renal processes. Its PK is described with a one 
compartment model with first order absorption and elimination. Its volume 
of distribution is typically directly related to body weight in a linear fashion, 
whereas clearance is most often non-linearly (allometrically) related to 
body weight, with an exponent that can range from 0.21-0.45. Drug-drug 
interactions have been described with CBZ, PHT, and VPA, all of which 
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decrease PHB CL by up to 47% [118–120]. Furthermore, CYP2C9 
polymorphism leads to significant metabolic differences between slow and 
fast metabolisers [119,121,122]. This could also indirectly explain 
differences in PHB CL between ethnic groups, as the prevalence of different 
CYP2C9 phenotypes varies across different populations. Yet, no obvious 
differences have been detected for typical population estimates for 
clearance based on Asian and Caucasian patients. 

Pharmacokinetics in children: Similar to adults, PHB PK in children can be 
described using a one compartment model with first order absorption and 
elimination. Volume of distribution in this population is also directly related 
to body weight, whereas the nonlinear relationship between CL and body 
weight is described by a larger exponent than the one estimated in adults 
(up to approximately 1.9), possibly due ontogeny of hepatic enzymes in 
very young children. Given the similarity of adult and paediatric models 
[118,119], the impact of CYP2C9 polymorphism, as well as the interaction 
with CBZ, PHT, and VPA can be considered to lead to effects of similar 
magnitude as in adults. 

Pharmacokinetics in neonates: There is limited PK data in the neonatal 
population, but different PK models have been developed with the 
available data. Among them, a one compartment PK model has been 
developed in conjunction with allometry and a maturation function to 
describe the effect of body weight and ontogeny on clearance of PHB. On 
the other hand Yukawa et al. [123] developed a two-compartment model 
and first order elimination., in which total body weight was a covariate of 
the apparent volume of distribution and the post-natal age was correlated 
with the clearance of PHB. In an update to their model the same authors 
reported a decrease in PHB’s clearance at high concentrations (above 50 
mg/L), suggesting the possibility of non-linear (saturable) kinetics in this 
population [124]. Interestingly, in contrast to the other AEDs, efforts have 
been made to characterise the concentration-effect relationship of PHB in 
neonates. A three state Markov model has been used to describe PHB 
effects on the patterns from amplitude-integrated electro-encephalography 
(aEEG) patterns [125]. aEEG signals were analysed and categorised into 
separate states, which allowed the evaluation of the effect of PHB on the 
transition between three functional patterns or states, namely, burst 
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suppression (BS); discontinuous normal voltage (DNV) and continuous 
normal voltage (CNV). (Fig.  4). The transition between these states reflects 
improvement form high to intermediate ictal activity and finally to normal, 
as typically observed in healthy neonates). Using Markovian concepts, drug 
exposure is used as a covariate on the transition probabilities, with higher 
probabilities occurring with higher exposure levels. As shown in Van Den 
Broek et al. [125], increasing doses of PHB has a small, but significant effect 
on the transition probability in states 4 and 5 (Fig.  5). Based on these 
results, it becomes evident why the authors suggest the use of a second 
bolus infusion to patients receiving 20 mg/kg PHB (Fig.  6). Model-based 
simulations reveal that exposure ranges after 20 mg/kg PHB administered 
as a bolus infusion to neonates may result in PHB concentrations are close 
to or lower than the desired therapeutic range. It is assumed that 
exposures associated with levels below 20 mg/kg will have no effect on the 
transition probabilities. 

Fig.  4 States and transition rates in the neonatal aEEG Markov model, reproduced 
with permission from Van Den Broek et al. [125]. BS: burst suppression; DNV: 
discontinuous normal voltage; CNV: continuous normal voltage. Kx->y: transition 
rate from state x to state y 
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Fig.  5 Probability of a typical neonate showing a burst suppression (state 3, left 
panel), discontinuous normal voltage (state 4, middle panel) or continuous normal 
voltage pattern (state 5, right panel) on aEEG evaluation. Probabilities are given for 
untreated patients (full lines) and patients receiving 20 mg/kg (dashed lines), or 40 
mg/kg (dotted lines) of phenobarbital. Reprinted with permission from Van den 
Broek et al. [125] 

 

Fig.  6 Pharmacokinetic profiles (median: red solid line; 95% prediction interval: 
blue dashed lines), based on simulations of 1000 neonates receiving 20 mg/kg PHB 
(left panel), and 1000 neonates receiving 40 mg/kg PHB (right panel) as a single IV 
bolus loading dose using the PK model from Van Den Broek et al. [125]. The 
therapeutic window of PHB is shown as a blue shaded area. Given that 
concentrations in both dosing scenarios mostly reside within the therapeutic range, 
the option of giving 40 mg/kg PHB to a neonate should be considered safe in those 
cases where insufficient efficacy has been reached. 
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3.8 Phenytoin 

General (adult) pharmacology: Phenytoin (PHT) is a first-generation AED 
indicated for partial and generalised tonic-clonic seizures and status 
epilepticus. Its principal target is considered to be voltage-gated Na+ 
channels [20]. 

PKPD relationships: Despite its wide use in many countries, there is no data 
available in the published literature other than the evidence of efficacy in 
clinical trials at the approved doses. Its therapeutic window is considered to 
lie between 10-20 mg/L [3]. 

Pharmacokinetics in adults: The bioavailability of PHT is easily influenced 
by the use of concomitant drugs, dietary choices and GI diseases. If 
absorption is fast, peak concentrations will increase disproportionally due 
to its concentration-dependent elimination, which is typically described 
using Michaelis-Menten kinetics [126,127]. In addition, PHT levels can be 
very sensitive to changes in, drug distribution (including protein binding) 
and can be greatly altered by hepatic and renal disease [128]. Such non-
linearity in elimination occurs even within the therapeutic range of 
concentrations. As the ratio of bound and unbound drug in serum is 
considered to affect the efficacy and toxicity profiles of PHT, various PK 
models have been developed to better describe the free PHT fraction or 
take into account factors such as albumin [129–131]. Because of its narrow 
therapeutic window, small perturbations of PK processes will easily result in 
under or overexposure to PHT. 

Due to saturable clearance, Michaelis-Menten (MM) kinetics is required to 
describe the elimination of PHT. Valodia et al. [132] showed that models 
with MM and first order elimination perform better than a model in which 
MM is not linked to first order elimination. These authors also provide 
further evidence that this choice of parameterisation can be used to 
optimise treatment. Body weight, age, gender and ethnicity have been 
identified as covariates for Vmax and volume of distribution. The 
differences in the prevalence of CYP2C9/CYP2C19 polymorphisms explains 
part of the effect of race on Vmax [133–135], which was found to be 
different in Japanese and Chinese patients, which suggests the need for, 
genotyping as a tool for dose optimisation. It should be highlighted that 
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while the role of CYP2C9/CYP2C19 polymorphisms has been examined 
more thoroughly in the Asian populations, it is yet not fully clear how these 
variations affect other ethnic (sub)populations. 

Pharmacokinetics in children: There are limited examples of 
pharmacokinetic modelling in children, but theoretically the same 
considerations regarding drug-drug interactions and metabolic 
polymorphism described above for adults apply to children. Even though 
PHT clearance may be described by Michaelis-Menten kinetics in 
conjunction with first order elimination mechanisms in both adults and 
children [132], Odani et al. [133] have also used a dose dependent 
clearance model for PHT in children that could adequately describe the PK 
without the complexity and computational difficulties of MM kinetics. 
However, such simplification does not allow prediction of the overall PHT 
concentrations vs. time curve.  

Pharmacokinetics in neonates: There is limited PK data in the neonatal 
population. Ter Heine et al. [129] showed how serum albumin, urea and 
VPA can affect PHT concentrations in children and neonates. Based on 
these findings, these authors suggested monitoring unbound PHT 
concentrations when treating children, despite the fact that the unbound 
fraction of PHT was approximately 10% for most patients. A more useful 
parameterisation is the one proposed by Al Za’abi et al, who have used 
TDM data from children and neonates in conjunction with allometric scaling 
and a maturation function, taking into account post-natal age [136]. The 
model has been subsequently used to simulate different loading and 
maintenance doses, and define optimised dosing regimens based on mg/kg 
for different age groups. Interestingly, Frey et al. have shown that it is 
possible to obtain adequate serum concentrations following the use of oral 
dosing regimen to pre-term neonates [137]. 
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3.9 Topiramate 

General (adult) pharmacology: Topiramate (TPM) is a second-generation 
AED indicated for partial and generalised seizures. The probable molecular 
targets for TPM include voltage-gated Na+ channels, HVA Ca2+ channels, 
GABAa receptors, and glutamate receptors [20].  

PKPD relationships: No detailed data are available in the published 
literature other than the evidence of efficacy in clinical trials at the 
approved doses. A PKPD model has been developed using a hazard function 
to describe the correlation between trough concentrations (Cmin) and 
treatment response in children aged 2-17 and adults aged 18-85 years [138] 
(Fig.  7). A second PKPD model has been reported, which attempts to 
correlate phonemic fluency (being able to speak well) to drug levels, as a 
proxy for the occurrence of side-effects [139]. Despite insight into 
efficacious ranges from these models, the therapeutic range is based on 
clinical practice and is considered to lie between 5-20 mg/L [3]. 

Fig.  7 Median seizure free percentage of the population over time, depending on 
exposure to TPM at trough (solid line: 0-2.5 mg/L; dashed line: 2.5-7 mg/L; dotted 
line: above 7 mg/L) and low (left panel), medium (middle panel), or high (right 
panel) baseline seizure frequency, from a simulation of 1000 typical 4-14 year old 
patients based on the demographics and model from Girgis et al. [138]. 
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Pharmacokinetics in adults: TPM PK has been successfully modelled both 
using one- and two compartment models. Absorption is typically fast and 
bioavailability is approximately 100%. Body weight has been identified as a 
covariate on the volume of distribution. Some authors have found either 
dose-dependent clearance or otherwise resorted to Michaelis-Menten 
elimination to better describe their data. In one study based on single oral 
doses, apparent clearance was found to be inversely related to the dose. 
Such findings strongly suggest dose-dependent bioavailability, as observed 
for GBP [140]. Despite renal excretion being the main route of elimination 
of TPM, PK drug-drug interactions have been observed with CBZ, PHB, PHT 
and VPA, which can increase its clearance by 100% or more.  

Pharmacokinetics in children: The PK of TPM is fairly well-described in 
children. As in adults, volume of distribution and clearance are usually 
related to weight either in a non-linear fashion using allometry or in a linear 
fashion. Bouillon-Pichault et al. [141] show that a higher dose of TPM 
should be given to children in order to obtain PK profiles comparable to 
adults. This is due to the fact that TPM clearance is negatively correlated 
with age. Girgis et al. [138] have reported an increase in the clearance of 
TPM of about 200% when used with other AEDs in children between 2-10 
years old.  

Pharmacokinetics in neonates: There is very limited PK data in the neonatal 
population, despite TPM being a relatively new AED with considerable 
number of cases of off-label use by neonatologists and paediatric experts 
[142]. Recently, interesting details on the PK of TPM were obtained in a 
study in infants 1-24 months old. The study reveals that TPM has 
acceptable safety profile, but unfortunately, the influence of factors such as 
age, weight and co-medication was not evaluated, making it hard to derive 
specific dose recommendations for individual patients [143]. Even though 
no neonatal PKPD model is available, evidence from clinical practice 
suggests that TPM might be more effective for the developing brain, as 
compared to other AEDs [144,145]. 
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3.10 Valproic acid and Sodium valproate 

General (adult) pharmacology: Valproic acid (VPA), or its salt form 
valproate sodium, is a first-generation AED indicated for partial and 
generalised seizures. Probable targets for VPA include voltage-gated Na+ 
channels, LVA Ca2+ channels, and blockade of the GABA turnover [20].  

PKPD relationships: No detailed data are available in the published 
literature other than the evidence of efficacy in clinical trials at the 
approved doses. Whereas two models have been developed, including data 
in children, such data has had limited use in clinical practice. The first one is 
based on logistic regression to describe the probability of achieving a 
reduction in seizures of at least 50% compared to baseline, depending on 
age, co-medications, genetic marker (SCN1A) and VPA concentrations [146]. 
The other correlates the probability of at least 50% reduction in seizures to 
intellectual disability, genotype (SOD2) and VPA AUC (mg/L*h) [147]. 
Despite insight into efficacious ranges from these models, the therapeutic 
range for VPA is based on clinical practice and varies between 50-100 mg/L 
[3]. 

Pharmacokinetics in adults: VPA PK is usually described using a one 
compartment model with first order absorption and elimination. Body 
weight has been found to be correlated with clearance and volume of 
distribution by allometry, irrespective of the estimation or use of standard 
allometric exponents. In addition, VPA dose is often included as a covariate 
on clearance in an inverse relationship (i.e. total body clearance decreases 
as the dose increases), indicating auto-inhibition. Presumably this may be a 
consequence of saturable protein binding, which suggests the need for 
dose adjustments based on intrinsic rather than total clearance. However, a 
study by Ahmad et al. did not identify albumin concentration as a predictor 
of drug clearance [148]. CBZ, CLNZ, and PHB have been reported to increase 
VPA CL by 36-50% [149–151], 16% [151], and 12% [149,150,152] 
respectively. On the other hand TPM and PHT have been shown to decrease 
VPA clearance by 23% [153] and 25% [150] , respectively. Contradictory 
findings have been reported on the influence of CYP2C9 and CYP2C19 
genotypes on population PK parameters. Ogusu et al. did not find any 
significant effect of genotypes on PK [147]. However, these result contrast 
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with Jiang et al., who report a significant effect of CYP2C9 and CYP2C19 
polymorphisms in Chinese patients [154]. Their analysis suggests that 
inclusion of genotype as a covariate may provide better predictions than 
demographic factors only. 

Pharmacokinetics in children: Publications based on combined data from 
adults and children show that a one compartment model with first order 
absorption and elimination accurately describes the PK of VPA. Clearance 
and volume of distribution are usually allometrically scaled to weight, with 
exponents either close to, or fixed to the typical 0.75 and 1, respectively. 
Most of the aforementioned PK drug-drug interactions reflect data in both 
adults and children, but a few cases were only children were included, 
similar findings were observed [151,152,155,156]. 

Pharmacokinetics in neonates: There is very limited PK data in the neonatal 
population. Whereas VPA shows good therapeutic response in adults and 
children, scepticism remains about its benefit in neonates and during 
pregnancy due to the teratogenic effects demonstrated in utero [157,158]. 
This contrasts with early case reports[159], which suggest its use in 
refractory seizures in neonatology [160–162]. Given that the elimination 
half-life of children younger than 2 months has been reported to be around 
60 hrs [163], dose recommendations on the use of VPA in neonates should 
be “based on patient response” [48]. There is only one PK model developed 
with data from a single neonate, results are not sufficient to define 
recommendations for this population [159].  

3.11 Zonisamide 

General (adult) pharmacology: Zonisamide (ZNS) is a second-generation 
AED primarily indicated for partial seizures. Its principal target is considered 
to be voltage-gated Na+ channels, with probable and possible targets being 
LVA Ca2+ channels, and carbonic anhydrase, respectively [20].  

PKPD relationships: No data available in the published literature other than 
the evidence of efficacy in clinical trials at the approved doses. ZNS’s 
therapeutic range is between 10-40 mg/L [3]. However, the recommended 

104



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 105PDF page: 105PDF page: 105PDF page: 105

therapeutic exposure is reported to be approximately 20 mg/L, while 
adverse events have been reported to occur at 30mg/L [164].  

Pharmacokinetics in adults: Zonisamide is a relatively new drug and not 
much literature exists on its PK. ZNS has a tendency to bind to red blood 
cells (RBCs) at a ratio of about 50%/50% (bound/unbound). This binding has 
an inverse relationship to the total blood concentration. It is known that 30-
40% of the drug is excreted unchanged in the urine and the rest is 
metabolised in the liver. When first marketed in Japan, its PK was described 
as linear, but when it was tried in the USA, it displayed nonlinear (Michaelis-
Menten) kinetics. ZNS is metabolised by CYP3A4, and thus shares a 
metabolic pathway with other AEDs, such as PHT, CBZ and VPA, which are 
metabolic inducers of this iso-enzyme. The increased clearance of ZNS 
resulting from such drug-drug interactions may lead to the requirement for 
dose adjustments. While no PK model currently describes such interactions 
or Michaelis-Menten elimination kinetics, TDM should be considered to 
establish optimal dosage for individual patients. Some studies also 
indicated that ZNS treatment did not have a clinically relevant impact the 
PK of PHT [165], VPA [166] and LMT [167], despite the significant changes in 
the clearance of ZNS itself. However, these investigations did not take into 
account the implications of inter and intra-subject variability. There is only 
one population pharmacokinetic model for ZNS, in which authors clearly 
show high inter-subject variability on Cmax and Cmin, [168]. 

Pharmacokinetics in children: The PK of ZNS has been described in children 
by a model which included dose dependent clearance (DDCL) [169]. Their 
analysis was based on data from children and adults. Body weight was 
found to correlate with clearance and volume of distribution. The model 
has been used to perform simulations and derive dosing recommendations 
for children with weight in the range between 10 and 33 kg,  

Pharmacokinetics in neonates: There is very limited PK data in the neonatal 
population. Kawada et al. [170] describe details on two neonates that were 
born from mothers who were using ZNS perinatally. The PK of ZNS in these 
neonates showed first-order kinetics with half-lives of 109 and 61 hours, 
while in adults the half-life is around 63 hours. These results are not 
sufficient to define clear dosing recommendations for this population. 
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4. Discussion

Numerous reviews have been previously published on the 
pharmacokinetics and efficacy of AEDs [48,171]. However, to our 
knowledge, this is the first attempt to summarise the available PK and PKPD 
models and their application in clinical trials and therapeutic use of AEDs. 
Undoubtedly, non-parametric or non-compartmental summaries of PK and 
efficacy can provide the basis for comparison of compound characteristics 
between treatments. Yet, it has not become clear to the clinical community 
that such summaries are purely descriptive, making it difficult to establish 
which factors determine the experimental observations, be it 
pharmacokinetics or clinical endpoints such as seizure reduction.  

In contrast to statistical associations, which are often identified by data 
mining and genetic/genomic research, model-based data analysis are 
inferential tools aimed at exploring and defining mechanism-based, 
biologically plausible relationships [172,173]. When appropriately 
parameterised, PK and PKPD models offer insight into the interactions 
between the drug and biological system [174]. They also provide an 
opportunity to evaluate the impact of variability due to intrinsic and 
extrinsic factors known to affect drug disposition, physiological function or 
disease [175,176]. This feature makes the use of modelling and simulation a 
powerful tool to investigate treatment performance. Whilst evidence 
generation is essential for the advancement of medical practice, evidence 
synthesis and scenario analysis offer the basis not only for the optimisation 
of experimental protocols, but also to maximise the therapeutic benefits of 
a medicine. 

Unfortunately, our review shows that despite the relatively high incidence 
of epilepsy in the overall population and importance of optimising 
therapeutic interventions with AEDs [177], little effort has been made to 
characterise PKPD relationships and establish in a strictly quantitative 
manner the clinical relevance of a myriad of factors known to affect drug 
disposition and exposure to AEDs. As a consequence, most of the model-
based research published to date is exploratory. Very few authors mention 
the use of modelling results as basis for the dose rationale or personalised 
regimens.  
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Irrespective of the limitations highlighted above, a few interesting lessons 
arise with regard to PK modelling efforts in this area. Most publications 
refer to compartmental modelling without taking into account the 
implications of different formulations, which play a critical role when 
extrapolating data from adults to children and neonates. In addition, with 
the exception of PHT, none of the modelling approaches consider metabolic 
saturation or other factors that might lead to nonlinearity between dose 
and exposure. As covariate effects describing drug-drug interaction are 
mostly defined as a discrete change to disposition parameters, none of the 
models allow for a clear assessment of inter-individual differences in the 
magnitude of these interactions, which may differ considerably between 
patients or during titration and/or tapering of an add-on drug. Most 
importantly, no publication has provided insight into the implications of 
concurrent covariate effects for the dose rationale. From a clinical 
perspective, understanding the consequences of the interaction between 
multiple factors, such as body weight, renal function and metabolic 
inhibition, should be common knowledge to any clinician interested in 
treating a patient effectively, i.e., with the right drug(s) and dosing 
regimen(s). 

Given our primary interest in the development of dosing algorithms aimed 
at the optimisation of pharmacotherapy, it is also important to highlight the 
fact that most models have been developed using nonlinear mixed effects 
approach as a ‘data analysis method’, rather than a ‘design or decision-
making tool’. Whilst we understand the limitations of clinical protocols and 
availability of data, best practice principles in quantitative pharmacology 
research, such as external validation, predictive performance, and 
sensitivity analysis have not been used for the evaluation of PK and PKPD 
models described here. Most publications assess the suitability of a model, 
its parameterisation and accuracy and precision of the parameter estimates 
based on goodness-of-fit and other diagnostic metrics using the source data 
or eventually by bootstrapping procedures. This lack of standards along 
with the limited sample sizes represents an important issue, as prospective 
use of such models require clear assessment of the impact of model 
uncertainty and potential biases due to poor accuracy or even poor 
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precision in parameter estimates, in particular those describing inter and 
intra-individual variability. 

Another important point is the choice of parameterisation for the 
description of covariate effects. Unless a covariate factor has a major 
impact on the parameter of interest, the ability to detect a covariate effect 
and establish the correct relationship or correlation between model 
parameter and covariate will depend primarily on sample size and on 
covariate distribution in the population under investigation [178,179]. 
These considerations are essential when defining the dose rationale for 
paediatric patients as well as those on drug combinations (polypharmacy). 
Most published models included weight as a covariate on clearance and 
volume of distribution, but the correlations between parameter and 
covariate factor were not always defined by allometric principles. In 
addition, for drugs that are eliminated both renally and hepatically or 
exclusively by renal processes, correlations with creatinine clearance were 
limited to age-related variation, as renally and hepatically impaired patients 
seem to have been excluded from the analysis. Given the limited number of 
neonatal patients and young children >2 years of age, during which 
creatinine clearance will show the largest differences relative to adults, it 
can be anticipated that the reported estimates may not be sufficiently 
precise. A similar concern applies to the different parameterisation of a 
maturation function describing the ontogeny of enzymes in young children. 

Lastly, it became evident how limited attention to interacting factors such 
as ethnicity and genetic polymorphism may be overlooked during covariate 
model building. The lack of balanced designs along with limited sample 
sizes makes it difficult, if not impossible to disentangle the effect of 
ethnicity from the effect of differences in genotype or phenotype. Whereas 
few models have identified the impact of slow or fast metabolism on 
clearance, such results cannot be corroborated without further assessment 
of the effect in in silico models. An increasing number of examples are now 
available across therapeutic areas, which illustrate how information from in 
silico models can be extrapolated or integrated with population 
pharmacokinetic models to explore the relevance of polymorphism, 
ethnicity and drug-drug interactions, taking into account other known 
sources of inter-individual variability [180,181]. 
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We also recognise that in the absence of PKPD models, it will remain 
difficult to explore to what extent covariate models will allow identification 
of explanatory variables describing inter-individual variability in response 
[182,183]. Nevertheless, the available population PK models provide a 
starting point for future implementation of model-based approaches, 
including the evaluation of dosing algorithms. In fact, we have started to 
evaluate the impact of existing models as a tool for dose optimisation. A set 
of pharmacokinetic models was used in conjunction with simulation 
scenarios to establish the need for dose adjustment in adult and paediatric 
patients who receive AED combinations [184]. Similarly to the 
investigations performed previously by de Castro et al. [4] and Völler et al. 
[9], we have used this same set of models to evaluate the performance of 
different dosing algorithms, including scenarios in which the approach is 
combined with therapeutic drug monitoring (TDM) [185]. 
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5. Conclusion

In this review we have summarised the available PK and PKPD information 
available in literature, focussing on model-based evidence where possible. 
We have unravelled an enormous gap regarding pharmacokinetic-
pharmacodynamic relationships is especially problematic, as for these 
drugs, inadequate response or unacceptable adverse events are the main 
cause of discontinuation of, or non-adherence to AEDs [186,187]. Thus far, 
clinicians do not seem persuaded by the fact that in the absence of 
personalised or even individualised doses, treatment failure is not the only 
consequence; clinical response may be suboptimal [188]. This issue may not 
be “fixed” by up and down-titration or tapering procedures. 

Without clearly described and validated models, the implementation of 
personalised medicine principles will remains out of reach. Modelling and 
simulation is an inferential tool and a powerful method to characterise 
response at individual and population level when multiple interacting 
factors are involved. If correctly parameterised, these models will reflect 
the underlying exposure-response relationships along with the effects 
covariate factors, allowing for appropriate dose selection. As long as seizure 
control forms the basis for the treatment of epilepsy patients, neurologist 
and paediatric neurologists cannot continue to resort to trial and error, to 
up and down titration. Post hoc, ergo propter hoc, i.e. "after this, therefore 
because of this", is a logical fallacy. We cannot ignore the causal chain 
between stimulus and response. 
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CHAPTER 4 

PHARMACOKINETIC INTERACTIONS AND 
DOSING RATIONALE FOR ANTIEPILEPTIC 

DRUGS IN ADULTS AND CHILDREN 
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Pharmacokinetic interactions and dosing 
rationale for antiepileptic drugs  

in adults and children 

Sven C. van Dijkman, Willem M. Rauwé, Meindert Danhof, 
Oscar Della Pasqua 

British Journal of Clinical Pharmacology, 2017 

SUMMARY 

Aim: Population pharmacokinetic modelling has been widely used across many 
therapeutic areas to identify sources of variability, which are incorporated into 
models as covariate factors. Despite numerous publications on pharmacokinetic 
(PK) drug-drug interactions (DDIs) between antiepileptic drugs (AEDs), such data 
are not used to support the dose rationale for polytherapy in the treatment of 
epileptic seizures. Here we assess the impact of DDIs on plasma concentrations and 
evaluate the need for AED dose adjustment. 
Methods: Models describing the pharmacokinetics of carbamazepine, clobazam, 
clonazepam, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, 
topiramate, valproic acid, and zonisamide in adult and paediatric patients were 
collected from the published literature and implemented in NONMEM v7.2. Taking 
current clinical practice into account, we explore simulation scenarios to 
characterise AED exposure in virtual patients receiving mono-, and polytherapy. 
Css, Cmax and Cmin were selected as parameters of interest for the purpose of this 
analysis. 
Results: Our simulations show that DDIs can cause major changes in AED 
concentrations both in adults and children. When more than one AED is used, even 
larger changes are observed in the concentrations of the primary drug, leading to 
significant differences in Css between mono- and polytherapy for most AEDs. These 
results suggest that currently recommended dosing algorithms and titration 
procedures do not ensure attainment of appropriate therapeutic concentrations. 
Conclusions: The effect of DDIs on AED exposure cannot be overlooked. Clinical 
guidelines must take into account such covariate effects and ensure appropriate 
dosing recommendations for adult and paediatric patients who require 
combination therapy.  
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WHAT IS KNOWN ABOUT THIS SUBJECT 
• First-line and alternative first line anti-epileptic drugs (AEDs) are

often used in combination with second-line line drugs (i.e., add-on).
• Many AED combinations lead to pharmacokinetic (PK) drug-drug

interactions (DDIs), which may result in large changes in drug
exposure.

• The implications of such DDIs have not been characterised in
existing clinical guidelines.

WHAT THIS STUDY ADDS 
• We evaluate how demographic and clinical factors, including co-

medications (polytherapy), affect systemic exposure to AEDs in the
target patient population. In addition, we demonstrate that AED
dosing regimens can be optimised to ensure drug concentrations
are maintained within a reference therapeutic range.

• DDIs can lead to significant changes in AED exposure and
potentially alter the efficacy and safety profile of AEDs in adult and
paediatric patients.

• These results form the basis for a comprehensive review of clinical
guidelines for the use of first and second line AEDs, including novel
algorithms for dose adjustment.
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1. INTRODUCTION

Epilepsy is a collection of syndromes characterised by the occurrence of 
paroxysmal seizures. Many patients require prolonged and often life-long 
treatment with anti-epileptic drugs (AEDs), which are developed and 
approved based primarily on the evidence of efficacy in specific seizure 
types. From a clinical perspective, this has led to treatment choices based 
on a classification system that discriminates AEDs into first and second-line 
treatment. A first-line treatment is tried first and usually used on its own. If 
first-line treatment does not work, then another drug (i.e., an alternative 
first-line treatment) may be tried on its own. First-line treatment drugs may 
also be used as combinations (i.e., add-on treatment) if seizure control is 
not achieved or a given regimen is not tolerated [1]. 

At the moment approximately 20 AEDs are available including first and 
second line treatment options. Different guidelines have been proposed to 
guide health care professionals and prescribing physicians on the use of 
AEDs, with special focus on the criteria for selection of newer drugs. In 
addition to providing recommendations for the treatment of specific 
populations such as women and HIV patients, attention is also given to the 
importance of dose titration and tapering procedures. Nevertheless, it has 
been shown that 10-20% of the patients whose target dose has been 
achieved, still show unresolved seizures and can benefit from dose-
adjustments [2,3]. Despite evidence on the role of pharmacoresistance and 
progression of the underlying pathological processes, the lack of response 
can be partly explained by inter-individual variability in the 
pharmacokinetics (PK) [4]. The impact of such variability is particularly 
important in the paediatric population, where maturation processes and 
developmental growth are known to affect drug disposition [5–7]. In 
addition, children who do not adequately respond to first-line treatment 
are given multiple AEDs in combination, which can incur PK (and 
pharmacodynamic (PD)) drug-drug interactions (DDIs).  

Population PK modelling has been widely used across many therapeutic 
areas to describe drug exposure and identify sources of variability, which 
are then incorporated into models as covariate factors [8,9]. Consequently, 

131



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 132PDF page: 132PDF page: 132PDF page: 132

differences in drug exposure due to explanatory factors such as DDIs or 
demographic and clinical parameters can be predicted before treatment is 
initiated. The availability of such models also allows us to perform clinical 
trial simulations (CTS) and not-in-trial simulations (NITS) and explore the 
potential implication of covariate effects on individual patients or 
subgroups of the target patient population [3,10]. When performed in a 
systematic manner, the use of simulation scenarios becomes a powerful 
tool for the evaluation of the impact of multiple, concurrent factors on drug 
exposure, providing the rationale for dose adjustment purposes [11,12]. 
Here, we show how clinical trial simulations can be used to characterise 
pharmacokinetic DDIs for the most widely used AEDs at clinically relevant 
doses and regimens. Scenarios are evaluated which reflect the impact of 
titration steps, different maintenance doses and add-on treatments. 
Bearing in mind current clinical practice, we aim to assess the impact of 
DDIs on the exposure to AEDs and establish the need for further dose 
adjustment. We anticipate that our analysis will assist the review of clinical 
guidelines, taking into account the role of covariate factors in future dosing 
recommendations. Most importantly, it will provide clinicians further 
insight into the role of PK variability in the overall efficacy and safety profile 
of AEDs. 
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2. METHODS

Pharmacokinetic models and virtual patient demographics 
Models describing the PK of carbamazepine (CBZ) [13], clobazam (CLBZ)
[14], clonazepam (CLNZ) [15], lamotrigine (LMT) [16,17], levetiracetam 
(LVT) [18], oxcarbazepine (OXC) [19], phenobarbital (PHB) [20], phenytoin 
(PHT) [21], topiramate (TPM) [22], valproic acid (VPA) [23,24], and 
zonisamide (ZNS) [25] were collected from the published literature. Given 
the primary objective of our analysis, models were selected if covariate 
effects were identified for one or more AEDs and study population included 
> 50 patients. In addition, whenever possible, preference was given to 
models based on PK data from both adult and paediatric patients. 
Furthermore, parameterisation of the covariate effect (i.e., DDI) should be 
based on changes in clearance to allow easier differentiation between 
treatment conditions, i.e., the presence of the co-medication. An overview 
of the model structure, including details on the parameterisation of the 
covariate effects for each AED is presented in tables 1A and 1B. 

Further information on the clinical protocols used to develop the 
pharmacokinetic models and identify the covariate effects is provided in the 
supplemental material (downloadable from the online version of this 
article). As modelling codes were not available in the original publications, 
models were transcribed manually into standard control-stream file format 
in NONMEM v7.2 [26]. For the sake of accuracy and quality, model 
transcription was assessed one by one before the implementation of the 
simulation scenarios by comparing model-predicted concentrations for the 
original patient population to the reported results in the corresponding 
publications (see supplemental material). If no deviations were observed 
during this initial quality check, the PK model code was subsequently 
transcribed into the appropriate format for simulation purposes in R v3.1.1 
[27]. Simulation scenarios, comprising treatment conditions at different 
dose levels and DDIs were selected for both adult and paediatric patients. 
For each scenario, a population of 1000 virtual patients was simulated using 
the demographic baseline characteristics listed in table 2. It was anticipated 
that spurious correlations between covariates would be negligible using 
random sampling for such a large number of patients. One exception was 
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the correlation (colinearity) between weight and age in children, which is 
highly relevant for the characterisation of pharmacokinetics in this 
population. This was particularly important for TPM, which had both weight 
and age as covariate factors in the model. In addition to demographic 
factors, other influential covariate factors such as genetic polymorphisms 
were also simulated if included in the original publication. To ensure 
accurate characterization of the covariate effects, demographic and other 
relevant clinical variables were sampled according to a uniform distribution. 
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Table 1A O
verview

 of the population pharm
acokinetic m

odels used for the evaluation of drug-drug interactions for carbam
azepine, 

clobazam
, clonazepam

, lam
otrigine, levetiracetam

, and oxcarbazepine 
M

odel 
Carbam

azepine 
Clobazam

Clonazepam
Lam

otrigine
Adults 

Lam
otrigine 

Children 
Levetiracetam

O
xcarbazepine

First author 
Jiao

13 
Saruw

atari 14
Yukaw

a
15

Rivas 16
He

17
Toublanc

18
Park

19

Population 
Chinese 

Japanese
Japanese

G
erm

an/
Spanish 

Chinese
Japanese (m

odel 
building), U

S (validation) 
Korean

Sam
ple size  

(N
o.of patients) 

585 
85 

137
284

600
259 

199

Sam
ple size  

(N
o.of patients) 

687 
128 

259
404

1699
1833 

254

Age (years) 
1.2-85.1 

1-52 
0.3-32.6

26.8-51.3
0.5-17

4-55 
3-80

W
eight (kg) 

5-115 
8-102

5-90
61.8-85

6-98
14-107

10-95
Sam

ples at 
Trough 

0-10h
post-

dose 
2-6h post-
dose 

TDM
TDM

Random
TDM

G
raphical representation 

 
 

 
 

 
 

 
 

 
 

 
 

Param
eters 

K
a , V

c  ,CL 
K

a , V
c ,CL

K
a , V

c ,CL
K

a , V
c ,CL

K
a , V

c ,CL 
K

a , V
c  ,CL

K
a , V

c ,CL

Betw
een-subject variability 

V
c , CL 

K
a , V

c ,CL
V

c , CL
CL

CL
K

a , V
c  ,CL

CL

Covariates CL 
W

T, Dose, PH
B, 

PHT, VPA, Elderly 
(>65) 

W
T, PHB, 

PHT, ZN
S, 

CYP2C19 &
 

PO
R*28 

genotypes 

W
T, CBZ, VPA

W
T, CBZ, PH

B, 
VPA 

W
T, CBZ, PH

B, 
VPA 

W
T, Clearance 

Com
edication (CBZ, PHB, 

PHT, VPA) 

W
T, EIAED 

(com
edication 

CBZ/PHB/PHT) 

Covariates V 
W

T 
W

T 
W

T
W

T
W

T
W

T 
W

T

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L

 

V
c 

K
a 

C
L

 

135



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 136PDF page: 136PDF page: 136PDF page: 136

Table 1B O
verview

 of the population pharm
acokinetic m

odels used for the evaluation of drug-drug interactions for phenobarbital, 
phenytoin, topiram

ate, valproic acid, and zonisam
ide 

M
odel

Phenobarbital 
Phenytoin 

Topiram
ate

Valproate
Adults 

Valproate 
Children 

Zonisam
ide 

First author 
G

oto
20

O
dani 21

G
irgis 22

Blanco-Serrano
23 

Blanco-Serrano
24 

O
kada

25 

Population
Japanese

Japanese
N

A (Caucasian presum
ably) 

Spanish 
Spanish 

Japanese 

Sam
ple size  

(N
o.of patients) 

79
116

1217
255

208
99

Sam
ple size  

(N
o.of patients) 

260
531

4640
770

534
282

Age
0.8-44

1-37
2-85

14-95
0.1-14

1.36-39.24

W
eight

8-80
42.4±16.5

N
A

4-74
27-100

10-117

Sam
ples at 

TDM
 

Peak/Trough 
N

A 
TDM

 
TDM

 
4.3±2.8h post-dose 

G
raphical 

representation 

Param
eters

K
a , V

c  ,CL 
V

c  ,CL (V
m

ax , K
m ) 

K
a , V

ss  (V
1  +V

2 ), K
12 , K

21 , CL 
K

a , V
c  ,CL 

K
a , V

c  ,CL 
K

a , V
c  ,CL 

Betw
een-subject 

variability 
V

c , CL 
V

c , V
m

ax , K
m

K
a , V

c  ,CL 
CL 

CL 
CL 

Covariates CL 
W

T, PHT, VPA 
W

T, Daily PHT 
Dose, ZN

S 
Age, W

T, Inducers (CBZ/PHB/PHT), 
VPA, N

EM
D (ZN

S) 
W

T, Dose, CBZ, PH
T, 

PHB 
W

T, Dose, CBZ 
W

T, Dose, CYP2C19 
genotype, CBZ, PH

B, PHT 

Covariates V 
- 

W
T 

W
T 

W
T 

W
T 

W
T 

V
c 

K
a 

C
L

V
c 

C
L

V
1 

K
a 

C
L

V
2

K
12

K
21

V
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L
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c 

K
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Table 2 Patient baseline demographic characteristics used for the simulation 
scenarios, in which a virtual cohort of patients was treated with one or more AEDs. 
 

Population adults children 
Age (years) 18-65, uniformly 

distributed 
4-14, uniformly 
distributed 

Mean weight (kg) 75 (male) 
65 (female) 
 

(Age 3)+7† 

Coefficient of variance on 
weight 

16 % 10 % 

Dose interval (hr) 12 12 
Dose mg/day mg/kg/day 

 
†Based on the weight-by-age formula proposed by Luscombe & Owens[28] 

 
 
Table 3 Simulated doses, co-medications, and corresponding reference therapeutic 
range for each AED Reference AED concentration ranges were taken from Patsalos 
et al 2008 [31]. See main text for further details on the abbreviations and 
supporting references. 

Drug Doses adults 
(mg/day, * 
μg/day) 

Doses children 
(mg/kg/day, * 
μg/kg/day) 

Add-on medication simulated Therapeutic 
window 31 

(mg/L, * μg/L) 
CBZ 400, 800, 1200  10, 15, 20  PHB  PHT  VPA 4-12  
CLBZ 10, 20, 30 * 0.2, 0.3, 0.4 * PHB  PHT  ZNS 30-300 * 
CLNZ 2, 5, 8 * 0.05, 0.075, 0.1 * VPA 20-70 * 
LMT 200, 300, 400  4, 6, 8  ((CBZ  PHB  PHT)  INDa)  

VPA 
2.5-15 

LVT 1000, 2000, 3000 20, 30, 40  Inducersb 12-46 
OXC 600, 1200, 1800  15, 20, 25  CBZ  PHB  PHT 3-35 
PHB 60, 150, 240  2, 4, 6  PHT  VPA 10-40 
PHT 200, 300, 400  5, 7.5, 10  ZNS 10-20  
TPM 200, 300, 400  5, 7.5, 10  Inducersc  VPA 5-20 
VPA 400, 800, 1200  10, 20, 30  CBZ  PHB  PHT 50-100 
ZNS 200, 300, 400  5, 7.5, 10  CBZ  PHB  PHT 10-40 

 all combinations are possible,   only one combination is possible  

a For LMT, if more than 1 of CBZ, PHB, or PHT is added, only the effect indicated by 
IND (and/or VPA) affects LMT clearance 
 b For LVT the original paper17  mentions inducers “such as carbamazepine” 
 c For TPM, clearance is induced by adding any of the following: CBZ, PHB and PHT, 
no distinction is made between adding one or more of these 
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Simulation scenarios  
One and two compartment models were implemented in R according to 
equations 1 and 2.1-2.5, as described in the PFIM optimal design tool 
documentation [29]. The concentration versus time profiles of each AED 
were simulated at steady state for the typical adult and paediatric 
populations (table 2), following the administration of a range of clinically 
relevant doses (table 3). Given the objectives of the current investigation, 
we have decided not apply bridging and extrapolation concepts to scale 
pharmacokinetic parameters from adults to children as basis for the 
paediatric dose selection [30]. Instead, paediatric doses were scaled by 
body weight on a mg/kg basis, as typically done by prescribing physicians in 
clinical practice. Secondary PK parameters were then derived, including 
average steady-state (Css), peak (Cmax) and trough (Cmin) concentrations. 

A key premise for the evaluation of the different simulation scenarios is the 
set of assumptions used, which include the following points: 
1. Attainment and maintenance of AED exposure within a target range is
desirable for optimal treatment response, irrespective of drug use as a 
single agent (monotherapy) or as combinations. The reference target 
concentration ranges published by Patsalos et al [31] were considered as 
relevant for the adult and paediatric populations. 
2. In addition, it was assumed that interindividual variability in
pharmacodynamics, i.e., different individual sensitivity to individual drug 
effects are captured by the proposed target range, whereas resistance to 
treatment would impose exposure to higher drug concentrations, which are 
likely to be associated with poor tolerability. 
3. Model misspecification was deemed to be minimal and parameter
distributions to be precise and accurate to a sufficiently high degree to 
allow realistic simulations.  
4. Covariate effects are reasonably well captured by the models, despite the
limited number of patients included for the development of the models 
(table 1A/B).  
5. Bias in the estimates of the covariate effects is minimal even if DDIs are
treated as discrete covariates in the model.  It is acknowledged, however, 
that discrete covariate effects may impair one’s ability to adjust the dose, 
as variability in exposure or the use of different dose levels of the add-on 
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drug may alter the magnitude of the interaction. This is particularly 
important in the case of multiple DDIs.  
6. Whereas discrete parameterisation of DDIs may not fully capture the
range of conditions or variation in clinical practice, it does provide a 
stronger basis for the dose rationale, as compared to scenarios where DDIs 
are completely overlooked. 

Simulations were performed in two steps. First, we aimed to identify the 
dose or dose levels that maximised the fraction of virtual patients whose Css 
values remained within the target exposure range for each drug. 
Subsequently, the impact of DDIs on the systemic exposure of the first-line 
or alternative first-line AED was simulated (table 3).  In total 76 scenarios 
were considered, taking into account the most clinically relevant dosing 
regimens and combinations. This resulted in a total of 33 scenarios for 
monotherapy and 43 scenarios for different AED combination. As scenario 
included 1000 virtual patients, our analysis comprises a population of 76000 
patients.  

 (1) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(3) 
Equations 1-3. Ct: concentration at time t. : dosing interval. D: Dose of dose 
interval . DD: Daily dose. V or V1: central volume of distribution. ka: absorption rate 
constant. CL: clearance. t: time. tD: time of dose. Q: inter-compartmental clearance. 
V2: peripheral volume of distribution. As none of the models included intravenous 
data, bioavailability estimates were not available; clearance and volume values 
used in the analysis were therefore based on apparent estimates. 
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Assessment of the impact of covariate effects on drug exposure 
The target Css value used for optimisation purposes was set to the drug 
concentration half-way between the minimum and maximum values of the 
therapeutic window for each AED (table 3). Details of the rationale for this 
approach are described in a previous publication by our group, where 
different dosing algorithms have been assessed for personalisation of AED 
therapy [3]. In brief, the ratio between predicted Css and target Css was 
calculated (ratio=predicted/target) and results were subsequently 
summarised in tabular and graphical format. Whisker-box plots were 
generated separately for adults and children to describe the dispersion in 
drug exposure across the population, including the median and 95% 
prediction interval for each dose and DDI scenario. To facilitate the 
interpretation of the findings and visualise the impact of dosing titration 
and/or optimisation procedures, the percentage of the population with 
concentrations outside the therapeutic range was also summarised 
numerically along with the whisker-box plots. In addition, the percentage 
adjustment needed to bring the median Css values back to the target 
concentration was calculated and provided for each AED.  

3. RESULTS

A preliminary analysis of the pharmacokinetic models showed acceptable 
performance for the purposes of our investigation. Different dose and 
dosing regimens were simulated for each AED according to the scenarios 
shown in table 3. For the sake completeness, an overview of the 
concentration vs. time profiles for each AED in adult and paediatric patients 
is presented in the supplemental material (see online version of this 
article). These results are complemented by a summary of the procedures 
used for evaluation of model performance, including the results relative to 
the secondary PK parameters (Cmax, Cmin). 
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Monotherapy: impact of standard dose regimens on systemic drug 
exposure 
For most drugs the simulated average steady-state concentrations (Css) fall 
within the reference values for a large fraction of the adult and paediatric 
populations. Notable exceptions were PHT and VPA, where significant 
proportion of patients is at risk of achieving sub- or supra-therapeutic drug 
concentrations (figures 1 and 2). In fact, the deviations from the reference 
range are evident when considering the median estimates. Likewise, 
despite the use of dosing regimens in mg/kg, PHT concentrations in children 
fall outside the therapeutic window in at least 50% of the patients. For VPA 
the situation is somewhat more favourable, with roughly 20% of the 
simulated population falling outside the reference therapeutic range. In the 
case of PHT, the deviation in exposure is compounded by the known 
nonlinearity and large inter-individual variability in pharmacokinetics. There 
are important clinical implications for patients on PHT when plasma 
concentrations are > 20 mg/L. In reality, the evidence that a significant 
proportion of the population is exposed to drug concentrations above the 
therapeutic range may explain the incidence of adverse events. 

Polytherapy: impact of DDIs on systemic drug exposure 
The use of simulations reveals that DDIs can cause major changes to AED 
concentrations both in adults and children (figures 3 and 4). When more 
than one AED is added to the combination therapy, changes in the 
concentrations of the primary drug may be even larger. This contrasts with 
the results observed for monotherapy, where drug concentrations for the 
majority of the AEDs remained within the reference therapeutic range. In 
many cases, AED interaction results in median Css values which lie outside 
the reference therapeutic window. On the other hand, in certain cases the 
interaction of multiple co-medications may partially or completely 
counteract each other, resulting in a 0% net change in the exposure to the 
first line drug. An example of the latter is the interaction of LMT with 
combination therapy including PHT and VPA. A preliminary evaluation of 
the effect of DDIs suggests that the doses of the first line and possibly 
second line drugs used as add-on treatment need to be adjusted, 
sometimes by even more than 200% (table 4). 
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Figure 1 M
edian (circles) and 95%

 prediction interval (bars) for the steady-state concentrations (C
ss ) achieved in 

adults for different AEDs and dosing scenarios. Shaded area represents the reference therapeutic range; num
bers 

show
n below

 each bar are percentages of the population w
ith C

ss  values outside the reference therapeutic range. 
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Figure 2 M
edian (circles) and 95%

 prediction interval (bars) for the steady-state concentrations (C
ss ) achieved in 

children for different AEDs and dosing scenarios. Shaded area represents the reference therapeutic range; num
bers 

show
n below

 the bars are percentages of the population w
ith C

ss  values outside the reference therapeutic range. 
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Figure 3 M
edian (circles) and 95%

 prediction interval (bars) for the steady-state concentrations (C
ss ) achieved 

in adults for different AEDs and DDI scenarios. Shaded area represents the reference therapeutic range; 
num

bers show
n below

 the bars are percentages of the population w
ith C

ss  values outside the reference 
therapeutic range. 
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Figure 4 M
edian (circles) and 95%

 prediction interval (bars) for the steady-state concentrations (C
ss ) achieved in 

children for different AEDs and DDI scenarios. Shaded area represents the reference therapeutic range; num
bers 

show
n below

 the bars are percentages of the population w
ith C

ss  values outside the reference therapeutic range. 
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4. DISCUSSION 

Given the incidence of epileptic seizures across a wide age range in the 
patient population, rational prescribing of AEDs requires not only an 
understanding of the drugs' pharmacodynamic properties, but also careful 
consideration of the factors known to affect drug disposition [6]. Despite 
numerous publications in which demographic, clinical and genetic covariate 
factors have been identified, limited attention has been given to the 
magnitude and variability of such effects and their clinical implication. In 
most cases, covariate effects are assessed as part of a population PK 
analysis, where the main objective is the characterization of overall drug 
disposition properties, rather than the optimisation of therapeutic 
interventions in a wider patient population [32,33]. 

In a recent publication we have shown how model-based approaches can 
be used in conjunction with therapeutic drug monitoring to personalise AED 
therapy [3]. The current investigation was aimed at exploring the 
implications of covariate effects on systemic exposure, with special focus on 
drug-drug interactions (DDIs), i.e., when patients transition from 
monotherapy to combination treatment with alternative first line or second 
line therapy (polytherapy). We found that covariate effects on the 
disposition of levetiracetam, phenytoin, and valproic acid leads to 
considerable variation in drug exposure and consequently to a large 
proportion of patients reaching average steady-state concentrations 
outside the therapeutic window (15%, 54%, and 21% respectively). The 
impact of covariate effects on the disposition of the other 8 drugs included 
in the analysis appears to be less strong, resulting in a smaller proportion of 
patients outside the therapeutic window. By contrast, when DDIs come into 
play, exposure to most AEDs deviates from the reference therapeutic 
window (up to 98% for valproic acid), most notably when more than one 
co-medication was added. Moreover, there was no clear correlation 
between the mechanism of interactions and their  effect size [34]. 

Whilst the analysis and interpretation of the simulation results rely on a set 
of important assumptions regarding covariate effects, it is clear that the 
relevance of DDIs should not be overlooked in clinical practice, as first-line 
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treatments are often accompanied by second-line drugs, which are 
combined as add-on therapy in patients who fail to show acceptable clinical 
response on monotherapy. We have assumed that the models described 
the DDIs to a sufficiently accurate degree to learn about their impact on 
exposure in the population. However, it should be highlighted that DDIs 
have been implemented as discrete covariates on clearance, i.e., clearance 
estimates change depending on whether a co-medication was given or not. 
We cannot exclude the possibility that despite steady-state concentrations  
the magnitude of such interactions may be dose-dependent [35]. To take 
into account the multiple inter-dependencies in the case of AED poly-
therapy, the application of more physiology-based pharmacokinetic (PBPK) 
models may more accurately predict complex DDIs. On the other hand, if 
metabolic interactions (e.g., CYP enzymes) reflect high or maximum 
induction or inhibition when the co-medication exposure is at 
therapeutically relevant concentrations, further variation in dose or 
concentration may not affect the magnitude of the interaction any more. In 
this light, the predicted dose changes of first line drugs in table 4 should be 
seen as typical values, based on commonly used dose levels of first-line and 
co-medication AEDs. These results do not exclude the fact that there may 
be additional variability, which is unaccounted for, depending on the dose 
of the co-medication(s). 

Currently, clinical guidelines do not consider the need to assess in a 
quantitative manner the contribution of covariate factors on drug exposure 
and consequently on the rationale for dose selection or titration algorithms 
[3]. Whereas some product labels provide dosing recommendations for 
individuals with renal and hepatic impairment, no specific dose adjustment 
is proposed to account for other relevant factors. Often DDIs are mentioned 
but no formal dosing recommendation is provided, taking into account AED 
disposition and other relevant patient characteristics. This is particularly 
important in infants older than 2-3 months and children, in whom systemic 
clearance is higher than adults after normalization for differences in body 
weight. This general pattern has been shown for various AEDs [36,37]. At 
the other extreme of age, in the elderly, systemic clearance is generally 
reduced compared with younger adults because of less efficient 
metabolism, reduced renal function, or both [36]. Likewise, patient 
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demographic characteristics, such as obesity, also lead differences in drug 
disposition, with significant changes in hepatic blood flow and/or metabolic 
activity (e.g. increased CYP enzyme expression), which have not been taken 
into account in our analysis, as weight range simulated did not include 
obese patients [38].  It should also be noted that despite known 
polymorphism in drug metabolism, there may be an interaction between 
genotype and degree of DDI that was not captured in the models that 
included CYP genotypes (table 4). We have assumed that such a CYP 
genotype – DDI interaction may have a limited role in the overall shift from 
the target exposure when compared to the degree of DDI itself. Additional 
data from in silico systems, such as SIMCYPTM would be required to explore 
phenotypical and genotypical differences in a systematic manner [39]. 
Another potential factor leading to variability in systemic exposure, which 
has not been included in the current analysis, is plasma protein binding. In 
the presence of competing moieties, changes in unbound fraction may 
affect drug disposition and eventually treatment response, as has been 
described for VPA and PHT. 

It should be highlighted that the lack of guidance regarding DDIs may be 
partly explained by the lack of consensus on the benefit of therapeutic drug 
monitoring, especially when performed in an empirical manner [7,40–42]. 
Another point to consider is that clinicians tend to focus on age as the 
explanatory factor influencing the PK profile of AEDs. However, systemic 
exposure at any age may depend on different covariate factors, such as 
body weight, genetics, co-morbidities, organ function and metabolic 
capacity. Clearly, in the presence of these multiple interacting factors, it 
may not be possible to disentangle the contribution of each one 
independently. Often unless quantitative clinical pharmacology methods 
are implemented, such a situation prevents us from proposing dosing 
adjustment algorithms that correctly account for the effect of DDIs. This 
concept has been illustrated by the integration of therapeutic drug 
monitoring with Bayesian algorithms to support dose adjustment for 
carbamazepine (CBZ) and/or valproate (VPA) [42], resulting in with 
increased seizure control, better safety profile and reduced treatment 
costs. 
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Our investigation does not focus on the advantages of any specific 
approach. Rather, it draws attention to the fact that the characterisation of 
covariate effects and  variability in drug exposure is essential for dose 
optimisation [43–45]. However, we acknowledge that not all clinically 
relevant DDIs have been evaluated or parameterised (e.g. the effect of VPA 
co-administration on PHT pharmacokinetics ) [46,47]. We also recognise 
that even though many of the published models have been derived from 
limited clinical data and often lack a rigorous validation procedure in terms 
of parameter precision and predictive performance, some interesting 
lessons can be learnt from the simulation scenarios presented here. First, 
thanks to the identification of interindividual parameter variability, it is 
possible to select target (monotherapy) doses for most AEDs, which yield 
plasma concentrations that are within a reference therapeutic range, which 
is applicable to the majority of the population. This does not exclude the 
possibility that each patient may have an optimal target concentration and 
benefit from dose individualisation [3].  Second, DDIs can cause significant 
changes in the systemic exposure to first line drugs, and this also applies for 
many add-on drugs in a combination [48,49]. In theory, this implies that the 
observed treatment response, or lack thereof, when adding one or more 
drugs to the backbone first line AED cannot be directly attributed to the 
add-on drug. Instead, it may simply be the result of changes in exposure to 
the first drug in the combination. From a therapeutic perspective, one 
should envisage a scenario in which systemic concentrations of the primary 
drug are comparable when patients are switched from monotherapy to 
combinations. Such a scenario provides the appropriate basis for titration of 
the add-on drug. 

In conclusion, we have explored the effects of DDIs on the systemic 
exposure to AEDs when used in combination therapy. Whereas numerous 
factors may contribute to lack of efficacy and poor tolerability, the effect of 
interindividual pharmacokinetic variability and covariate factors on drug 
disposition cannot be ignored in clinical practice. Our analysis offers a 
strong basis for the review of clinical guidelines for the treatment of 
epileptic seizures with AEDs, taking into account the impact of DDIs on the 
dose rationale.  
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CHAPTER 5 

INDIVIDUALISED DOSING ALGORITHMS 
AND THERAPEUTIC DRUG MONITORING 

FOR ANTIEPILEPTIC DRUGS 
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Individualised dosing algorithms and 
therapeutic monitoring for 

antiepileptic drugs 

Sven C. van Dijkman, Sebastian G. Wicha, Meindert Danhof, 
Oscar E. Della Pasqua 

Clinical Pharmacology & Therapeutics, 2017 

SUMMARY 

Pharmacokinetic (PK) models exist for most antiepileptic drugs (AEDs). Yet, their 
use in clinical practice to assess inter-individual differences and derive 
individualised doses has been limited. Here we show how model-based dosing 
algorithms can be used to ensure attainment of target exposure and improve 
treatment response in patients. Using simulations, different treatment scenarios 
were explored for 11 commonly used AEDs. For each drug, five scenarios were 
considered: i. all patients receive the same dose. ii. individual clearance (CL), as 
predicted by population PK models is used to personalize treatment. iii-v. individual 
CL, obtained by therapeutic drug monitoring (TDM) according to different sampling 
schemes is used to personalise treatment. Attainment of steady-state target 
exposure was used as performance criterion to rank each scenario. In contrast to 
current clinical guidelines, our results show that patient demographic and clinical 
characteristics should be used in conjunction with TDM to personalize the 
treatment of seizures. 
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Study Highlights 

What is the current knowledge on the topic? Population pharmacokinetic 
models are available for many AEDs, most of which allow the 
characterisation of predictable (e.g. covariates) and random interindividual 
variability. 

What question did this study address? Standard dosing recommendations 
and titration procedures have important limitations. A model-based 
algorithm is proposed for AED dose individualisation, which may be of great 
benefit for patients whom fail to respond to initial first-line therapy. 

What this study adds to our knowledge AED dosing regimens based on 
typical population characteristics do not ensure attainment and 
maintenance of target exposure in patients. By contrast, model-based 
dosing algorithms result in significant reduction in the variability of AED 
levels at steady-state.  

How this might change clinical pharmacology or translational science Our 
approach shows how dosing algorithms can be implemented in the clinic to 
deliver personalised and individualised treatments. It also shows the 
advantages of integrating TDM with model-based platforms. 

1. Introduction

Epilepsy is a chronic neurological disease, manifesting as recurrent seizures. 
In spite of the efforts to identify novel, more effective antiepileptic drugs 
(AEDs), one-third of the patients are not responsive to the first treatment. 
Sadly, a considerable proportion of these patients eventually also fail after 
transition to alternative or second line treatment. Such inter-individual 
variability in the response to AEDs is a consequence of multiple interacting 
factors, including differences in the pathophysiology, pharmacokinetic, 
pharmacodynamic and genetic variation [1,2]. It is therefore acknowledged 
that rational prescribing of antiepileptic drugs (AEDs) requires not only an 
understanding of the seizure type and of the drugs' pharmacodynamic 
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properties, but also careful consideration of the factors known to affect 
drug disposition [3,4]. In fact, the impact of covariate factors on drug 
exposure and consequently on pharmacokinetic variability, efficacy and 
tolerability profile of AEDs has been highlighted in a recent publication by 
our group [5]. Our findings confirm the concerns raised by previous authors 
on the importance of accounting for covariate factors, particularly in 
patients at the extreme range of age, such as infants and elderly [6,7]. 
 
Given the impact of demographic, clinical and genetic covariate factors, one 
important question that remains unaddressed is whether the lack of 
response and subsequently switching to alternative first-line AEDs (or 
combination therapy) can be potentially avoided by a more robust dosing 
rationale. Many AEDs show large pharmacokinetic (PK) variability, especially 
when drug-drug interactions occur during combination therapy [5]. 
Nevertheless, despite the large number of investigations on the clinical 
pharmacokinetics of AEDs, limited attention has been given to the 
magnitude of such effects and their clinical implications. In most cases, 
covariate effects have been assessed as part of a population 
pharmacokinetic analysis, where the main objective is the characterization 
of the overall drug disposition properties and underlying sources of 
variability, rather than the optimisation of the therapeutic intervention in a 
wider patient population [8,9]. 

From a clinical point of view, the use of titration procedures, without taking 
into account the underlying inter- and intraindividual variability in 
pharmacokinetics, conflate PK variability with that of pharmacodynamics 
(PD) and disease progression. Usually, treatment is started at a low dose, 
followed by up-titration until adequate efficacy or unacceptable side effects 
are reached. Therapeutic drug monitoring (TDM) is eventually considered 
when side-effects are seen at a lower doses or inadequate efficacy is 
observed at a higher doses than expected. On the other hand, in some 
cases dosing regimens may be selected that aim at reaching steady state 
concentrations (Css) within a pre-defined therapeutic range [10,11]. 

Based on the aforementioned, it becomes clear that current guidelines for 
the selection and titration of AEDs overlook the impact of the underlying 
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variability in drug disposition. Even if only part of the variability in the PK of 
AEDs can be explained by demographic covariates such as weight and age, 
dose adjustments can provide a concrete opportunity for optimising 
therapy. Surprisingly, this contrasts with the fact that nomograms have had 
a place in the optimisation of AED therapy since the early 1970’s, especially 
for phenytoin, which shows large variability due to its nonlinear 
pharmacokinetic properties. Nomograms have, however, important 
limitations. They allow for adjustment of only a few variables (see examples 
in Hudson et al. [12]) or otherwise can become convoluted (e.g. Lee et al. 
[13]). In contrast, the use of PK models allows dose adjustment to be made 
a-priori based on any number of covariates (i.e. personalisation). The 
availability of models also enable subsequent optimisation of the treatment 
based on clinical follow-up procedures such as TDM (i.e. individualisation) 
without the need for empirical calculations or drawing lines on graphs by 
hand. An additional advantage of PK models is the incorporation of 
statistical distributions to describe measurement error, which can 
theoretically lead to more accurate and/or precise parameter estimates 
depending on the error model; in turn this results in more accurate dosing 
recommendations. Moreover, PK models are one of the building blocks of 
clinical trial simulations, which can provide the basis for the evaluation of 
alternative dosing scenarios in silico. 

Here we explore how clinical trial simulations and optimal design concepts 
can be used to identify suitable dosing algorithms and possibly personalise 
the treatment of seizures with the available AEDs. It can be anticipated that 
the implementation of model-based titration and dosing algorithms, as a 
criterion for dose adjustment and transition to alternative first-line or 
combination therapy, may prevent treatment failure in a considerable 
fraction of patients who currently do not respond to the first AED. Our 
approach may be of particular relevance for 10-20% of patients who still 
show unresolved seizures when their target dose has been achieved [3]. It 
may also allow the identification of individuals within the group of patients 
who would respond to optimised regimens, but currently remain refractory 
to treatment and are said to have drug-resistant epilepsy [4]. 
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Finally, we aim to show how TDM procedures can be combined with 
inferential methods based on modelling and simulation to optimise doses 
and dosing regimens. These concepts have been increasingly applied to 
other therapeutic areas (e.g., anti-tumour, immunosuppressant and anti-
infective drugs) where favourable treatment outcome depends on the 
attainment and maintenance of target drug exposure [14–18]. Such 
developments illustrate the effective introduction of individualised 
medicines to patients [19]. This diverges from current clinical practice in 
epilepsy, which relies on limited clinical evidence and somewhat randomly 
selected sparse pharmacokinetic sampling when TDM is used. In most 
cases, blood collection is performed without further understanding of the 
required number of samples or most appropriate time for collection to 
ensure accurate estimation of the clearance (CL), which is critical for 
subsequent dose individualisation. So far, no evidence exists on the 
optimality of such sampling strategies. Typically, optimal sampling is 
assumed to be at the end of the dosing interval (i.e. trough levels), but this 
is not always the case (e.g. sampling times between 2-6 hours post-dose in 
Yukawa et al. [20]). Moreover, there is often a large spread in sampling 
times in part due to factors such variable dosing time, patient availability, 
and blood withdrawal service opening times. 

For the sake of clarity, here we refer to personalisation when treatment 
decisions, including dose adjustment are based on covariate factors, 
including demographic, clinical and pathophysiological data. Such a 
definition is required to account for the contribution and interaction 
between multiple factors, other than genotype and phenotype [21]. We 
also make use of the term individualisation to refer to dose adjustments 
based on therapeutic monitoring (TDM) and subsequent estimation of the 
individual patient’s PK parameters (e.g., clearance). This distinction is 
important as in some cases treatment optimisation may be reached without 
the requirement for TDM. In fact, when used in conjunction with model-
based approaches TDM may form the basis for the individualisation of 
therapy, in particular in special populations such as children and pregnancy 
[22–24]. 
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2. Methods

Pharmacokinetic models and virtual patient demographics 
Models describing the adult and paediatric PK of carbamazepine (CBZ) [37], 
clobazam (CLBZ) [38], clonazepam (CLNZ) [20], lamotrigine (LMT) [39,40], 
levetiracetam (LVT) [41], oxcarbazepine (OXC) [42], phenobarbital (PHB) 
[43], phenytoin (PHT) [44], topiramate (TPM) [30], valproic acid (VPA) 
[45,46], and zonisamide (ZNS) [47] were collected from the published 
literature. Models were transcribed into the appropriate format in R v3.1.1 
[48], along with the parameter estimates and combined with analytical 
solutions of the mathematical equations describing the concentration over 
time profiles (equations 1 and 2.1-2.5 for one and two compartment 
models respectively) [12,49,50]. These equations were then implemented 
as scripts and used for all subsequent simulations. For each AED, separate 
adult and paediatric populations were evaluated (n=1000) using the 
baseline demographic characteristics described in table 1. Values of other 
influential factors, such as genetic polymorphisms were simulated 
according to their occurrence as in the original publication. Steady-state 
concentrations over 12 hour dose intervals and Css (equation 3) were 
simulated for typical adult and paediatric populations (table 1). 
Hypothetical dosing regiments were considered according to different 
dosing algorithms (table 2). Steady state concentrations (Css) were used as a 
surrogate marker for AED effect, with the therapeutic target Css (TCss) in 
each scenario set to the concentration half way between therapeutic 
minimum and maximum of the therapeutic window (table 3) [10]. 

 (1) 

(2.1) 

(2.2) 

(2.3) 
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(2.4) 

(2.5) 

(3) 

 (4) 
Equations 1-4. Ct: concentration at time t (mg/L or μg/L). D: Dose (mg or μg). V or 
V1: central volume of distribution (L). ka: absorption rate constant (h-1). CL: 
clearance (L/h). t: time (h). tD: time of dose (h). : dosing interval (h). Q: 
intercompartmental clearance (L/h). V2: peripheral volume of distribution (L). F: 
bioavailability (fraction of the dose that is absorbed). TC: target steady state 
concentration (mg/L or μg/L). i: individual i. 

Table 1 Baseline characteristics of the patient population used across the different 
simulation scenarios 

Demographic Adult values Paediatric values 
Age range in years
(uniformly distributed) 

18-65 4-14

Mean, CV% of weight (kg)
(normally distributed) 

Male: 75, 16%
Female: 65, 16% 

3·Age+7 †, 10% 

Gender Male: 50%
Female: 50% 

Male: 50%
Female: 50% 

†Based on the weight-by-age formula created by Luscombe & Owens in Arch Dis 
Child 2007: a child’s weight can be predicted by taking three times its age plus 
seven 
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Table 2 Model-based dosing algorithms tested in the different scenarios 
Dosing algorithm 
name 

Dose calculated using

Standard 
(Population) 

Population CL

Personalised Model-predicted CL, including covariate effects
Individualised (1) individual CL prediction based on TDM with 1 sample at 12:00 post-

dose 
Individualised (2) individual CL prediction based on TDM with 2 samples at 09:00 and 

12:00 post-dose 
Individualised (3) individual CL prediction based on TDM with 3 samples at 06:00, 

09:00, and 12:00 post-dose 
D-optimised (1) Individual CL prediction based on TDM with optimised sampling time 

(1 sample)  
D-optimised (2) Individual CL prediction based on TDM with optimised sampling 

times (2 samples)  
D-optimised (3) Individual CL prediction based on TDM with optimised sampling 

times (3 samples) 

Table 3 Dose levels simulated for the initial dosing scenario, along with the 
corresponding therapeutic windows and target steady-state concentration for each 
drug. 
Drug Adult 

standard dose
Paediatric 
standard dose 

Therapeutic 
concentration 
window [9] 

Target 
Steady-state 
concentration 

CBZ 700 mg/day 15 mg/kg/day 4-12 mg/L 8 mg/L
CLBZ 20 μg/day 0.4 μg/kg/day 30-300 μg/L 165 μg/L 
CLNZ 5 μg/day 0.08 μg/kg/day 20-70 μg/L 45 μg/L
LMT 400 mg/day 7 mg/kg/day 2.5-15 mg/L 8.75 mg/L 
LVT 2500 mg/day 50 mg/kg/day 12-46 mg/L 29 mg/L 
OXC 1000 mg/day 20 mg/kg/day 3-35 mg/L 19 mg/L 
PHB 150 mg/day 4 mg/kg/day 10-40 mg/L 25 mg/L 
PHT 300 mg/day 10 mg/kg/day 10-20 mg/L 15 mg/L 
TPM 300 mg/day 8 mg/kg/day 5-20 mg/L 12.5 mg/L 
VPA 1200 mg/day 20 mg/kg/day 50-100 mg/L 75 mg/L 
ZNS 300 mg/day 6 mg/kg/day 10-40 mg/L 25 mg/L 
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Personalised dosing algorithms 
Two different dosing algorithm scenarios were simulated based on the 
population pharmacokinetic models alone. In an initial scenario, 
exploratory simulations (not shown) were performed to select one dose for 
the whole population that resulted in exposures which were the closest to 
the target exposure in the largest proportion of the population. This 
population scenario was selected as a reference scenario. For subsequent 
comparisons under the assumption that the selected doses reflect the 
titration procedures used in clinical practice. By contrast, in the 
personalised dosing scenario, individual clearance estimates were 
calculated for each patient i (CLi) using the covariates included in the model. 
The difference between the initial population dose and personalised dosing 
scenarios represents the impact of inter-individual variability in clearance, 
which is explained by covariates. Finally, an additional dosing scenario was 
generated for PHT based on the nomogram of Ludden et al. [51]. This 
nomogram requires two samples at different steady-state doses. We have 
therefore used 300 and 200 mg/day for adults, and 10 and 6.7 mg/kg/day 
for children. Based on their nomogram, parameters Vmax and Km are 
calculated and an updated dose can be derived using the formula 
Vmax*TCss/Km+TCss. It should be noted that the nomogram will derive a 
negative Km when higher concentrations are observed for a lower dose as 
compared to that of the higher dose, in which case their median reported 
Km of 7.73 was used instead. 

Individualised dosing algorithms 
Given that the AEDs are titrated to steady-state conditions, the average 
plasma concentration at steady-state will vary according to the individual 
patient’s clearance (CL). Empirical Bayesian estimation (EBE) procedures 
can be used to obtain accurate predictions of the individual parameter of 
interest. The EBE determines the deviation ( , eta) from the population 
value ( , theta) of the parameters of interest (e.g. rate of absorption, 
volume of distribution, clearance, etc.), taking into account the residual 
variability ( , epsilon) [52]. Thus, AED concentrations derived from TDM can 
be used in conjunction with EBE to individualise the dose [10,11,53]. In 
theory, such an approach allows one to account for the variability in 
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clearance and other individual pharmacokinetic parameters which are not 
described by the underlying covariate effects. To date, it is unclear to what 
degree such a dosing algorithm yields higher proportions of patients 
achieving target Css (TCss) when compared to conventional dose adjustment 
for AEDs based on TDM only. 

Here we present three individualised dosing scenarios, in which EBEs were 
obtained for clearance (CLi), under the assumption of blood sampling being 
performed according to empirical sampling schemes, including 1, 2, or 3 
samples for each individual patient. When only one sample was collected, 
sampling was performed at the end of the dosing interval (12 h) to ensure 
information about the trough levels. When two samples were used, blood 
sampling was such that information was obtained about the elimination 
phase in addition to the trough sample at the end of the dosing interval, 
i.e., at 9 h and 12 h post dose. For three samples, data on the elimination
phase was obtained at 6, 9 and 12 h post dose. EBEs of clearance were 
obtained by minimising the Bayesian objective function (equation 5): 

 (5) 

where ij is the jth concentration prediction for individual I, Yij is the jth 
concentration observation for individual I,  is the variance of the residual error, ik 
is the deviation (eta) from population parameter k in individual I, and  is the 
variance of the kth eta. Although EBEs were estimated for all etas, only those for 
clearance were subsequently used for dose optimisation using equation 4. The 
difference between personalised and individualised dosing scenarios reflects the 
contribution of the parameter distribution describing an additional fraction of the 
unexplained inter-individual variability in clearance. 

Optimised blood sampling for TDM 
D-optimality concepts have been used across different therapeutic areas as a tool 
to improve parameter precision. This represents an important advantage when 
sparse sampling is for the purpose of population pharmacokinetic modelling. Here 
three D-optimised scenarios were considered, in which 1, 2, or 3 time points were 
optimised for the estimation of individual CL. Data analysis was performed using 
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the PFIM  software [49] to maximise the approximation of the Bayesian Fisher 
information matrix: 

(6) 

where  , , and  are sampling times 

with the constraint that only sample times were allowed to be taken 
between 0.5 and 12 hours after dose, at discrete points each half hour, 
resulting in a total of 24 possible sampling time points. Samples obtained by 
D-optimality were then used in the simulation scenarios. EBEs of CLi were 
derived as for the individualised dosing scenarios described previously. The 
difference between the individualised and D-optimised dosing scenarios 
reflects the impact of D-optimal design on the precision of individual 
clearance estimates. 

Graphical and statistical summaries of the simulated scenarios 
The ratio RTCss = Css/TCss was used to describe how well the Css resulting 
from a dosing algorithm compared to the theoretical TCss. Consequently, 
values for RTCss below or above 1 represent underdosing or overdosing, 
respectively. The observed differences between dosing algorithms for each 
drug and simulation scenario were graphically analysed using whisker-box 
plots of the median and 95% prediction intervals. In addition, the range of 
PFIM-derived sampling times was used to assess differences in parameter 
information content for the scenarios involving sampling time optimisation. 
Furthermore, bias and precision of RTCss were determined by calculating 
the relative error (RE%) as (Css – TCss) * 100%, and coefficient of variance 
(CV%) as mean(RTCss) / sd(RTCss) * 100% respectively. The impact of dosing 
algorithms on ability to attain TCss was determined by taking the difference 
in CV % and RE% estimates between simulated scenarios. 
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3. Results 

Implications of dosing algorithms for systemic exposure to AEDs 
Although dose levels were found that resulted in concentrations that are 
within the therapeutic window for eight out of eleven AEDs in at least 95% 
of the adult population, large inter-individual differences in CL resulted in a 
wide spread of Css relative to the target concentration, i.e., RTCss in the 
population (figures 1 & 2). Personalisation improved the precision of RTCss 
(CV% of population – CV% of personalised scenario) in adults for PHT 
(36.0%) and ZNS (8.5%). No relevant changes (between -5 to +5%) were 
found for CBZ, CLBZ, CLNZ, LMT, LVT, OXC, PHB, TPM and VPA. In children, 
personalisation also improved the precision of TCss for PHT (32.9%) and ZNS 
(5.9%). No relevant differences were found for CBZ, CLBZ, CLNZ, LMT, OXC, 
PHB, TPM, and VPA. The CV% for the personalisation scenario was worse 
for LVT (-15.6%). Personalisation procedures resulted in a reduction of the 
bias in TCss (RE% of population – RE% of personalised scenario) for PHT 
(8.2%), TPM (7.9%) and ZNS (13.5%) in adults, and CLBZ (6.3%), CLNZ (9.4%), 
OXC (12.8%) and TPM (8.7%) in children. Some bias was observed by 
personalised dosing of LMT (-6.0%) in children. No relevant differences in 
bias were found for any of the other AEDs. 

By contrast, the integration of model-based algorithms with EBE estimates 
from TDM using one sample showed that improvement in terms of target 
Css for nearly all AEDs. Reductions in CV% of TCss in adults varied between 
6.6% for CBZ and 20.9% for CLBZ. The effect of these procedures was found 
to be negligible only for TPM (4.6%). In children, similar reductions were 
observed in CV% of TCss, with values varying between 6.0% for CLBZ to 
19.9% for CLNZ. Further reductions in the variability in TCss could be 
achieved by evaluating two blood samples instead of one. 

Such an improvement was observed for LVT (7.5%) in adults and CLBZ 
(8.4%) in children. Finally, bias in the TCss estimates (RE%) in children could 
be reduced using one TDM sample only for LMT (6.9%). No improvement in 
bias was found for any of the other AEDs, irrespective of the number of 
TDM samples. 
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Implications of optimised sampling times for TDM 
The sampling times for characterisation of clearance (trough levels) in 
adults could be optimised for 6 out of 11 AEDs, whereas for two other 
compounds, sampling times optimisation was achieved by including data 
relative to the upswing portion of the concentration vs. time curve (figures 
3 & 4). Of note is the fact that optimisation procedures show a 
counterintuitive behaviour. When more frequent sampling is required or 
feasible, one should collect additional samples at time points close to the 
reference sampling times. The spreading of blood samples at wider 
intervals such as at 6, 9 and 12 hours after dose for once-daily regimens is 
often less informative than when the additional samples are collected at 
the end of the dosing interval. 

Despite the possibility of introducing optimised times for blood sampling 
and obtaining increased precision for individual clearance estimates, our 
findings reveal that such efforts do not warrant improved target 
attainment. In fact, comparison of CV% of TCss between the D-optimised 
and individualised scenarios (i.e. one vs. one, two vs. two and three vs. 
three samples) reveals no reductions larger than 5%. By contrast, a 
worsening was found for PHT in adults (-7.4, -8.5 and -5.1%) and children (-
5.4, -6.7 and -9.0%), and LMT (-5.3% for one sample) in children. In 
addition, bias was not reduced by taking samples at D-optimised sampling 
times. Surprisingly, D-optimised schemes introduced bias for LVT (-21.7, -
24.7, and -21.4%), PHT (-9.2, -9.7, and -9.2%), and VPA (-11.4 when taking 
three samples) in adults, and for LVT (-25.7, -25.9, and -24.6%), PHT (-9.8, -
10.7, and -8.3%), and VPA (-7.9, and -7.3% for two and three samples 
respectively).  
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4. Discussion 

The treatment of epileptic seizures with AEDs is based on the clinical 
classification of overt seizure type [20,21]. Whereas heterogeneity in 
disease is well known and treatment response varies considerably between 
patients, there has been a long debate about to what extent treatment 
should be complemented by therapeutic drug monitoring, which is aimed at 
establishing whether patients reach and maintain a predefined 
concentration or concentration range. 

Our results show that despite the limited attention given to the impact of 
covariate factors on drug disposition, model-based dosing algorithms can 
be developed in conjunction with TDM to individualise treatment. The use 
of such an integrated approach allows a significant reduction in the 
variability in drug exposure, which is observed after administration of 
standard doses, even when titration steps are used at the start of 
treatment [22,23]. In addition, our investigation shows that 
individualisation based on a single TDM sample at the end of the dosing 
interval resulted in large improvements in target attainment. Further 
improvements could be achieved with one or two additional TDM samples, 
but differences were not marked. 

Contrary to what one would expect, optimisation of sampling times by D-
optimality did not improve precision or bias, and paradoxically resulted in 
worsening for some AEDs. Based on our optimisation results, sampling time 
optimisation seems unnecessary and may in some cases even introduce 
bias. It may still be of use in situations where the accurate information on 
the parameter of interest (here: clearance) cannot be as easily derived, e.g. 
in the case of multiple, variable dosing regimens, or polytherapy with drug-
drug interactions. 

Our investigation also shows that implementation of TDM without further 
integration with model-based techniques does not warrant effective 
individualisation of the dose. In this regard, the lack of consensus about the 
clinical relevance and performance of TDM may be partly explained by its 
use as a diagnostic tool, i.e., TDM results are treated similarly to any other 
clinical laboratory data. Instead, TDM should be seen as the input variable 
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for a dosing algorithm, in which inferences from individual drug levels are 
used to establish the contribution of multiple interacting factors 
[10,14,16,25]. While some evidence exist for the lack of significant impact 
of AED TDM on treatment outcome, such investigations did not include 
model-based dosing algorithms. More clinical evidence is required to build 
a stronger case for the advantages of parametric methods to obtain 
accurate estimates of interindividual variability in drug disposition, as 
expressed by (pharmacokinetic) model parameters. Irrespective of the 
limitations which some of the pharmacokinetic models present, our 
approach clearly illustrates how therapeutic platforms can be implemented 
to support personalised and individualised treatment. It also shows how 
clinical decision criteria and therapeutic guidelines can benefit from 
quantitative clinical pharmacology methods. We anticipate that as the 
relationships between AED exposure and efficacy become elucidated [26–
30], this approach may be further refined by targeting individualized plasma 
concentrations to account for variability in pharmacodynamics. In any case, 
the assumption that standard doses and dosing regimens, whether or not 
corrected empirically by body weight or other covariate factor is no longer 
defendable for AEDs. 

Potential limitations 
Given that models were retrieved from the published literature, one cannot 
exclude possible limitations when using them for simulation purposes. First, 
it should be noted that some of these models were based on sparse data. 
This may have resulted in an inflated variability in clearance, as often 
variability in absorption or distribution volume was not included. 
Consequently, these models may have indirectly produce results in favour 
of the individualised and D-optimised dosing algorithms, as these 
approaches take into account these other sources of variability. Clearly, 
given some of the simplifications, some models may not adequately 
describe the relevant physiological processes when applied other 
conditions or scenarios, such as dosing during non-steady state conditions. 
By contrast, other models may be considered overparameterised. For 
instance, the models for CLBZ and ZNS incorporate information on genetic 
polymorphisms for the prediction of clearance, which requires DNA 
sequencing, a procedure which is not yet commonly used in current clinical 
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practice and may therefore be of limited clinical value. Another example of 
such limitations is the case of CLNZ, for which the relative target attainment 
approached unity for the individualised and D-optimised dosing algorithms; 
the population pharmacokinetic model for this drug does include 
interindividual differences in absorption or distribution processes. In real 
life, some variation would be detected even after integration of the TDM 
with population pharmacokinetic concepts. 

The discrepancies that were found in terms of precision and bias between 
dose individualisation using typical and optimised sampling times may also 
be due to model limitations, as in the case of LVT and PHT, for which 
information regarding the underlying correlation between clearance and 
volume of distribution and variability in the absorption kinetics was missing. 
A major difference between sampling time optimisation in adults and 
children was seen for drugs LMT and VPA. These differences are most 
probably caused by the fact that the pharmacokinetic models have been 
originally developed separately for adults and children. From a statistical 
perspective, the main difference between the two pharmacokinetic models 
was the use of additive (adults) and proportional (children) residual errors. 
When residual error is large and parameterised as proportional-only 
simulations will behave differently from combined error models. 

Lastly, we have not limited the dose adjustments to the approved dose 
ranges or available dosage strengths, as the scope our investigation was to 
establish the relevance of model-based principles for the personalisation of 
treatment with AEDs. Nevertheless, we do not anticipate any major 
differences in the conclusions drawn so far. The predicted doses were 
within the approved dose ranges even if doses were not adjusted for 
available strengths. 

The implementation of model-based dosing algorithms for individualisation 
of treatment in the clinic is subject to practical, technical and theoretical 
challenges, such as the characterisation of interindividual differences. As a 
consequence, historically AED dose adjustments have been restricted to the 
typical population parameter values, without taking into account the 
contribution of predefined covariate effects. In fact, exceptions are 
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illustrated by the requirements for dose adjustment in patients with varying 
degrees of renal and hepatic impairment. Treatment Individualisation or 
precision medicine has become goal of the clinical research community in 
other therapeutic areas such as oncology, but its wider acceptance seems 
to be hindered by limited evidence of its large-scale utility and impact [31]. 
Furthermore, the lack of user friendly software programs over the past 
decades has imposed the need for technical skills to access and use 
quantitative technologies. This situation has changed in recent times; 
advances in computing performance and continuous development of 
dedicated software packages, such as R and Shiny have allowed the 
development of dosing tools with user friendly graphical user interfaces 
[32]. For example, the use of TDM is popular in antibiotic treatment, and 
the application TDMx has been created to make use of the available PK 
models for TDM-based dosing adjustments [33]. Currently, no such 
software applications exist with the required functionality to integrate 
bioanalytical results from TDM with a population pharmacokinetic model 
and patient demographic, clinical and genetic information to derive 
individualised dose recommendations for AEDs. Given the availability of 
dosing algorithms in other fields of medicine, it appears that the lack of 
such applications for AEDs reflects the entrenched culture in clinical 
decision making, rather than a technical hurdle. Taking into account the 
possibility of performing TDM based on dried blood spot or saliva, it can be 
anticipated that the implementation of integrated platforms will not 
represent an increased burden to patient care in epilepsy [34,35]. A final 
obstacle for the uptake of TDM-based dosing individualisation applications 
is the validation of such a platform. This would constitute validation of the 
generic modelling framework into programming code (e.g. equations 1-5) 
and validation of predictions of models and parameters for specific drugs 
and situations (e.g. the AED models used here). Whereas the former may 
be simply validated by comparison of predictions for hypothetical scenarios 
with industry standards such as NONMEM© [36], validation of the latter 
may require external datasets, or clinical trials in which such applications 
are used to predict concentrations or optimal dosing in clinically relevant 
scenarios. At the moment, no clear guidelines exist for such validations, 
leading to a case-by-case evaluation of these applications and unnecessary 
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uncertainties for companies or institutes developing these tools. 
Standardisation of validation efforts may create a more secure environment 
for these applications to thrive in. 

In summary, some important recommendations arise from our 
investigation. First, that the use of wide blood sampling intervals for TDM 
has limited impact on the characterisation of individual pharmacokinetic 
parameters. Second, AED target exposure levels are unlikely to be attained 
without the use of dosing algorithms and individualised dosing 
recommendations. Third, available pharmacokinetic models have 
limitations which highlight the need for standardisation and validation 
procedures. Simplified models can lead to under- or over-appreciation of 
variability and thereby imprecise dosing. On the other hand, models that 
are too complex may lead to identifiability issues. In essence, a balance 
needs to be struck between complexity and usability. The work presented 
here adds to the increasing evidence that individualised therapy provides 
an opportunity to prevent failure of treatment with first line and alternative 
first-line AEDs, disentangling truly drug resistant patients from those who 
are labelled as non-responders, i.e., whose phenotype is a consequence of 
sub-optimal exposure. 
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CHAPTER 6 

IMPACT OF AGE-RELATED FACTORS ON 
THE PHARMACOKINETICS OF 

LAMOTRIGINE AND IMPLICATIONS FOR 
DOSING IN EPILEPSY PATIENTS 
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Impact of age-related factors on the 
pharmacokinetics of lamotrigine and implications 

for dosing in epilepsy patients 

Sven C. van Dijkman, Nico C.B. de Jager, Willem M. Rauwé, 
Meindert Danhof, Oscar Della Pasqua 

Accepted for publication in Clinical Pharmacokinetics 

SUMMARY 

Background and Aims: In this study we evaluate performance of allometric 
concepts to predict the implications of age- and size on the pharmacokinetics of 
lamotrigine and assess the dose rationale across different age groups from 0.2 - 91 
years of age. Methods: An allometrically scaled pharmacokinetic model was 
developed using adolescent and adult data, taking into account the effect of co-
medications. Model parameters were then used to extrapolate lamotrigine 
pharmacokinetics to older adults (>65 years), children (4-13 years) and young 
children (0.2-2.6 years). In addition, simulations were performed to identify the 
implication of different doses and dosing regimens for each population, as to 
ensure steady-state concentrations within a predefined therapeutic window. 
Results: The pharmacokinetics of lamotrigine was best described using a one 
compartment model with first order absorption and elimination. Carbamazepine, 
phenytoin, and valproic acid changed systemic clearance by +76.5%, +129%, and -
47.4%, respectively. Allometric principles allowed accurate extrapolation to older 
adults and children older than 3 years of age. A maturation function was required 
to describe changes in exposure in younger patients. A child of 1.7 years has a 
31.5% higher clearance compared to adults, after correcting for body weight. 
Patients > 65 years showed a decrease in clearance of approximately 15%. 
Conclusion: Population pharmacokinetic models are usually limited to a subgroup 
of patients, which may mask the identification of factors contributing to inter-
individual variability. Availability of a single model, describing the population 
pharmacokinetics in the whole patient population provides insight into the dose 
rationale taking into account age-related changes in the disposition of lamotrigine. 

189



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 190PDF page: 190PDF page: 190PDF page: 190

Highlights 

• Our study shows that lamotrigine pharmacokinetics can be 
described by allometric principles in patients older than 3 years of 
age, whereas a maturation function is required for younger 
patients. 

• An integrated pharmacokinetic model shows that body weight 
along with the effect of co-medications (i.e., drug-drug interactions) 
are the primary factors affecting systemic exposure in patients of 
different ethnic backgrounds, aged 0.2-91 years, receiving 
immediate or extended release lamotrigine. 

• Whereas the pharmacokinetic data obtained in children younger 
than 2 years of age are from historical clinical trials in which blood 
samples have been collected, our analysis suggests that different 
dosing regimens may be required in future studies in this 
population to ensure systemic exposure comparable to adults. 

 

1. Introduction 

Lamotrigine (LMT) is a widely used AED, which has been approved for the 
treatment of patients with partial-onset seizures, primary generalized tonic-
clonic (PGTC) seizures, and Lennox-Gastaut syndrome who are aged 2 years 
and older [1–4]. The pharmacokinetics of LMT is characterised by rapid 
absorption after oral administration, with negligible first-pass metabolism 
(absolute bioavailability is 98%). Dose proportionality was observed in 
systemic exposure both in healthy subjects and patients over the dose 
range of 50 to 350 mg twice daily. Mean apparent volume of distribution 
(Vd/F 0.9 – 1.3 L/kg) indicates distribution beyond total body water. 
Because lamotrigine is not highly bound to plasma proteins, clinically 
significant interactions with other drugs through competition for protein 
binding sites are unlikely. LMT metabolism is predominantly hepatic via 
conjugation (UDP-glucuronosyltransferase 1–4, and UDP-
glucuronosyltransferase 1–3). Following repeated dosing, LMT is known to 
induce its own metabolism, and oral clearance averages 0.35–0.59 mL/min. 
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These estimates result in plasma half-life ranging from 24 to 37 h [5-8]. In 
addition, considerable efforts have been made to characterise LMT 
exposure in special populations, such as pregnant women, children and 
elderly patients [9-11]. 

Despite the availability of pharmacokinetic (PK) data in both healthy 
subjects and patients, a model-based analysis of potential clinical and 
demographic covariates that affect the disposition of lamotrigine is still 
missing. In fact, population PK modelling has been used to describe the 
pharmacokinetics of lamotrigine in different patient groups and after 
administration of different dosage forms [12–21]. However, these 
investigations have not explored the implications of age-related differences 
in a systematic manner. From a methodological perspective, another factor 
needs to be considered, as patients with epilepsy are usually exposed to 
polypharmacy. Hence, different approaches may be required to describe 
the impact of covariates across the overall population. For instance, 
appropriate scaling of pharmacokinetics to body weight (allometry) has 
been shown to allow the prediction of exposure in children older than 2 
years of age [22], while changes in drug disposition in children younger than 
2 years needs to be adjusted for by a separate maturation function. Yet, 
most investigations do not show how these factors can be disentangled 
from the effect of co-medications and other intrinsic or extrinsic factors. 

Here we attempt to develop an integrated population PK model to describe 
the pharmacokinetics of lamotrigine at steady state in patients from 
different ethnic backgrounds, aged 0.2-91 years, receiving immediate or 
extended release lamotrigine. Our analysis provides an opportunity to 
illustrate how population PK modelling and simulation can be used as a tool 
for dose optimisation when patient population characteristics are likely to 
affect drug exposure. In this regard, it should also be noted that a 
relationship between plasma concentration and clinical response and/or 
adverse effects has not been stablished, but a clinically relevant target 
range for plasma concentrations has been considered between 3–14 mg/L 
[23]. Moreover, it allows us to investigate possible explanatory factors for 
the lack of efficacy of LMT in patients aged 2 years and younger, which 
could not be demonstrated in randomised clinical trials [24]. These findings 
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seem to contrast with the conclusions drawn by Pellock and collaborators 
regarding the evidence of efficacy data in adults, which can be used to 
predict treatment response in partial onset seizures in children > 2years of 
age. In fact, the authors declare that no attempt was made to quantitatively 
analyse the studies including LMT, due to the few trials eligible for their 
analysis [25]. 

Whereas multiple factors can contribute to the failure of a clinical trial, one 
cannot overlook the impact of differences in pharmacokinetics, especially 
when evidence suggests that young children show relatively higher 
clearance [5], resulting in lower exposure levels even after correction for 
differences in body weight. Likewise, further attention needs to be given to 
the implications of reduced organ function and polypharmacy on older 
adults. Hence, our analysis aims to quantify the effect of changes in 
systemic exposure to LMT due to developmental growth in younger 
patients (i.e. ontogeny, organ maturation) and reduced organ function and 
body mass in older adults. The availability of population parameter 
distributions, which account for the effect of covariate factors will allow for 
the optimisation of future clinical as well as the development of dosing 
algorithms for specific patient groups. 

2. Methods

2.1 Data 

All data used in the current investigation were obtained from 
GlaxoSmithKline’s Clinical Trial Register. Pharmacokinetic data and patient 
characteristics were obtained from clinical pharmacology and efficacy 
studies with lamotrigine (Clinicaltrials.gov: NCT00043875, NCT00144872, 
NCT00113165, NCT00104416, NCT00516139, NCT00264615), all of which 
were performed in accordance with the rules and regulations of the 
respective countries where the studies were conducted. These studies 
contained both rich and sparse LMT concentration data, patient 
demographics and dosing information for a total of 492 patients, receiving 
immediate- or extended release formulations of LMT for up to 45 weeks. As 
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shown in Figure 1, from this pooled data, 7 subsets were created for 4 age 
groups. Subsets A and B were created as 70% and 30% of the same data 
type (adolescents and adults aged 14-65, data from one rich and one sparse 
sampling study combined) for the purpose of model building and internal 
validation, respectively. Subset C was created for external validation 
(adolescents and adults aged 11-65, data from a different study, in which 
pharmacokinetics was evaluated based on sparse sampling). Subsets D, E, 
and F were created for model extrapolations to adults >65-91 years, 
children 4-10 years, and children <3 years respectively. A detailed overview 
of the demographics of each subset can be found in the supplement (Table 
1S), demographics of the total patient pool are listed in Table 1. 

 
 

Figure 1. Data sets and population characteristics for the development of a 
population pharmacokinetic model in adult, paediatric and elderly patients.  
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Table 1. Demographics of the total modelling population. Carbamazepine-Valproic 
acid: Number of patients receiving the comedication and the range of doses. 

Demographic Mean (SD) Median (range)
No. of patients 494 -
Gender (M:F) 248:246 -
Age, years 45.3 (24.2) 29 (0.2-91)
Weight, kg 70.3 (27.5) 58 (3-151.9)
LMT dose 255 (190) mg/day 200 (2-1200) mg/day 
Comedication Frequency Dose range
Carbamazepine 62 300-1200 mg/day
Clobazam 11 2.5-40 mcg/day
Clonazepam 22 0.25-175 mcg/day
Gabapentin 13 100-3600 mg/day
Levetiracetam 67 125-4250 mg/day
Oxcarbazepine 25 150-1500 mg/day
Phenobarbital 33 24-400 mg/day
Phenytoin 81 40-780 mg/day
Topiramate 37 12.5-700 mg/day
Valproic acid 75 250-3000 mg/day

 

 

2.2. Population PK modelling 

The population model describing the pharmacokinetics of lamotrigine was 
developed using a nonlinear mixed effects modelling approach, as 
implemented in NONMEM version 7.3 (ICON Development Solutions, 
Hanover, MD) [26]. The analysis workflow was performed within a platform 
including Psn v4.2.0 [27] and Piraña v2.90 [28,29]. R v3.1.1 was used for 
data processing, and statistical and graphical analysis [30]. One and two-
compartment models with first order absorption and elimination were 
evaluated to fit the concentration vs. time data. Clearance (CL) and volume 
of distribution (V) were estimated as apparent parameters (CL/F, V/F), as all 
concentration data were obtained after oral administration of LMT. The 
first-order conditional estimation method with interaction (FOCE-I) was 
used to derive population ( ) PK parameters, their variability ( ) and the 
residual variability between observed and predicted concentrations ( ). 
Interindividual variability in PK model parameters was described by an 
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exponential model (equation 1), where Pij is the estimate of the jth 
parameter in individual i, j is the typical value of the jth parameter, and ij is 
a random variable for the ith individual and the jth parameter distributed 
with mean zero and variance 2. Residual variability was modelled using a 
combined proportional and additive error model (equation 2), where Yij,obs 
and Yij,pred are respectively the observed and predicted concentrations of 
individual i at time j, and 1 and 2 are random variables with mean zero and 
variance 2. 

  (1) 

 (2) 

2.2.1. Covariate modelling 

Age, body weight (WT), formulation (immediate or extended release), and 
co-medication were considered as factors to be included in the evaluation 
of covariate effects. Due to covariate identifiability limitations, only those 
co-medication taken by at least 10 individuals were considered for 
inclusion; i.e. carbamazepine (CBZ), clobazam (CLBZ), clonazepam (CLNZ), 
gabapentin (GBA), levetiracetam (LVT), oxcarbazepine (OXC), phenobarbital 
(PHB), phenytoin (PHT), topiramate (TPM) and valproic acid (VPA). Evidence 
for potential covariate-parameter correlations was based on a graphical 
evaluation by plotting the random variability of the model parameter 
against the variable of interest. Potential continuous covariates were 
included into the model one-by-one and set in relation to the PK parameter 
(equation 3), where Covi is the value of the covariate for individual i and 
Covmed is the median covariate value in the population (data set). The effect 
of binary covariates was described as shown in equation 4, where cov 
represents the impact of the relevant covariate in question and Covi takes a 
value of 1 or 0. 

(3) 
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(4) 

Next, all potential covariates were statistically tested based on the 
objective function value (OFV). During the forward inclusion steps of the 
analysis, covariates that showed statistically significant changes in OFV 
(P<0.05) were included in the final model. To be included, a change in OFV 
of >3.84 (based on a 2 distribution with 1 degree of freedom) was required. 
During backward covariate deletion, a change in OFV of >6.64 (p <0.01) was 
used as threshold for evidence of the covariate effect. To determine the 
feasibility of allometric extrapolations to other age groups, a priori 
allometric principles were applied to clearance (CL) and volume of 
distribution (V) (equation 5 and 6). 

(5) 

 (6) 

Different absorption rate constants (Ka) were estimated to account for 
differences between immediate release (IR) and extended release (XR) 
formulations (equation 7). 

  or  (7) 

If needed, a maturation function was included (equation 8) to describe the 
change in CL in infants adn toddlers based on the individual’s post 
menstrual age (PMA). Maturation processes were described by a sigmoidal 
function, including TM50, a parameter describing the PMA at which 
clearance values correspond to 50% of the maximum value when 
maturation is complete (Amax) , and the slope of the curve (Hill). 

 (8) 
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2.2.2. Validation and extrapolation 

As described previously, different subsets were considered for the 
evaluation of the model and subsequent characterisation of the 
implications of age-related changes in the disposition of LMT. An iterative 
approach was taken in which an initial model, built on adult PK data was firs 
evaluated using an index and an external validation data set (B+C). Based 
on pre-defined model performance criteria, the model was then used for 
extrapolation purposes to describe LMT exposure in older adults (>65 years, 
D), children (4-11 years, E), and finally in infants and toddlers children (<3 
years, F). At each step, parameters were first fixed to the values obtained 
during the estimation step including all previous data (models B-F), after 
which parameters were estimated using data from the patient population 
in question separately (models B*-F*), and in conjunction with all previous 
data (models B**-F**). These iterative steps are illustrated in Figure 2. 

 

 
 

Figure 2. Schematic overview of validation and extrapolation steps. 
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Model predictive performance was evaluated using goodness of fit (GOF) 
plots, including individual observed (DV) versus individual predicted LMT 
concentrations (IPRED), DV versus population predicted LMT concentrations 
(PRED), conditional weighted residuals (CWRES) versus PRED and CWRES 
versus time after LMT dosing. Predicted parameter values from * models 
(x), estimated parameter values from ** models (tv), and the number of 
parameter values (n) were used to calculate the predicted parameters’ 
relative error (RE, equation 9) and normalised root mean square error 
(NRMSE, equation 10), corresponding to their precision and accuracy 
respectively. Cut-off points for acceptable RE and NRMSE levels were set to 
30%. 

      (9) 

      (10) 

The final model was evaluated by non-parametric bootstrapping using 1000 
data subsets sampled from the original data with resampling. Bootstrap 
samples were stratified by age in the following manner: <1 year, 1-2 years, 
2-4 years, 4-8 years, 8-16 years, 16-65 years, and >65 years. The ability of 
the final model to predict the overall data was examined using a visual 
(VPC) and numerical predictive check (NPC) using 1000 samples. In addition, 
normalized prediction distribution errors (NPDE) were calculated and 
summarised to assess the overall performance of the stochastic 
components of the model.  

 

2.3. Dosing recommendations 

A virtual patient population of age 0.2-91 years was subdivided into 4 
groups, for which the body weights were derived according to the WHO 
growth charts [31] and Luscombe et al. [32] (table 2). Using the predicted 
clearance values obtained from the final PK model, LMT steady state 
concentrations (Css, equation 10) were subsequently simulated. Given the 
observed variability in exposure and lack of a clear correlation between 

198



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 199PDF page: 199PDF page: 199PDF page: 199

exposure and response, simulation scenarios were evaluated in which a 
range of LMT doses and dosing regimens was used for each population with 
the objective of optimising steady state concentrations within a previously 
suggested target therapeutic range. 

(11) 

Table 2. Weight (WT) calculation functions per age group, and its coefficient of 
variance (CV%) used in the simulations. 
Population Age range WT mean WT CV% 

Infants and toddlers 2-23 months 9.35*(1+0.0587*SEX)*AGE0.356 18 

Children and 
adolescents 

2 – <18 years 3*AGE+7 25 

Adults 18 – 65 years 65+10*SEX 16 

Older adults 65 – 91 years 65+10*SEX 16 

3. Results

3.1. Model development and validation 

The pharmacokinetics of LMT was best described by a one compartment 
model with first order absorption and elimination. In addition, 
interindividual variability was identified in all PK parameters. Covariate 
analysis revealed that CBZ and PHT increased the clearance of LMT by 
76.5% and 129%, respectively, whereas VPA reduced it by 47.4%. No 
correlation was found between the dose of the co-medication and 
clearance of LMT. No other significant correlation was identified between 
the clearance of LMT and use of other AEDs. Given the objectives of our 
analysis, the effect of body weight on clearance and volume of distribution 
was parameterised using allometric principles and kept in the model 
irrespective of the initial variation in OFV (see Table S2 in supplemental 
materials). As depicted in Figure 3, goodness-of-fit plots show that the final 
model accurately describes interindividual variability across the overall 
population. No bias is seen in the CWRES versus PRED or time after dose. 
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An overview of the final model performance is further summarised by the 
visual predictive check in Figure 4, which shows the 95% prediction 
intervals along with the observed data. It is worth mentioning the model 
accurately describes the data, with only minor overprediction of the peak 
concentrations. The results of the numerical predictive checks along with 
the normalized prediction distribution error (NPDE) provide further 
evidence of accurate model performance (results not shown). 
Nonparametric bootstrap results confirm the parameter estimates of the 
final model (Table 3). 

 

 
Figure 3. Goodness of fit plots of the final model. Individual- (IPRED) and 
population (PRED) model predictions are compared to the observations (DV). 
Conditional weighted residuals (CWRES), are compared to the PRED and time after 
dose. Black solid lines: identity line. Red solid lines: trend line. Blue circles: 
individual data. 
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Figure 4. Visual predictive check (VPC) of the final model. The median (red line) and 
95% CI (blue lines) of the observed data are plotted against the simulated data of 
1000 subjects (highlighted areas; median in red, 95% prediction interval in blue). 
Individual observations in the data are shown as black dots. 

 

Table 3. The final model parameter estimates and corresponding bootstrap results, 
including the 95% confidence intervals (CI). : population value; 2: variance of 
deviation ( ) of individuals from population value ; 2: variance of proportional 
(prop) and additive (add) residual errors ( ). 

Parameter Value (95% CI) Bootstrap median (95% CI) 
Ka IR 2.43 (1.425 – 3.435) 2.56 (1.44 – 3.97)
Ka XR 0.087 (0.073 – 0.101) 0.09 (0.07 – 0.11)
CL 2.23 (1.985 – 2.475) 2.28 (2.01 – 2.53)
V 1.97 (1.694 – 2.246) 1.92 (1.64 – 2.36)
CBZ 0.765 (0.516 – 1.014) 0.75 (0.53 – 1.12)
PHT 1.29 (1.041 – 1.539) 1.29 (1.02 – 1.55)
VPA -0.474 (-0.555 – -0.393) -0.49 (-0.57 – -0.41)
TM50 128.5 (76.9-333.3) 125 (100-250)
Hill -5.66 (-10.736 – -0.584) -15.98 (-152.94 – -2.75)
Amax 0.629 (0.196 – 1.062) 0.60 (0.34 – 1.07)
Older 0.148 (0.032 – 0.264) 0.16 (0.04 – 0.25)
2

Ka IR 0.609 (-0.536 – 1.754) 0.53 (0.0001 – 3.09)
2

Ka XR 0.46 (-0.442 – 0.715) 0.57 (0.27 – 1.18)
2

CL 0.274 (-0.263 – 0.811) 0.27 (0.22 – 0.32)
2

V 0.626 (0.3516 – 0.9004) 0.63 (0.31 – 1.09)
2

prop 0.156 (0.103 – 0.209) 0.16 (0.11 – 0.20)
2

add 0.236 (0.045 – 0.427) 0.23 (0.10 – 0.42)
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3.2. Extrapolation across populations 

Whilst the objective of our analysis was to identify model parameterisation 
that allowed for the characterisation of the pharmacokinetics of LMT across 
the overall patient population, the set of steps used during model building 
ensured identification and distinction between interacting factors, such as 
age and co-medications. Accuracy (RE) and precision (NRMSE) of the 
predicted estimates for the absorption rate constant (Ka) and distribution 
volume (V) values were low, for which no improvement could be made 
using covariates other than the a priori allometry. The accuracy and 
precision of the predicted estimates for the parameter of interest 
(clearance) were acceptable in all cases except for the extrapolation to 
children below 2 to 3 years of age (Figure 5). This discrepancy reflects the 
need for additional parameterisation describing the underlying maturation 
processes, which account for changes in clearance in infants and toddlers 
(equation 11) (Figure 6). Furthermore, a separate term was included to 
describe 14.8% decrease in CL in patients older than 65 years of age. 
Equation 12 summarises the different factors which were identified as a 
covariate on clearance, where ECBZ, EPHT and EVPA are 1.765, 2.29, and 0.536 
if the co-medication carbamazepine, phenytoin, and/or valproic acid 
respectively were co-administered or 1 otherwise. EELD is 0.852 is the term 
describing the effect of age in elderly patients. 

 (12) 
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Figure 5. Evaluation of parameter predictions during validation and extrapolation 
steps; internal validation (INTv), external validation (EXTv), extrapolation to adults 
65-91 years (EXTRe), extrapolation to children 4-11 years (EXTRc), extrapolation to 
infants and toddlers  <2 years (EXTRi), evaluation of final model with and without 
maturation function (Final). The median (red dots) and 95% confidence interval 
(bars) are shown of relative errors (RE, panel A) and normalised root mean square 
errors (NRMSE, panel B). 
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Figure 6. Sigmoidal function describing changes in clearance associated with age 
and metabolic maturation processes. 

 

3.3. Dosing optimisation in future clinical trials 

Our exploratory simulations identified a dosing algorithm for dosing 
optimisation in future clinical trials, which leads to a considerable increase 
in the proportion of patients attaining a pre-defined target therapeutic 
range during the maintenance phase of treatment (Table 4, Figure 7). 
Based on the patient population characteristics included in the simulation 
scenarios, a dose of 350 mg/day in adults was found to best result in Css 
within the target therapeutic range. Based on this dose as reference, our 
simulations show that LMT doses need to be reduced to 300 mg/day in 
adults older than 65 years, whereas a 6 mg/kg/day dosing regimen, or 
values rounded to the closest number, would be desirable in children. 
Finally, it appears that children younger than 2 years of age would benefit 
from dosing regimens based on a weight banded regimen, with two weight 
bands. The optimum dose for infants between 2-4 months was predicted to 
be 80 mg/day, whilst infants and toddlers aged 4-23 months would require 
100 mg/day. As shown in Figure 7, the proposed doses and dosing regimens 
would allow for a considerable increase in the proportion of patients within 
the target steady state concentrations. However, given the concern with 
high peak concentrations in young children, a twice daily regimen should be 
carefully considered.  
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Table 4. Optimised dosing levels and predicted steady state concentrations (Css) 
per age group. Each column summarises the proportion of patients in each group 
who are exposed above the absolute toxicity level of 20 mg/L, above the 
therapeutic maximum of 15 mg/L, and below the therapeutic minimum of 2.5 
mg/L. 

Population Age range Dose % Css > 
20* 

% Css > 
15* 

% Css < 
2.5* 

Infants 2 – 6 
months 

70 mg/day 0.49 1.9 10.6 

Toddlers 6 –  23 
months 

100 mg/day 0.89 3.4 6.4 

Children and 
adolescents 

>2 – 18 
years 

6 mg/kg/day 1.9 6.1 3.7 

Adults 18 – 65 
years 

350 mg/day 2.0 6.6 3.5 

Older adults 65 – 91 
years 

300 mg/day 2.1 6.6 3.5 

*mg/L

Figure 7. Css ranges resulting from optimised dosing regimens over age, as listed in 
table 5. Shown are the median (red line) and 95% prediction interval (blue dashed 
lines) of the simulated Css values. The blue shaded area is the putative target 
therapeutic range. 
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Table 5. Final model estimates along with previously published pharmacokinetic 
data in each population. 

Population Parameter Final 
model 
values 

Literature values

Adults 
 

Ka IR (h-1) 2.43 0.38-3.19 
[12,16,17,20,21,33,34,44] 

KA XR (h-1) 0.087 0.0739 [44]
V (L/kg) 1.97 0.9-1.9 [12,16,17,19–21,33–35] 
CL 
(L/h/kg) 

0.0319 0.028-0.15 [12,16,17,19–21,33–
35] 

Older adults 
65-91 years 

Ka IR (h-1) 2.43 2.98-3.5 [14,44]
KA XR (h-1) 0.087 0.0739 [44]
V (L/kg) 1.97 1.3-1.42 [14,44]
CL 
(L/h/kg) 

0.0271 0.033-0.039 [14,44]

Children and 
adolescents 
2-18 years 

Ka IR (h-1) 2.43 1-3.5 [13,18,21]
KA XR (h-1) 0.087 -
V (L/kg) 1.97 0.6-2.12 [13,18,21]
CL 
(L/h/kg) 

0.0374 0.036-0.09 [13,18,21]

Infants and toddlers Ka IR (h-1) 2.43 1 [18]
KA XR (h-1) - -
V (L/kg) 1.97 0.6 [18]
CL 
(L/h/kg) 

0.051-
0.10 

0.037 [18]

 

4. Discussion 

In this study we aimed to develop a population pharmacokinetic model that 
takes into account age-related changes in the disposition of lamotrigine. In 
addition, we have made use of a stepwise approach to explore whether the 
use of allometric principles suffices to characterise the differences across 
the extremes of age, i.e., in infants, toddlers, children and elderly. Our 
results show that despite the contribution of other interacting factors, such 
as co-medications, LMT exposure can be accurately described across 
different population groups based on the inclusion of allometric principles 
in patients > 2 years of age. On the other hand, maturation processes 
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appear to be a significant factor in the youngest group of patients (infants 
and toddlers), for whom as PMA-related changes lead to significantly higher 
clearance values, as compared to children and adults.  

Whereas our attempt to characterise age-related changes in the 
pharmacokinetics of LMT does not include some factors known to be 
relevant in clinical practice, such as pregnancy or co-morbidities, our 
analysis provides further insight into the interaction between age, size and 
metabolic function. Based on previous publications, it appears that weight-
based scaling has often been used to describe the pharmacokinetics of LMT 
[13–16,18,21,33–37], but a different approach has been used in many other 
cases [12,17,19,20,38–39]. Most interestingly, none of the publications has 
explored the effect of body weight in the standardised allometric manner 
across a wide population [40]. In fact, He and collaborators have used 
allometrically scaled clearance [18], but this analysis include children only, 
and the allometric exponent was not set to the standard ¾, which may 
explain why a maturation functions may not have been required, despite 
the inclusion of patients below the age of 2.  

From a methodological perspective, it should be noted that the inclusion of 
allometric scaling does not necessarily improve model fitting if patient 
characteristics do not include a wide range of the variable of interest, i.e., 
body weight. This may represent a limitation when analysing data from 
clinical trials, where inclusion and exclusion criteria restrict patients in 
terms of their age, weight and body mass index. Likewise, covariate 
identifiability may be affected when analysing data from patient subgroups. 
In fact, an assessment has been made of the impact of differences in 
patient population characteristics and covariate distribution on the 
predictive performance of pharmacokinetic models [41, 42]. 
Pharmacokinetic data from a different class of compounds, as well as from 
hypothetical drugs for which the type and magnitude of the covariate effect 
has been defined a priori, show that allometric or other correlations may 
not be identified during model development when subsets of the 
population are used or samples are too sparse to allow accurate 
characterisation of interindividual variability.  
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By contrast, our analysis is not affected by such limitations. In addition, by 
using a stepwise approach to covariate identification, extrapolation from 
adults to children and then to infants and toddlers reveal that allometry can 
only fully account for changes in clearance and volume of distribution in 
patients older than 2 years [22]. Of particular interest is the estimation of 
clearance which showed RE and NRMSE values within the acceptable range 
during most extrapolation steps, except when extrapolating to children 
below 2 years. Given current understanding of the metabolic processes 
associated with the biotransformation and elimination of lamotrigine, a 
sigmoidal maturation function was considered the most plausible 
descriptor of the changes in drug disposition in infants and toddlers which 
has an asymptotic inflection point just before 3 years (post-menstrual age). 

In spite of the large sample size, our analysis has also faced a few 
limitations. Due to high variability, absorption proved particularly difficult 
to estimate, which may pose problems as peak concentrations could not be 
well characterised. Nevertheless, parameter estimates were in agreement 
with values previously reported in the published literature (table 6), 
including the different absorption rates found for immediate and extended 
release formulations. Moreover, we have been able to estimate the effect 
of co-medications, namely carbamazepine, phenytoin, and valproic acid, on 
the clearance of LMT. In addition, no discernible effect was observed for 
phenobarbital. Overall, our results seem to reflect those previously 
reported in literature [38–40], but differ from other publications 
[18,30,33,36]. Another challenge was the lack of literature information 
regarding the maturation processes associated with the elimination of LMT 
in infants and toddlers, which ultimately affects the rationale for 
maintenance doses in this age group [43-45]. As shown in figure 6, 
maturation processes lead to higher weight-adjusted CL in very young 
children, which slowly decrease to adult levels between age 2 -3 years. This 
is an important observation, given that LMT is not approved for children 
younger than 2 years of age. It should be highlighted that this phenomenon 
cannot be explained by changes in activity of its main metabolic pathway 
UGT-1A4, which increases over time, or -glucuronidation, which decreases 
to adult levels at a much earlier age [46]. There may be a role for UGT-2B7 
or reduced LMT protein binding, although the data is so far inconclusive 

208



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 209PDF page: 209PDF page: 209PDF page: 209

[47–50]. Given the evidence for reduced metabolic clearance in newborn 
infants (0 -1 month of age), the current findings cannot be extrapolated 
beyond the age range described here.  

Having identified a common parameterisation to describe age-related 
changes across the target patient population, we have shown how clinical 
trial simulation concepts can be applied to evaluate whether maintenance 
doses can be optimised across different age groups as to ensure 
comparable LMT exposure within a pre-defined target range for the 
majority of patients. Irrespective of inter-individual differences in the 
sensitivity to LMT, the simulated dosing regimens provide further insight 
into how doses may be titrated at the onset of therapy and how 
subsequent dose adjustments can be made if therapeutic drug monitoring 
(TDM) is used during the maintenance phase. Our results also reveal the 
complex interaction between multiple covariates, which need to be 
accounted for if one attempts to individualise a patient’s dose and dosing 
regimen. Whereas additional factors need to be considered for the 
development of a dosing algorithm aimed at individualised therapy, 
interindividual variability in clearance is reasonably explained by the 
interacting terms in equation 12. It can be anticipated that such a dosing 
algorithm may serve as a tool for clinicians at the start of treatment with 
LMT. Once target maintenance dose is reached, model-guided dose 
adjustments can be made in conjunction with TDM sampling [51].  

In conclusion, an integrated population pharmacokinetic model was 
developed for LMT that describes age-related changes in patients from 0.2 
to 91 years of age. This analysis confirms previous findings in which 
interindividual variability in the disposition of LMT has been evaluated. 
Clearly, LMT steady state concentrations are affected by the interaction 
between multiple intrinsic (e.g., body weight, age) and extrinsic (e.g., co-
medication, formulation) factors. The use of allometric principles in 
conjunction with a maturation function provided insight into the 
contribution of intrinsic factors to interindividual variability. Based on 
simulation scenarios, it has become evident that these covariates may need 
to be considered before starting dose titration, as the magnitude of the 
effect of covariates will depend on an individual patient’s characteristics. 
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Finally, it seems plausible that lack of efficacy in previous clinical trials 
including infants and toddlers may result from sub-therapeutic exposure to 
LMT. The observed increase in systemic clearance leads to considerably 
lower LMT exposure as compared to the drug levels observed in children 
and adolescents. These results should form the basis for the dose rationale 
for lamotrigine in prospective clinical trials in infants and toddlers. 
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Table 1S: Dem
ographics of subpopulations A-F, derived from

 the total data pool G
. W

eight and age given as m
ean (SD), gender as 

(fem
ale:m

ale), lam
otrigine dose as range in m

g/day, num
ber of patients receiving co-m

edication w
ith an anti-epileptic drug (AED) 

given w
ith (dosing range); only show

n here are the AEDs given to at least 10 individuals in the total dataset (carbam
azepine, 

clobazam
, clonazepam

, gabapentin, levetiracetam
, oxcarbazepine, phenobarbital, phenytoin, topiram

ate and valproic acid). 

Dem
ographic 

Populations 

A 
B 

C 
D 

E 
F 

Total  (G
) 

W
eight (kg) 

70.1 (21.3) 
67.8 (18.9) 

69.2 (20) 
76.3 (17.5) 

35.7 (15.7) 
9.6 (2.4) 

52.1 (36.6) 
Age (years) 

33.2 (14.1) 
33.9 (14.4) 

35:3 (12.8) 
72.5 (5.5) 

7.8 (2.7) 
1.2 (0.5) 

32.8 (28.1) 
G

ender (M
:F) 

41:39
14:18

51:45
58:58

18:6 
64:80 

246:246
# of patients 

80 
32 

96 
116 

24 
144 

492 
Form

ulations 
IR and XR 

IR and XR 
XR 

XR 
XR 

IR 
IR and XR 

LM
T dose 

12.5-1200 
12.5-800

12.5-600
12.5-500

5-634 
2-87

2-1200
Com

edication frequency (dose range in m
g/day) 

CBZ 
20 (300-1200) 

4 (600-1200) 
24 (400-1200) 

12 (300-1200) 
0 

2 (300-300) 
62 (300-1200) 

CLBZ (m
cg) 

4 (10-40) 
2 (10-20) 

3 (15-20) 
0 

0 
2 (2.5-5) 

11 (2.5-40) 
CLN

Z (m
cg) 

7 (0.5-175) 
2 (1-2) 

3 (0.5-3) 
1 (0.5-0.5) 

0 
9 (0.25-2) 

22 (0.25-175) 
G

BP 
1 (400-400) 

0 
1 (2400-2400) 

11 (100-3600) 
0 

0 
13 (100-3600) 

LVT 
6 (1000-4250) 

3 (500-3000) 
10 (1000-4000) 

46 (125-3500) 
0 

2 (125-500) 
67 (125-4250) 

O
XC 

3 (450-1200) 
2 (600-1200) 

9 (600-1500) 
7 (150-1500) 

0 
4 (270-420) 

25 (150-1500) 
PHB 

3 (60-400) 
1 (120-120) 

2 (120-120) 
3 (60-120) 

0 
24 (24-120) 

33 (24-400) 
PHT 

20 (200-780) 
10 (200-400) 

12 (200-400) 
36 (200-400) 

0 
3 (40-40) 

81 (40-780) 
TPM

 
9 (25-400) 

1 (100-100) 
13 (100-700) 

5 (25-200) 
0 

9 (12.5-400) 
37 (12.5-700) 

VPA 
30 (250-3000) 

12 (600-2100) 
19 (600-3000) 

11 (250-2000) 
0 

3 (250-600) 
75 (250-3000) 
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Table 2S: Overview of the steps in model development and corresponding 
objective function value (OFV), starting from the base model (including population 
pharmacokinetic (PK) parameters accounting for the extended- (Ka XR) and 
immediate absorption rates (Ka IR), clearance (CL) and volume of distribution (V)), 
used to create the final lamotrigine model. 

Model Population(s) Used model OFV p(dOFV) 
A1 Pop. A Base 9089.129 - 
A2 “ A1 + CL 3284.756 <0.05 
A3 “ A2 + V 3050.895 <0.05 
A4 “ A3 + Ka XR 2809.051 <0.05 
A5 “ A4 + Ka IR 2785.005 <0.05 
A6 “ A5 + Allometry V and CL 2798.125 >0.05 
A7 “ A6 + CBZ on CL 2787.155 <0.05 
A8 “ A7 + PHT on CL 2749.179 <0.05 
A “ A8 + VPA on CL 2710.545 <0.05 
B Pop. B Model A 1097.47 -
B* “ Model B 982.732 <0.05 
B** Pop. A+B Model B* 3657.37 - 
C Pop. C Model B** 1289.906 -
C* “ Model C 1041.63 <0.05 
C** Pop. A-C Model C* 4890.933 - 
D Pop. D Model C** 1507.48 - 
D* “ Model D 1235.55 <0.05 
D** Pop. A-D Model D* 6236.311 - 
E Pop. E Model D** 111.707 -
E* “ Model E 86.707 <0.05 
E** Pop. A-E Model E* 6347.644 - 
F Pop. F Model E** 85.641 -
F* “ Model F -595.285 <0.05 
F1* “ Model F* + Maturation -598.044 >0.05 
F** Pop. A-F Model F* 6361.691 - 
Final “ Model F** + Maturation 6301.631 <0.05 
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CHAPTER 7 

ASSESSMENT OF LAMOTRIGINE  
EXPOSURE-RESPONSE: 

DIFFERENTIAL EFFECTS IN PARTIAL ONSET 
VERSUS PRIMARY GENERALISED 

TONIC-CLONIC SEIZURES IN ADULTS 
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Assessment of lamotrigine exposure-response: 
differential effects in partial onset versus primary 

generalised tonic-clonic seizures in adults 

Sven C. van Dijkman, Willem M. Rauwé, Nico C.B. de Jager,  
Meindert Danhof, Oscar Della Pasqua 

To be submitted 

SUMMARY 

Purpose: We aim to quantify the pharmacokinetic-pharmacodynamic relationships 
of lamotrigine (LMT) in partial onset (PO) and primary generalised tonic-clonic 
(PGTC) seizures in adult patients, taking into account the episodic nature of the 
disease. Methods: Adult clinical trial data of 235 PO and 146 PGTC patients 
receiving add-on lamotrigine therapy were analysed using a nonlinear mixed 
effects approach to describe seizure counts over time. The interaction of LMT with 
comedications and other covariates with regard to baseline seizure counts, placebo 
and treatment effect were also investigated. Results: The drug-disease model 
described the data well, and parameters were estimated with good accuracy.. 
Placebo effect led to a reduction in seizure activity of 13.8-21.9% in PO and 22.9-
36.9% in PGTC. Typical maximum treatment effect was close to 100% both for PO 
and PGTC, but individual response showed large variability. No covariates were 
found to have a clinically relevant effect on parameters describing seizure counts or 
drug effect other than those identified for pharmacokinetics. Conclusions: The use 
of a Poisson model with extension for Markovian features, as well as the use of 
stochastic differential equations, provides suitable parameterisation of seizure 
activity in PO and PGTC patients, describing the time course of placebo and drug 
effects after treatment. Most importantly, it provides evidence of a unique 
exposure-response relationship for LMT in patients with PO and PGTC seizures. 
These models are able to describe interindividual differences in response and could 
be used for personalisation of therapy. 
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1. Introduction

Epilepsy is a serious neurological condition consisting of attacks of 
abnormal neuronal activity in the brain, or seizures. In the majority of 
patients, epileptic seizures originate from one hemisphere, called partial 
onset (PO) type epilepsy, which in some may then spread to other parts as 
secondary generalised seizures. Other patients exhibit seizures that directly 
affect both hemispheres, called primary generalised seizures, of which 
primary generalised tonic-clonic (PGTC) seizures are the most well-known. 
Treatment typically involves long-term, if not life-long pharmacotherapy. 
One of the most widely used anti-epileptic drugs (AEDs) is lamotrigine 
(LMT) [1]. It works as a sodium channel blocker, possibly with a secondary 
effect as a calcium channel blocker [2]. LMT has been approved, among 
others, for the adjunctive treatment of PO and PGTC seizures. The 
relationship between LMT exposure and response has not yet been 
characterised in strictly quantitative manner. In fact it remains unclear 
whether patients with different seizure types show different sensitivity to 
treatment and drug exposure. 

The assessment of exposure-response relationships for AEDs is hindered by 
the episodic nature of the disease activity in terms of seizures or seizure 
counts. In drug development,  this issue has been circumvented by instead 
analysing the efficacy of an AED through comparison of the mean seizure 
frequency between baseline and maintenance therapy, such as was 
performed in the majority of clinical trials, including those in which 
lamotrigine is used as adjunctive therapy for PO seizures [3]. Treatment 
success is then defined when seizure frequency reduction during the 
maintenance period is at least 50% relative to baseline. Due to the 
dichotomisation of efficacy (i.e. yes or no), the averaging across the 
population, and the reduction of the data to baseline and maintenance 
period, most of the information regarding the onset of treatment effect and 
variation is lost, resulting in difficulties in assessing exposure-response 
relationships. The randomness of seizures and subsequent difficulty in 
correlating exposure to effect in individual patients has led to a lack a 
stronger dose in clinical guidelines for AEDs. Pharmacokinetic (PK) and 
pharmacodynamic (PD) modelling has more recently allowed the 
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description of exposure-response relationships of some of the widely used 
AEDs based on several different types of clinical endpoints [4–8]. 

The application of such models allows us to investigate whether the 
different seizure types, such as PO and PGTC seizures show different 
sensitivity to treatment and consequently whether the optimal therapeutic 
concentration range differs for each patient group.  Furthermore, modelling 
also allows us to determine if any other demographic or clinical variables 
influence efficacy.  Another important feature of drug-disease models is 
that they enable better integration of information from sparse data, which 
often is the case in paediatric medicine. The availability of a so-called drug-
disease model ultimately provides an opportunity to identify dosing 
algorithms for specific groups of patients (personalised treatment) or 
eventually single patients (individualised treatment). 

From a technical point of view, the application of PKPD modelling principles 
allows direct modelling of the seizure counts at all time points in each 
individual patient, thereby taking into account all available data [9,10]. 
Because of the apparent randomness of the occurrence of seizures, 
different methods have been suggested for its analysis. Some of the 
randomness can be described by Markov chains, i.e. a random process of 
transitions between disease states, where the probability of the next state 
depends solely on the current state. Seizure counts often show 
overdispersion, i.e. the variance is larger than the mean. The Poisson model 
has been extended to take into account overdispersion and Markovian 
features [10,11]. Conceptually, in this type of models treatment effect is 
handled as a covariate, i.e., treatment alters the parameter(s) describing 
the probability and rate of events.  The aim our investigation is to 
determine the exposure-response of adjunctive lamotrigine in adult 
patients with PO and PGTC seizures, and to identify the contribution of any 
other demographic or clinical covariates that explain differences in 
response. Subsequently, our goal is to illustrate how the availability of such 
models may support the development of improved dosing algorithms as 
well as facilitate the extrapolation of efficacy across populations. 
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2. Methods

Data 
Data from clinical trials of lamotrigine pharmacokinetics and efficacy in 
adults with partial onset seizures (LAM100034; clinicaltrials.gov number 
NCT00113165) and adults with primary generalised tonic-clonic seizures 
(LAM100036; clinicaltrials.gov number NCT00104416) were used in the 
following analysis. In either trial, subjects experienced an eight week 
baseline phase, seven week escalation (dose titration) phase, and 12 week 
maintenance phase. Dose titration was performed at dose levels of 50, 100, 
200, and 300 mg per day. Dose levels of 50 and 100 mg per day were 
maintained for two weeks, while that of 200 mg per day was kept 
maintained for one week. Once the dose of 300 mg per day was reached, it 
was maintained for a maximum of two weeks. For patients with partial 
onset seizures, additional data of a 7 week blinded transition and 45 week 
open-label continuation phase was available. Both trials adhered to all 
required ethical regulations and received informed consent from all 
participating patients. Individual exposure levels, in terms of average daily 
concentration (Cavg), daily peak concentration (Cmax) and daily trough 
concentration (Cmin) were determined based on the doses and 
pharmacokinetic samples in the data in conjunction with a previously 
developed PK model (in-house data). Demographic information on the data 
can be found in table 1. 
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Table 1. Dem
ographics. W

eight, age and seizure frequency per day and trough, average and peak concentrations as m
ean (standard 

deviation). For each AED co-m
edication, num

ber of patients receiving that AED is given w
ith the dose range (m

g/day) in brackets. O
nly co-

m
edications received by at least 10 patients in the total data are listed.  

Seizure type 
PO

 
PO

 
PG

TC 
PG

TC 
Both 

Both 
Total

N
um

ber of subjects
119

116
72

74
191

190
381

G
ender

M
ale

Fem
ale 

M
ale

Fem
ale 

M
ale

Fem
ale 

Both
W

eight (kg) 
74 (19) 

69.9 (21.6) 
64.3 (17.4) 

59.6 (14) 
72.2 (19.1) 

68.1 (20.9) 
68.3 (19.7) 

Age (years) 
34.2 (13.7) 

39.3 (12.6) 
30.4 (13.6) 

27.1 (10) 
33.5 (13.8) 

37.1 (13.1) 
33.8 (13.4) 

Seizure frequency (/day) 
0.328 (1.3) 

0.333 (1.4) 
0.139 (0.7) 

0.167 (0.5) 
0.293 (1.2) 

0.304 (1.3) 
0.299 (1.2) 

Trough concentrations (Cm
in)  a 

5.296 (2.7) 
5.668 (3.6) 

3.307 (4.6) 
3.02 (4) 

4.521 (3.7) 
4.67 (3.9) 

5.484 (3.2) 
Average concentrations (Cavg)  a 

5.789 (2.7) 
6.147 (3.6) 

3.634 (4.8) 
3.19 (4.1) 

4.949 (3.8) 
5.033 (4.1) 

5.97 (3.2) 
Peak concentrations (Cm

ax)  a 
6.078 (2.7) 

6.413 (3.7) 
3.834 (5) 

3.282 (4.2) 
5.204 (3.9) 

5.233 (4.2) 
6.248 (3.2) 

Com
edications b:

Carbam
azepine 

55 (200-1800) 
43 (200-2800) 

21 (200-1600) 
24 (10-1000) 

76 (200-1800) 
67 (10-2800) 

143 (10-2800) 
Clobazam

 
7 (10-40) 

4 (5-20) 
8 (10-40) 

6 (5-20) 
15 (10-40) 

10 (5-20) 
25 (5-40) 

Clonazepam
 

1 (1-1) 
5 (0-4) 

5 (0-175) 
5 (0-13) 

6 (0-175) 
10 (0-13) 

16 (0-175) 
Levotiracetam

 
13 (100-5000) 

10 (500-4000) 
1 (2000-2000) 

2 (2000-3000) 
14 (100-5000) 

12 (500-4000) 
26 (100-5000) 

O
xcarbazepine 

15 (300-3000) 
20 (150-2400) 

1 (600-600) 
6 (450-1950) 

16 (300-3000) 
26 (150-2400) 

42 (150-3000) 
Phenobarbital 

8 (15-468) 
7 (60-600) 

7 (60-400) 
7 (100-200) 

15 (15-468) 
14 (60-600) 

29 (15-600) 
Phenytoin 

16 (200-700) 
20 (200-800) 

32 (200-700) 
14 (200-400) 

48 (200-700) 
34 (200-800) 

82 (200-800) 
Prim

idone 
4 (125-1000) 

1 (1500-1500) 
2 (625-875) 

4 (750-1125) 
6 (125-1000) 

5 (750-1500) 
11 (125-1500) 

Topiram
ate 

18 (25-550) 
21 (25-700) 

4 (100-550) 
10 (25-250) 

22 (25-550) 
31 (25-700) 

53 (25-700) 
Valproate 

37 (400-2500) 
30 (500-3000) 

26 (500-3000) 
42 (250-2100) 

63 (400-3000) 
72 (250-3000) 

135 (250-3000) 
aTrough, average, and peak concentrations based on individual param

eters and doses during continuation phase of the studies, i.e. after dose 
titration. bDose range for clobazam

 and clonazepam
 are listed in m

cg/day, for all others dose ranges are in m
g/day. PO

S: Partial-onset type 
seizures. PG

TC: Prim
ary generalised tonic-clonic seizures. 
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Model description and evaluation 
All models were implemented in NONMEM© v7.2 [12], parameters were 
estimated using the SAEM algorithm, with NBURN set to 1000 and NITER 
set to 300. Model pre- and post-processing, and graphical and statistical 
analysis was done in a modelling environment consisting of Piraña 2.9.0 
[13], PsN v3.5.3 [14], and R v3.1.1 [15]. Seizure counts were modelled as a 
Poisson distribution consisting of the parameter lambda ( ), which 
describes both the distribution mean and variance of event counts (i.e. 
seizures per day), with overdispersion (i.e. disparity between mean and 
variance of lambda) taken into account by an extra parameter (OVDP). If n 
is the number of events, the probability of observation Y in individual i at 
time j being count n is given by equation 1. The factorial n! is approximated 
using the Stirling approximation (equation 2), in the model transformed to 
the log-scale. Time-dependent changes in lambda were modelled using two 
different, but complementary methods. The first method estimates 
different lambdas based on whether the patient experienced seizures 
(PDV>0) or no seizures (PDV=0) on the directly preceding day [10]. Method 
two uses stochastic differential equations, as recently was proposed 
[16,17], to allow changes of lambda at each time point based on a random 
Brownian motion (equation 3). In all models, changes in lambda due to 
placebo effect and treatment effect were taken into account as defined in 
equation 4, with treatment effect modelled using the typical Emax model 
(equation 5) where Cmin, Cmax, and Cavg were tested for Cx and compared 
to a model using dose as the predictor of effect. EC50 is the concentration of 
lamotrigine at which 50% of the maximum effect (Emax) is reached. 
Variability of each parameter x was modelled in an additive manner on the 
log scale, corresponding to a log-normal distribution of parameters on the 
normal scale (equation 6). 
 

        (1) 

       (2) 

 (3) 
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 (4) 

 (5) 

 (6)

The statistical significance of model changes and introduction of covariates 
was determined by a chi-squared test of a reduction in the objective 
function value (OFV), with a decrease in OFV of 3.84 corresponding to a 
statistical significance of p<0.05. Model fits were evaluated by goodness of 
fit plots of difference between observed and predicted seizure counts 
(residuals), observed vs predicted cumulative seizure counts, and observed 
vs predicted overdispersion. Accuracy of parameter values were 
determined by the covariance step. 

3. Results

Model development 
Changes in OFV for all modelling steps, separately for patients with either 
PO or PGTC seizures are listed in table 2. The models with SDEs generally 
performed better than those without, at the cost of model run time, with a 
decrease in OFV for patients with PO, but not with PGTC seizures. The use 
of SDEs allowed the characterisation of the change in lambda over time, but 
did not reveal generalisable patterns. Not including a factor for 
overdispersion or Markovian features greatly worsened the OFV in all cases. 
Parameter values are shown on the log-scale in table 2. Parameter values 
for baseline seizure activity and overdispersion were very comparable 
between the non-SDE and SDE models, whereas those for placebo effect, 
maximum treatment effect (Emax), and the concentration at which 50% of 
Emax is reached (EC50) differed significantly. Baseline seizure activity 
(lambda) as estimated by the non-SDE model was more than twice as high 
in patients with PO seizures (0.371 when PDV>0, 0.295 when PDV=0) 
compared to those with PGTC seizures (0.150 when PDV>0, or 0.125 when 
PDV=0), corresponding well with average seizure frequencies as reported in 
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table 1. The placebo and treatment effect differed largely depending on the 
use of SDEs. Without SDEs, the placebo effect resulted in a 21.9% (PO) or 
36.9% (PGTC) decrease in lambda, while using SDEs gave a placebo effect of 
13.8% (PO) or 22.9% (PGTC) decrease in lambda. The maximum treatment 
effect was high in all cases, with a mean 99.2% (PO) or 98.3% (PGTC) 
decrease in lambda (not using SDEs), and a 81.0% (PO) or 99.8% (PGTC) 
decrease (using SDEs) in lambda. Using different exposure measures (Cmax, 
Cavg, Cmin) had mixed results, but Cmin most consistantly outperformed 
the other measures. EC50 was found to be lower in patients with primary 
generalised tonic-clonic seizures (5.99 mg/L) compared to those with 
partial-onset type seizures (13.1 mg/L), when not using SDEs, whereas EC50 
was higher for PGTC (18.9 mg/L) compared to PO (9.87 mg/L) when using 
SDEs. Due to better model stability and smaller shrinkage in etas, the model 
without SDE’s was considered the better model for the purpose of our 
investigation. Figure 1 shows the estimated correlations between 
lamotrigine effect (as a percentage of the maximum effect Emax) and 
concentration (in mg/L) in the upper panels, and the corresponding change 
in seizure frequency (lambda) in the lower panels. Due to the 
exponentiation in equation 4 for lambda, a lamotrigine concentration at 
EC50 does not result in a 50% reduction in lambda. Although the values for 
EC50 and Emax were estimated quite differently between the models 
without and with SDE, the impact on lambda is fairly similar for PGTC, while 
for PO a large difference can be observed. An attempt at estimating a 
mixture model to have a portion of the population not showing any efficacy 
( lamotrigine=0) resulted in model instability and the inability to estimate any 
variability on placebo and treatment effect. The inclusion of a Hill factor ( ) 
to estimate the slope of the Emax equation resulted in a value close to 1 
(i.e. no change in slope compared to the equation without the Hill factor) 
and was thus left out. An alternative, more flexible parameterisation of the 
drug effect as a percentage reduction in lambda on the normal scale did not 
lead to an improvement in OFV or goodness-of-fit and was thus abandoned. 
Only when not using SDEs, a slightly higher median EC50 was found in 
patients with PO seizures concurrently receiving valproic acid compared to 
those who did not (12.6 vs 10.9 mg/L respectively), but this difference was 
estimated with high imprecision (RSE of 131%), hence it was not included as 
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a covariate. Variability was large on all parameters, with high shrinkage 
observed on variabilities associated with effect parameters. While this 
would normally be sufficient reason to discard those variabilities, doing so 
resulted in a large increase in OFV and diminished goodness-of-fit of 
individual seizure counts. Plotting these eta’s revealed heavy-tailed 
distributions, which may explain high shrinkage. Adjusting for the heavy 
tails by a semi-parametric approach [18] did not improve their description, 
nor the OFV. The distribution of eta’s for overdispersion revealed a bi-
modal distribution, attempts to describe this  using mixture modelling of 
two separate distributions, resulted in the likelihood for one of the 
distributions approaching 1, and an increase in OFV, and was therefore not 
used in the final model. Using the placebo dose to describe the magnitude 
of placebo effect in the non-SDE model resulted in an improved OFV for 
PGTC, with an EPB50 at 50 mg/day, but this did not explain variability on 
the placebo effect and resulted in instability in the SDE model. This was 
therefore  considered a spurious finding. Estimation for an interaction term 
between placebo and treatment effect for the period in which placebo and 
treatment overlapped in PO patients, revealed a very small, but statistically 
significant impact (up to 1% reduction in lambda). The clinical relevance of 
such an interaction term was deemed minimal and was therefore not 
included in the final model. Figure 2 shows the goodness-of-fit plots for the 
model that included SDEs. Residuals of predicted and observed seizure 
counts showed no evident bias over time, but large differences remain 
between observed and predicted number of seizures due to randomness 
(lower and upper left panel). However, cumulative numbers of seizures 
were predicted well for most patients (upper right panel). Dispersion, or 
mismatch between mean and variance of seizure counts, was well 
described in all but a few patients, with no predictors for the outliers (lower 
right panel). 
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Table 2. Sum
m

ary of the objective function values for the different m
odel structures that have been evaluated. Statistically significant 

decreases in O
FV (

O
FV) are highlighted. 

M
odel description 

N
on-SDE O

FV (
O

FV)
SDE (

O
FV) 

PO
PGTC

PO
PGTC

Base m
odel 

113095.8 (0) 
19398.3 (0) 

112588.3 (0) 
19669.5 (0) 

W
ithout overdispersion factor 

127412.7 (14316.9) 
20075.6 (677.3) 

126893.5 (14305.2) 
20285.4 (615.9) 

W
ithout M

arkov factor 

Cm
ax for Cx 

113056.3 (-39.5) 
19594.6 (196.3) 

112576.1 (-12.2) 
19789.8 (120.3) 

Cavg for Cx 
113049.8 (-46) 

19598.7 (200.4) 
112525.5 (-62.8) 

17690.7 (-1978.8) 

Cm
in for Cx 

113039.8 (-56) 
16685.6 (-2712.7) 

112480.3 (-108) 
19818.7 (149.2) 

Interaction EPB &
 ETM

T 
113500.5 (404.7) 

- 
111802.2 (-786.1) 

- 

M
ixture m

odel ETM
T 

113079.5 (-16.3) 
18905.2 (-493.1) 

112061.6 (-526.7) 
13921.6 (-5747.9) 

EC50 VPA addition 
113058.4 (-37.4) 

19634.9 (236.6) 
112946.8 (358.5) 

- 
Placebo dose EPB50 

113994.4 (898.6) 
18637.2 (-761.1) 

113094.1 (505.8) 
- 

M
ixture m

odel O
VDP 

112758.3 (-337.5) 
18740.3 (-658) 

111771.3 (-817) 
18121 (-1548.5) 

T-distribution eta’s 
113307.4 (211.6) 

19601.3 (203) 
112737.2 (148.9) 

19868.1 (198.6) 
Covariance LBASE &

 ETM
T 

112890 (-205.8) 
19499 (100.7) 

112397.1 (-191.2) 
19704.7 (35.2) 

PO
: Partial onset seizures; PGTC: Prim

ary generalised tonic clonic seizures; SDE: m
odels using stochastic differential equations; N

on-
SDE: m

odels not using SDEs; Cm
ax: m

axim
um

 daily concentrations; Cavg: average daily concentration(s); Cm
in: m

inim
um

 daily 
concentrations.
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Figure 1. Effect as a percentage of maximum effect (upper panels) and change in lambda 
(lower panels) versus lamotrigine concentration (in mg/L) for patients with partial onset 
seizures (blue lines) and primary generalised tonic-clonic seizures (magenta lines) based on 
the estimates of baseline lambda (when the previous day seizure count>0), Emax and EC50 
using the model without (left panels) and with (right panels) stochastic differential equations 
(SDE). The therapeutic window is shown in a blue shaded area. 

Figure 2. Goodness-of-fit plots for the final model not using stochastic differential equations 
for patients with PO (blue) and PGTC (magenta) seizure types. The red line in the upper right 
panel shows a loess fit of the cumulative observed versus predicted seizures.
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Table 3. Parameter values for the models with and without stochastic differential 
equations (SDE). SGW and RV are SDE-specific parameters relating to the degree of 
intra-individual variability in lambda (equation 3).  All parameter values are on the 
log-scale as they were defined in the model. 

Without SDE With SDE
Population 
parameter 

PO [%RSE] PGTC [%RSE] PO [%RSE] PGTC [%RSE] 

Lambda (PDV>0) -0.992 [8] -1.90 [8] -1.03 [13] -1.94 [9] 
Lambda (PDV=0) -1.22 [5] -2.08 [5] -1.21 [8] -2.00 [4] 
SGW - - -0.00370 [2] -0.00330 [10]
RV - - 1† [-] 1† [-] 
OVDP -1.26 [14] -2.28 [21] -1.07 [21] -1.78 [28]
EPB -0.247 [19] -0.460 [21] -0.149 [32] -0.260 [48]
Emax -4.70 [7] -4.08 [23] -1.66 [17] -6.05 [41]
EC50 2.57 [6] 1.79 [29] 2.29 [17] 2.94 [28] 

Variance as 2 
(% shrinkage) 
Lambda (PDV>0) 1.31 [7] (10) 1.26 [10] (24) 1.23 [8] (11) 1.32 [13] (27) 
Lambda (PDV=0) 0.613 [6] (7) 0.533 [10] (12) 0.623 [7] (9) 0.438 [11] (18) 
OVDP 7.70 [8] (15) 11.7 [21] (31) 7.25 [9] (14) 10.3 [21] (30) 
EPB 0.0912 [13] (53) 0.218 [15] (49) 0.0621 [16] (60) 0.259 [19] (55) 
Emax 11.8 [10] (29) 5.84 [25] (56) 2.08 [14] (43) 7.28 [72] (82) 
EC50 1.58 [11] (34) 2.36 [26] (53) 3.59 [19] (49) 5.94 [34] (52) 

† Fixed to a value of 1, due to unidentifiability, see also Deng et al [17]. All 
parameters are on the log-scale. 
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4. Discussion 

Our aim was to use novel PD modelling approaches that can handle count 
data and determine if the exposure-response of adjunctive lamotrigine 
therapy in adult patients differs between partial onset and primary 
generalised tonic-clonic seizures. The data was well-described with a 
Poisson model with overdispersion, Markov, and stochastic differential 
equation (SDE) extensions. Despite the relatively short duration of the 
studies available for our analysis, the use of SDEs allowed us to directly 
observe changes in the underlying parameter lambda over time, making it 
possible to visually inspect time-varying treatment response, and the delay 
in effect. While variability in baseline disease activity and placebo effect 
seems to reflect common biological variation, our analysis suggests that 
variability in maximum efficacy is very large. As a consequence, individual 
prediction of response in the clinic may not be possible before start of 
treatment. However, it may be feasible to estimate an individual’s 
lamotrigine potency (EC50) and maximum effect during the titration phase, 
allowing the prediction of an optimal individual exposure level for 
maintenance therapy, thereby possibly shortening titration times. 
Estimates of lambda were similar to those directly calculated. 
Overdispersion of seizures in patients with PGTC was higher than that in PO, 
which could also be observed from the larger variance of seizures in the 
data. Placebo effect was estimated to be a clinically relevant factor and was 
found to be more than twice as high in PGTC patients compared to PO 
patients. However, it was still was much lower than half the maximum 
treatment effect. The EC50 of PGTC changed drastically by the use of SDEs, 
suggesting that part of the observed treatment effect could be explained by 
an improvement in the disease instead of a treatment effect. 

 

Our models included factors for overdispersion and Markov features, which 
improved the description of the data. An alternative method, which 
reportedly handles overdispersion without the need for extensions, is the 
hidden Markov (Poisson) model (HMM), which separates observed seizure 
counts from hidden transitions between disease activity states [8]. Such an 
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HMM has theoretical promise in terms of mapping underlying disease 
states to observed seizures, but when briefly explored, it did not offer 
advantages in terms of predictive properties compared to the Poisson 
model with overdispersion, Markov features and SDEs, and was thus not 
further investigated. The lack of improvement seen when applying a HMM 
may be explained by a lack of mismatch between observed seizures and 
underlying disease state switches in our data, or other features in our data 
were more well-described using our model. The integration of a HMM with 
SDEs may allow to investigate such hypotheses, but was considered beyond 
the current scope. 

Our models could be used for clinical trial simulations (CTS) to investigate 
new clinical trial protocols involving lamotrigine, for example in patient 
populations or settings in which the lamotrigine exposure-response is yet to 
be determined (e.g. patients younger than 16 years; patients receiving 
monotherapy). CTS may also be used to explore trial protocols involving 
other AEDs to explore the impact of trial design choices on the ability to 
determine its exposure-response, depending on different possible drug 
properties. Furthermore, it has been posited that placebo response is 
similar between clinical trials, thus allowing the simulation of a virtual 
placebo trial arm, which considerably reduces burden on patients and trial 
resources. In the case of uncertainty on the placebo effect (or variability 
thereof), a reduced sample of confirmatory placebo control subjects could 
be included, instead of the one-to-one randomisation scheme as used in 
most trials. It should be noted that, as our model was based on data of 
patients receiving lamotrigine as adjunctive therapy, the observed placebo 
effect, and potency and maximum effect of lamotrigine may not necessarily 
be applicable to settings of lamotrigine or AEDs as single primary therapy. 
However, given the lack of (differences in) interaction between LMT and 
the existing treatments in our populations, and the large maximum LMT 
efficacy observed in this otherwise treatment resistant population, 
extrapolation of our findings to treatment naïve patients may perhaps be 
feasible. 

The target dose of LMT in adults receiving monotherapy is 200 mg per day, 
whereas those patients receiving concomitant valproic acid, resulting in 
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reduced LMT clearance, should receive 100 mg of LMT per day and those 
receiving LMT clearance inducers such as carbamazepine, phenobarbital, 
and phenytoin should receive 400 mg of LMT per day. To reduce seizure 
activity from baseline by at least 50%, a steady-state LMT concentration of 
2.3 or 1.3 mg/L is required for PO or PGTC seizures respectively, 
corresponding to an LMT dose of 125 or 70 mg per day respectively (for a 
typical 70-kg adult patient). However, for higher reductions of seizure 
activity, increasingly higher steady-state concentrations and thus higher 
doses are required. Based on our findings here, we may stratify for epilepsy 
type and baseline seizure activity to derive more specific dosing 
recommendations (Table 4). Our data was based on studies in patients 
whom already showed insufficient response to other AEDs, therefore, 
setting our target to full seizure freedom was not feasible, as the maximum 
efficacy of LMT based on our population estimates leads to a reduction of 
seizure activity to slightly more than one every year. Instead, doses given in 
this table are based on the need to reduce seizure activity (lambda) to 
below one per month. As can be observed from Table 4, recommended 
doses required to achieve the pre-set reduction in those with seizure 
frequencies above 1 every 2 days become increasingly potentially toxic. In 
treatment-naïve patients, setting the treatment goal to complete seizure 
freedom should still be the norm. 
Our recommendations are derived from population estimates of 
parameters, thus adjustments may still be needed in the individual patient, 
and given the large variability on Emax, a significant portion of patients may 
still perform better than expected. 
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Table 4. Implementation of a model-based dosing algorithm. In this table we 
illustrate how seizure frequency at the start of treatment can be used as covariate 
for dose selection. Doses were rounded to possible combinations of the nearest 
possible tablet strengths available for extended-release lamotrigine, which are 25, 
50, 100, and 200 mg. Doses should be multiplied by 0.5 (halved) when given in 
combination with valproic acid, and multiplied by 1.76 for comedication with 
carbamazepine or 2.29 for comedication with phenytoin. 
 

Seizure 
frequency (day-1) 

Dose for PO 
seizures (mg/day) 

Dose for PGTC
seizures (mg/day) 

0.1 200 125
0.2 450 250
0.3 600 375
0.4-0.6 800-1100 500-775
0.7-0.9 1200-1650 950-1350

 
 

5. Conclusion 

We have shown that the use of a drug-disease model along with 
appropriate data integration does allow the characterisation of exposure-
response relationships for lamotrigine.  We have done so by illustrating the 
performance of different approaches, all of which appear to describe the 
time course of seizure activity before and after administration of a 
treatment (i.e., placebo and lamotrigine) in PO and PGTC patients. Clinically, 
our analysis reveals the implications of interindividual seizure frequency for 
the choice of dose. Given the large interindividual variability in maximum 
response, our analysis also makes clear that treatment optimisation in the 
clinic does require close monitoring of the patient during titration before 
conclusive recommendations can be made for optimisation of the regimen. 
The applicability and validity of these findings need to be confirmed in 
prospective studies, including different seizure types. 
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CHAPTER 8 

EXPOSURE-RESPONSE RELATIONSHIP 
AND DOSE RATIONALE FOR 

LAMOTRIGINE IN CHILDREN AGED 
1-24 MONTHS 
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Exposure-response relationship and dose rationale 
for lamotrigine in children aged 1-24 months 

Sven C. van Dijkman, Nico C.B. de Jager, Willem M. Rauwé,  
Meindert Danhof, Oscar Della Pasqua 

To be submitted 

SUMMARY 

Objective: The anti-epileptic drug (AED) lamotrigine (LMT) is approved for 
treatment of partial-onset type seizures in adults and adolescents. Given the 
known differences in pharmacokinetics in this age group, we aim to investigate the 
dose rationale for lamotrigine using a model-based approach that has been 
developed for older patients. Methods: Data of children aged 1-24 months with 
partial type seizures receiving LMT as adjuvant therapy were retrieved from the 
clinical database of GlaxoSmithKline. A PKPD Poisson model with Markovian 
features was used to describe seizure counts over time, along with the drug effect. 
The dose rationale was evaluated taking into account differences in 
pharmacokinetics and the PKPD model parameter estimates. The analysis was 
complemented by the simulation of a clinical trial in which paediatric patients are 
treated with doses that yield exposures comparable to the efficacious range 
observed in the age range > 24 months. Results: The use of a drug-disease model 
provided insight into the exposure-response relationship of lamotrigine in infants 
and toddlers.  Model parameter estimates were comparable to those in adults with 
partial seizures. The main difference was in the placebo effect, which was 
significantly larger. Maximum efficacy was enough to suppress disease activity, 
while potency (EC50) was slightly higher than in adults. Clinical trial simulations 
showed that statistically significant differences can be detected and efficacy 
demonstrated when differences in pharmacokinetics and placebo effect are taken 
into account. Conclusions: The use of a drug-disease model allows for the 
characterisation of exposure-response relationship of lamotrigine in children 
younger than 2 years of age. It appears that lamotrigine is efficacious in patients 
younger than 2 years with partial onset seizure and that efficacy can be 
extrapolated from adults and older paediatric patients 
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1. Introduction 

Roughly 68 million people worldwide suffer from epilepsy, with up to 25% 
of those patients belonging to the paediatric subpopulation [1,2]. Poor and 
rural areas contribute to a disproportionate degree to that number, leading 
to a need for anti-epileptic drugs (AEDs) that are efficacious and safe for 
children, yet affordable. Most of the popular AEDs have been thoroughly 
investigated in adults, but due to ethical and practical constraints, little is 
known about their pharmacokinetics (PK) and pharmacodynamics (PD) in 
very young children[3,4]. Given the lack of data, many AEDs have not been 
approved for use in subset of the paediatric population, but are 
nevertheless used off-label[5] by clinicians. Consequently, many paediatric 
patients receive unproven medical treatment daily, possibly with the 
inappropriate drug and dosing regimen, possibly exposing patients 
unnecessarily drug levels and long titration times [6,7]. 

Lamotrigine (LMT)[8] an AED with predictable PK and a favourable efficacy 
and safety profile in adults and adolescents [9,10]. Recently, we have 
described the development of a population-wide pharmacokinetic model 
for LMT in patients aged 0.2 – 91 years of age. The analysis showed that 
body weight-adjusted clearance in the younger (1-24 months) population is 
higher compared to that in older patients. In fact, a maturation function is 
required to account for the differences observed in this age group [11]. This 
model was subsequently used as basis for another investigation, in which 
we have attempted to characterise the exposure-response relationship of 
lamotrigine in adults with partial-onset (PO) and primary generalised tonic-
clonic (PGTC) seizures using a Poisson model with Markovian features [12]. 
LMT has been approved for the treatment of partial- and primary 
generalized seizures in patients with epilepsy aged 2 years and older, but 
failed to show adequate efficacy compared to placebo in a small sample of 
subjects 1-24 months old (N=38) [13]. A possible cause of this lack of 
efficacy may have been the lower exposure that was reached in this 
population due to the higher drug clearance relative to body-weight. 
However, in paediatric epilepsy, epileptologists suggest that differences in 
the epilepsy in adults and young children are the likely cause of lack of 
efficacy. Here we attempt to explore whether the underlying exposure-
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response relationship of lamotrigine truly differs between populations and 
most importantly whether failure in detecting efficacy can be assigned to 
inaccurate dose selection and sample size. While a new trial may be 
required to ultimately prove this hypothesis, we show how these questions 
can be addressed using clinical trial simulations (CTS) [14]. A secondary 
objective is to establish the feasibility of bridging concepts in paediatric 
epilepsy.  

 

2. Methods 

2.1 Subjects & original study design 

Data from a clinical efficacy and safety study of LMT in children was used 
(clinicaltrials.gov ID NCT00043875). Included were male and female 
subjects between the age of 1-24 months at study entry, with a confident 
diagnosis of epilepsy and a history of at least four reliably detectable 
recurrent partial seizures per month. Seizures were required to be 
uncontrolled by at least one other AED with plasma concentrations within 
the acceptable therapeutic ranges. Subjects were included if they had a 
diagnosis of severe, progressive myoclonus, had seizures not related to 
epilepsy or as the result of drug withdrawal. Subjects were not allowed to 
suffer from clinically relevant chronic conditions which may affect the LMT 
PK. 

Subjects were required to submit at least two weeks of historical baseline 
daily seizure counts at inclusion. Once included, they were up-titrated with 
LMT to a dose of 5.1 mg/kg/d (when combined with VPA or non-enzyme 
inducing AEDs) or 15.6 mg/kg/d (given in combination with enzyme 
inducing AEDs). After titration, patients were further optimised according to 
clinical efficacy and safety according to the treating physician. These 
titration and optimisation phases occurred during the open-label phase 
(OLP). At the end of the OLP, those patients with a reduction in seizure 
frequency of at least 40% compared to baseline were allowed to continue 
to the double blind phase (DBP), with a maximum of 38 subjects. In the 
DBP, subjects were randomised in a 1:1 ratio to either LMT continuation or 
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LMT down-titration and subsequent conversion to placebo. During the DBP, 
escape criteria were used to determine treatment failure. These criteria 
were at least 50% increase in monthly seizure frequency, having double the 
amount of consecutive 2-day seizure counts compared to the optimisation 
phase, onset of a new and more severe seizure type, clinically significant 
worsening of non-partial seizures, the need to therapeutically intervene to 
control seizures, or status epilepticus. An overview of the trial phases can 
be found in Figure 1. 

 

Figure 1. Schematic overview of the trial phases involved in the original study. 

An overview of the demographics is shown in Table 1. The previously 
developed PK model [11] in combination with the available concentration 
and covariate data was used to predict individual values of peak, mean and 
trough concentrations (Cmax, Cavg, and Cmin respectively) for every day of 
the study duration in the dataset. Data manipulation, and statistical and 
graphical analysis were performed using R v3.1.1 [15]. Model building was 
performed using an environment consisting of NONMEM v7.3[16], Piraña 
v2.9.0 [17], and PsN v4.2.0 [18]. 
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Table 1. Subject demographics for the data used in this study. Numbers of subjects 
receiving co-medications are listed, with the dose range given in parentheses. 
 

Variable Mean (SD)
Number of subjects 170
Weight (kg) 11 (2.2)
Age (y) 1.3 (0.4)
Seizure freq (day-1) 5.576 (10.8)
Comedications: N (dose range)
Carbamazepine 56 (1-800)
Clobazam 10 (1-15)
Clonazepam 27 (0.05-25)
Diazepam 6 (0.9-30)
Gabapentin 1 (400-400)
Levetiracetam 2 (62.5-500)
Lorazepam 3 (0.20-0.75)
Oxcarbazepine 5 (90-540)
Phenobarbital 66 (8-300)
Primidone 2 (62-125)
Phenytoin 16 (14-300)
Topiramate 33 (12.5-400)
Valproic acid 18 (150-600)
Zonisamide 5 (50-200)

 

2.2 Pharmacodynamic analysis 

The seizure count data was described with a Poisson distribution, consisting 
of a single parameter lambda ( ), which describes both the number and 
variance of the distribution of events (seizures per day). If k is the number 
of events, the probability of observing k is given by equation 1. Given the 
difficulties of estimating factorials, k! was approximated using the Stirling 
formula (equation 2). Differences in lambda were identified between 
baseline, placebo effect and treatment effect. Separate lambdas were 
estimated for the case when seizures or no seizures occurred on the 
previous day, which is the Markov element in this model. Over- or under-
dispersion were taken into account by estimating an overdispersion factor. 
In the current application of the model, stochastic differential equations 
were not included. A more technical discussion of the model may be found 
elsewhere [12,19]. 
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       (1) 

      (2) 

Baseline seizure rate was separated from placebo and treatment effect, 
with treatment effect either as a constant factor or resulting from LMT 
exposure as measured by average, peak or trough daily concentration. After 
the introduction of each covariate, the change in objective function value 
(OFV) was determined, with a decrease of 3.84 points or more considered 
an improvement with p<0.05. Followed by this forward inclusion, 
backwards exclusion was applied to determine if the data was as well 
described after elimination of the model element. PD models were 
evaluated using observed (DV) versus predicted seizure amounts per day 
(IPRED), cumulative observed versus individually predicted seizures per day, 
difference (residual) between cumulative observed and individually 
predicted seizures per day over time, and predicted versus observed 
overdispersion. 

 

2.3 Clinical trial simulations 

To determine the impact of the choice of number of subjects on the ability 
to estimate statistically significant difference between lamotrigine and 
placebo trial arms, seven scenarios were created, ranging in number of 
subjects from 40 to 500. Parameters for baseline disease severity, OVDP, 
EC50 and Emax were sampled from distributions estimated from the original 
thirty-eight subjects included in the original trial. Exposure to lamotrigine 
was varied from levels as those found in the original trial to levels adjusted 
for the increased clearance in the population at levels of 25%, 50% and 
75%. For each of the scenarios, the last four weeks of the optimization 
phase and four weeks of double blind phase were simulated. Statistical 
significance of differences in changes in seizure frequency between 
optimisation and double blind phase were estimated using a one-sided mid-
p test. 
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3. Results 

3.1 Clinical trial results 

Steady-state concentrations as predicted by the PK model were relatively 
low (mean: 4.05, sd: 7.89, range: 0.23-10.7 mg/L) compared to the 
therapeutic range as defined for adults (4-12 mg/L). In previous studies in 
adults with PO-type seizures, average steady-state concentrations were 
around 6 mg/L. The primary endpoint, i.e. reaching escape criteria, 
occurred in 58% of LMT-treated patients and 84% PBO-treated patients, at 
a p-value of 0.07 this was not found statistically significant. Secondary 
endpoints such as time to escape also showed differences between LMT 
and PBO that approached statistical significance. Large variability was 
observed in seizure frequency both between and within individuals. The use 
of LMT did not result in statistically significant increases in side-effects 
compared to PBO. The overall lack of statistical significance in clinical 
endpoints based on the responder-enriched study design pointed to an 
underpowered study design. 

 

3.2 Pharmacodynamic Model 

A pharmacodynamic model was built based on a Poisson distribution with 
an overdispersion factor and Markovian features, as described previously 
by others [19]. Baseline lambda was dependent on the previous day and 
was modified by either a placebo or treatment effect. Treatment effect was 
dependent on average daily concentrations as predicted by the PK model. 
Estimated parameter values can be found in Table 2. The PD model was 
able to describe the data reasonably well with only moderate over- or 
under predictions of seizure counts per day and it followed the general 
trend in seizure counts over time well (Figure 2). Overdispersion was highly 
similar between observed and predicted seizures. While many variants of 
the model and many covariates were investigated, no improvements could 
be made on the base model. 
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Table 2. Parameter values of the final model, all parameters but EC50 are on the log 
scale. 
Parameters Parameter 

value (%RSE) 
Parameter 
value in adults 

Variance as 2 [%RSE] 
(Shrinkage %) 

Lambda (PDV>0) -0.879 (6%) -0.992 8 [26.6%] (28.4%) 
Lamdba (PDV=0) 0.181 (93.9%) -1.22 3.53 [16.3%] (3.4%) 
OVDP -2.45 (10%) -1.26 9.31 [24.3%] (15.3%) 
EPB -1.82 (28%) -0.247 1.41 [56.2%] (71%) 
Emax -5.11 (5.1%) -4.70 63 [26.8%] (26.5%) 
EC50 6.17 (11.3%)† 13.06† 12.3 [21.2%] (18.6%) 
OVDP: overdispersion factor; EPB: placebo effect; Emax: maximum LMT effect; 
EC50: average daily concentration of LMT at which 50% of the maximum effect is 
reached, on normal scale. 

 
Figure 2. Goodness-of-fit for the final model. Top left panel: Individual observed 
versus predicted seizure counts. Top right panel: cumulative individual observed 
versus predicted seizure counts. Bottom left panel: residuals () of seizure counts. 
Bottom right panel: observed versus predicted dispersion. 
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3.3 Clinical trial simulations 

Clinical trial simulations were performed based on several levels of subject 
inclusion. The model predicted subjects reaching escape criteria based on 
the actual trial data well. Simulations showed that increasing numbers of 
subjects would increase the power of the trial and reduce the p-value 
accordingly. A minimum of 200 subjects was required to achieve a p value 
of 0.05 or less at a power of 80% in simulated trials (Figure 3). 

 
Figure 3. Median p-values (blue lines & dots), depending on the number of subjects 
in the virtual clinical trial and the level of exposure compared to the original trial. 
The shaded area represents the 80% prediction interval for each scenario, based on 
100 simulated runs. At the number of subjects where the shaded area dips below 
the red dotted line, the trial design has reached a predicted p-value of below 0.05 
at a power of 80%. LMT: lamotrigine; PBO: placebo 
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4. Discussion 

In this work we set out to determine the exposure-response relationship of 
lamotrigine in children aged 1-24 months and establish the dose rationale 
for prospective clinical trials using modelling and simulations. Thanks to the 
availability of historical data, including studies in which seizure counts were 
collected in individual patients, we have shown that treatment response to 
LMT can be characterised by the same Poisson model with Markovian 
features used for adults and older paediatric patients. Most importantly, 
model parameter estimates describing disease specific properties were 
found to be of the same order of magnitude across age groups. The actual 
difference in this population is the placebo effect, which is significantly 
larger in young children. Based on clinical trial simulations, it appears that 
statistically significant differences can be detected and efficacy 
demonstrated if exposure is adjusted to account for differences in 
pharmacokinetics and in placebo effect. 

As previously shown in adults with PO seizures, a drug-disease model can 
be used to describe seizure counts over time. Given our interest in the role 
of bridging and extrapolation principles in paediatric research and the 
somewhat limited patient pool, we have decided to apply the same model 
used for adults and older paediatric patients, despite conflicting views 
regarding the differences in the underlying pathology in this group of 
patients. We have assumed that structurally, the differences may be in 
parameters estimates, not in the way seizure frequency is parameterised in 
this model. In fact, the data was well described. 

Since LMT has been used off label in this population, it remains unclear 
whether dose and dosing regimens are appropriate. Thus, in Error! 
Reference source not found. we provide dosing recommendations 
stratified for baseline seizure frequency. To achieve a 50% seizure reduction 
in a typical patient from our trial data, a LMT average daily concentration of 
only 1 mg/L is required, resulting in a dose of only 18 mg/day in a typical 1-
year old patient. However, doses provided per stratified baseline seizure 
frequency show that, as the baseline seizure frequency increases, doses 
approach levels that may be high enough to lead to toxic effects. Doses to 
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achieve the same result in our previous study in adults with PO seizures are 
provided for comparison. 

Table 3. Seizure frequency at the start of treatment is used as covariate for dose 
selection, based on the PK and PD of a typical adult weighing 70 kg derived from 
the earlier adult PD model, and a typical 1-year old patient weighing 10 kg derived 
from the current PD model. The earlier-presented PK model may be used for 
further dose personalisation, especially in toddlers and infants. Total doses may be 
rounded to 5 mg, as more accurate dosing differences may not easily be achieved 
using dosing tools based on lamotrigine oral suspension formulations currently 
available. Doses should be multiplied by 0.5 (halved) when given in combination 
with valproic acid, and multiplied by 1.76 for comedication with carbamazepine or 
2.29 for comedication with phenytoin. Care should be taken not to go over the 
maximum total daily dose. 
 

Seizure frequency 
(day-1) 

Dose for adult PO seizures 
(mg/kg/day) 

Dose for paediatric PO seizures 
(mg/day) 

0.1 3 4
0.2 6 8
0.3 9 13
0.4-0.6 11-16 17-26
0.7-0.9 18-24 32-45
 
Our parameter results in Table 2 clearly show that in addition to striking 
differences in pharmacokinetics, placebo effect is significantly different in 
young children. In addition, apparent differences were observed for EC50, 
which was found to be lower than that in adults, showing that these young 
patients are possibly more sensitive to the effect of LMT. However, given 
that both values are within the same order of magnitude, it is not possible 
to establish the clinical relevance of such differences. On the other hand, it 
should be noted that the larger placebo effect in children has been 
previously reported in literature [20]. These similarities seem to suggest 
that estimates from adult patients may be used to support the dose 
rationale in young children, which has recently been taken up by the FDA, 
although this does not necessarily extend to patients younger than 4 years 
[21,22]. The fact that differences were found between adults and these 
young children show that overall response profiles may not necessarily 
arise from exactly the same parameter distributions. Whilst we have to 
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acknowledge the limited number of patients and the absence of further 
details on the companion drugs, these findings highlight the advantages of 
a parametric approach; empirical extrapolation may not be as effective. A 
comparison of parameters from adults with PO seizures to those in the 
current population is provided in Table 2. 

Based on the aforementioned findings, it became evident that previously 
failed clinical trials may simply be a consequence of poorly designed 
studies. Clinical trial simulations showed that the original trial of LMT in 
patients aged 1-24 months old was statistically underpowered. Indeed, 
while statistically treatment response did not separate from placebo, the 
predicted effect size was found to be comparable to adults and quite 
clinically relevant, after correcting for the differences in pharmacokinetics. 
Statistical significance was shown to be reached by inclusion of at least 200 
subjects in a study, assuming that dosing will be adjusted for the increased 
clearance in the population of interest. At the same time, our analysis 
suggests that paediatric doses may be derived based on bridging and 
extrapolation principles. These results also shed light into the requirements 
for the development of a model-based dosing algorithm, as similar 
principles should be applied to both populations. 

We acknowledge that our investigation has some important limitations. 
First, it should be noted that the clinical trial simulations are based on a 
model built to describe seizure counts. We could not evaluate the impact of 
prior treatment or increase in severity. We also have account for the 
potential bias in estimates due to inclusion and exclusion criteria. Second, 
the limited number of patients on placebo (19 out of 177), may not have 
allowed sufficient precision and accuracy in estimation of the placebo 
effect. Third, our simulations were based on the parameters found in the 
only 38 subjects included in the double blind phase of the trial. Many more 
subjects were included during the open-label phase, although the results of 
the primary endpoint of the trial were not based on these other subjects. 

Whereas a larger body of evidence may be required to confirm our findings, 
they provide an indication that LMT may be efficacious in this population, if 
patients are treated with the appropriate dose. As such, our methods may 
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provide a framework for the implementation of a common dosing algorithm 
across the overall population of patients with PO seizures. It also highlights 
the importance of endpoint selection and trial design requirements for 
establishing efficacy. In the field of epilepsy such issues are often 
undervalued and it is suspected that the use of suboptimal trial designs has 
led to many failures in showing superiority to placebo. As has been pointed 
out elsewhere, not only the choice of endpoint but also its statistical 
analysis has great implications for the validity of the outcome of a trial [6].  

In conclusion, despite some limitations, the use of a drug-disease model 
allowed the characterisation of the exposure-response relationship of 
lamotrigine in patients younger than 2 years of age. Estimates suggest 
comparable disease-specific parameters between adults and young 
children, which provides the basis for further review of the role of bridging 
and extrapolation in this patient group. The doses and dosing regimens 
proposed here should be considered in future studies aimed at the 
evaluation of the efficacy and safety of lamotrigine in this subgroup of 
patients. 
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CHAPTER 9 

CONCLUSIONS AND  
FUTURE PERSPECTIVES 
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Conclusions and Future Perspectives 

1. Conclusions

The objective of modern clinical pharmacology is to improve the 
effectiveness of current treatments and to provide new medicines to treat 
as many diseases and conditions as possible.  In addition, its goal 
encompasses the development of methods and tools that allow for 
optimisation of evidence generation and evidence synthesis, ensuring 
appropriate prescription, delivery and use of medicines. Since the 1960s, 
with the Kefauver-Harris amendment to the Food Drug and Cosmetic Act in 
the USA in 1962 [1] and, with the European Directive harmonising 
requirements for marketing authorisations in 1965 [2], the action of 
national and supranational governments has established the need for 
appropriate scientific evidence on efficacy and safety of all new drugs 
before their approval for clinical use. These principles already take into 
account the concept of interindividual variability and recognise the fact the 
requirements to treat vulnerable patients may differ from the general 
population. Indeed, the recognition that therapeutic response is affected by 
intrinsic and extrinsic determinants of variability sets the foundations for 
personalised treatment, separating patients into different groups—with 
medical decisions, practices, interventions and/or products being tailored 
to the individual patient based on their predicted response or risk of 
disease. While the tailoring of treatment to patients goes back to the time 
of Hippocrates [1], the development of new diagnostic, mathematical and 
statistical approaches along with computer and informatics allows the 
implementation of dosing algorithms based on detailed understanding of 
disease and underlying exposure-response relationship. 

In this thesis, we set out to show how understanding of pharmacokinetics, 
pharmacodynamics and exposure-response relationships may be used in 
conjunction with modelling and simulation to personalise antiepileptic drug 
treatment in paediatric epilepsy. In the first section we reflect on the key 
issues in the diagnosis and treatment of epileptic seizures. An extensive 

259



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 260PDF page: 260PDF page: 260PDF page: 260

review of current practices in paediatric epilepsy is presented together with 
the implications of different sources of variability for treatment outcome. A 
clear picture emerges regarding the consequences of empirical 
experimental evidence and the opportunities for the characterisation of 
exposure-response relationships using quantitative clinical pharmacology. It 
also becomes evident that knowledge regarding pharmacokinetics and 
pharmacodynamics is not being used to support clinical decisions, with 
titration, tapering and switching of drugs and dosing regimens as the 
method of choice to tackle inter-individual differences in treatment 
response. In the second section, we review the use of pharmacokinetic and 
pharmacokinetic-pharmacodynamic modelling for the most commonly used 
antiepileptic drugs. These data provides a baseline for the development and 
implementation of personalised treatment using model-based dosing 
algorithms, where we show that parameterisation of the impact of intrinsic 
and extrinsic factors (i.e., covariate effects) can already be used to guide 
dose selection and/or stratify patients. Focus was given to the role of 
demographic differences and drug-drug interactions, as they represent 
common causes of variability in drug exposure. These analyses have shed 
light into the gaps in knowledge, and in particular the lack of data regarding 
the exposure-response relationships of anti-epileptic drugs. In the third 
section, we make use of a paradigm compound, lamotrigine, to illustrate 
the requirements for the development of model-based dosing algorithms 
and their application in drug development and in clinical practice. We show 
how insight into covariate effects in pharmacokinetics and 
pharmacodynamics, along with the underlying exposure-response 
relationship allows further optimisation of treatment in children. We take 
the opportunity to highlight the experimental challenges associated with 
current research and propose possible solutions to overcome these issues. 
In this concluding chapter, we re-iterate the questions posed at the onset of 
this thesis, reflect on the results obtained, including some of the main 
limitations, and future steps required to implement personalised 
pharmacotherapy in paediatric epilepsy. 
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1.1 Knowledge integration 

Neurologists have around 20 anti-epileptic drugs (AEDs) in their armament 
against epileptic seizures. Regardless, up to 30-40% of patients do not 
respond sufficiently to pharmacotherapy [2,3]. With the alternatives being 
invasive treatment such as vagus nerve stimulation or epileptic focus 
resection, there is a need for the optimal utilisation of existing AEDs as well 
as better experimental protocols for the evaluation of new compounds. 
Modelling and simulation techniques offer an opportunity for 
personalisation of treatment due to its ability to identify relevant sources of 
variability and integrate existing knowledge regarding the contribution of 
multiple factors to variation in exposure, pharmacological effect and clinical 
response. Of note is the possibility of using prior information, i.e. evidence 
synthesis, and exploration of hypothetical scenarios in silico, i.e., clinical 
trial simulations (CTS).  

In other fields such as oncology, infectious diseases, and diabetes, 
modelling and simulation has advanced to a stage where models are 
starting to approximate the relevant physiology and pathology to a 
significant degree, leading up to systems pharmacology. In epilepsy, 
however, the complexity of the disease, the lack of biomarkers along with 
the use of the discrete measures of the clinical symptoms have resulted in a 
status quo, in which there appears to be no alternative to treatment 
optimisation through trial and error, as defined by titration, tapering and 
treatment switch guidelines [4]. Evidence exists for the selection of some 
AEDs over others in specific seizure types, syndromes, or in few cases 
known aetiologies. Yet, these guidelines only provide very rough guidance 
in terms of first-, second- and sometimes third-line AED choices. There 
appears to be no need for insight into the underlying exposure-response 
relationships, as it is assumed that variability in response to treatment 
cannot be, at least in part, assigned to specific factors. Once an AED is 
selected, information regarding dose titration across a predefined range of 
doses is considered as sufficient to establish whether a patient will respond 
to treatment or not. Again, no quantitative guidance is linked to these 
procedures other than therapeutic drug monitoring, which is often used to 
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determine treatment adherence as opposed to its use for dose 
personalisation. 

In chapter 1, we argued that PKPD and disease modelling are essential to 
cope with this complexity and to eventually achieve rational epilepsy 
pharmacotherapy. In this context, paediatric epilepsy stands out from adult 
epilepsy and other disease areas due to the existence of specific paediatric 
types of epilepsy, even larger lacunas in paediatric evidence, and the fact 
that some paediatric epilepsy phenotypes exhibit more severe disease 
progression than that typically observed in adults. These factors are often 
used to justify the choice for polytherapy in paediatric cases. As such, 
prescribing physicians need to make careful assessment of combinations 
and dose adjustments, but these are often based on adult doses expressed 
in mg/kg body weight. It is now common knowledge that drug clearance 
scales non-linearly with weight [5]. Moreover, doses in children younger 
than 2 years of age need to account for ontogeny processes and other 
developmental changes, which are not characterised by the effect of body 
weight.  Likewise the role of drug-drug interactions cannot be overlooked.  
In Chapter I, we reviewed different sources of variability in treatment 
outcome in epilepsy. 

One of the questions we aimed to answer in this thesis was whether inter-
individual differences in exposure to AEDs and inadequate response in 
some patients can be explained by size and age-related covariate factors. 
To address this question, in Chapter 3 we have summarised all available PK 
and PKPD models in the published literature for AEDs. By doing so, an 
overview was created of the different model parameterisations and 
covariate effects, such as drug-drug interactions (DDIs), effect of body 
weight and age, genotype, and other covariates. While size and age-related 
covariate factors explained differences in exposure to some degree, a 
considerable proportion of the overall variability in pharmacokinetics 
remains after adjusting for these factors. Typically, the variability in 
clearance, expressed as coefficient of variance (CV%), is roughly 50% for 
most models for most AEDs. The review in chapter 3 also showed that most 
AED PK models were in the form of one-compartment model with first-
order absorption and elimination. Notable exceptions were models for the 

262



514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman514784-L-bw-dijkman
Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017Processed on: 26-10-2017 PDF page: 263PDF page: 263PDF page: 263PDF page: 263

correlation between bound and unbound concentrations of valproic acid 
and phenytoin, and the physiology-based PK (PBPK) models for valproic acid 
[6]. Not many PD models were found in literature, and those that are 
available model the correlation between exposure and parametrically 
secondary outcome measures such as the time to first seizure analysis for 
topiramate efficacy. A database of predictive models was created, which 
allows looking up possible approaches to model pharmacological data in 
epilepsy, it aids in identifying the most relevant covariates to screen for in 
an analysis, and it reveals the models that are currently available for clinical 
personalisation of treatment and dose. 

 

1.2 Model-based dosing algorithms 

In Chapters 4 and 5 we address three other important questions proposed 
at the start of this thesis, namely whether evidence of drug-drug 
interaction studies in adults can be used to assume similar effects in the 
paediatric population and evaluate the implications of commonly 
recommended empirical dosing in mg/kg in children. Using simulations and 
a selection of literature models from chapter III, we show the impact of 
DDIs on clinically relevant measures of drug exposure. Through these 
simulations, we also demonstrate the implications of adding one or more 
other AEDs onto the existing therapy, i.e., dose adjustments are typically 
required to ensure maintenance of comparable exposure levels to the 
primary AED. Furthermore, under the assumption of similar exposure-
response, our results show important differences in terms of the magnitude 
of the effect of DDIs in children. This evidence reinforced the relevance of 
model-based dosing algorithms as a tool for dose personalisation. In 
chapter V, we use simulations to explore the impact of integrating 
therapeutic drug monitoring (TDM) with model-based concepts to define 
the dose rationale for individual paediatric patients. Variability in the time 
to achieve a predefined target AED exposure, as well as the variability in 
exposure during the maintenance phase were significantly reduced by an 
approach based on a combination of models and TDM, when compared to 
other approaches.  These findings provided the basis for an answer to the 
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fourth question included in the objectives of this thesis, namely that model-
based dosing algorithms can minimise the need for treatment switch and 
combination therapy. 

 

1.3 Evidence generation and evidence synthesis in epilepsy trials 

In subsequent chapters VI, VII and VIII, we aimed to determine, amongst 
other things an answer to the two remaining questions included in the 
scope of this thesis, namely which data are required and which criteria 
should guide the selection and personalisation of paediatric doses. Using a 
paradigm compound we explored experimental requirements assuming 
comparable and different exposure-response between adults and children. 
A special case of prior information is allometry, a theory that states that 
certain PK parameters correlate to body weight according to pre-defined 
mathematical rules. Using allometry, we investigated our ability to predict 
paediatric PK of lamotrigine (LMT) using a model built on adult data. As 
previously suggested, below the age of 2 years, allometry does not 
adequately adjust for the observed changes in clearance and thus a 
maturation function was developed to adjust for these findings. The result 
was a model that is able to predict for patients ages 1 month to 91 years of 
age. The model was built on data from several major ethnicities (Black, 
Asian, Caucasian), for which no significant differences were found in PK. As 
a result, the developed model may be one of the most versatile models for 
LMT available. Due to its ability to predict for this wide range of 
populations, simulations were performed to optimise the typical dose for all 
ages, under the assumption of similar exposure-response. This is the first 
attempt to derive, through modelling & simulations, a dose of LMT in 
patients aged 1-24 months of age. While this dose will achieve average 
steady-state concentrations within the therapeutic range for most of these 
patients, large variability remains. Further personalisation and 
individualisation is still indicated to adjust for the unpredictable variance in 
the PK parameters, such as the 56.1% of variance in clearance after 
correcting for covariates. Furthermore, differences in exposure-response 
between adults and children may require setting a different target 
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exposure. Using the covariates presented with the PK model of chapter VI 
in combination with therapeutic drug monitoring and individual parameter 
estimation approach showcased in chapter V will allow further accuracy 
and precision in the personalisation of LMT dosing. 

As discussed in chapter I, the definition of a clinical endpoint, and thus 
efficacy, determines the data required to accurately and precisely estimate 
parameters such as potency and maximum efficacy. Previous work 
described the estimation of pharmacodynamic models on clinical endpoints 
such as the ability to achieve at least a 50% reduction in seizure frequency, 
or the occurrence of a first seizure after start of treatment. These endpoints 
are binary and thereby the information from seizure diaries is reduced to 
simple yes and no outcomes. This simplification leads to a large loss in 
information, which is often compounded in the analysis of clinical trials by 
thereafter taking means and standard deviations of the study populations. 
These endpoints are in fact derived from the underlying endpoint which is 
seizure counts over time. With the description of seizure counts, one may 
determine the other, more often used, endpoints as they are the automatic 
result of it. Thus, it is recommended to model seizure counts, as it is closer 
to the pathophysiology and thus should be more sensitive to disease 
progression and treatment effect. Chapter VI outlined the use of a 
population Poisson model for the description of seizure counts in adult 
patients with partial onset (PO) and primary-generalised tonic-clonic (PGTC) 
seizures. Our investigation revealed that these patients differ in sensitivity 
to treatment, and we quantified the correlation between exposure and 
response. Apart from the typical inter-individual variability, as is normally 
taken into account by mixed-effects modelling, we also used Markov 
properties and stochastic differential equations (SDEs) to adjust for changes 
in the disease activity over time within the individual (intra-individual 
variability). Now that a PKPD model is available for LMT, individual 
sensitivity to treatment may be estimated in the clinical population, based 
on seizure diaries and TDM. More rudimentary dosing applications may be 
developed using nomograms or stratification of patient groups. 

The Poisson model was further evaluated on a paediatric cohort of patients 
with PO seizures aged 1-24 months. These patients showed a higher 
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baseline disease activity, but also showed a higher sensitivity (as EC50) to 
LMT compared to that previously found in adults with PO seizures. On the 
other hand, a small difference was found with regard to placebo and 
maximum treatment effect. We used clinical trial simulations to investigate 
the required number of patient to show efficacy in this population (power 
calculations), assuming similar PKPD as estimated from the data. It was 
found that a minimum of 200 patients were needed to achieve sufficient 
power, a number much higher than what was considered in the original 
trial. In other words, the original trial of LMT used in this analysis was found 
to be underpowered, even if LMT in this population can be quite effective. 
Future clinical trials of AEDs, especially in a patient group where patient 
inclusion is difficult such as in these young children, may want to use 
modelling & simulation approaches such as those showcased in chapter VIII 
to a-priori optimise the trial design for sufficient power. 

In summary, we have created a model library and overview of PK and PKPD 
models for AEDs, allowing easy implementation and adaptation of the 
available literature information. Furthermore, we have shown that 
personalised and individualised medicine based on modelling approaches is 
not only feasible, but has a significant impact on achieving pre-set exposure 
targets, thereby reducing variability in treatment outcome. Finally, new 
models for the PKPD of lamotrigine were provided, which, assuming their 
validity in clinical populations, may allow pharmacodynamic personalisation 
and individualisation, as well as clinical trial simulations for the optimisation 
of future trial designs. 

 

2. Limitations 

In addition to the discussed thesis results and conclusions, a discussion of 
its limitations is warranted. Our work on the impact of drug-drug 
interactions and dosing algorithms through PK simulations in chapters IV 
and V required us to make certain choices in the use of PK models for anti-
epileptic drugs in literature from chapter III. Due to the nature of the 
investigation with regard to drug-drug interactions, models were selected in 
which many of these interactions were taken into account. Such selection 
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criteria limited us in the possibility of selecting models that were able to 
predict for different races and sometimes age groups (notably lamotrigine 
and valproic acid). Also, by selecting models for this purpose, their 
appropriateness for parameter estimation in chapter V may have been 
affected. A more thorough, but much more time-consuming approach 
would have been to perform a full meta-analysis of the available models 
listed in chapter III, or to first create an integrated PK model for each AED 
based on the available literature models and validate it against simulated 
data from the original models, or ideally, against actual data. This was, in 
part, performed in chapter VI for the PK of lamotrigine, where we used 
literature information regarding the relevance of allometric scaling, drug-
drug interactions, and changes in PK according to age to construct a model 
that was validated on actual PK data from several clinical trials. Such an 
exercise was not feasible for all AEDs discussed in chapter III due to a lack of 
time and data, but may be performed in the future using the materials 
provided in the supplements of chapter III.  

A further limitation of chapters IV and V is the use of plasma AED 
concentrations as a substitute marker for cerebral exposure. As mentioned 
in chapter I, cerebral PK is largely determined by the blood-brain-barrier, 
which limits the amount of drug that enters the brain. Moreover, evidence 
exists for steep concentration gradients between different brain 
compartments, which may lead to differences in the effect of an AED 
depending on where in the brain it distributes to, further complicating our 
ability to link AED exposure to effect [7,8]. These issues are a source of 
variability in correlations between systemic exposure (observed as plasma 
concentrations) and clinical effect, compounding the disbelief amongst 
many clinicians regarding the clinical relevance of TDM in anti-epileptic 
drug therapy. More physiology-based PK models may improve the 
correlation between the PK of AEDs in plasma and at the target site, 
resulting in the ability to better correlate exposure to effect. Steps are 
already being undertaken to the establishment of generic brain PK models 
to allow the characterisation of system-specific and drug-specific 
parameters [9,10]. 
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When it comes to the pharmacodynamic analysis in chapters VII and VIII, 
some major hurdles may also be identified. It has been reported that self-
reporting of seizures, as was performed in the clinical trials from which data 
was used in chapters VII and VIII, may be subject to large under-reporting of 
seizure counts of up to 50% [11]. If this under-reporting has occurred fully 
at random time-points and in random patients, i.e. no underlying 
mechanism drove the under-reporting, then the impact on our conclusions 
in these chapters may be small to negligible. Although parameter values 
may in that case be affected, the models as reported would still predict 
adequately for numbers of seizures observed and treatment effect, albeit 
that they do not predict for seizures unobserved or unreported. However, if 
there is some mechanism of seizure under-reporting, unbeknownst to us, 
that skews the under-reporting in certain moments or types of patients, we 
may not be able to accurately determine treatment effect in a 
subpopulation of our data. For example, if seizure reporting is affected 
more in patients with PO seizures compared to those with PGTC seizures, or 
vice-versa, our estimated treatment effect may not compare between the 
two groups as was our conclusion in chapter VII, even though the models 
may still predict reported seizure counts in both populations to an 
acceptable degree. Several devices exist for the direct registration of 
seizures based on EEG patterns, but the use of these is invasive. It is at this 
point unrealistic to make predictions on the impact of modelling seizure 
counts as registered by these devices compared to the patient-reported 
seizure count. 

Unfortunately, apart from seizure types PO and PGTC, no other covariates 
were found to influence baseline seizure counts, placebo effect, or LMT 
potency and maximum efficacy (although LMT exposure was found to 
predict for clinical efficacy). As a result, personalisation of treatment may 
only be done by a relatively small degree, and the current status-quo with 
regard to individualisation, i.e. adjustments of AED choice and dose after 
the start of treatment, will remain necessary until biomarkers may be 
identified that are sensitive to drug effect. Furthermore, our models were 
built on data of adults and children that were not treatment-naïve and 
were already under treatment when enrolled in their respective clinical 
trials. As mentioned in chapter I, this practice, which is the standard in 
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paediatric trials, does not allow us to estimate the parameters that 
determine treatment effect. The thereby increasingly therapy-resistant 
population that is subjected to these trials may bias drug development in 
the direction of drugs that work in a small resistant section of patients while 
the development of drugs that are safer in the general treatment-naïve 
population may be discarded. In essence, the treatment effect observed in 
clinical trials may not be directly translatable to the general clinical 
population, thereby possibly leading to an unfair advantage for the older 
AEDs that were tested in populations more representative of the typical 
clinical populations. 

Apart from the issue of extrapolation of drug efficacy from add-on trials to 
the general patient population, there is the matter of drug-drug 
interactions (DDIs), both in terms of PK and PD. It has been shown in animal 
models that AEDs show significant PD DDIs [12–14]. While PK DDIs of AEDs 
are extensively described in literature (chapter III), these are only adjusted 
for to a limited degree in clinical trials. For example, in the evaluation of 
LMT in adult patients in our data, patients receiving valproic acid during the 
trial were given a lower dose, as it was already known that VPA decreases 
LMT clearance. There is however also variability in the DDIs themselves, i.e. 
not every patient shows DDIs to the same degree. When this is not taken 
into account during dose optimisation, observed drug interactions with 
regard to treatment outcome cannot accurately be attributed to PD. 
Further, the investigation of PD DDIs requires specific trial designs 
optimised for the ability to detect DDIs. This may include the start of the 
second AED after sufficient data has been collected to estimate the PD 
parameters of the primary AED, and the optimisation of dose levels to make 
sure sufficient DDIs will be found. Current trial designs do not consider such 
trial modalities and thus often do not allow the estimation of PD DDIs (if 
any) and the assumption in practice seems that, if it hasn’t been found, it is 
simply not there. Future trials may be optimised by performing CTS and the 
application of optimal design criteria using specific software [15,16]. 

Finally, a major limitation exists with the use of seizures as a clinical 
endpoint, and by proxy its modelling. Disease activity often exists even 
when a patient has not had a seizure on a given day. In fact, some patients 
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only exhibit few seizures per month or even per year. Defining successful 
treatment in these cases becomes problematic due to a lack of data; how 
long do we need to wait in these types of patients before we can speak of 
treatment success? Similar to this issue, the Poisson model may only 
estimate lambda, i.e. the seizure frequency, if sufficiently long follow-up 
data is available.  

Break-through seizures due to patient non-adherence may then easily be 
wrongly attributed to resistance to medication, resulting in unnecessary 
treatment changes. It also limits our ability to accurately estimate drug 
effect from clinical trials. Biomarkers that are able to accurately detect 
epileptic activity in patients with a low frequency of seizures may solve this 
issue in the future. 

 

3. Future Perspectives 

Given the conclusions and limitations, some possible future investigations 
may be discussed. An important question in epilepsy research is whether it 
is possible to predict disease progression. One notable example of disease 
progression modelling was undertaken by Berg et al. [17] In their work, 
three Markov states were defined, in remission, no longer in remission, and 
never in remission. Based on this model, they were able to describe the 
chance of achieving remission over time. They showed that, over the 
timespan of up to eight years, disease progression may be observed. In our 
investigations in chapter VII and VIII, we did not detect any noticeable 
direction of time-dependent changes in disease activity, nor did we find 
predictors for disease progression, even if many patients in our data 
showed large changes in seizure activity over time. This may be due to the 
limited time-scale in the data with regard to baseline, leading to the 
inability to differentiate disease progression from a small or negligible 
treatment effect.  Contributing to our inability of measuring any significant 
disease progression may have been the relatively short follow-up of 
maximally two years, comparing to up to eight years in the Berg et al. data. 
Alternatively, predictors may exist, but these were not included in the data. 
Most probably however, predictors of disease progression will not be found 
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in demographic properties or easily observed variables. The question is 
then, how long does one need to have a base-line and follow-up data on a 
patient to adequately determine whether a started treatment is efficacious. 
In the following example, we investigate this using the Poisson models with 
and without SDE for PO type seizures from chapter VII. 

AED therapy often results in the occurrence of side-effects. In this thesis, 
we focused on the modelling of PD in terms of efficacy alone, but similar 
approaches may be applied w.r.t. PD modelling of the number of side-
effects, and their severity. Some novel methodologies are available, based 
on item response theory, that allow the simultaneous modelling of several 
clinical outcome markers including their severity scores, including the 
interaction between the scores [18,19]. Such methods may be further 
applied to the combined modelling of efficacy and side-effects, as it stands 
to reason that some correlations may exist between these outcomes. 

As described in chapter VII, a Poisson model was built that took into 
account time-dependent intra-individual changes in seizure activity using 
SDE. The SDE described random changes in seizure activity with no specific 
direction (i.e. the average change in seizure activity over the whole 
population remains 0), but 95% of individual changes in seizure activity 
(seizures/day, or frequency) were between -0.3 to +0.3 seizures/day 
(median: 0). In other words, starting at a seizure frequency of one per day, 
this could change to 1.3^7=6.3 seizures per day in one week. This is, 
however an extreme scenario, with most patients showing less dramatic 
changes over time. Efficacy of LMT was described using the typical 
sigmoidal curve dependent on maximum drug effect (Emax), potency (EC50) 
and LMT average daily concentrations. Using this model, simulations were 
performed based on the characteristics of the patients from the original 
study with regard to demographics, seizure baseline frequencies, placebo 
effect, and lamotrigine potency and maximum efficacy. Seizure counts were 
simulated for two baseline weeks and six treatment weeks. Lamotrigine 
was titrated to a dose of 300 mg/day in steps of two weeks (up-titration to 
50 and 100 mg/day) and one week (up-titration to 200 and 300 mg/day). 
During this treatment phase, one, two, or three pharmacokinetic 
therapeutic drug monitoring samples were simulated for subsequent PK 
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parameter estimation, using the methodologies from chapter V. Using the 
estimated PK parameters, or population-predicted parameters (no TDM 
samples), individual-predicted average LMT concentrations were derived 
for all days in all patients. Subsequently, PD parameters were estimated 
using the original model with and without SDE, and follow-up data of one, 
two, three, four, five or six treatment weeks. Relative error (RE) of PD 
parameters were then calculated using equation 1 and plotted between the 
different follow-up scenarios (between one to six weeks) and between 
number of TDM samples used (none to three). Plots were split between 
using the SDE model and non-SDE model. 

    (1) 

 
Figure 1. Results from application of the Poisson model with stochastic differential 
equations. Parameter estimation accuracy (RE%) of seizure frequency, maximum 
treatment effect, potency and absolute treatment effect between scenarios of 
different number of follow-up weeks, and differing number of TDM samples used 
for estimation. Positive values signify overestimation and negative values 
underestimation. 
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Figure 2. Results from application of the Poisson model without stochastic differential 
equations. Parameter estimation accuracy (RE%) of seizure frequency, maximum treatment 
effect, potency and absolute treatment effect between scenarios of different number of 
follow-up weeks, and differing number of TDM samples used for estimation. Positive values 
signify overestimation and negative values underestimation. 

 
Figure 3. Results from application of the Poisson model without stochastic differential 
equations. Parameter estimation accuracy (RE%) of seizure frequency, maximum treatment 
effect, potency and absolute treatment effect between scenarios of different number of 
baseline weeks, using 6 treatment follow-up weeks, and differing number of TDM samples 
used for estimation. Positive values signify overestimation and negative values 
underestimation. 
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Results of these simulations are not very encouraging. Neither the model 
with SDE nor that without SDE is able to accurately estimate the potency. 
Furthermore, using the model without SDEs resulted in large errors in 
estimation of absolute treatment effect, showing that the issue of 
individual parameter estimation is one based on parameter identifiability 
and not on model complexity. This finding may have grave implications in 
the analysis of clinical trial data, where trial design choices should take into 
account the long follow-up times required to accurately estimate these 
parameters. The simplification of analysis by disregarding the changes in 
seizure frequency over time may result in improper assessment of drug 
effect in some trials, although if a trial were to be repeated infinite times, 
the mean estimation of drug effect should still approach the true value 
(Figure 1). Conversely, depending on duration of treatment follow-up, the 
absolute treatment effect, i.e. the treatment effect observed in the patient 
may be estimated to an adequate degree using the model that includes 
SDEs, with a follow-up of six weeks showing good agreement with the 
absolute treatment effect that was simulated (Figure 2). Parameter 
estimation was not significantly improved by increasing the baseline period 
from 2 to 6 weeks (Figure 3). However, maximum treatment effect and 
potency are required to make for prediction of treatment outcome, as it is 
these two parameters in combination with actual exposure (as average 
daily concentration) which determine the absolute treatment effect. It 
seems that therapeutic drug monitoring did not improve our ability to 
estimate pharmacodynamic parameters, but it should not be dismissed, as 
accurate pharmacokinetic parameters will still be needed to derive the 
optimal target maintenance dose once the optimal target exposure has 
been determined. Possibly, it may be required to perform so-called probing 
tests, in which the potency and maximum effect of the individual patient 
are explored by testing multiple dose levels or lower doses of multiple 
drugs. By perturbing the system and collecting data through sensitive 
biomarkers, we may derive system-specific parameters that inform on the 
sensitivity of the system to changes induced by AEDs. When this is applied 
in a systematic manner that evaluates the relevant physiology, a rational 
decision of pharmacotherapy may be made on the basis of sensitivity of the 
individual patient. 
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This example highlights the need for biomarkers to provide a window into 
the pathophysiology. Such biomarkers may then provide early predictors of 
the maximum efficacy of the available AEDs, thereby allowing selection of 
the most probable efficacious treatment a-priori, and selecting the 
appropriate exposure level for the patient, after which techniques as shown 
in chapters IV and V may be used to optimise for dose. With relation to the 
Poisson model, these biomarkers (or perhaps other predictors) would 
adjust the value of lambda, where possible over time. With enough 
accurate biomarkers, the value of lambda will simply approach the number 
of seizures for that day. Such biomarkers would also solve the issue 
discussed in the limitations, regarding difficulties in the estimation of 
treatment effect in patients with low seizure frequencies. In this sense, the 
use of a Poisson model, or any of the related models (negative binomial, 
zero-inflated binomial, etc [20,21]), to model seizure counts is a middle-
outward approach to the problem. Using biomarkers, we may explain inter- 
and intra-individual variation in the lambda due to differences and changes 
in pathophysiology. Lambda may then be used to predict seizures in the 
future, from which the two major clinical endpoints seizure freedom and a 
reduction of at least 50% in seizure frequency may be derived. It is 
expected that pathophysiological biomarkers will be mostly relevant for 1) 
predicting sensitivity to treatment, and 2) the probability and amount of 
seizure frequency changes. On the other hand, biomarkers are required 
that inform on all links between basic pharmacology and clinical outcome.  

Biomarkers can be divided into several categories, based on their place in 
the cascade from low-level determinants of drug effect up to clinical 
outcome [22]. The currently available biomarkers were recently categorised 
according to this system [23]. Based on this categorisation, several 
important gaps in epilepsy biomarkers were identified. Many of the 
biomarkers found in literature are qualitative, i.e. based on the need to 
categorise patients into one of several convenient and easy-to-grasp groups 
such as responders and non-responders. However, for rational polytherapy, 
biomarkers are required that inform quantitatively on aspects such as 
target occupancy and activation. These types of biomarkers are essential to 
the estimation of AED sensitivity of the individual patient, corresponding to 
the EC50 in our Poisson models. When biomarkers enable the accurate 
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estimation of the individual patient’s EC50 before treatment, or early after 
initiation, a target maintenance dose can be set early and titrated towards. 
Conversely, if the EC50 is simply too high, a switch may be indicated to an 
AED that the patient will be more sensitive to. Similarly, such 
methodologies may be used to prevent the occurrence of side-effects. For 
the prevention of epileptogenesis, one needs quantitative information on 
pathophysiological processes occurring in the patient at risk of developing 
seizures. Assuming anti-epileptogenic efficacy exists for some AEDs, such 
information, combined with biomarkers on target sensitivity may be used 
to derive a low but sufficiently bioactive dose to prevent epileptogenesis 
while minimising the risk of side-effects. At the moment, determining 
whether a patient’s seizures are simply suppressed or their epilepsy has 
remitted is based on clinical presentation. Some patients will show 
renewed seizure activity after treatment cessation, resulting in severe risk 
of harm. Biomarkers on disease status may prove a rational decision tool 
for the cessation of treatment. The occurrence of seizures and exposure to 
AEDs can have significant impact on mental ability in children, which may 
result in worse school performance and stinted development. When 
biomarkers are available allowing us to predict epileptogenesis, disease 
progression and sensitivity to AEDs, seizures may be optimally prevented 
and AED exposure minimised by providing the minimum-required dose and 
stopping treatment as early as possible. 

Based on the methodologies described in this thesis, we may develop 
clinical trials more robustly; we may perform clinical trial simulations for 
power calculations, trial population selection (in terms of disease severity), 
duration of the trial and duration of baseline and treatment periods. 
Furthermore, we may be able to better investigate whether a drug is an 
actual anti-epileptic drug (i.e. does it treat the disease?) or an anti-
convulsant (i.e. does it suppress seizures?). Although we have used the 
term anti-epileptic drug throughout this thesis, no results from chapters VII 
and VIII suggested that lamotrigine has any disease-modifying effects. To 
accurately answer whether a compound has disease-modifying properties, 
study designs need to be very carefully considered. Another important 
question in epilepsy research is whether pharmacodynamic drug-drug 
interactions exist, and whether these are beneficial (i.e. synergy) or 
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detrimental (i.e. antagonism) to treatment outcome. Through CTS, we may 
develop special trials that are sufficiently powered and designed to answer 
these, and other questions. To be able to do so, it is required to first 
estimate the parameters of the Poisson model with regard to mono-
therapy in treatment-naïve patients. For now, the models provided in 
chapters VII and VIII showed no interactions between lamotrigine and the 
other existing AEDs involved in the studies. Whether these findings may be 
extrapolated to treatment-naïve patients remains to be shown in external 
validation studies. 

Our introduction was named “Pharmacotherapy in paediatric epilepsy: from 
trial and error to rational drug and dose selection – a long way to go”. This 
thesis provides signposts that highlight the path towards rational anti-
epileptic pharmacotherapy with the help of modelling and simulations. It is 
our hope that future investigations in paediatric epilepsy will recognise the 
importance of exposure-response relationships and take into account the 
methods, and approaches proposed and implemented throughout this 
thesis.  The use of PKPD principles and drug-disease models will lead to 
rational pharmacotherapy of AEDs in paediatric epilepsy. Our current 
prescription paradigm needs to evolve. Exposure considerations are 
important for assessing efficacy and safety. This point was raised by 
Paracelsus in 1538, and is stated in the adage, the dose makes the poison. 
Model-based dosing algorithms may make the medicine.  
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CHAPTER 10 

Appendices 
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Nederlandse samenvatting 

1. Introductie

Epilepsie is een episodische aandoening met een significante invloed 
op de kwaliteit van leven [1]. De prevalentie van epilepsie wereldwijd 
wordt geschat op circa 70 miljoen [2], waarvan circa 25% kind is [3]. 
Ondanks de beschikbaarheid van ongeveer 20 anti-epileptica (anti-
epileptic drugs; AED’s) leidt behandeling, met soms wel tot vier 
verschillende AED’s, in slechts twee-derde (60-70%) van de patiënten 
tot complete aanvalsvrijheid, ook in kinderen [4,5]. Toch, bij 
patiënten die onvoldoende respons op het geneesmiddel behaalden, 
bleek in 10-20% van die gevallen nog verbetering van de behandeling 
door het optimaliseren van de dosering mogelijk [6]. In de gevallen 
waarbij aanvalsvrijheid wel bereikt wordt is het vaak onduidelijk hoe 
lang de behandeling met het geneesmiddel voortgezet moet worden 
omdat de aanvallen vaak terug komen bij het staken van 
behandeling. 

Epilepsie werd reeds in de oudheid beschreven en Hippocratische 
schrijvers probeerden destijds al mythe van rationele factoren te 
scheiden [7,8]. Ondanks voortschrijdend inzicht in de farmacologie 
van de afgelopen decennia blijft de behandeling van epilepsie 
gebaseerd op empirische methoden die ontstaan zijn uit een gebrek 
aan farmacologische kennis en simplificatie van het onderliggende 
probleem [9]. In essentie is de praktijk van farmacotherapie van 
epilepsie gebaseerd op het behandelen van de symptomen in plaats 
van het aanpakken van een onderliggende ziekte. Het bepalen van de 
optimale behandelingskeuze en doseringsregime is nog altijd een 
proces van trial-and-error waarin gestart wordt met een AED zonder 
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daarbij rekening te houden met het specifieke ziekteproces van de 
patiënt. Dit AED wordt vervolgens gegeven in lage dosering en deze 
wordt geleidelijk verhoogd totdat voldoende effect is verkregen of 
teveel bijwerkingen optreden. Daarbij wordt veelal geen gebruik 
gemaakt van plasmaconcentratie metingen; er wordt meestal geen 
initiële doelstelling gesteld in termen van blootstelling (bijvoorbeeld 
gemiddelde concentraties), ondanks dat dit door sommigen wel 
aangeraden wordt [10]. Alleen in geval van uitzondering, onder 
andere wanneer er wordt getwijfeld aan de therapietrouw, wordt de 
concentratie van het geneesmiddel in het bloed van de individuele 
patiënt bepaald om te controleren dat de blootstelling in die patiënt 
binnen een eerder bepaalde therapeutische gebied ligt [11,12]. Dat 
wil zeggen dat de concentratie hoger is dan de minimaal effectieve 
concentratie voor een gemiddelde patiënt, maar lager is dan de 
concentratie waarboven in het algemeen bijwerkingen optreden. 
Daarbij moet worden opgemerkt dat er voor de meeste AED’s weinig 
bekend is over de variatie in de correlatie tussen effectiviteit, 
bijwerkingen en concentratie [13]. Door dit empirische proces kan 
het lang duren voor het juiste AED en de juiste dosering gevonden 
wordt in de individuele patiënt. 

De behandeling van epilepsie in kinderen is des te meer gebaseerd 
op trial-and-error, doordat de meeste farmacologische kennis en 
ervaring opgedaan wordt in volwassenen en de benodigde kennis in 
kinderen veelal ontbreekt. Ondanks dat er beweerd wordt dat de 
effectiviteit van AED’s direct vertaalbaar is tussen volwassenen en 
kinderen [14], moet hierbij gewezen worden naar de vaak grote 
verschillen in farmacokinetiek [15], waardoor de juiste dosering nog 
altijd niet zeker is. Daarnaast is het absoluut nog niet bewezen dat bij 
een vergelijkbare effectiviteit op populatieniveau ook de 
farmacodynamiek direct vertaalbaar is tussen volwassenen en 
kinderen, vooral ook met betrekking tot kinderen in de jongere 
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leeftijdsgroepen waarbij zeer verschillende ziekteprocessen tot 
hetzelfde fenotype aanval kunnen leiden. 

In de afgelopen jaren is een groot aantal farmacokinetische en 
farmacodynamische modellen voor een verscheidenheid van AED’s 
beschreven in de literatuur. Daarbij is vastgesteld dat een groot 
aantal factoren zoals gewicht, leeftijd en type aanvallen bepalend kan 
zijn voor variatie in de blootstelling en effect. Als alternatief voor de 
empirische benadering wordt in dit proefschrift voorgesteld de 
behandeling met AED’s te optimaliseren op basis van 
farmacokinetische en farmacodynamische modellen in combinatie 
met data van de individuele patiënt. Daarbij wordt speciale aandacht 
besteed aan het optimaliseren van de dosering in kinderen. Het 
belang van een modelmatige aanpak bij de behandeling met AED’s 
werd vastgesteld in hoofdstuk 1. Het onderzoek in sectie 2 van dit 
proefschrift heeft betrekking op het integreren van kennis over de 
farmacokinetiek en farmacodynamiek van AED’s. Sectie 3 heeft 
vervolgens betrekking op de vraag hoe deze kennis kan worden 
benut bij het optimaliseren van de dosering. In sectie 4 wordt 
ingegaan op de vraag hoe het klinisch onderzoek naar variatie in de 
farmacokinetiek en farmacodynamiek van AED’s kan worden 
geoptimaliseerd. In sectie 5 worden tenslotte de belangrijkste 
conclusies geformuleerd en worden aanbevelingen gedaan voor 
toekomstig onderzoek. 

 

2. Resultaten 

Sectie 2 – Integratie van kennis 

Farmacologische modellen maken het mogelijk bestaande en nieuwe 
kennis te integreren. Daardoor is het mogelijk om nieuwe inzichten 
te verwerven en nieuwe data binnen de reeds bekende context te 
plaatsen middels een coherente methodologie. Het onderzoek dat is 
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beschreven in hoofdstuk 3 heeft betrekking op de beschikbaarheid 
van (populatie) farmacokinetische en farmacodynamische modellen 
die variatie in de concentraties en de effecten van AED’s beschrijven. 
Daartoe hebben we systematisch alle publicaties over 
farmacokinetische en farmacodynamische modellen voor 11 van de 
belangrijkste AED’s verzameld. Op basis van de gevonden artikelen 
hebben we per AED een paragraaf geschreven waarin de bekende 
factoren die leiden tot verschillen in farmacokinetiek en 
farmacodynamiek worden samengevat. Voor de meeste AED’s en 
patiëntengroepen (volwassenen, kinderen) waren er 
farmacokinetische modellen beschikbaar. Er bleek echter 
voornamelijk een groot tekort te zijn aan farmacokinetische 
modellen voor zeer jonge kinderen. Verder was er een algemeen 
gebrek aan farmacodynamische modellen. Deze lacunes zijn mede 
een gevolg van het feit dat studies naar AED’s vaak alleen in 
volwassenen uitgevoerd worden en dat, in de weinige studies in 
kinderen, de verzameling van data beperkt is. Verder is het gebrek 
aan farmacodynamische modellen voor AED’s ook een gevolg van de 
complexiteit van de meting van de werking van AED’s en de 
modellering van de effecten in de mens, gebaseerd op de analyse van 
aantallen aanvallen over tijd. 

 

Sectie 3 – Dosering op basis van modellen 

Zoals in hoofdstuk 3 van sectie 2 beschreven wordt zijn er vele 
populatie farmacokinetische modellen beschikbaar voor volwassenen 
en kinderen (ouder dan vier jaar). In theorie vormen deze modellen, 
in het bijzonder de informatie over de interindividuele variabiliteit, 
een basis voor het aanpassen van de dosering, Ondanks de 
beschikbaarheid worden deze modellen in de praktijk niet gebruikt 
voor het optimaliseren van de dosering van AED’s. 
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In hoofdstuk 4 gebruiken we een selectie van farmacokinetische 
modellen voor het optimaliseren van de dosering door het beloop 
van de concentraties van AED’s voor verscheidene scenario’s te 
simuleren. Gemiddelde concentraties werden daarbij vergeleken met 
de in de literatuur vastgestelde therapeutische concentratiegebieden 
[12]. De simulaties laten zien dat van de verscheidenheid van 
factoren, vooral geneesmiddel interacties, gewicht en leeftijd, 
bepalend zijn voor variatie in het beloop van de concentraties en 
derhalve voor het doseren van AED’s. Vele mensen met epilepsie 
gebruiken meer dan één AED [16]. Wanneer een extra AED 
toegevoegd wordt aan de behandeling blijkt dat de blootstelling aan 
het initiële middel in veel gevallen zeer sterk verandert. Vaak 
resulteert dat, als gevolg van enzym inductie, tot veel lagere 
concentraties waardoor het effect vermindert. Omgekeerd kan 
enzym inhibitie leiden tot zeer hoge concentraties met daaraan 
gekoppeld bijwerkingen. Door middel van doseringsalgoritmen op 
basis van populatie farmacokinetische modellen zou men hiermee 
rekening kunnen houden en dus stabielere blootstelling kunnen 
behouden [17]. 

In hoofdstuk 5 gebruiken we dezelfde selectie aan farmacokinetische 
modellen om op basis van covariaat modellen te bepalen in welke 
mate oorzaken van variabiliteit zoals gewicht en leeftijd van invloed 
zijn op de blootstelling. Ondanks het corrigeren voor deze factoren 
zal in de praktijk altijd nog een flink percentage aan variabiliteit 
overblijven. De mogelijkheid een nauwkeuriger schatting van de 
klaring van AED’s te bereiken op basis van gemeten AED 
concentraties in het bloed werd onderzocht aan de hand van 
gesimuleerde scenario’s. Hieruit bleek dat a-priori bepaalbare 
factoren slechts in beperkte mate ervoor kunnen zorgen dat een doel 
concentratie bereikt wordt. Zelfs bij gebruik van 1, 2 of zelfs 3 
concentratie bepalingen zal nog enige spreiding in de behaalde 
concentraties binnen de populatie blijven [18]. 
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Sectie 4 – Optimalisatie van synthese en analyse van 
wetenschappelijk onderzoek 

Farmacokinetische en farmacodynamische modellen stellen 
onderzoekers in staat tot analyse van complexe data, mede door 
integratie van eerdere bronnen van informatie. In sectie 4 gebruikten 
we data van klinische studies naar de farmacokinetiek en effectiviteit 
van het AED lamotrigine om het belang van een modelmatige analyse 
als essentieel paradigma binnen de pediatrische klinische 
farmacologie aan te tonen. In hoofdstuk 6 gebruikten we bestaande 
kennis ten aanzien van allometrie, de correlatie tussen gewicht en 
farmacokinetische parameters, om een farmacokinetisch model voor 
lamotrigine op te stellen. Lamotrigine concentraties bij patiënten in 
de leeftijd van 1 maand tot en met 91 jaar werden beschreven. 
Hierbij bleek dat de verandering in de klaring samenhangt met zowel 
de leeftijd als het lichaamsgewicht volgens niet-lineaire relaties. 
Daarnaast werden interacties met carbamazepine, fenytoïne en 
valproïnezuur gekwantificeerd. Het model vormt een basis voor 
personalisering van de dosis leidend tot een concentratie in een 
vooraf gedefinieerd concentratie gebied. Hiermee is dit het eerste 
model dat een rationele farmacokinetische benadering toelaat voor 
de dosering van jonge kinderen onder de 4 jaar. 

Onderzoek naar de effectiviteit van AED’s in kinderen is een complex 
multifactorieel probleem. Ten eerste is inclusie van voldoende 
patiënten in een studie beperkt door eisen aan studieopzet onder 
andere met betrekking tot tijdsduur en mate van blootstelling aan 
het te onderzoeken middel. Door deze beperkingen is effectiviteit 
vaak moeilijk aan te tonen door een gebrek aan data. Ten tweede 
wordt de mogelijkheid tot aantonen van een relatie tussen 
blootstelling en effectiviteit beperkt door de meest prevalente 
methodologie van analyse, waarbij data van aanvallen over tijd vaak 
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gereduceerd wordt tot een simpele binaire variabele, te weten wel of 
geen respons op het geneesmiddel. Vervolgens wordt de informatie 
in deze variabele verder gereduceerd door het gemiddelde binnen de 
studie-arm te nemen. Het gevolg van deze simplificaties is dat veel 
informatie in de data verloren gaat en dat de relatie tussen AED 
concentratie en effect vaak niet gekwantificeerd kan worden. In 
tegenstelling tot deze aanpak is het mogelijk de ruwe aanvalsdata 
direct te analyseren op basis van maximale 
waarschijnlijkheidsschatting (maximum likelihood estimation; MLE) 
en de Poisson distributie, daarbij maximaal gebruik makende van de 
beschikbare informatie in de data [19–21]. 

Klinische studie data was beschikbaar voor patiënten met 
epileptische aanvallen van het tonisch-clonische type (volwassenen) 
en patiënten met aanvallen van het focale type (volwassenen en 
kinderen met leeftijd 1-24 maanden). Het in hoofdstuk 6 beschreven 
farmacokinetische model werd gebruikt om voor de individuele 
patiënten in deze klinische studies dagelijkse piek-, gemiddelde en 
dal-concentraties te bepalen. In hoofdstuk 7 werd een 
farmacodynamisch model gebouwd gebaseerd op de Poisson 
statistische distributie. Dit model werd verder aangevuld met Markov 
eigenschappen (verschil in aanvalsfrequentie tussen opeenvolgende 
dagen) en een adaptatie voor overdispersie (verschil tussen 
gemiddelde en variantie van aanvalsfrequentie) van de Poisson 
distributie [19–21]. Door de data op deze manier te beschrijven werd 
het mogelijk om het aantal epileptische aanvallen over tijd te 
beschrijven en in zekere mate te voorspellen. Geneesmiddeleffect en 
dagelijkse concentratie van lamotrigine bleken aan elkaar 
gecorreleerd volgens de typische sigmoïde Emax formule [22]. 
Significante verschillen in de gevoeligheid van de patiënten werden 
gevonden tussen patiënten met primair focale aanvallen vergeleken 
met patiënten met primair gegeneraliseerde tonisch-clonische 
aanvallen. Het gebruik van stochastische differentiaal vergelijkingen 
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om veranderingen van aanvalsfrequentie over tijd in kaart te brengen 
liet zien dat in de tijdsspanne van circa twee jaar van de klinische 
trials geen sprake is van significante ziekteprogressie [23]. 

In hoofdstuk 8 werd hetzelfde model toegepast op data in kinderen 
variërend in leeftijd tussen 1-24 maanden oud met focale aanvallen. 
Patiënten in deze populatie bleken vooral een hogere basislijn 
aanvalsfrequentie te hebben, maar ook gevoeliger te zijn voor 
lamotrigine vergeleken met volwassenen met focale aanvallen. Op 
basis van dit model werden simulaties uitgevoerd ter evaluatie van 
de benodigde data om effectiviteit van lamotrigine binnen deze 
populatie aan te tonen, gebaseerd op de originele methodologie van 
analyse. Hieruit bleek dat de originele studie slechts een fractie van 
de patiënten bevatte welke nodig was om tot een positief resultaat 
te komen. De bevindingen uit deze analyse laten zien dat een 
modelmatige methodologie gevoeliger is voor het schatten van 
geneesmiddeleffect bij dit type data en dat een nieuwe evaluatie van 
de effectiviteit van lamotrigine in deze populatie op zijn plek is. 
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3. Conclusie 

In hoofdstuk 1 schreven we dat de huidige aanpak van anti-
epileptische farmacotherapie gebaseerd is op empirische methoden. 
In het onderzoek dat beschreven is in dit proefschrift hebben we 
verscheidene stappen ondernomen om een pad te banen richting 
meer rationele farmacotherapie van AED’s. We hebben een 
bibliotheek en overzicht gecreëerd van farmacokinetische en 
farmacodynamische modellen voor AED’s, wat snelle en effectieve 
integratie en synthese van kennis op basis van bestaande modellen 
mogelijk maakt. Gebruik makende van bestaande modellen lieten we 
zien dat personalisatie van dosering aan de hand van 
farmacokinetische modellen en plasma concentraties niet alleen 
mogelijk, maar ook nodig is om te corrigeren voor zowel 
voorspelbare evenals onvoorspelbare bronnen van variabiliteit. 
Verder hebben we farmacodynamische modellen opgesteld 
waarmee, in tegenstelling tot wat vaak beweerd wordt, het mogelijk 
is de relatie tussen concentratie en effectiviteit van AED’s te 
beschrijven. Met deze modellen wordt het mogelijk om individuele 
parameters zoals klaring en gevoeligheid voor de AED in de patiënt te 
bepalen en meer rationele keuzes te maken wat betreft het 
geneesmiddel en de dosering. Tevens is het mogelijk om nieuwe 
klinische studies te optimaliseren aan de hand van optimal design 
principes en klinische studie simulaties [24–28]. Onze bevindingen 
zullen verbeteringen kunnen geven zowel in het opzetten van nieuwe 
klinische studies als in de dagelijkse praktijk bij de behandeling van 
patiënten. 
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