
Improved hard real-time scheduling and transformations for embedded
Streaming Applications
Spasic, J.

Citation
Spasic, J. (2017, November 14). Improved hard real-time scheduling and transformations for
embedded Streaming Applications. Retrieved from https://hdl.handle.net/1887/59459

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/59459

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/59459

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/59459

Author: Spasic, J.
Title: Improved hard real-time scheduling and transformations for embedded Streaming
Applications
Issue Date: 2017-11-14

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/59459
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 6

An Accurate Energy Modeling
of Streaming Systems

Jelena Spasic and Todor Stefanov, “An Accurate Energy Model for Streaming
Applications Mapped on MPSoC Platforms”, In Proceedings of the IEEE International
Conference on Embedded Computer Systems: Architectures, MOdeling, and Simulation
(IC-SAMOS’13), pp. 205–212, Samos, Greece, July 15-18, 2013.

THE solution to the problem of accurate energy modeling of an application-
to-MPSoC mapping, that is, Problem 4 introduced in Section 1.3, is pre-

sented in this chapter.
The investigated research problem is further described in Section 6.1. It

is followed by a summary of our contributions in Section 6.2. The related
work is addressed in Section 6.3. The considered system model is described
in Section 6.4. The energy model formulation and the procedure to extract
the parameters of the energy model are given in Section 6.5. The model is
experimentally evaluated in Section 6.6. The concluding discussion is given in
Section 6.7.

6.1 Problem Statement

As discussed in Sections 1.2.2 and 1.3, finding an efficient application-to-
platform mapping is the key issue for optimizing the energy consumption
and performance of streaming MPSoC systems. Since there are many possi-
ble application-to-platform mapping combinations forming a design space,
this design space should be efficiently explored by using high-level system

112 Chapter 6. An Accurate Energy Modeling of Streaming Systems

performance/energy models. Early in the design process of a system with
certain performance/energy requirements, the design space is very large and
decisions taken at higher level of abstraction have greater impact on the final
design in terms of system performance and energy consumption. Therefore,
high-level performance/energy models of a system should be accurate enough
to steer the selection of optimal design points under given constraints in the
right direction. Model accuracy is usually traded-off for modeling and eval-
uation effort. Especially accuracy of energy models is very important as the
International Technology Roadmap for Semiconductors (ITRS) [Int11] reports
that the power/energy consumption is the dominating constraint in the new
generations of embedded systems.

In the embedded systems domain the research and results on performance
modeling are very mature, while the research on system-level power/energy
modeling and estimation has received attention only in recent years. So far,
research on power/energy modeling has been mainly done for a single system
component in isolation [QKUP00,LJSM04,SC01,VJD+07,BTM00,YVKI00,CAC,
PPKD10, BZZ04, KLPS09, BVC04]. Only in a few cases, the power/energy
consumption of the whole system has been modeled [LPB04, C+10, HLF+11,
RAN+11,SRH+11,PP12]. However, in most cases power/energy consumption
due to the contention on shared resources is not considered. Moreover, in
most cases, characterization and validation of the models have been done by
using lower-level simulators or data-sheet values [QKUP00, BTM00, YVKI00,
KLPS09, BVC04, LPB04, HLF+11, PP12], introducing additional inaccuracy in
the model. Therefore, in order to find accurately an energy optimal application-
to-platform mapping: 1) the energy model should describe the system as a
whole and take into account the parallel nature of MPSoCs and possible energy
consumption due to contention on shared resources; 2) the energy modeling
and estimation should be done with high level of accuracy and efficiency. For
the above mentioned reasons, we address the problem of accurate and efficient
energy modeling of an application-to-platform mapping when a streaming
application is modeled using the Polyhedral Process Network (PPN) [VNS07]
MoC and mapped onto a tile-based MPSoC platform with distributed memory.

6.2 Contributions

Our energy model describes the system as a whole as well as it considers
and models accurately the energy consumption due to data communication
among the processors in a platform and the contention on non-contention-free
communication infrastructures. The model is based on the well-defined prop-

6.3. Related Work 113

erties of the PPN application model and the values of important energy model
parameters are obtained by real measurements of energy consumption for the
accuracy reason. It models the total (static and dynamic) energy consump-
tion and is applicable to different types of processors. The energy model is
integrated in the existing Daedalus design flow [TNS+07], enabling a system
designer to explore a large design space starting from a high-level description
of the system behavior and having energy consumption as a primary design
constraint.

6.3 Related Work

Research on power/energy modeling has been mainly done for individual
system components in isolation – processors [QKUP00, LJSM04, SC01, VJD+07,
BTM00,YVKI00], memories [CAC], interconnections [PPKD10,BZZ04,KLPS09,
BVC04]. In contrast, our energy model models the system as a whole and
thus enables more accurate energy estimation and exploration of different
application-to-platform mappings.

Only a few works deal with power/energy modeling of the whole system.
[LPB04] analyzes power distribution among components in a homogeneous
shared bus based MPSoC platform. However, there is no accuracy information
for any model of a component in the system. In contrast, our energy model is
more general in the sense that it can model platforms with contention-free and
different configurations of non-contention-free communication infrastructures.
In addition, we provide accuracy information concerning the obtained energy
estimates.

[C+10] presents the performance and power modeling of multi-program-
med multi-core systems. In this work, it is assumed that there is no data
dependency between the processes running on a platform. The model is char-
acterized and validated by real measurements. However, real applications
usually consist of data dependent processes, and thus the energy consump-
tion due to communication between the processes should be considered. In
contrast to [C+10], our model considers the data dependency between the
processes, and hence the energy consumption due to interprocessor communi-
cation is modeled.

[HLF+11] presents a multi-core power modeling and estimation tool flow
which consists of two tools: PowerMixerIP, an IP power model builder, and
PowerDepot, a power estimation tool which generates and embeds power mon-
itors into a SystemC simulation environment. Power model characterization
and validation are done by using transistor-level and gate-level simulations.

114 Chapter 6. An Accurate Energy Modeling of Streaming Systems

The authors report an average power estimation error of 2% compared to
gate-level simulations which accuracy is not known. In addition, the con-
tention on shared resources is not discussed in [HLF+11]. In contrast, our
energy model considers the contention on different kinds of non-contention-
free communication structures with the energy estimates close to real energy
measurements.

The FLPA power estimation methodology for MPSoCs is presented in
[RAN+11]. The power consumption estimation consists of two parts: 1) power
model development – a system is divided into functional blocks, and the
power consumption is evaluated for selected activity parameters; 2) activity
estimation and power calculation – a transaction level SystemC simulator and
an Instruction Set Simulator (ISS) are used for detection of the activities. Mod-
els are characterized and validated by real measurements. Power modeling of
shared resources and the contention on shared resources are not discussed in
detail. In contrast, we give a general methodology for modeling the energy
consumption for both contention-free and non-contention-free communication
infrastructures. By considering the energy consumption due to the contention
on non-contention-free communication structures we achieve energy estimates
close to real energy measurements.

[SRH+11] proposes a top-down power and performance estimation method-
ology for MPSoCs. The system architecture is modeled by a set of resources –
processors, memories, interconnects, and dedicated hardware resources. Each
resource is characterized by power and performance attributes. Power costs
of the power attributes are extracted from measurements. There is no informa-
tion about the accuracy of the proposed model and modeling of contention
on non-contention-free communication infrastructures is not considered. In
contrast, our energy model is more detailed, and consequently highly accurate
with accuracy numbers obtained by comparison with real measurements. In
addition, our work considers various contention-free and non-contention-free
communication infrastructures in the energy modeling.

In terms of application and platform models, the closest work to ours
is [PP12]. An application is modeled as a Kahn Process Network (KPN) where
every process has read, execute and write events. The proposed power model-
ing technique estimates the power consumption of an application-to-FPGA
MPSoC mapping based on "event signatures". The "event signatures" for
execute, read and write events are used together with a micro-architecture de-
scription, lower-level simulators and some additional parameters obtained
from literature and through synthesis to calculate the power consumption of
an application-to-MPSoC mapping. The model is validated by comparison

6.4. System Model 115

READ(IP, in, size_d) {
1 rcnt = IP[1];
2 while(1) {
3 wcnt = IP[0];
4 if (wcnt != rcnt) {
5 for(i=0; i<size_d; i++)
6 in[i] = IP[rcnt+2+i];
7 rcnt += size_d;
8 IP[1] = rcnt;
9 break;
} }

READ(IP, in, size_d) {
1 for(i=0; i<size_d; i++)
2 readHW(in[i], IP);
}

(a) (b)

Figure 6.1: The read primitive implemented in software (a) and hardware (b).

to measurements. However, it is not clear how the "scaling factors" used for
pre-calibration of the power models for interconnections and memories are ob-
tained and what the relation is between these factors and application/MPSoC
properties. This fact does not give high credibility to the accuracy of the model.
Moreover, the authors assume that the data communication transactions per-
formed by the KPN application model are not interleaved at the architecture
level. In contrast, our energy model considers contention on shared resources
and its parameters are extracted from measurements, which make the model
very accurate. In addition, we do not use scaling factors and thus the accuracy
of our model is highly credible.

6.4 System Model

Since our energy model is based on the well-defined properties of the PPN
application model and the MPSoC platform model, in this section, we first
give more details on the PPN application model presented in Chapter 2, and
then describe the MPSoC platform model we consider in this chapter.

6.4.1 Application Model

An example of a PPN and the structure of its process P3 is given in Figure 2.2.
Each process has a set of channels it reads from, a set of channels it writes
to, and a function that represents a computation performed on input data
that generates output data. A read/write from/to a channel is realized by
blocking read/write primitives implemented in software (SW) or hardware

116 Chapter 6. An Accurate Energy Modeling of Streaming Systems

(HW). Figure 6.1 gives the structure of the read primitive implemented in
software and hardware. In case of the SW read primitive, blocking FIFO access
is implemented in software: check for data, see Figure 6.1(a) lines 1, 3 and 4, read
data, see Figure 6.1(a) lines 5 and 6, and release space, see Figure 6.1(a) lines 7 and
8. In case of the HW read primitive, blocking FIFO access is encapsulated in
the readHW function and realized in hardware, see Figure 6.1(b). As explained
in Chapter 2, the execution of a PPN process represents a process domain,
described by using the polytope model [Fea96b]. In addition, accessing input
and output ports of the PPN process is represented by the corresponding
input and output port domains which are subsets of the process domain. By
counting the integer points in the process domain polytope, we can determine
the number of iterations each process function is executed. Similarly, by
counting the integer points in the corresponding input/output port domain
we can determine the number of read/write accesses for each channel of a
process. Counting of the integer points in a polytope can be done automatically
by using the Barvinok library in the pn compiler [VNS07]. The counting
ability of the PPN model is used in Section 6.5.2 for the computation of the
so-called N energy model parameters Nrk , Nwk and NFk . In the example given
in Figure 2.2(b), by counting the integer points (i, j) in the process domain DP3
we can see that function F is executed 128 times and by counting the integer
points in the port domains DIP1 and DOP2 we obtain that channel CH3 is read
48 times and channel CH5 is written 48 times.

6.4.2 Platform Model

In this work, we consider tile-based MPSoC platforms with distributed mem-
ory. The generic architecture template of our platforms is shown in Figure 6.2.
A programmable processor with its local data and program memory, a timer,
and a bus bridge constitute a processing tile within the platform. Different
processing tiles can have different types of processors. The communication
infrastructure consists of a contention-free or non-contention-free communica-
tion component and distributed communication memories (every tile has its
own communication memory). A contention-free communication component
is a point-to-point (P2P) medium where every channel in the PPN application
model has its own communication link. Non-contention-free communication
components are mediums with shared communication links – a shared bus
(ShB) or a crossbar switch (CB). Communication memories are assumed to
be dual-port memories. This means that the communication memory can be
accessed by its own processing tile and a remote processing tile at the same
time. The processing tile produces data to its communication memory, lo-

6.4. System Model 117

Program

memory

Data

memory

Processor

Timer

Communication

memory 1

Bridge

TILE 1

C

o

m

m

u

n

i

c

a

t

i

o

n

c

o

m

p

o

n

e

n

t

Program

memory

Data

memory

Processor

Timer

Communication

memory m

Bridge

TILE m

COMMUNICATION

INFRASTRUCTURE

Figure 6.2: The architecture template of MPSoC platforms.

cally accessing it through the local data bus, and consumes data from its own
and/or other communication memories remotely through the communication
component. Within our platforms, HW read/write primitives are used for P2P
communication components, while SW read/write primitives can be used for
both P2P and shared (CB, ShB) communication components.

More formally, a platform can be represented as a directed graph Π =
(π, CL), where π = {π1, π2, ..., πm} is a set of m processing tiles (homogeneous
or heterogeneous) and CL ⊆ π × π is a set of physical communication links
between the tiles.

6.4.3 Application-to-Platform Mapping

The mapping of an application modeled as a PPN G = (𝒫 , 𝒞) onto a plat-
form Π = (π, CL) can be expressed as a tuple M = (𝒫m, 𝒞m), where 𝒫m =
{Pm

1 , Pm
2 , ..., Pm

m } is an m-partition of set 𝒫 of the processes, and 𝒞m = {CHm
1 ,

CHm
2 , ...,CHm

m} is a set of communication channels constructed from the set 𝒞
of all channels in a PPN. A subset Pm

i represents the set of processes mapped

118 Chapter 6. An Accurate Energy Modeling of Streaming Systems

onto tile πi. These processes produce data to the communication memory
that is assigned to tile πi. If the number of processes of a PPN is greater than
the number of processing tiles in a platform, then some of the tiles execute
more than one process. In this case, static schedule of processes is derived
for every tile. This is done automatically by using the pn compiler [VNS07].
Each channel CHm

l ∈ 𝒞m corresponds to one channel CHl = (Pi, Pj) ∈ 𝒞 and
is given by a tuple (proc(Pi), proc(Pj)), where proc(Pi) = πi represents the
processor πi on which process Pi is mapped.

Recall that in our platforms FIFO channels reside in the communication
memories and reading from channels is performed remotely through the
communication component, while writing to channels is done locally by a
processor through the local tile’s bus on which the processor is the only master,
see Section 6.4.2. This means that writing is always contention-free, while
reading is not because non-contention-free communication component may
be used in the platform. In case of non-contention-free communication com-
ponents, for each application-to-platform mapping, we define Read contention
matrix R ∈Nm×m as:

Rij =

{
1, ∃CHm

l = (πi, πj) ∈ 𝒞m

0, otherwise
(6.1)

The matrix is used in Section 6.5.2 to analyze the influence of contention on
the energy consumption of an application-to-platform mapping.

6.5 Energy Model

The proposed energy model is used to estimate the energy consumption
of a mapping of a streaming application modeled as a PPN described in
Sections 2.1.2 and 6.4.1 onto an MPSoC platform modeled as described in
Section 6.4.2. The energy model relies on the properties of the PPN application
model and the platform model. The following subsections describe our energy
model.

6.5.1 Model Formulation

Without loss of generality and for the sake of clarity, we assume in the follow-
ing that each process within an application is mapped to a different processing
tile in a platform, that is, the number of processes is equal to the number of pro-
cessing tiles. In general, the proposed model is applicable to any application-
to-platform mapping given that multiple processes of an application can be

6.5. Energy Model 119

grouped and represented as a single process by finding a sequential schedule
between the processes, as explained in Section 6.4.3.

Since the PPN representation of an application is a set of concurrent pro-
cesses, we can express the energy consumption of the application-to-platform
mapping Eapp→pla as the sum of energies consumed by processes EPk :

Eapp→pla =
n

∑
k=1

EPk . (6.2)

A PPN process reads input data from (a part of) input channels, performs
computation on input data and generates output data which is further written
to (a part of) output channels (see Figure 2.2(b)). Read and write accesses to
channels are blocked if the required data is not available or if there is no space
for new data. Having this in mind, we can express the energy consumed by a
process EPk as:

EPk = ERDk + EEXEk + EWRk + EBLKk + ECTRLk , (6.3)

where ERDk and EWRk are the energies consumed by reading from and writing
to channels without blocking, respectively; EEXEk is the energy consumed by
performing the computation in the process; EBLKk is the energy consumed
while the process is blocked on read and write, and ECTRLk is the energy
consumed by control structures in the process code. In the example given in
Figure 2.2(b), ECTRLk corresponds to the control structures in lines 1, 2, 4, 6, 9
and 11. Further, ERDk and EWRk can be expressed as:

ERDk = ∑
rk

Nrk(Erk
RDk

+ c · Erk
c) (6.4)

and
EWRk = ∑

wk

Nwk · Ewk
WRk

, (6.5)

where rk/wk is a communication channel process Pk reads from/writes to;
Nrk /Nwk is the number of times Pk accesses each read/write channel, and
Erk

RDk
/Ewk

WRk
is the energy profile of one read/write from/to a channel. Recall

that in our platforms writing to channels is local and reading from channels
is remote (Section 6.4.2). This means that reading from channels may go
through a non-contention-free communication component and hence, energy
consumed by reading from channels contains the contention dependent part
c · Erk

c . If the communication component is contention-free, c is 0, if it is non-
contention-free, c is 1, while Erk

c is the energy consumed while Pk is waiting for

120 Chapter 6. An Accurate Energy Modeling of Streaming Systems

data from channel rk when the communication component is non-contention-
free. Similarly to Erk

RDk
and Ewk

WRk
, EEXEk becomes:

EEXEk = NFk · EFk , (6.6)

where NFk is the number of times process Pk executes its computation function
Fk, and EFk is the energy profile of the function. The energy EBLKk consumed
while the process is blocked can be divided to energy ERD

BLKk
consumed while

the process is blocked on reading due to unavailable data and energy EWR
BLKk

consumed while the process is blocked on writing due to unavailable space.
EBLKk can be expressed as:

EBLKk = ERD
BLKk

+ EWR
BLKk

. (6.7)

The energies ERD
BLKk

and EWR
BLKk

can be further expressed as:

ERD
BLKk

=
Ttotal

BLKRDk

(T1
BLKRDk

+ c · T1k
c)
· (Erd

BLKk
+ c · E1k

c) (6.8)

and

EWR
BLKk

=
Ttotal

BLKWRk

T1
BLKWRk

· Ewr
BLKk

, (6.9)

where Ttotal
BLKRDk

/Ttotal
BLKWRk

is the time spent in blocking on read/write by all the
channels during the whole execution of the process Pk, T1

BLKRDk
/T1

BLKWRk
is

the time spent in one blocking on read/write by a channel, and Erd
BLKk

/Ewr
BLKk

is the energy profile of one blocking on read/write by a channel. During
blocking on read, the process checks the write counter of the corresponding
FIFO channel by reading its value through the communication component –
see Figure 6.1(a) line 3. If contention may occur (c is 1), checking the write
counter on average will last longer with additional time T1k

c , and the energy
consumed by the checking will increase on average with E1k

c .
The above mentioned energy profiles Erk

RDk
, Ewk

WRk
, EFk , Erd

BLKk
, Ewr

BLKk
and

ECTRLk associated with an application process are obtained by first converting
the corresponding part of the process code to its assembly equivalent, then
counting the number of times Ninst each assembly instruction inst is executed
in the corresponding assembly equivalent, and finally assigning the energy
cost Einst to each instruction in the processor ISA. Therefore, each energy
profile is the sum of the number of times Ninst each instruction inst is executed
in the corresponding assembly equivalent multiplied by the energy cost Einst

6.5. Energy Model 121

of the given instruction inst on a selected platform type. Hence, each of the
above mentioned energy profiles can be represented with:

(Erk
RDk

, Ewk
WRk

, EFk , Erd
BLKk

, Ewr
BLKk

, ECTRLk) = ∑
inst

NinstEinst. (6.10)

The contention dependent energy Erk
c consumed by one read from a chan-

nel through a non-contention-free communication component can be ex-
pressed as:

Erk
c =

Trk
stall

T1stall
· Estall , (6.11)

where Trk
stall is the total estimated stall time during one read access on channel rk

through non-contention-free communication component, T1stall is the latency
of one stall, the ratio Trk

stall/T1stall is the estimated number of stalls on the
communication component for one read access on channel rk, and Estall is the
energy cost of one stall.

The contention dependent energy E1k
c consumed by one checking of the

write FIFO counter through a non-contention-free communication component
can be expressed as:

E1k
c =

T1k
c

T1stall
· Estall =

T1k
stall

T1stall
· Estall , (6.12)

where T1k
stall is the total estimated stall time through non-contention-free com-

munication component for one check for data availability and the ratio T1k
stall/

T1stall is the estimated number of stalls for one check for data availability.

6.5.2 Derivation of Model Parameters

From the energy model formulation in Section 6.5.1 we can see that the en-
ergy model has three types of parameters – N parameters such as Nrk , Nwk ,
NFk , Ninst; T parameters such as Ttotal

BLKRDk
, Ttotal

BLKWRk
, T1

BLKRDk
, T1

BLKWRk
, Trk

stall ,
T1k

stall(T
1k
c), T1stall ; and E parameters such as Einst, Estall . This section explains

how the value of each of the parameters is obtained. Parameters Nrk , Nwk

and NFk are obtained by counting integer points in input, output and process
domain polytopes of Pk, see Section 6.4.1, which can be done automatically by
using the Barvinok library in the pn compiler [VNS07]. It is done only once per
application and the obtained parameters can be used for any mapping of that
application to any MPSoC platform. Parameter Ninst is obtained by counting
how many times an instruction from the processor ISA is executed in the cor-
responding assembly equivalent of the process code. This is obtained by using

122 Chapter 6. An Accurate Energy Modeling of Streaming Systems

Instruction Set Simulators (ISS) or some hardware tracing circuits and our
profiler tool. It is done only once per application for a selected processor type.
Parameters Ttotal

BLKRDk
and Ttotal

BLKWRk
are obtained from a cycle-accurate SystemC

timing simulation of PPNs [vHHK10]. This SystemC simulation should be
performed for each application-to-platform mapping, because the blocking
time, that is, waiting for data/space, depends on the specific mapping of the
processes of an application to the platform. Parameters T1

BLKRDk
and T1

BLKWRk
are obtained by using ISS or some hardware tracing circuits. It is done only
once for a selected processor type and for a selected implementation of the
read/write primitives. Parameters Trk

stall and T1k
stall are obtained for each map-

ping, by performing the analysis explained later in Section 6.5.2. Parameter
T1stall is obtained from data-sheets or from measurements. The energy cost
Einst for each instruction inst and the energy cost Estall for a stall are obtained
from measurements, and this is done only once per platform type (processor
type, communication infrastructure type, selected technology).

Extraction of the Energy Costs

In this subsection we will describe how the energy costs Einst for each instruc-
tion inst and the energy cost Estall for a stall are derived.

Since our platforms consist of processing tiles and communication infras-
tructure, the energy costs Einst and Estall can be expressed as:

Einst = Einsttile + Ecomm = (pinsttile +
pcomm

m
)linst (6.13)

and
Estall = Estalltile + Ecomm = (pstalltile +

pcomm

m
)lstall , (6.14)

where Einsttile and Estalltile are tile-dependent energy costs and Ecomm is a commu-
nication infrastructure-dependent energy cost. The energy costs are obtained
by multiplying the corresponding power costs pinsttile , pstalltile , pcomm with the
instruction latency linst, and the stall latency lstall . The power consumption
pinsttile is the power consumed by an instruction inst during its execution on
a processing tile. The power cost pstalltile is the power consumption of a tile
when a stall occurs. pcomm is the power consumed by the communication in-
frastructure when there is no communication over the infrastructure, while m
is the maximum number of tiles that the interconnect allows. The power con-
sumption of communication is captured within the pinsttile power cost for load
and store instructions. These power costs are extracted from measurements.

There may be instructions with different latencies depending on cases they
are used. An example is a conditional branch instruction which can be taken

6.5. Energy Model 123

or not taken with different latencies for both cases. In this case, we consider
an instruction as a set of instructions with finite number of elements equal to
the number of possible cases. We consider every instruction from that set as
an individual instruction and assign a power cost to each of them.

For each instruction inst we determine its power cost pinsttile by measuring
the power consumption with minimum activity and maximum activity of the
instruction. The final power cost is an average of the measured maximum
and minimum power consumption. In order to measure the maximum and
minimum power consumption, we create simple test codes with the instruction
under test in a loop and run them on the tile. In the "minimum activity" case
an instruction performs its action each time on the same operands, so there
is no switching activity on processor core buses. In the "maximum activity"
case an instruction performs its action each time on different operands such
that switching activity on the buses is maximized. The power cost of a stall
pstalltile is obtained by measuring the power consumption of a system when
stall occurs. The power cost pcomm is measured on a platform with maximum
number of tiles m, which the corresponding interconnect allows, while there
is no communication between the tiles. These estimations of energy costs are
performed only once for the selected processor type and only once for the
selected communication infrastructure.

Extraction of the Energy Profiles

In order to create the energy profiles Erk
RDk

, Ewk
WRk

, EFk , Erd
BLKk

, Ewr
BLKk

and ECTRLk

associated with an application process Pk, we should first obtain the assembly
instruction profiles of the corresponding parts of the process code. The instruc-
tion profile of a code consists of instruction counters which show how many
times each instruction from a processor ISA is executed in the corresponding
code. In case of branch instructions we also need the number of taken and
the number of not-taken branches for each branch instruction. We need the
execution trace of an application in order to obtain the needed instruction
profiles. Since the PPN application consists of processes repeated a number
of times, we do not need the instruction trace of the whole execution of an
application and we only need the traces of each process, the read and write
primitives for each channel and the control structures. Each process of an
application is executed as many times as many different execution traces can
occur for that process. The execution traces can be obtained by ISS or by
some hardware tracing circuits. The execution traces usually contain program
counter values, instructions and can also contain some additional information
(such as branch is taken or not, and others). By analyzing program counter

124 Chapter 6. An Accurate Energy Modeling of Streaming Systems

values we can determine if a branch is taken or not. Our profiler tool reads
the execution traces of an application and creates the instruction profiles of
the application. The final instruction profile of the process with many possible
execution traces is the average profile, where counters of each instructions
are averaged. Profiling of an application is done only once for the selected
processor type and selected implementation of read/write primitives (HW or
SW).

Analysis of Communication Contention

The derivation of the energy model parameters Trk
stall and T1k

stall related to
non-contention-free communication components is explained in this sub-
section. Since our procedure analyzes the contention on a remote tile-to-
communication memory link, that is, πj ← πi link, we will use in the follow-
ing the notation rij for a read channel of a process mapped onto tile πj that
reads from communication memory of a tile πi. Thus, Trk

stall and T1k
stall become

T
rij
stall and T1j

stall from a tile point of view.
The communication contention may occur if the communication compo-

nent within the MPSoC platform is an arbitrated structure. In this work, we
consider two types of non-contention-free communication components – a
crossbar switch (CB) and a shared bus (ShB), where the CB and ShB intercon-
nections have a round-robin arbitration policy.

The procedure to derive T
rij
stall and T1j

stall for each read channel ri j in G
for CB communication component is given in Algorithm 10. Inputs of the
algorithm are the contention matrix R defined in Section 6.4.3, the number
m of processing tiles in the platform, the size srij of a data token transmitted
through a channel rij and latencies of the interconnect read and write arbiters
aR, hR, raR, aW , hW , raW . During one read and write access through the CB
before the transferring of data the corresponding arbiters first arbitrate the
requests for access, with associated arbitration latency aR and aW , and then
ensure the communication link, with associated handshaking latency hR and
hW . Additional latency raR and raW may occur on a master-slave link if there is
a re-arbitration, which happens when the requested slave unit is different from
the last granted slave unit. The parameter srij is obtained from the PPN model
of an application, while arbiters’ latencies aR, hR, raR, aW , hR, raW are obtained
from measurements or data-sheets. The contention on a CB component may
occur when at least two processes from at least two different tiles perform
read operation to the same communication memory at the same time.

Algorithm 10 gives the procedure to derive T
rij
stall and T1j

stall for the CB and

6.5. Energy Model 125

Algorithm 10: Procedure to derive T
rij
stall and T1j

stall for CB.
Input: Contention matrix R, number of tiles m, read channels rij of processes in G, size

of data tokens srij for each read channel rij, latencies of the communication
infrastructure aR, hR, raR, aW , hR, raW .

Output: Arrays 𝒯stall and 𝒯 1
stall of time parameters T

rij

stall and T1j
stall .

1 for 1 ≤ i ≤ m do
2 cj = 0;
3 for 1 ≤ j ≤ m do
4 cj = cj + Rij;

5 if cj > 1 then
6 cj = 1;

7 else
8 cj = 1;

9 for 1 ≤ j ≤ m do
10 qj = 0;
11 for 1 ≤ i ≤ m do
12 qj = qj + Rij;

13 if qj > 1 then
14 qj = 1;

15 else
16 qj = 0;

17 for 1 ≤ j ≤ m do
18 l = 0;

19 T1j
stall = 0;

20 for 1 ≤ i ≤ m do
21 if Rij = 1 then
22 L1bc

rij
= hR;

23 for rij such that πi → πj do
24 Lbc

rij
= (2 + srij) · hR + qj · 0.5 · raR + hW + qj · 0.5 · rW ;

25 Lwc
rij

= Lbc
rij
+ ci

n

∑
o=1,o ̸=j

Rio((2 + srij)(hR + aR) + qo · 0.5 · raR + hW +

aW + qo · 0.5 · rW);
26 T

rij

stall = (Lbc
rij
+ Lwc

rij
)/2;

27 L1wc
rij

= L1bc
rij

+ ci ·
n

∑
k=1,k ̸=j

Rik(hR + aR);

28 T1j
stall = T1j

stall + (L1bc
rij

+ L1wc
rij

)/2;
29 l = l + 1;

30 T1j
stall = T1j

stall/l;

31 return 𝒯stall , 𝒯 1
stall ;

126 Chapter 6. An Accurate Energy Modeling of Streaming Systems

it consists of three parts: 1) for each communication memory it is determined
whether contention may occur – lines 1 to 8; 2) for each processing tile it is
determined whether re-arbitration may occur – lines 9 to 16 in the algorithm;
and 3) the estimation of T

rij
stall and T1j

stall is performed at lines 17 to 31. Since the
circular round-robin arbitration pointer is statistically located in the middle of
the search space, we estimate T

rij
stall at line 26 in Algorithm 10 as the average

value of the best case stall time Lbc
rij

, line 24, and the worst case stall time Lwc
rij

,
line 25. The best case stall time is when only one tile wants to read from a
communication memory (so there is no arbitration latency aR, aW). The worst
case stall times are calculated by analyzing if contention may happen, and
if it may happen, then latencies hR, hW , aR, aW , raR, raW for all the tiles that
compete for the same communication memory are summed up and added to
the best case stall time. Recall that our platforms with shared communication
infrastructures use SW read/write primitives – see Section 6.4.2. During one
read SW primitive on a channel rij, srij + 2 reads and one write are performed
– see lines 1, 3, 6 and 8 in Figure 6.1(a), where srij corresponds to size_d in
Figure 6.1(a). Here, re-arbitration may happen only on the first read (out of
srij + 2 reads) and on a write. The frequency of the re-arbitration depends
on both the application structure and mapping. Here, if the re-arbitration
may happen we assume that the re-arbitration on a read access to the channel
happens every second time on the first read and every second time on a write,
that is, we multiply rR and rW by 0.5 in lines 24 and 25 in Algorithm 10. In the
case of data checking, there is no possibility for re-arbitration because waiting
for data represents the reading of the write counter (second read within the
SW read primitive). Since from the SystemC timing simulation we obtain
information about the blocking time on a tile basis, for estimation of T1j

stall , at
line 30, we sum up the average values L1

rij
of each channel that a tile accesses

for reading and divide the result by the number of the accessed channels for
reading by that tile.

Let us now analyze the ShB case. The contention may happen when at
least two processes from at least two different tiles perform read operation at
the same time to any of the communication memories in the platform. The
procedure to derive T

rij
stall and T1j

stall for ShB is given in Algorithm 11. The input
parameters are similar to the CB case with the difference that here we have
only one arbiter. First, we determine the number of tiles n_r that do not read
from any communication memory, lines 1 to 7 in Algorithm 11. Then in the
following lines, we estimate T

rij
stall and T1j

stall , line 14, 17, as the average of the
best case stall time Lbc

rij
, L1bc, line 12, 15, and the worst case stall time Lwc

rij
, L1wc,

6.6. Evaluation of the Energy Model 127

Algorithm 11: Procedure to derive T
rij
stall and T1j

stall for ShB.
Input: Contention matrix R, number of tiles m, read channels rij of processes in G, size

of data tokens srij for each read channel rij, latencies of the communication
infrastructure a, h.

Output: Arrays 𝒯stall and 𝒯 1
stall of time parameters T

rij

stall and T1j
stall .

1 n_r = 0;
2 for 1 ≤ j ≤ m do
3 y_rj = 0;
4 for 1 ≤ i ≤ m do
5 y_rj = y_rj + Rij;

6 if y_rj = 0 then
7 n_r = n_r + 1;

8 for 1 ≤ j ≤ m do
9 for 1 ≤ i ≤ m do

10 if Rij = 1 then
11 for rij such that πi → πj do
12 Lbc

rij
= (3 + srij)h;

13 Lwc
rij

= Lbc
rij
+ (n− n_r− 1)(3 + srij)(h + a);

14 T
rij

stall = (Lbc
rij
+ Lwc

rij
)/2;

15 L1bc = h;
16 L1wc = L1bc + (n− n_r− 1)(h + a);

17 T1j
stall = (L1bc + L1wc)/2;

18 return 𝒯stall , 𝒯 1
stall ;

line 13, 16. In the best case, only one tile wants to read from a communication
memory. By computing how many tiles (n− n_r − 1) read from any of the
communication memories, we determine how long the tile may wait in the
worst case.

6.6 Evaluation of the Energy Model

We evaluate our energy model, proposed in Section 6.5, by showing its ac-
curacy considering various application-to-platform mappings. The obtained
energy estimates by using our energy model are compared to real energy
measurements obtained from real implementations of the considered systems,
that is, applications, platforms and mappings. These real measurements are
100% accurate, thereby can be used as credible reference points. We show
that the proposed energy model is highly accurate for contention-free and

128 Chapter 6. An Accurate Energy Modeling of Streaming Systems

different kinds of non-contention-free communication components, differ-
ent applications and mappings, and different number of processing tiles in a
platform.

The proposed energy model is evaluated on MPSoC systems prototyped
on the Virtex-6 FPGA board ML605. Since the MicroBlaze [Mic] processor
is the only available processor type on Virtex-6, we use MPSoC platforms
with different number of MicroBlaze based tiles and with the AXI-4 [AXI]
interconnect as a non-contention-free communication component, and a P2P
interconnect as a contention-free communication component. We use the AXI
interconnect configured in CB and ShB modes with a round-robin arbitration
policy. The energy model is evaluated for two applications with SW read/write
primitives. The first application is a Sobel edge-detection filter and the second
application is a MJPEG video encoder. The PPN model for the Sobel consists
of 5 lightweight processes in terms of computation and 15 channels, thus
the Sobel application is data communication-dominant which introduces a
lot of contention on the CB and ShB. The MJPEG PPN model consists of 6
processes and 5 channels with much higher computation/communication
ratio, and hence the MJPEG is a computation-dominant application. Since
the maximum number of processes among these two applications is 6, we
performed energy estimates for platforms with 2 to 6 processing tiles in a
platform. The corresponding power consumptions of application-to-platform
mappings are measured by using the ML605 on-board power monitoring
device and an additional MicroBlaze processor which reads the corresponding
power measurements from the monitoring device. Instruction traces for the
applications are obtained by monitoring the Trace interface of a MicroBlaze
processor. All the platforms run at a frequency of 100 MHz.

Applying our model, described in Section 6.5, we estimate the energy
consumption for each application-to-platform mapping, specified in the first
column of Table 6.1, for three types of communication infrastructures – the CB,
ShB and P2P. In the first column, each mapping is denoted as app_ntiles_mmap,
where app is the application, ntiles is the number of tiles in the platform, and
mmap is the index of a mapping (as an application can be mapped onto a
platform in many possible ways). The Em columns contain the reference
values of energy consumption of application-to-platform mappings, obtained
by real measurements. The Ee columns contain the energy estimates of the
same application-to-platform mappings obtained by using our energy model.
The err column for each type of interconnect gives the energy estimation error
calculated as err = (Ee − Em)/Em · 100%. It can be seen from Table 6.1 that our
energy model is highly accurate for all three types of interconnects, with an

6.6. Evaluation of the Energy Model 129

Table 6.1: Accuracy of the energy model for CB, ShB and P2P MPSoC platforms

app→ pla CB ShB P2P
Em Ee err Em Ee err Em Ee err

[mWs] [mWs] [%] [mWs] [mWs] [%] [mWs] [mWs] [%]
Sobel_2_m1 59.9 61.66 +2.94 54.71 58.18 +6.34 53.95 52.34 -2.98
MJPEG_2_m1 48.82 51.96 +6.43 49.56 51.99 +4.9 58.82 56.98 -3.13
Sobel_3_m1 82.12 73.32 -10.72 68.75 73.67 +7.16 74.43 73.51 -1.24
Sobel_3_m2 69.74 66.63 -4.46 60.98 62.13 +1.89 49.62 50.42 +1.61
MJPEG_3_m1 44.1 42.73 -3.1 40.5 42.19 +4.17 43.64 44.39 +1.72
MJPEG_3_m2 76.74 69.95 -8.85 68.84 67.58 -1.83 86.56 79.67 -7.96
Sobel_4_m1 58.32 58.7 +0.66 52.18 56.86 +8.97 68.07 68.06 -0.01
MJPEG_4_m1 96.72 95.05 -1.73 93.8 93.69 -0.12 107.97 103.68 -3.97
Sobel_5_m1 71.5 71.03 -0.65 68.78 77.46 +12.62 79.52 85.87 +7.99
MJPEG_5_m1 125.63 121.65 -3.17 127.75 119.31 -6.61 137.94 126.84 -8.05
MJPEG_6_m1 77.4 77.15 -0.32 74.7 75.27 +0.76 84.42 79.32 -6.04

average energy estimation error of 4.34% and a standard deviation of 3.35%
among all the interconnection types.

In order to analyze the influence of the communication contention on the
energy consumption of an application-to-platform mapping, we perform the
energy estimation for each application-to-platform mapping with CB and ShB
interconnects without considering the contention in the energy model. The
results are given in Table 6.2. By comparing Table 6.1 and Table 6.2, we can
see, first, that if the contention is not considered, the energy of a mapping is
always underestimated, and second that the energy estimates are less accurate
than the estimates when considering the contention in the energy model.
Therefore, in our proposed energy model special attention is paid to modeling
the contention on communication infrastructures.

From the results shown in Table 6.1 it is clear that our energy model is very
accurate. Now, we would like to discuss the efficiency of our model in terms of
the time required to estimate the energy consumption of a single application-
to-platform mapping. For every mapping, listed in the first column of Table 6.1,
we measured the time needed for the energy estimation. The average model
evaluation time for a mapping is 2.5 minutes, where a few milliseconds are
needed for evaluation of the formulas in Section 6.5.1 and derivation of T

rij
stall

and T1j
stall parameters, and the rest of the time is spent on getting the Ttotal

BLKRDj

and Ttotal
BLKWRj

parameters. The derivation of the other model parameters is not
considered in this model evaluation time because they are derived only once
at the beginning when the model is calibrated and they are independent of the
mapping. The time efficiency of the proposed energy model is very good given
its high accuracy. Note that the majority of the evaluation time (99%) is spent

130 Chapter 6. An Accurate Energy Modeling of Streaming Systems

Table 6.2: Accuracy of the energy estimation when contention is not considered in the model

app→ pla CB ShB
Em Ee err Em Ee err

[mWs] [mWs] [%] [mWs] [mWs] [%]
Sobel_2_m1 59.9 47.2 -21.2 54.71 46.76 -14.53
MJPEG_2_m1 48.82 44.54 -8.77 49.56 45.5 -8.19
Sobel_3_m1 82.12 53.64 -34.68 68.75 55.05 -19.93
Sobel_3_m2 69.74 54.78 -21.45 60.98 53.04 -13.02
MJPEG_3_m1 44.1 38.65 -12.36 40.5 38.23 -5.6
MJPEG_3_m2 76.74 57.92 -24.53 68.84 54.82 -20.37
Sobel_4_m1 58.32 46.89 -19.6 52.18 45.56 -12.69
MJPEG_4_m1 96.72 82.27 -14.94 93.8 81.17 -13.46
Sobel_5_m1 71.5 54.86 -23.27 68.78 58.15 -15.46
MJPEG_5_m1 125.63 109.39 -12.93 127.75 106.79 -16.41
MJPEG_6_m1 77.4 71.51 -7.62 74.7 68.24 -8.65

in the SystemC cycle accurate simulation. We run cycle accurate SystemC
simulation for each mapping in order to obtain very accurate Ttotal

BLKRDj
and

Ttotal
BLKWRj

. We need as accurate estimation of these blocking times as possible
in order to have accurate energy estimates because these blocking times are
significant part of the total execution time of an application, and hence the
energy consumed in blocking could be also significant part of the total energy
consumed by a mapping.

6.7 Discussion

We have proposed, in this chapter, an accurate energy model for streaming ap-
plications modeled using the PPN model and mapped onto MPSoC platforms.
Special attention in our model is paid to the contention on non-contention-free
communication infrastructures which is important to estimate accurately the
energy consumption of a mapping. Experimental results on two applications
with very different computation and communication characteristics mapped
onto MPSoC platforms with different communication infrastructures show
that the proposed modeling and estimation methodology is highly accurate for
different kinds of applications, different kinds of communication infrastruc-
tures within MPSoC platforms, and various application-to-platform mappings.
On average, the energy estimation error is 4.34% with a standard deviation of
3.35% in comparison to real energy measurements for all considered commu-
nication infrastructures. The average model evaluation time of 2.5 minutes

6.7. Discussion 131

per single design point is very good given the high accuracy of the proposed
energy model.

132 Chapter 6. An Accurate Energy Modeling of Streaming Systems

