
Improved hard real-time scheduling and transformations for embedded
Streaming Applications
Spasic, J.

Citation
Spasic, J. (2017, November 14). Improved hard real-time scheduling and transformations for
embedded Streaming Applications. Retrieved from https://hdl.handle.net/1887/59459

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/59459

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/59459

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/59459

Author: Spasic, J.
Title: Improved hard real-time scheduling and transformations for embedded Streaming
Applications
Issue Date: 2017-11-14

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/59459
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 5

Exploiting Parallelism in Hard
Real-Time Systems to
Minimize Energy

Jelena Spasic, Di Liu, Todor Stefanov, “Energy-Efficient Mapping of Real-Time
Applications on Heterogeneous MPSoCs using Task Replication”, In Proceedings of the
IEEE/ACM/IFIP International Conference on HW/SW Codesign and System Synthesis
(CODES+ISSS’16), pp. 28:1–28:10, Pittsburgh, Pennsylvania, USA, October 2-7, 2016.

IN this chapter, we devise an approach to exploit the right amount of par-
allelism in streaming applications in order to minimize the energy con-

sumption of streaming applications with throughput constraints when they
are mapped on cluster heterogeneous MPSoCs. That is, this chapter describes
our solution to Problem 3 given in Section 1.3.

The problem of energy minimization by exploiting parallelism in stream-
ing applications is further described in Section 5.1. Then, our contributions
are summarized in Section 5.2. The related work is addressed in Section 5.3.
Section 5.4 gives a motivational example to demonstrate the need for a new en-
ergy minimization approach. The considered system model and energy model
are described in Sections 5.5 and 5.6. Then, the new energy minimization
approach, that is, our proposed solution approach, is given in Section 5.7. Our
proposed approach is experimentally evaluated in Section 5.8. The concluding
discussion is given in Section 5.9.

86 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

5.1 Problem Statement

As introduced in Sections 1.2.2 and 1.3, cluster heterogeneous MPSoCs with
per-cluster VFS capability are recognized as energy-efficient platforms for
embedded systems. In order to efficiently utilize these cluster heterogeneous
platforms to achieve all the desired requirements, the underlying hardware
platform and the running streaming application have to be closely related.
This requires the embedded designer to expose the right amount of paral-
lelism available in the application and to decide how to allocate and schedule
the tasks of the application on the available processing elements such that
the platform is utilized efficiently and the timing and energy consumption
constraints are met. As explained in Chapter 4 already, the given initial par-
allel application specification is often constructed without fully considering
the computational capacity and power consumption profile of an MPSoC
platform. This may lead to an application specification which consists of
highly imbalanced tasks in terms of the task workload, that is, task utilization.
This may further lead to unnecessary increase in the energy consumption of
such a system because when several tasks are mapped onto the same cluster
in cluster heterogeneous MPSoCs, the one with the heaviest utilization will
determine the required voltage and frequency of the whole cluster and will
significantly increase the energy consumption of the other tasks mapped on
the same cluster. As shown in Chapter 4, by applying task replication to
application tasks with heavy utilization, their utilization can be decreased
while still providing the same application performance. Thus, to better utilize
the underlying MPSoC platform while minimizing the energy consumption,
the initial specification of an application, that is, the initial task graph, should
be transformed to an alternative one that exposes more parallelism while pre-
serving the same application behavior and timing performance. However, as
mentioned in Chapter 4, having more tasks’ replicas than necessary introduces
more overheads in code and data memory, scheduling and inter-tasks commu-
nication, which in turn will result in higher energy consumption. Therefore, in
this chapter, we investigate how to exploit the right amount of parallelism,
that is, find the proper values of replication (unfolding) factors, depending
on the underlying MPSoC platform, to achieve the required performance
and timing guarantees while minimizing the energy consumption.

5.2. Contributions 87

5.2 Contributions

As a solution to the research problem described in Section 5.1, we propose
a novel algorithm to efficiently map real-time streaming applications onto
cluster heterogeneous MPSoCs, which are subject to throughput constraints,
such that the energy consumption of the cluster heterogeneous MPSoC is
reduced by using task replication and per-cluster VFS. The specific novel
contributions of this chapter are the following:
∙ We propose a novel polynomial-time algorithm, called Data Parallel

Energy Minimization (DPEM), to map and schedule hard real-time
streaming applications modeled as acyclic SDF graphs onto a cluster
heterogeneous MPSoC such that the energy consumption is minimized
while the throughput constraints are guaranteed. By using the hard real-
time scheduling framework for CSDF graphs, presented in Chapter 3,
we propose within our DPEM algorithm an efficient way to determine a
suitable processor type for each task in an (C)SDF graph such that the
energy consumption is minimized and the throughput constraint is met.
Then, by using the unfolding graph transformation in Chapter 4, we
propose a method in DPEM to determine a replication factor for each
task in an SDF graph such that the distribution of the workload on the
same type of processors is balanced, which enables processors to run at
a lower frequency, hence reducing the energy consumption.

∙ We show, on a set of real-life streaming applications, that our proposed
energy minimization approach outperforms related approaches in terms
of energy consumption while meeting the same throughput constraints.

5.3 Related Work

Energy-efficient mapping and scheduling of streaming applications repre-
sented as dataflow graphs which guarantees certain throughput has been ex-
tensively studied. The related works can be divided into several categories de-
pending on the MPSoC platform they consider: homogeneous [SDK13, DSB+13,
ZSJ08, LW13, NMM+11, BL13, HNP+15], or heterogeneous [HMGM13, SJE11].
Depending on the VFS technique they apply to minimize the energy con-
sumption, the related works can be divided into those considering per-core
VFS [SDK13,DSB+13,ZSJ08,LW13,NMM+11,HMGM13,BL13], those consider-
ing global VFS [HMGM13,HNP+15] and the works which do not consider VFS
but they utilize platform heterogeneity to achieve energy-efficiency [SJE11].
The approaches in [HMGM13,LW13,NMM+11, SJE11,HNP+15] convert an

88 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

initial SDF graph into equivalent Homogeneous SDF (HSDF) graph to exploit
the parallelism of an application and achieve energy-efficiency. However, the
HSDF graph obtained from the initial SDF graph may grow in size exponen-
tially, making the analysis performed on the HSDF graph time-consuming.
Instead, the approaches in [SDK13, ZSJ08, DSB+13, BL13] perform energy min-
imization directly on an SDF graph. Works [SDK13] and [ZSJ08] perform
design space exploration at design time to find the energy-efficient map-
ping solution of an SDF scheduled in self-timed manner on a homogeneous
MPSoC platform with per-core VFS capability such that certain throughput
is guaranteed. In addition, the approach in [SDK13] has a run-time phase
where slack created at run time is exploited to further minimize the energy
consumption. In [DSB+13] the authors propose a heuristic to find per-core
voltage-frequency points for a given task mapping and the execution order
such that the throughput constraint is met. The authors in [BL13] propose a
technique to transform an SDF graph at run time into its equivalent SDF graph
to adapt to environmental and demand changes. One possible scenario where
the SDF graph should be transformed to adapt to the new circumstances is
when some processors become available on a homogeneous platform with
per-core VFS capability. In that case the tasks in the SDF graph are replicated
such that all processors are occupied, which enables processors to run at a
lower frequency hence consuming less energy. However, the authors in [BL13]
focus more on the transformation itself and not on the energy minimization.
In contrast to all related works, discussed above, our approach: 1) considers
heterogeneous MPSoC platforms with per-cluster VFS capability, which is a
good trade-off in terms of energy-efficiency and the implementation cost; 2)
utilizes an unfolding graph transformation to balance the workload put on
the MPSoC and to reduce energy consumption by finding how many times
each task in a graph should be replicated; 3) uses preemptive hard real-time
scheduling to schedule the tasks which gives more opportunities to meet the
lowest frequency for schedulability supported by the platform.

Energy-efficient mapping and scheduling of periodic hard real-time tasks
has been widely researched in the past. [BMAB16] gives a comprehensive
review of works dealing with energy-aware scheduling for real-time systems.
As stated in [BMAB16], most of the existing work considers homogeneous
MPSoCs and in recent years people started considering heterogeneous plat-
forms and platforms with voltage/frequency levels shared among multiple
processors as energy-efficient design solutions. Regarding the considered het-
erogeneous MPSoC platforms, the closest to our work are the works in [CKR14]
and [LSCS15]. The approach in [CKR14] proposes and evaluates several parti-

5.3. Related Work 89

tioned Earliest Deadline First (EDF) scheduling strategies for real-time tasks
mapped on cluster heterogeneous platforms in terms of energy-efficiency.
However, because of the bin-packing issue in partitioned scheduling, the ap-
proach in [CKR14] may not fully utilize the energy-efficient cores in a cluster
heterogeneous MPSoC, hence the energy minimization is limited. In contrast,
by replicating the tasks with heavy utilization, we can reduce their utilization
and hence fully utilize the energy-efficient cores. The approach in [LSCS15]
considers cluster scheduling for cluster heterogeneous MPSoCs where tasks
are allowed to migrate at run-time among processors within the same cluster
in order to achieve better resource utilization. However, cluster scheduling
suffers from high scheduling overhead caused by task migration and increased
context switching. Moreover, the frequency of some clusters in [LSCS15] is
still determined by the tasks with the heaviest utilization. In contrast, in our
approach, we use partitioned scheduling which has low scheduling overhead
and we avoid the capacity loss and we lower the operating frequency by
replicating the tasks with heavy utilizations.

The works in [XKD12], [WYK+10] and [Lee09] consider parallel execution
of task replicas to achieve energy efficiency, as we do. The authors in [XKD12]
consider frame-based tasks with an implicit deadline and a homogeneous
platform with per-core VFS capability where the frequency of a core may be
changed for each task. In contrast, in our work, we consider more general pe-
riodic task model and more realistic heterogeneous platform with per-cluster
VFS capability, hence our approach is more applicable in practice than the
approach in [XKD12]. The approach in [WYK+10] exploits the data paral-
lelism in an application by replicating the tasks of the application over all
processors available in an MPSoC. This means that, in distributed memory
architectures, the code of the whole application has to be replicated on all the
processors in an MPSoC. By contrast, in our approach, only certain tasks of
the application have to be replicated, which reduces significantly the mem-
ory overhead of our approach compared to the one in [WYK+10]. Moreover,
the work in [WYK+10] assumes homogeneous systems with per-core VFS
and continuous frequencies, while we consider heterogeneous systems with
per-cluster VFS capability, which is more practical in modern embedded sys-
tems. The approach presented in [Lee09] replicates computation-intensive
tasks which yields to a more balanced load on processors, and in turn allows
the system to run at a lower frequency. In addition, the authors in [Lee09]
consider systems with discrete set of operating frequencies and homogeneous
platforms with per-core VFS capability. As discussed earlier, per-core VFS is
not practical in modern many-core systems. Hence, our work considers het-

90 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

erogeneous platforms with per-cluster VFS capability. The approach in [Lee09]
is devised and, hence efficient only for platforms with performance-efficient
processors. This means that the approach in [Lee09] would never replicate
the tasks which are going to be mapped on energy-efficient processors. In
addition, if the total number of tasks with heavy utilization is equal to the
number of processors in a platform, tasks will not be replicated in [Lee09].
In contrast, our approach will replicate the tasks mapped on energy-efficient
processors and it will replicate the tasks even if the number of heavy tasks is
equal to the number of processors if this leads to more energy-efficient design.

5.4 Motivational Example

In the first part of this section, we motivate the need for using the unfolding
graph transformation, presented in Chapter 4, to achieve energy-efficient
MPSoC design under a throughput constraint. We first show the drawback
of the energy minimization approaches for heterogeneous MPSoCs and hard
real-time scheduling, that is, the approaches in [CKR14] and [LSCS15]. We
analyze three different designs obtained by mapping the SDF graph G in
Figure 5.1 to a heterogeneous platform consisting of one performance efficient
(PE) cluster with 2 PE processors and one energy-efficient (EE) cluster with
2 EE processors, namely, the platform given in column 1, row 2 in Table 5.1,
under a throughput constraint of 1 output token per 100 µs. An example of PE
and EE clusters and processors is given in Figure 1.1, where a cluster of ’big’
cores corresponds to a PE cluster, and a cluster of ’LITTLE’ corresponds to an
EE cluster.

The first design out of the three analyzed is obtained by using the best
mapping approach evaluated in [CKR14] and we refer to that approach as
CKR. The CKR approach allocates actors v2 and v3 to PE processors in one-
to-one manner, and it allocates actors v1 and v4 to one EE processor, while
the other EE processor is switched-off. Once the actors are allocated, the
minimum frequency which ensures the schedulability of the actors mapped
to a processor in a cluster is selected from a discrete set of frequencies per
cluster. The energy consumption of such design is given in Table 5.1, column 2,
row 2. After applying the approach in [LSCS15], we obtain the second design
where actors v2 and v3 are allocated to the PE cluster, while actors v1 and v4
are allocated to the EE cluster. The corresponding energy consumption after
applying the approach in [LSCS15], denoted by FDM, is given in Table 5.1,
column 3, row 2. If we apply our approach presented in Section 5.7 which
uses the unfolding transformation in Chapter 4 on graph G in Figure 5.1,

5.4. Motivational Example 91

5
υ1

100 66
υ3υ21

e1
1 2

e2
2

5
υ41

e3
1

Figure 5.1: An SDF graph G.

υ1

υ3,0

υ4

υ3,1

υ2,0

υ2,1

Figure 5.2: A CSDF graph G′ obtained by unfolding SDF graph G in Figure 5.1 with
~f = [1, 2, 2, 1].

Table 5.1: Different MPSoC designs for G in Figure 5.1.

MPSoC CKR [µJ] FDM [µJ] SDK [µJ] our [µJ] WYL [µJ]
(2PE)(2EE) 343.55 343.55 346.30 97.76 343.55

(PE)(PE)(PE)(PE) 357.94 392.18 389.09 192.80 240.32

under the same throughput constraint as in the CKR and FDM approaches,
we can lower the utilization of the actors with high utilization, v2 and v3, and
achieve better load balancing on the processors of the same type and hence,
the frequency of the power-hungry processors can be lowered further than
in [CKR14], [LSCS15]. For example, by unfolding actors v2 and v3 twice, as
given in Figure 5.2, our approach in Section 5.7 allocates v2,0 and v3,0 one-
to-one to PE processors, and it allocates v2,1 to an EE processor and v3,1, v1
and v4 to another EE processor. The energy consumption value for this third
design is given in Table 5.1, column 5, row 2. We can see that our approach
reduces the energy consumption by 71% when compared to the CKR and
FDM approaches.

Now, we would like to analyze an approach which was devised for ho-
mogeneous platforms with per-core VFS capability, that is, the approach
in [SDK13], denoted by SDK in Table 5.1. To this end, we compare the energy
consumption of two designs in which the SDF graph G in Figure 5.1 is mapped
to a homogeneous MPSoC consisting of four PE clusters with 1 processor per
cluster, under a throughput constraint of 1 output token per 100 µs. The SDK
approach will allocate actors to processors in one-to-one manner, while our

92 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

approach, proposed in Section 5.7, will replicate actors v2 and v3 twice, as
shown in Figure 5.2, to lower their utilization. We can see from columns 4 and
5, row 3 in Table 5.1 that our approach reduces the energy consumption by
50% when compared to the SDK approach. The main reason is that we are
using the unfolding graph transformation to reduce the influence of heavy
actors and hence minimize the energy of an MPSoC. Another reason is that
the SDK approach uses self-timed scheduling which is non-preemptive, hence,
less flexible for scheduling and that the SDK only minimizes dynamic energy
consumption. The energy consumption values of the approaches CKR, FDM
and SDK in Table 5.1 which were not discussed above are given only for com-
pleteness. However, we can see that these values are always higher than the
corresponding energy consumption of our approach in Section 5.7. Thus, our
approach outperforms these related approaches.

Above, we motivated the need to use the unfolding transformation, pre-
sented in Chapter 4, within our new approach described in Section 5.7 to
achieve energy-efficiency for MPSoCs under a throughput constraint. Now,
we would like to motivate the need for our whole approach, presented in Sec-
tion 5.7, which efficiently finds task replication factors and task mappings to
achieve further reductions in the energy consumption. Although the approach
in [Lee09] exploits the energy-saving capability of data-parallel execution for
a homogeneous MPSoC with per-core VFS capability, that approach is not
efficient in terms of energy reduction, especially in the case of platforms with
EE processors. Below we show its inefficiency for the homogeneous platform
in column 1, row 3, and for the heterogeneous MPSoC platform in column
1, row 2, in Table 5.1. The approach in [Lee09], called the WYL approach,
considers platforms which power consumption curve is increasing “fast” with
the increase of processor utilization. Such power consumption curve corre-
sponds to PE processors. Let us consider the mapping of the SDF graph in
Figure 5.1 on the homogeneous platform under a throughput constraint of
1 output token per 100 µs. The WYL approach will classify actors v2 and v3
as “heavy” tasks, that is, tasks eligible for replication. However, because the
platform contains only 4 processors, the WYL will decide that the number of
processors is not sufficient to replicate both actors and it will only replicate
actor v2 twice. In contrast, our algorithm will replicate both actors v2 and v3
twice, which will lead to an energy reduction of 20%, see Table 5.1, row 3,
columns 5 and 6.

Let us now analyze the designs obtained by applying the WYL and our
new approach for mapping graph G in Figure 5.1 on the heterogeneous plat-
form in column 1, row 2, in Table 5.1. Given that the power consumption curve

5.5. System Model 93

of EE processors is a “slowly” increasing curve with the increase of processor
utilization, the WYL approach will never replicate actors assigned to EE pro-
cessors. In contrast, our approach presented in Section 5.7 will replicate actors
assigned to EE processors as well if their replication leads to more energy-
efficient MPSoC. We can see in row 2, columns 5 and 6, in Table 5.1, that our
approach leads to a design with 71% reduction in energy consumption when
compared to the WYL approach, for the heterogeneous MPSoC with one PE
and one EE cluster each containing 2 processors. This happens because after
the classifications of actors into PE and EE in order to satisfy the throughput
constraint of 1 output token per 100 µs, EE actors will not be considered for
replication in the WYL approach, while PE actors will be considered yet never
replicated because of the algorithm in [Lee09] which does not replicate the
actors once the number of “heavy” actors is equal to the number of (PE) cores,
which happens for this platform.

From the above examples, we can see the necessity and usefulness of our
approach, presented in Section 5.7, which uses the graph unfolding transfor-
mation, given in Chapter 4, to obtain energy-efficient cluster heterogeneous
MPSoC designs.

5.5 System Model

In this section, we describe the system model we use in this chapter. We
consider a cluster heterogeneous MPSoC containing two types of clusters –
performance-efficient (PE) clusters and energy-efficient (EE) clusters. Each
cluster has a number of identical PE processors, denoted as NPE

p , or a number
of EE processors, denoted as NEE

p . Thus, in total, a cluster heterogeneous
MPSoC contains NPE

c × NPE
p PE processors and NEE

c × NEE
p EE processors,

where NPE
c and NEE

c represent the total number of PE clusters and the total
number of EE clusters, respectively. All processors on the same cluster operate
at the same voltage and frequency level. The voltage and frequency level of a
cluster can be changed to control the power consumption. A cluster can be
switched-off, thereby consuming no power.

Since the actors of a (C)SDF graph G modeling an application may run
on two different types of processors (PE and EE), the worst-case execution
time value Ci(ϕ) for each phase ϕ of an actor vi has two values – CPE

i (ϕ) and
CEE

i (ϕ). The total utilizations of the actors/tasks assigned to PE cluster j and

94 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

EE cluster k can be calculated by:

uPE
j = ∑

vi∈𝒱PE
j

∑
ϕ=φi
ϕ=1 CPE

i (ϕ)

Ti
, uEE

k = ∑
vi∈𝒱EE

k

∑
ϕ=φi
ϕ=1 CEE

i (ϕ)

Ti
, (5.1)

where 𝒱PE
j and 𝒱EE

k represent sets of CSDF actors/tasks assigned to PE cluster
j and EE cluster k, respectively.

5.6 Energy Model

This section defines the energy model used in this chapter. Given that all
processors in the same cluster operate at the same voltage and frequency level,
we can reduce the energy consumption of a cluster heterogeneous MPSoC
by using per-cluster VFS and by switching-off some clusters. The authors in
[LSCS15] give a power model for cluster heterogeneous MPSoC systems with
discrete voltage and frequency levels based on real measurements performed
on the ODROID XU-3 [ODR] board containing an MPSoC with two clusters
– one quad core Cortex A15 big (PE) cluster and one quad core Cortex A7
LITTLE (EE) cluster. The power model of a cluster is given by:

P(f) = α f b + βNp,ac + Ps(f), (5.2)

where the first term is the dynamic power consumption, β is the static power
consumption of one processor and Np,ac is the number of active processors on
the cluster, Ps(f) is the “uncore” power consumption and f is the frequency
level. The “uncore” power consumption is the power consumption from
some components not pertaining to a processor, such as a shared cache, an
integrated memory controller, and others. Parameters α, b and β, and Ps(f)
depend on the platform and cluster type, and they are determined in [LSCS15].

We calculate the total energy consumption for an application graph G
mapped onto a cluster heterogeneous MPSoC over one hyperperiod TG by:

E = EPE + EEE. (5.3)

EPE in Equation (5.3) contains the total energy consumption of PE clusters
and is given by:

EPE = TG

(NPE
ac

∑
j=1

(
uPE

j αPE(f j)
bPE

+ βPENPE
p,acj

+ PPE
s (f j)

))
, (5.4)

5.7. The Proposed Energy Minimization Approach 95

where NPE
ac is the number of active PE clusters, NPE

p,acj
is the number of active

processors on PE cluster j, uPE
j is the total utilization for tasks successfully

scheduled by a partitioned scheduling algorithm on the corresponding PE
cluster j, f j is the operating frequency for the corresponding PE cluster j,
and αPE, bPE and βPE are the power parameters for PE clusters taken from
[LSCS15].

The total energy consumption of EE clusters, EEE in Equation (5.3), is given
by:

EEE = TG

(NEE
ac

∑
k=1

(
uEE

k αEE(fk)
bEE

+ βEENEE
p,ack

+ PEE
s (fk)

))
, (5.5)

where NEE
ac is the number of active PE clusters, NEE

p,ack
is the number of active

processors on EE cluster k, uEE
k is the total utilization for tasks successfully

scheduled by a partitioned scheduling algorithm on EE cluster k, fk is the
operating frequency for the corresponding EE cluster k, and αEE, bEE and βEE

are the power parameters for EE clusters taken from [LSCS15].

5.7 The Proposed Energy Minimization Approach

In this section, we present our novel energy minimization approach called
Data-Parallel Energy Minimization (DPEM) which energy-efficiently exploits a
given cluster heterogeneous MPSoC platform when mapping a hard real-time
streaming application under a throughput constraint. The logic behind our
energy minimization approach is the following: our approach replicates the
tasks with heavy utilization to reduce their utilization and lower the operating
frequency, thereby reducing the energy consumption; it tries to map as many
tasks as possible to EE processors such that the energy consumption is further
reduced, while the throughput constraint is met. The DPEM approach is
given in Algorithm 6 and explained in Section 5.7.1 while its constituents are
desribed in Section 5.7.2 and Section 5.7.3.

5.7.1 The Data-Parallel Energy Minimization Algorithm

In this section, we present our integral algorithm for Data-Parallel Energy
Minimization (DPEM). The inputs to DPEM are an SDF graph G, a cluster
heterogeneous MPSoC, and a throughput constraint ℛout. The outputs are
a vector of unfolding factors ~fbest according to which each actor in the initial
SDF graph should be replicated, the task mapping to processors in the clusters
𝒞best, a vector of operating frequencies for clusters ~Fbest and the minimum

96 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

energy consumption of the system Ebest. The DPEM algorithm is shown in
Algorithm 6. Line 1 in Algorithm 6 initializes each unfolding factor of an actor
in graph G to 1. In Lines 2 and 3, the initial graph G is converted to periodic
tasks by the ISPS approach in Chapter 3, where periods for each actor in G
are set, by using scaling factor s in Line 3, to be as large as possible while
meeting the throughput constraintℛout. The corresponding hyperperiod TG
of graph G is calculated as well in Line 3. Line 4 finds the bottleneck actor in G.
The bottleneck actor is the actor with the heaviest workload among the actor
workloads for PE type of processors during one hyperperiod. If multiple actors
have the same maximum workload, then the one with the smallest code size
is selected to be the bottleneck. Note that stateful actors and input and output
actors are not unfolded. In Line 5, Algorithm 7, explained in Section 5.7.2, is
applied to classify actors into two groups – EE and PE. Here, by splitting actors
into two groups, the required throughput of G under ISPS is guaranteed. Line
6 uses Algorithm 8, described in Section 5.7.3, to energy-efficiently map graph
G on the input MPSoC platform. It may happen that the input platform is
not big enough to map the input application, that is, graph G. In that case
Algorithm 8 will return an empty mapping, 𝒞best = ∅. If this happens, the
algorithm terminates and signals failure in Line 8. Otherwise, after obtaining
the initial energy-efficient solution in Line 6, we further search to reduce the
energy consumption by exploiting task replication via the unfolding, Lines 9
to 20.

Line 9 checks if the upper bound on the unfolding factor for the bottleneck
actor has been reached and if the bottleneck actor is one of the actors which
cannot be unfolded (input, output actors and stateful actors). If one of these
happens, Algorithm 6 terminates and returns in Line 21 the most energy-
efficient solution found so far. Otherwise, the initial SDF graph is transformed
into an equivalent CSDF graph by replicating, in Line 10, the bottleneck
actor previously found in Line 4. The graph transformation is performed in
Line 11 by using the unfolding transformation method given by Algorithm 3,
described in Chapter 4. Given that the transformed graph contains more actors
than the original one, the WCETs of the actors have to be recomputed because
the worst-case communication time may change. This is done in Line 12. Once
the WCETs in the CSDF graph are recalculated, actors in the CSDF graph are
transformed into periodic tasks by using the ISPS approach in Chapter 3. The
unfolding graph transformation is usually used to increase the throughput of
a graph by exposing more parallelism through task replication. However, here
we want just to meet the same throughput constraintℛout as the initial graph,
and use the unfolding transformation to change the utilization of the periodic

5.7. The Proposed Energy Minimization Approach 97

Algorithm 6: Data-Parallel Energy Minimization (DPEM).
Input: An SDF graph G = (𝒱 , ℰ), a cluster heterogeneous MPSoC and a throughput

constraintℛout.
Output: Vector of unfolding factors ~fbest, task mapping to processors in the clusters

𝒞best, vector of operating frequencies for clusters ~Fbest and the minimum energy
consumption Ebest.

1 ~f = [1, 1, · · · , 1];
2 Calculate WCETs for each actor vi in G by using Equation (3.2);
3 Calculate period Ti for PE type of processors for each actor vi in G by using

Equation (4.3) and s =
⌊

φout ·rout
ℛout·lcm(~r)

⌋
; Tbest = TG = rout · Tout;

4 Find the bottleneck actor vb,k in G;
5 𝒱EE, 𝒱PE ← Classify actors in G by Algorithm 7(G, φout

Tout
);

6 Find 𝒞best, ~Fbest, Ebest by Algorithm 8(𝒱EE, 𝒱PE);
7 if 𝒞best = ∅ then
8 return Unschedulable;

9 while fb < (NEE
c × NEE

p + NPE
c × NPE

p) ∧ vb,k not stateful/in/out do
10 fb = fb + 1;
11 Get G′ by unfolding G using the method in Chapter 4 (Algorithm 3);
12 Calculate WCETs for each actor v′i in G′ by using Equation (3.2);

13 Calculate period T′i for each actor v′i by using Equation (4.3) and s =
⌊

φ′out ·r′out
ℛout·lcm(~r′)

⌋
;

TG′ = r′out · T′out;
14 Find the bottleneck actor vb,k in G′;

15 𝒱 ′EE, 𝒱 ′PE ← Classify actors in G′ by Algorithm 7(G′, φ′out
T′out

);

16 Find 𝒞best,u, ~Fbest,u, Ebest,u by Algorithm 8(𝒱 ′EE, 𝒱 ′PE);
17 if 𝒞best,u = ∅ then
18 go to 9;

19 if lcm(TG′ ,Tbest)
TG′

· Ebest,u <
lcm(TG′ ,Tbest)

Tbest
· Ebest then

20 Ebest = Ebest,u, Tbest = TG′ , ~Fbest = ~Fbest,u, 𝒞best = 𝒞best,u, ~fbest = ~f ;

21 return ~fbest, 𝒞best, ~Fbest, Ebest;

tasks. To meet throughput constraintℛout and keep the throughput as close as
possible to the initial throughput in Line 3, we scale the periods of the periodic
tasks obtained after the conversion by scaling factor s, which is given in Line
13. Then, we find in Line 14 the bottleneck actor in the equivalent CSDF graph
G′, which is replicated in the next pass of the algorithm. The actors in G′ are
classified into PE and EE actors and the minimum energy of mapping the tasks
corresponding to actors in G′ onto the MPSoC is calculated in Lines 15 and 16.
If there is no feasible mapping we continue with the task replication, Lines 17

98 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

and 18. On the other hand, if we could map G′ on the MPSoC, the obtained
energy is compared against the best, that is, the minimum, energy obtained
so far over the same time interval in Line 19. If we detect that the energy
consumption of the current solution is smaller than the energy consumption
of the best solution found so far, the current solution becomes the best one
in Line 20. Line 9 checks whether the termination criteria for Algorithm 6 is
met. If it is not, the algorithm will repeat Lines 10 to 20. Otherwise, the best
solution is returned in Line 21.

Finally, we can analyze the time complexity of our DPEM algorithm in
the worst case. The complexity of Algorithm 6 is determined by the while
loop in Lines 9 to 20. In the worst case, the while loop will be executed
until all the actors in the initial graph are replicated in the equivalent graph
maximum number of times, which is equal to the number of processors N in
the platform. So, the while loop will be executed |𝒱|N times in the worst case.
The complexity of the graph unfolding algorithm in Chapter 4, Algorithm 3,
which is called in Line 11, is O(|ℰ |N2φ), where φ is the maximum number
of execution phases per actor in the equivalent CSDF graph obtained after
unfolding, φ = maxvi∈𝒱 ′{φi}. The complexity of the other parts of the while
loop is determined by Algorithm 8, see Section 5.7.3. Thus, the worst-case
complexity of Algorithm 6 is O(N|𝒱| · (N2φ|ℰ |+ (N|𝒱|)2 log(N|𝒱|))), which
is polynomial.

5.7.2 Task Classification for Energy Minimization

In Algorithm 6, we used Algorithm 7 in Lines 5 and 15 to classify tasks of
a graph into two groups, depending on the processor type they should be
executed. Selecting the processor type to execute a task in an application
is very important because different type of processors in a heterogeneous
MPSoC have significantly different power and timing profiles. Algorithm 7
gives our task classification method. It takes a CSDF graph G and a throughput
requirement φout

Tout
as inputs and it produces PE and EE subsets of tasks in G.

First, we sort the tasks in order of increasing workload assuming all of
them are assigned to EE processors – see Line 1 in Algorithm 7. Then, with the
sorted tasks, we use the hyperperiod rout · Tout as the classification threshold
such that throughput requirement φout

Tout
is met and the energy consumption is

minimized, and deploy a binary search algorithm in Line 2 to find the pivotal
point by which we can split the sorted tasks into two sets, one for the EE type
of processor and another for the PE type of processor. The goal is to put as
many tasks as possible to EE processors to reduce the energy consumption
while satisfying the throughput requirement. All the tasks, which do not

5.7. The Proposed Energy Minimization Approach 99

Algorithm 7: Procedure to classify tasks according to processor type.

Input: A CSDF graph G = (𝒱 , ℰ) and a throughput constraint φout
Tout

.
Output: Subsets 𝒱PE and 𝒱EE ⊂ 𝒱 .

1 V ← Sort actors vi in 𝒱 in increasing order of WEE
i ;

2 b← Binary search to find the position in 𝒱 with the biggest index where actor vi can
meet WEE

i ≤ routTout;
3 𝒱EE ← 𝒱 [0 : b];
4 𝒱PE ← 𝒱 −𝒱EE;
5 return 𝒱EE, 𝒱PE;

violate the throughput constraint, that is, the hyperperiod rout · Tout, when
assigned to EE processors are classified as EE tasks, Line 3, and all the rest as
PE tasks, Line 4. In this way we guarantee that the throughput requirement
will be met while minimizing the energy consumption.

Since the sorting algorithm in Line 1 has the worst-case complexity of
O(|𝒱| log |𝒱|) and the worst-case complexity of the binary search in Line 2 is
O(log |𝒱|), the worst-case complexity of Algorithm 7 is O(|𝒱| log |𝒱|).

5.7.3 Task Mapping for Energy Minimization

In Algorithm 6, once the actors in a graph are classified by Algorithm 7 in Lines
5 and 15 into two sets of EE and PE actors, each set is mapped by Algorithm 8
in Lines 6 and 16 onto the corresponding type of clusters, EE and PE clusters,
such that the energy consumption of the whole cluster heterogeneous MPSoC
is minimized. Our algorithm of energy-efficient tasks mapping is given in
Algorithm 8.

Algorithm 8 takes sets 𝒱EE and 𝒱PE of actors and a cluster heterogeneous
MPSoC, and it returns the task mapping on processors in the clusters 𝒞, a
vector of operating frequencies for clusters ~F and the minimum energy con-
sumption E. The authors in [AY03] showed that the most balanced workload
distribution leads to the least energy consumption, and that the the most bal-
anced distribution is obtained when the Worst-Fit Decreasing (WFD) heuris-
tic [CGJ96] is used to allocate tasks to processors. Thus, in this work, we use
the WFD heuristic for task allocation. First, Algorithm 8 checks in Lines 1
to 4 whether the input MPSoC has enough resource to map (allocate) and
schedule the tasks by using the WFD allocation heuristic [CGJ96], applied
among the processors of the same type, and a given per-processor schedu-
lability test [LL73] when processors are running at the maximum available
frequency for each processor type. If there is no enough EE type of processors,

100 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

Algorithm 8: Procedure to find the minimum energy when the given
tasks are mapped onto a cluster heterogeneous MPSoC.

Input: Sets of actors 𝒱EE and 𝒱PE and a cluster heterogeneous MPSoC.
Output: Task mapping to processor in the clusters 𝒞, vector of operating frequencies for

clusters ~F and the minimum energy consumption E.
1 if 𝒱EE cannot be scheduled on NEE

c × NEE
p processors by WFD algorithm and max frequency

f EE
max then

2 Move some actors vi ∈ 𝒱EE to PE set 𝒱PE in order of non-increasing ui such that
𝒱EE is schedulable on NEE

c × NEE
p processors;

3 if 𝒱PE cannot be scheduled on NPE
c × NPE

p processors by WFD algorithm and max frequency
f PE
max then

4 return 𝒞 ← ∅, ~F ← ∅, E = ∞;

5 if |𝒱EE| = 0 then
6 𝒞EE ← ∅, ~FEE ← ∅, EEE = 0;

7 else

8 nEE
lb =

⌈
⌈uEE⌉
NEE

p

⌉
, nEE

ub = min{
⌈
|𝒱EE |
NEE

p

⌉
, NEE

c };

9 Find 𝒞EE, ~FEE, EEE by Algorithm 9(nEE
lb , nEE

ub ,𝒱EE, Equation (5.5));

10 if |𝒱PE| = 0 then
11 𝒞PE ← ∅, ~FPE ← ∅, EPE = 0;

12 else

13 nPE
lb =

⌈
⌈uPE⌉
NPE

p

⌉
, nPE

ub = min{
⌈
|𝒱PE |
NPE

p

⌉
, NPE

c };

14 Find 𝒞PE, ~FPE, EPE by Algorithm 9(nPE
lb , nPE

ub ,𝒱PE, Equation (5.4));

15 𝒞 = {𝒞EE, 𝒞PE}, ~F = {~FEE,~FPE}, E = EEE + EPE;
16 return 𝒞, ~F, E;

we select some actors from set 𝒱EE and assign them to set 𝒱PE. The actors are
selected in order of decreasing utilization and the selection is terminated as
soon as the tasks corresponding to actors in set 𝒱EE are schedulable on the EE
processors. However, if there is no enough PE type of processors, that means
the application is not schedulable on the input MPSoC. The algorithm termi-
nates and signals the failure by returning an empty set for tasks-to-processors
mapping 𝒞 in Line 4. Line 5 checks if there are tasks that should be mapped
on processors in EE clusters. If no task should be mapped to EE clusters, then
EE clusters will not be used within the input MPSoC, hence they will not
contribute to the total energy consumption, Line 6. Otherwise, the bounds
on the number of active EE clusters are calculated in Line 8 and the energy
consumption of mapping task set 𝒱EE to EE clusters is calculated in Line 9.

5.7. The Proposed Energy Minimization Approach 101

The lower bound nEE
lb corresponds to the minimum possible number of active

clusters to schedule the tasks because it is determined according to the ceiling
of the utilization uEE of EE tasks. The upper bound nEE

ub is selected to be the
minimum value among the case when tasks are mapped onto processors in
one-to-one manner, and the case when all clusters available on the platform
are active. We find the minimum energy for mapping the tasks on EE clusters
by using Algorithm 9 (described later) in Line 9. Similarly, Line 10 checks
whether there are tasks that should be mapped onto processors in PE clus-
ters. If there are such tasks, lower and upper bounds of active PE clusters are
calculated in Line 13 and the minimum energy for mapping the tasks on PE
clusters by using Algorithm 9 is obtained in Line 14. Finally, the EE solution
and the PE solution mappings are grouped together in Line 15 and the integral
solution mapping of the given tasks onto the given MPSoC which results in
minimum energy consumption is returned in Line 16 of Algorithm 8.

Within Algorithm 8, described above, Algorithm 9 is used to map the tasks
which are in the same group, EE or PE, such that the energy consumption is
minimized. Algorithm 9 takes the bounds on the number of active clusters
of certain type (PE or EE), nlb and nub, tasks 𝒱 that are going to be mapped
onto PE/EE clusters, the corresponding equation, Equation (5.4) or (5.5) – see
Section 5.6, for the calculation of the energy consumption and returns the task
partitions among the processors in the clusters 𝒞best and a vector of operating
frequencies for clusters ~Fbest which lead to the minimal energy consumption
Ebest. In Lines 2 to 15 in Algorithm 9, the best task mapping and the frequency
assignment is determined among different number of active clusters in the
range from nlb to nub. For each number of active clusters n, n ∈ [nlb, nub], the
algorithm in Line 4 performs the WFD allocation heuristic [CGJ96] and uses a
given per-processor schedulability test [LL73] to check the schedulability of
the tasks. In this way, we want to achieve load balancing among the processors
of the same type. If all tasks are allocated on processors, Line 5, we group
processors into clusters according to their workload such that all processors
in one cluster run at the frequency which matches their workload as much
as possible. This is done in Lines 6 and 7, where processors πj ∈ Π are first
sorted in non-increasing order of their workload, that is, their utilization uj,
and then starting from the processor with the highest utilization, every Np
processors are grouped into a cluster. For each cluster, we select the smallest
frequency which guarantees the schedulability and is supported by the cluster
type, that is, it is in the set ℱ of available frequencies, Lines 9 to 11. The energy
consumption of the mapping is calculated in Lines 12 and 13 of Algorithm 9.
In Lines 14 and 15, we check whether the energy consumption obtained by

102 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

Algorithm 9: Procedure to find the minimum energy when the given
tasks are mapped onto the same type of clusters.

Input: Lower nlb and upper nub bound on the number of clusters, set 𝒱 of tasks that
should be mapped onto clusters, equation Eq. for calculating the energy
consumption.

Output: Task mapping to processor in the clusters 𝒞best, vector of operating frequencies
for clusters ~Fbest and the minimum energy consumption Ebest.

1 Ebest = ∞, ~Fbest ← ∅, 𝒞best ← ∅;
2 for n = nlb to nub do
3 Create a set Π of n× Np empty processors, ∀πj ∈ Π : uj = 0;
4 Perform WFD allocation heuristic and a corresponding schedulability test for all

tasks in 𝒱 ;
5 if all vi ∈ 𝒱 can be scheduled on Π then
6 Π← Sort Π in non-increasing order of uj;
7 𝒞 ← group every Np processors in Π to a cluster Ck, k ∈ [1, n];
8 E = 0, Fk = 0, k ∈ [1, n];
9 for cluster Ck ∈ 𝒞 do

10 Find processor πj ∈ Ck with the highest utilization uj, umax = uj;
11 Compute frequency of Ck as Fk ≥ umax · fmax ∧ Fk ∈ ℱ ;
12 Calculate energy Ek for cluster Ck by using Eq.;
13 E = E + Ek;

14 if E < Ebest then
15 Ebest = E, ~Fbest ← ~F, 𝒞best ← 𝒞;

16 return Ebest, ~Fbest, 𝒞best;

mapping the tasks on the current number of active clusters n is the smallest
one obtained so far. If that is the case, the mapping on the current number
of active clusters becomes the best mapping solution. Finally, in Line 16,
Algorithm 9 returns the minimum energy Ebest obtained after mapping the
tasks on clusters of the same type, the frequency assignment ~Fbest for clusters
and the cluster partitions 𝒞best.

Let us now analyze the time complexity of Algorithm 9 and Algorithm 8 in
the worst case. The complexity of Algorithm 9 is determined by the for loop
in Lines 2 to 15. Due to the sorting algorithms used within the WFD heuristic,
in Lines 4, and in Line 6, the complexity of Algorithm 9 is O(Nc|𝒱| log |𝒱|),
where Nc is the number of active clusters. The worst-case complexity of
Algorithm 8 is then determined by Line 2, which is executed in the worst case
|𝒱| times, and every time the WFD allocation heuristic is applied, thus the
complexity of Algorithm 8 is O(|𝒱|2 log |𝒱|).

5.8. Evaluation 103

Table 5.2: Benchmarks used for evaluation.

Benchmark |𝒱| |ℰ | ℛout[1/time unit]
Discrete cosine transform (DCT) 8 7 1/47616
Fast Fourier transform (FFT) 17 16 1/12032
Filterbank 85 99 1/11312
Time delay equalization (TDE) 29 28 1/36960
Data encryption standard (DES) 53 60 1/1024
Serpent 120 128 1/3336
Bitonic Sorting 40 46 1/95
MPEG2 23 26 1/7680
Vocoder 114 147 1/9105
FMRadio 43 53 1/1434
Channel Vocoder 55 70 1/35500

5.8 Evaluation

We have performed three experiments to evaluate the efficiency of our DPEM
approach in comparison to the related energy minimization approaches in
[CKR14], [LSCS15], [SDK13] and [Lee09]. We have selected the approaches
in [CKR14] and [LSCS15] for comparison because they consider the same task
and system models as we do. We selected to compare with the approach
in [SDK13] because it is a very good representative among the approaches for
energy-efficient mapping and scheduling of streaming applications modeled
as SDF graphs. Finally, we compare our approach with the approach in [Lee09]
which is the only approach among the related approaches which considers
task replication for energy minimization for classical periodic real-time tasks.
In the first two experiments, we compare the approaches when the streaming
applications are executed on a cluster heterogeneous platform. We apply our
task classification method, given in Algorithm 7, for the approaches in [SDK13]
and [Lee09] which were originally devised for homogeneous platforms and
then we apply these approaches on the two sets of tasks, PE and EE, obtained
by the classification. Since two of the related approaches, [SDK13] and [Lee09],
originally consider homogeneous platforms with per-core VFS capability, in
the third experiment, we compare our approach with these related approaches
on this type of platform.

The experiments have been performed on the real-life applications from the
StreamIt benchmarks suit [TA10], given in Table 5.2. |𝒱| denotes the number
of actors in an SDF graph, while |ℰ | denotes the number of communication
channels. ℛout is the maximum achievable throughput, computed by using
Equation (3.5) and (3.22), when the applications are scheduled by the ISPS
approach described in Chapter 3. We consider these throughput values as the

104 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

throughput constraints in our experiments.
In the experiments on heterogeneous MPSoC platforms, we consider the

same MPSoC platforms considered in [LSCS15]. These platforms have the
same number of PE processors and EE processors but they have different
cluster granularities, that is, different number of processors per cluster, and
hence, different number of clusters. We use the same MPSoC notation MPSoC_-
x_pe_ee as in [LSCS15]. For example, MPSoC_2_20_28 corresponds to an
MPSoC platform with 2 processors per cluster, 20 PE clusters and 28 EE
clusters. The approaches in [CKR14], [LSCS15] and [Lee09] use hard real-time
scheduling algorithms to schedule the tasks on an MPSoC while the approach
in [SDK13] uses self-timed scheduling. The application tasks are permanently
assigned to processors in [CKR14], [Lee09] and [SDK13], while in [LSCS15],
the tasks are permanently assigned to clusters, but within a cluster tasks are
scheduled by a global scheduling algorithm, hence, they can migrate. In the
experiments, we use the EDF [LL73] scheduling algorithm within our DPEM
approach which is also used in [CKR14] and [Lee09]. In all experiments,
we use the power parameters in [LSCS15] obtained from real measurements
performed on the ODROID XU-3 [ODR] board. The results of the evaluations
are shown in Figure 5.3, Figure 5.4 and Figure 5.5. In all these figures, we
show the energy reduction obtained by our DPEM approach in comparison
with the related approaches. The energy reduction r is computed by:

r =
Erel − EDPEM

Erel
, (5.6)

where Erel is the energy consumption of an application to MPSoC mapping
configuration obtained by a related approach and EDPEM denotes the energy
consumption achieved by our DPEM approach.

5.8.1 Comparison with [CKR14], [LSCS15], [SDK13] on Hetero-
geneous MPSoCs

In this section, we compare the energy consumption on cluster heterogeneous
MPSoCs obtained by our proposed DPEM approach with the energy con-
sumption delivered by the related approaches which do not consider task
replication [CKR14] – CKR, [LSCS15] – FDM, [SDK13] – SDK.

The comparison results with the CKR, FDM and SDK approaches on the
three considered heterogeneous MPSoCs are given in Figure 5.3(a)-5.3(c). In
each of these figures, the x-axis shows the application benchmarks and the
y-axis shows the energy reduction. Both approaches CKR and FDM are de-
vised for cluster heterogeneous MPSoCs and both of them use preemptive

5.8. Evaluation 105

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

Bitonic Sor.

M
PEG

2

Vocoder

FM
 R

adio

C
h. Vocoder

E
n

e
rg

y
 r

e
d

u
c
ti
o

n

 CKR
 FDM
 SDK

(a) MPSoC_2_20_28 (higher is better)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

Bitonic Sor.

M
PEG

2

Vocoder

FM
 R

adio

C
h. Vocoder

E
n

e
rg

y
 r

e
d

u
c
ti
o

n

 CKR
 FDM
 SDK

(b) MPSoC_4_10_14 (higher is better)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

Bitonic Sor.

M
PEG

2

Vocoder

FM
 R

adio

C
h. Vocoder

E
n

e
rg

y
 r

e
d

u
c
ti
o

n

 CKR
 FDM
 SDK

(c) MPSoC_8_5_7 (higher is better)

Figure 5.3: Comparison of our proposed DPEM approach with related approaches on hetero-
geneous MPSoCs.

106 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

hard real-time scheduling algorithms, which is also the case in our DPEM
algorithm. We can see in Figure 5.3 that our DPEM approach reduces the
energy consumption when compared to CKR and FDM for all but two con-
sidered benchmarks. The two benchmarks for which our approach results in
the same energy consumption as CKR and FDM are Filterbank and Channel
Vocoder. The workload which these two benchmarks put on the considered
MPSoCs is balanced among processors, hence our approach will not replicate
tasks of these benchmarks which leads to the same energy consumption as
obtained by the CKR and FDM approaches. The average energy reduction of
our approach when compared to the CKR approach is 62%, 62% and 63.1% for
the three MPSoCs with 2, 4 and 8 processors per cluster, respectively. When
compared to the FDM approach the corresponding average energy reductions
are 61.6%, 61.4% and 61.6%. When compared to the SDK approach, our ap-
proach achieves energy reduction for all benchmarks because we use both task
replication and preemptive scheduling. Note that we only use the design-time
phase in the SDK approach for the comparison because our approach is a
design-time approach. Our approach obtains on average the energy reduc-
tion of 65%, 65.1% and 66% for the three MPSoCs with 2, 4 and 8 processors
per cluster, respectively, when compared to the SDK approach. We can con-
clude from these results that our approach achieves large energy reduction by
utilizing task replication.

5.8.2 Comparison with [Lee09] on Heterogeneous MPSoCs

In this section, we compare the energy consumption on cluster heterogeneous
MPSoCs of our DPEM approach with the related approach in [Lee09], denoted
by WYL, which considers task replication as well. The results are given in
Figure 5.4. Here again, both approaches will not replicate tasks in Filterbank
and Channel Vocoder and hence both approaches will lead to the same energy
consumption in these two cases. Given that the task classification in the WYL
approach is based on the power consumption curve of a processor, the WYL
approach will never replicate tasks assigned to EE processors. In addition, the
WYL approach will never replicate the tasks of an application once the total
number of heavy tasks is equal to the number of processors on an MPSoC
platform. All these limitations of WYL explain the energy reduction achieved
when our approach is used to map the benchmarks in Table 5.2 onto the three
considered MPSoCs. The average energy reduction obtained by our DPEM
approach is 51.3%, 57.2% and 60.7% for the MPSoCs with 2, 4 and 8 processors
per cluster, respectively.

5.8. Evaluation 107

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

Bitonic Sort.

M
PEG

2

Vocoder

FM
 R

adio

C
h. Vocoder

E
n
e
rg

y
 r

e
d
u
c
ti
o
n

 MPSoC_2_20_28
 MPSoC_4_10_14

 MPSoC_8_5_7

Figure 5.4: Comparison between DPEM and WYL on heterogeneous MPSoCs.

5.8.3 Comparison on Homogeneous MPSoC

Given that both the SDK and WYL approaches were originally proposed for
homogeneous platforms with per-core VFS capability, in this section, we com-
pare the energy consumption on such systems when our DPEM approach is
used with the energy consumption values when the SDK and WYL approaches
are used. The results of the energy reduction on a homogeneous MPSoC plat-
form consisting of 96 PE processors with per-core VFS capability are given in
Figure 5.5. Here, we also give the results of energy reduction when our DPEM
approach is compared with the CKR and FDM approaches for completeness.

The benchmarks Filterbank and Channel Vocoder were the only two bench-
marks for which our approach could not obtain any reduction in energy con-
sumption on heterogeneous MPSoCs when compared to the approaches which
use hard real-time scheduling algorithms – CKR, FDM and WYL. In the case
of a homogeneous platform, we can see in Figure 5.5 that there is still no
difference in energy consumption between our DPEM and the CKR, FDM
and WYL for the Filterbank benchmark. This happens because when mapped
onto a homogeneous MPSoC, Filterbank has balanced workload among the
processors, hence both our DPEM and the WYL approaches will not replicate
tasks. However, in the case of the Channel Vocoder benchmark, we see in
Figure 5.5 that the situation changes, that is, now there is a reduction in the
energy consumption when our approach is compared to the CKR and FDM,
because our approach will replicate tasks to balance the workload of Channel

108 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

Bitonic Sort.

M
PEG

2

Vocoder

FM
 R

adio

C
h. Vocoder

E
n
e
rg

y
 r

e
d
u
c
ti
o
n

 CKR
 FDM
 SDK
 WYL

Figure 5.5: Comparison on homogeneous MPSoC.

Vocoder on a homogeneous platform. The WYL approach will replicate tasks
as well, leading to the same energy consumption as obtained by our DPEM
approach. Although the WYL approach was devised for homogeneous plat-
forms with types of processors which match the PE type and with per-core
VFS capability, still our DPEM approach outperforms the WYL approach by
reducing the energy consumption on average by 10.4%, and in the best case
up to 22%. The reason is that our task replication procedure is more flexible
than the procedure in the WYL approach.

When compared to the another approach devised for homogeneous MP-
SoCs with per-core VFS capability, that is, the SDK approach, our DPEM
approach leads to an energy reduction of 36% on average and up to 90% in the
best case. The reason is that our approach replicates tasks to lower the utiliza-
tion per-processor, and hence, lower operating frequencies can be achieved. In
addition, the SDK approach minimizes only the dynamic energy consumption
and uses non-preemptive scheduling which both lead to higher total energy
consumption.

Finally, when compared to the CKR and FDM approaches on a homoge-
neous platform, our DPEM approach delivers systems with energy reduction
of 21.2% and 25.6% on average, respectively. The main reason is the task
replication which our approach uses to lower the utilization per processor
while keeping the application throughput.

We performed an additional experiment to evaluate the influence of the

5.8. Evaluation 109

number of processors in an MPSoC on the energy reduction of our DPEM
approach in comparison with the related approaches. In this experiment,
beside the MPSoC platform with 96 PE processors, we considered two addi-
tional platforms with 48 and 192 PE processors with per-core VFS capability.
On the 48-processor platform, our DPEM approach resulted in the energy
reduction of 6%, 18.5%, 20.5% and 30.3% when compared with the WYL, CKR,
FDM and SDK approaches, respectively. In comparison with the same related
approaches, our DPEM approach obtains on the 192-processor platform the
following energy reductions – 10.7%, 24.9%, 29.4% and 39.8%. We can con-
clude that the energy reduction of our approach with regard to the related
approaches slowly increases with the increase of the number of processors in
the platform.

5.8.4 Overhead and Time Complexity Analysis

In this section, we briefly discuss the code and data memory overhead of our
approach when compared to the related approaches and the time complexity
of our and the related approaches. The code and data memory overhead
of our approach on heterogeneous platforms when compared to the WYL
approach is 2 times higher on average, and 2.3 times higher on average than
the approaches which do not consider task replication, that is, approaches
CKR, FDM and SDK. The memory overhead of our DPEM approach on the
homogeneous platform is 16% higher on average when compared to the WYL
approach, and 85% higher on average when compared to the CKR, FDM and
SDK approaches. Given that the actual memory increase in the worst case is
213 KB and given the size of memory available in modern embedded systems,
we can conclude that the memory overhead introduced by our approach is
acceptable.

The time complexity in the worst-case of our DPEM approach and the ap-
proaches CKR, FDM and WYL is polynomial, while the worst-case time com-
plexity of the SDK approach is exponential. In the worst-case, our approach
needs 62 minutes, the WYL approach needs 5 minutes, the CKR approach
takes 11 minutes, the FDM less than 1 second and the SDK approach needs 6
days to find an energy-efficient solution. Given that our DPEM approach is a
design-time approach and that it delivers solutions of better quality, we can
conclude that our approach outperforms the related approaches.

110 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

5.9 Discussion

In this chapter, we proposed a novel energy minimization mapping approach
to reduce the energy consumption of embedded multiprocessor streaming
systems with throughput constraints. To map energy-efficiently an SDF graph
onto cluster-heterogeneous MPSoC, our polynomial-time solution approach:
1) determines a processor type for each task in an SDF graph such that the
throughput constraint is met and the energy consumption is minimized; 2)
determines a replication factor for each task in an SDF graph such that the
distribution of the workload on the same type of processors is balanced, which
enables processors to run at a lower frequency, hence reducing the energy con-
sumption. The experiments on a set of real-life streaming applications showed
that our approach reduces energy consumption by 66% on average among all
the performed experiments while meeting the same throughput requirement
when compared to related energy minimization mapping approaches.

