
Improved hard real-time scheduling and transformations for embedded
Streaming Applications
Spasic, J.

Citation
Spasic, J. (2017, November 14). Improved hard real-time scheduling and transformations for
embedded Streaming Applications. Retrieved from https://hdl.handle.net/1887/59459

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/59459

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/59459

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/59459

Author: Spasic, J.
Title: Improved hard real-time scheduling and transformations for embedded Streaming
Applications
Issue Date: 2017-11-14

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/59459
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 4

Exploiting Parallelism in Hard
Real-Time Systems to
Maximize Performance

Jelena Spasic, Di Liu, Todor Stefanov, “Exploiting Resource-constrained Parallelism in
Hard Real-Time Streaming Applications”, In Proceedings of the International Conference on
Design, Automation and Test in Europe (DATE’16), pp. 954–959, Dresden, Germany,
March 14-18, 2016.

THIS chapter presents our solution to the problem of exploiting the right
amount of parallelism in a streaming application, Problem 2 given in

Section 1.3, according to an MPSoC platform such that performance is maxi-
mized and the timing guarantees are provided. That is, the chapter describes
our solution approach consisting of an unfolding graph transformation and
an algorithm that adapts the parallelism in the application according to the
resources in an MPSoC by using the unfolding transformation.

The remainder of this chapter continues with the problem description in
Section 4.1 and summarizes our contributions in Section 4.2. Then, we give
an overview of the related work in Section 4.3. A motivational example is
given in Section 4.4. It is followed by the description of our proposed solution
approach given in Sections 4.5 and 4.6. The experimental evaluation of our
proposed approach is presented in Section 4.7. The concluding discussion is
given in Section 4.8.

66 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

4.1 Problem Statement

To meet the computational demands and timing requirements of modern
streaming applications, the parallel processing power of MPSoC platforms has
to be exploited efficiently. Exploiting the available parallelism in an MPSoC
platform to guarantee performance and timing constraints is a challenging
task. This is because it requires the designer to expose the right amount of
parallelism available in the application and to decide how to allocate and
schedule the tasks of the application on the available processing elements
such that the platform is utilized efficiently and the timing constraints are met.
However, as introduced in Section 1.3, the given initial parallel application
specification often is not the most suitable one for the given MPSoC platform.
To better utilize the underlying MPSoC platform, the initial specification of an
application, that is, the initial task graph, should be transformed by an unfold-
ing graph transformation to an alternative one that exposes more parallelism
while preserving the same application behavior. The unfolding graph trans-
formations proposed so far: 1) introduce additional tasks for managing data
among tasks’ replicas [KM08], [FKBS11], which introduces communication
and scheduling overhead; 2) do data reordering or increase rates of data pro-
duction/consumption on channels [ZBS13], [SLA12], which causes an increase
of buffer sizes of data communication channels between the tasks and an in-
crease of the application latency. Thus, special care should be taken during the
unfolding transformation to avoid all the unnecessary overheads. Moreover,
having more tasks’ replicas than necessary results in an inefficient system
due to overheads in code and data memory, scheduling and inter-tasks com-
munication [FKBS11], [ZBS13]. Thus, the right amount of parallelism (tasks’
replicas), that is, the proper values of unfolding factors, depending on the
underlying MPSoC platform, should be determined in a parallel application
specification to achieve maximum performance and timing guarantees.

Therefore, in this chapter, we investigate the following sub-problems: (1)
How to efficiently unfold a given initial acyclic SDF graph of an application
to avoid unnecessary communication/scheduling overheads and unneces-
sary increases in buffer sizes and the application latency?, and (2) How to
find a proper unfolding factor of each task in the initial graph, such that the
obtained alternative graph exposes the right amount of parallelism that max-
imizes the utilization of the available processors in an MPSoC platform
under hard real-time scheduling?

4.2. Contributions 67

4.2 Contributions

Our contributions to the solution of the research problem described in Sec-
tion 4.1 are summarized as follows:
∙ We propose a new unfolding graph transformation for SDF graphs

which results in graphs with shorter application latency and smaller
buffer sizes compared to the related approaches [KM08], [FKBS11],
[SLA12], [ZBS13], as shown in Section 4.7.

∙ We propose a new algorithm for finding a proper value for the unfolding
factor of each task in a graph when mapping the graph on a platform
such that the platform is utilized as much as possible under hard real-
time scheduling.

∙ We show, on a set of real-life streaming applications, that in more than
98% of the experiments, our unfolding graph transformation and algo-
rithm result in a solution with a shorter latency, smaller buffer sizes and
smaller values for unfolding factors compared to the solution obtained
from [ZBS13] while the same performance and timing requirements are
satisfied.

Scope of work. We assume that a given SDF graph is acyclic. This limitation
comes from the hard real-time scheduling framework, presented in Chapter 3,
we use to schedule an SDF graph. However, as already mentioned earlier in
Chapter 3, even with this limitation our approach is still applicable to many
real-life streaming applications because a recent work [TA10] has shown that
around 90% of streaming applications can be modeled as acyclic SDF graphs.
In addition, our approach does not unfold stateful tasks and input/output
tasks. A stateful task is a task which current execution depends on its previous
execution, thus those executions cannot be run in parallel. Input and output
tasks are the tasks connected to the environment, hence they are not unfolded.

4.3 Related Work

[KM08] proposes an Integer Linear Programming (ILP) based approach for
maximizing the throughput of an application modeled as an SDF graph by
exploiting data parallelism when mapping the application on a platform with
fixed number of processors. However, an ILP-based approach suffers from an
exponential worst-case time complexity. To overcome the time complexity is-
sue of the approach in [KM08], [FKBS11] separates the task replication and the
allocation of replicas. However, decomposing the problem into two strongly
related problems and solving them separately has a negative impact on the

68 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

solution quality. In addition, the maximum data-level parallelism is revealed
in the application without considering the platform constraints. In contrast,
in our approach, we solve the problem of task replication and the mapping
of replicas simultaneously while taking into account the platform constraints.
Both approaches [KM08] and [FKBS11] use splitter (S) and joiner (J) tasks to
distribute and merge data streams processed by replicas, see Figure 4.2(a).
Those tasks introduce additional communication overhead as data streams
have to be sent to them and to the replicas. Moreover, the splitter/joiner tasks
have to be considered in the process of mapping and scheduling of tasks. In
contrast, in our approach, we do not introduce additional tasks for data man-
agement, but we propose a new transformation on an SDF graph in Section 4.5
where the data is sent by replicas of the original tasks only to replicas which
need the data for computation. Thus, we avoid the overhead of scheduling
splitter/joiner tasks and duplicated data transfers, as shown in Section 4.7.

[SLA12] proposes a throughput driven transformation of an application
modeled as an SDF graph for mapping the application on a platform. The
graph transformation method in [SLA12] increases the rates of data produc-
tion/consumption and hence increases the buffer capacities needed to store
the data, see Figure 4.2(b). In addition, to enable unfolding of tasks, multiple
firings of a certain task in the initial graph are combined into one firing of
the corresponding task in the transformed graph, see the increased execu-
tion times of tasks in Figure 4.2(b), which leads to an increase in latency. In
contrast, our transformation technique does not increase the rates of data
production/consumption on communication channels and does not combine
multiple task firings into one firing which in turn leads to shorter application
latency and smaller buffer sizes of the communication channels, as shown in
Section 4.7.

The closest to our work, in terms of scope and methods proposed to
efficiently utilize the parallelism of an application mapped onto resource-
constrained platform, is the work in [ZBS13]. The authors in [ZBS13] propose
an approach for exploiting just-enough parallelism when mapping a streaming
application modeled as an SDF graph on a platform with fixed number of
processing elements. The graph transformation method in [ZBS13] transforms
an initial SDF graph to functionally equivalent CSDF graph while keeping the
same rates of data production/consumption on communication channels, see
Figure 4.2(c). However, the transformation approach in [ZBS13] is not efficient
in terms of application latency and buffer sizes of the communication channels,
as shown in Section 4.7. Moreover, the proposed algorithm in [ZBS13] for
finding the values of unfolding factors and the mapping of task replicas does

4.4. Motivational Example 69

1
υ1

8 12
υ3υ21

e1
1 2

e2
1

2
υ41

e3
2

1
υ51

e4
1

Figure 4.1: An SDF graph G.

not reveal the right amount of parallelism, but it reveals more parallelism
than needed and hence the platform is unnecessarily overloaded, as shown in
Section 4.7. In contrast, the approach we propose unfolds a graph by doing
more aggressive token-flow analysis leading to shorter application latency and
smaller buffer sizes. In addition, our approach finds smaller unfolding factors
for tasks which leads to less memory needed to store the code of replicas and
less memory to implement communication channels between the replicas.

4.4 Motivational Example

In the first part of this section, we motivate the need for our new unfolding
graph transformation. The throughput of graph G given in Figure 4.1 when
scheduled under our ISPS presented in Chapter 3 is the same as the through-
put obtained under self-timed scheduling [SGB08] and it is equal to 1

24 . Note
that an unfolding graph transformation is used to increase the application
throughput if it is allowed by the hardware platform on which the application
is executed. Let us assume that actors v2 and v3 of graph G in Figure 4.1 are
unfolded by factors 2 and 3, respectively, in order to increase the through-
put of G. Figure 4.2 shows four functionally equivalent graphs obtained
after applying the unfolding transformations proposed by [KM08], [FKBS11] –
see Figure 4.2(a), by [SLA12] – see Figure 4.2(b), and by the transformation
in [ZBS13] – see Figure 4.2(c), while the graph given in Figure 4.2(d) is obtained
by applying our transformation described in Section 4.5. Our transformation
method unfolds an SDF graph by doing more aggressive data token flow
analysis with the aim to spread equally the workload of an actor during the
hyperperiod and run in parallel as much replicas of the actor as possible.

Table 4.1 gives for all four equivalent graphs of G the throughputℛout of
the output actor, actor v5, the maximum latency ℒin→out on an input-output
path, the total size M, of the communication buffers, the total code size CS,
and the total number of processors m needed to schedule the graphs under
ISPS and the self-timed scheduling while achieving the same throughput
ℛout. We can see from the table that by applying our unfolding transformation
we can obtain, under ISPS, 2.29, 3.14, and 1.43 times shorter latency and 2.08,
2.75, and 1.33 times smaller buffers than the unfolding methods in [KM08]

70 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

1
υ1

8

υ3,0

υ2,1
1

2
2
υ4

1
υ5

1

12
υ3,2

υ3,1

2

3 23 1

8
υ2,0 2

1
2

1
12

12

1
1 1

2

1
1 4 1S1 J1 S2 J2

1

1

1 1

1

1

1

1

(a) Equivalent of G in Figure 4.1 after the transformation in [KM08],
[FKBS11]

2
υ1

24

υ3,0

υ2,1
3

2

6
υ4

1
υ51

48
υ3,2

υ3,1
2

2

3

2

2

2
24
υ2,0

2
2

2

2

2

48

482

2

2

2

1

31

4

4

4

(b) Equivalent of G in Figure 4.1 after the transformation in
[SLA12]

ሾ1,1ሿ
υ1

ሾ8,8,8ሿ

υ3,0

υ2,1
ሾ1,1,1ሿ

ሾ2,0,0ሿ
ሾ2,2,2ሿ
υ4

1
υ51

ሾ12,12,12,12ሿ

υ3,2

υ3,1

ሾ0,2,0ሿ

ሾ0,0,2ሿ

ሾ1,1,1ሿ

ሾ2,0,0ሿ

ሾ0,0,2ሿ

ሾ0,2,0ሿ

ሾ8,8,8ሿ
υ2,0

ሾ2,0,0ሿ

ሾ0,2,0ሿ
ሾ0,0,2ሿ ሾ1,1,0,0ሿ

ሾ1,1,0,0ሿ

ሾ12,12,12,12ሿ

ሾ12,12,12,12ሿ
ሾ0,0,1,1ሿ

ሾ1,1,0,0ሿ

ሾ0,0,1,1ሿ

ሾ0,0,1,1ሿ
ሾ0,1ሿ

ሾ1,1,1ሿ

ሾ1,0ሿ

ሾ1,1,1,1ሿ

ሾ1,1,1,1ሿ

ሾ1,1,1,1ሿ

(c) Equivalent of G in Figure 4.1 after the transformation in [ZBS13]

ሾ1,1ሿ
υ1

ሾ8,8,8ሿ

υ3,0

υ2,1
ሾ1,1,1ሿ

ሾ1,1,0ሿ
ሾ2,2,2ሿ
υ4

1
υ51

ሾ12,12,12,12ሿ

υ3,2

υ3,1

ሾ0,1,1ሿ

ሾ1,0,1ሿ

ሾ1,1,1ሿ

ሾ1,1,0ሿ

ሾ0,1,1ሿ

ሾ1,0,1ሿ

ሾ8,8,8ሿ
υ2,0

ሾ1,0,1ሿ

ሾ1,1,0ሿ
ሾ0,1,1ሿ ሾ1,1,0,0ሿ

ሾ1,0,0,1ሿ

ሾ12,12,12,12ሿ

ሾ12,12,12,12ሿ
ሾ0,1,1,0ሿ

ሾ0,1,1,0ሿ

ሾ1,0,0,1ሿ

ሾ0,0,1,1ሿ
ሾ0,1ሿ

ሾ1,1,1ሿ

ሾ1,0ሿ

ሾ1,1,1,1ሿ

ሾ1,1,1,1ሿ

ሾ1,1,1,1ሿ

(d) Equivalent of G in Figure 4.1 after our transformation

Figure 4.2: Equivalent graphs of the SDF graph in Figure 4.1 by unfolding actor v2 by factor
2 and v3 by factor 3.

4.4. Motivational Example 71

Table 4.1: Results for G transformed by different transformation approaches.

Approach ISPS [SGB08]
ℛout[

1
µs] ℒin→out[µs] M[B] CS[kB] m ℛout[

1
µs] ℒin→out[µs] M[B] CS[kB] m

[KM08], [FKBS11] 1/8 128 50 40 5 1/8 67 31 40 12
[SLA12] 1/8 176 66 36 5 1/8 93 57 36 8
[ZBS13] 1/8 80 32 36 5 1/8 76 24 36 8

our 1/8 56 24 36 5 1/8 62 21 36 8

Table 4.2: Results for G transformed and mapped on 2 processors by different approaches.

Approach ℛout[
1
µs] ℒin→out[µs] M[B] CS[kB] m

[ZBS13] 1/18 180 31 44 2
our 1/18 108 16 32 2

and [FKBS11], [SLA12], and [ZBS13], respectively. The number of processors
needed to schedule the graph obtained after the transformation under ISPS is
equal for all the transformation methods. Under self-timed scheduling [SGB08]
we obtain 1.08, 1.5, and 1.23 times shorter latency, while buffers are smaller
1.47, 2.71, and 1.14 times compared to the related approaches. Assuming one-
to-one mapping for the self-timed scheduling, we need the same number of
processors to schedule the unfolded graph obtained by the methods in [SLA12]
and [ZBS13], and 1.5 times less processors than the unfolding methods in
[KM08] and [FKBS11]. For both scheduling algorithms we obtain equal code
size as the unfolding methods in [SLA12] and [ZBS13], and 1.11 times smaller
code size than the methods in [KM08] and [FKBS11]. From Table 4.1, we see
that our unfolding transformation approach presented in Section 4.5 is more
efficient than the approaches in [KM08], [FKBS11], [SLA12], and [ZBS13].

So far, we considered only the unfolding transformation. Now, we would
like to focus on the algorithm for finding the proper unfolding factors for actors
when a graph is mapped onto resource-constrained platform and scheduled by
a hard real-time scheduler such that the throughput of the graph is maximized.
Here, we want to compare our algorithm in Section 4.6 with the approach
in [ZBS13], because only that approach, among the related approaches, ex-
ploits the parallelism in an application under hard real-time scheduling. For
example, in order to schedule graph G in Figure 4.1 on a platform with 2
processors while maximizing the throughput under hard real-time scheduling,
the approach in [ZBS13] finds a vector of unfolding factors ~f = [1, 2, 4, 1, 1].

However, there exists a smaller vector of unfolding factors, such as ~f =
[1, 1, 3, 1, 1], such that G is schedulable on 2 processors and the throughput
is maximized. This smaller vector ~f is found by our algorithm in Section 4.6.
Table 4.2 gives the throughputℛout, latency ℒin→out, buffer sizes M and code

72 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

size CS when G is unfolded and mapped on m = 2 processors by applying the
approach in [ZBS13] and by applying our algorithm presented in Section 4.6.
We can see from the table that by applying our algorithm we obtain under
ISPS 1.67 times shorter latency, 1.94 times smaller buffers, and 1.38 smaller
code size than the approach in [ZBS13]. From these results and the results
given in Table 4.1, we clearly show the necessity and usefulness of the graph
unfolding transformation presented in Section 4.5, and the algorithm for
finding proper values for the unfolding factors presented in Section 4.6.

4.5 New Unfolding Transformation for SDF Graphs

Our new unfolding transformation method is given in Algorithm 3. The
algorithm takes an SDF graph G and a vector of unfolding factors ~f and
produces an unfolded graph G′, which is a CSDF graph. The initial SDF graph
and its unfolded version given in the form of a CSDF graph are functionally
equivalent, meaning that both of them generate the same sequence of output
data tokens for a given sequence of input data tokens. The algorithm consists
of three phases. The first phase is given in lines 1 to 4 in Algorithm 3. Given
that the execution semantics of the SDF model allows any integer multiple
of the basic repetition vector also as a valid repetition vector, in line 1 of
Algorithm 3 the basic repetition vector ~q of G is replaced by ~q f = lcm(~f) ·~q,
where lcm(~f) is the least common multiple of all elements in ~f . Then in lines
2 to 4, for each channel eu in G, a matrix d is constructed containing as many
columns as the number of tokens produced/consumed on the channel during
one iteration of G with repetition vector ~q f . Each column in d contains in
raw 0 an index p, d[0][t] = p, which is the index of the firing of the producer
actor, p ≥ 0, which produces the tth token, and an index c in raw 1, d[1][t] = c,
representing the index of the firing of the consumer actor, c ≥ 0, which
consumes the tth token on eu. Constructing matrix d for channel e2 of graph G
in Figure 4.1 when ~f = [1, 2, 3, 1, 1] is given in Figure 4.3, lines 2 to 4.

In the second phase the topology of the equivalent CSDF graph G′ is
created, which is given in lines 5 to 14 in Algorithm 3. In the equivalent CSDF
graph G′, every actor is replicated a certain number of times, as determined
by the unfolding vector, lines 6 to 8. Then each channel eu in the initial graph
is replicated a certain number of times in the equivalent graph such that each
replica of the producer on eu is connected to each replica of the consumer on
eu, as given in lines 9 to 12 of Algorithm 3. The motivation behind unfolding is
to equally distribute the workload of an actor in the initial graph by running in
parallel replicas corresponding to that actor. The workload of an actor within

4.5. New Unfolding Transformation for SDF Graphs 73

Algorithm 3: Procedure to unfold an SDF graph.
Input: An SDF graph G = (𝒱 , ℰ), a vector of unfolding factors ~f .
Output: The equivalent CSDF graph G′ = (𝒱 ′, ℰ ′).

1 Take~q f = [lcm(~f) · q1, · · · , lcm(~f) · qN] as a repetition vector of G;
2 for communication channel eu = (vi , vj) ∈ ℰ do
3 Get production rate prd and consumption rate cns on eu;

4 Construct a matrix d, d[0][t] = p, d[1][t] = c, t ∈ [0, prd · q f
i − 1], p is the index of vi firing

which produces tth token, c is the index of vj firing which consumes tth token on eu;

5 𝒱 ′ ← ∅, ℰ ′ ← ∅;
6 for actor vi ∈ 𝒱 do
7 for k = 0 to fi − 1 do
8 Add replica vi,k to 𝒱 ′;

9 for communication channel eu = (vi , vj) ∈ ℰ do
10 for replica vi,k of vi do
11 for replica vj,l of vj do
12 Add e′u = (vi,k , vj,l) to ℰ ′;

13 for t = 0 to prd · q f
i − 1 do

14 d[0][t] = d[0][t] mod fi , d[1][t] = d[1][t] mod f j;

15 for communication channel eu = (vi , vj) ∈ ℰ do
16 Get production rate prd and consumption rate cns on eu;
17 Create empty/zero matrices Pi,k with size f j × qi,k , k ∈ [0, fi − 1];
18 Create empty/zero matrices Cj,l with size fi × qj,l , l ∈ [0, f j − 1];
19 for h = 0 to qi,0 − 1 do
20 for k = 0 to fi − 1 do
21 Initialize a prod. counter seq. cntprod of length f j to 0;
22 for o = 0 to prd− 1 do
23 cntprod[d[1][h · k · prd + o]] = cntprod[d[1][h · k · prd + o]] + 1;

24 for l = 0 to f j − 1 do
25 Pi,k [l][h] = cntprod[l];

26 for h = 0 to qj,0 − 1 do
27 for l = 0 to f j − 1 do
28 Initialize a cons. counter seq. cntcons of length fi to 0;
29 for o = 0 to cns− 1 do
30 cntcons[d[0][h · l · cns + o]] = cntcons[d[0][h · l · cns + o]] + 1;

31 for k = 0 to fi − 1 do
32 Cj,l [k][h] = cntcons[k];

33 for k = 0 to fi − 1 do
34 for l = 0 to f j − 1 do
35 if all entries in raw Pi,k [l][] are 0 then
36 Delete a channel e′u connecting replicas vi,k and vj,l ;

37 else
38 Associate production sequence Pi,k [l][] and consumption sequence Cj,l [k][]

with e′u = (vi,k , vj,l);

39 return G′;

74 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

1

 0

0

0

1

11 2 2 3 3 4 4 5 5

1098765432 11

p

c
4

0

0

0

1

11 0 0 1 1 0 0 1 1

102102102 2

p

c

P2,0=
1

1

0

1

0

1

0

1

1

1

1

0

1

0

1

0

1

1

1

0

1

0

0

1

0

1

1

0

1

0

0

1

0

1

1

0

1

0

0

1

0

1

3

2

13

14

15

32

. . .

16

. . .

III

II

Id

d[0][0] d[0][11]

. . .

P2,1 =

C3,0=

C3,1=

C3,2=
39

d

d[1][0] d[1][11]

. . .

. . .

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

Figure 4.3: Unfolding channel e2 from the graph in Figure 4.1 by using Algorithm 3 when
~f = [1, 2, 3, 1, 1].

one graph iteration is determined by the corresponding repetition value of the
actor. Thus, each replica vi,k ∈ G′ of an actor vi ∈ G will have the repetition
qi,k:

qi,k =
q f

i
fi

=
qi · lcm(~f)

fi
. (4.1)

For example, after the unfolding of the SDF graph in Figure 4.1 with the un-
folding vector ~f = [1, 2, 3, 1, 1] we obtain the graph shown in Figure 4.2(d) with
the repetition vector~q′ = [6, 3, 3, 4, 4, 4, 6, 6], where q2,0 = q2,1 = 1·lcm(1,2,3,1,1)

2 =
3. Lines 13 to 14 convert the firing production/consumption indexes in
d[0][t]/d[1][t] for each token t produced/consumed on channel eu into the
indexes corresponding to the index k of the replica which produces/consumes
t. This is illustrated for channel e2 in Figure 4.3, lines 13 and 14.

Lines 15 to 39 represent the third phase of Algorithm 3 and they derive
the production and consumption sequences for new channels and perform
final placement of the new channels between the corresponding actor replicas.
More specifically, for each source replica vi,k and destination replica vj,l of
a channel, a production matrix Pi,k and consumption matrix Cj,l is created
from matrix d in lines 15 to 32. The index of each raw in a production matrix

4.6. The Algorithm for Finding Proper Unfolding Factors 75

Pi,k corresponds to the index l of a destination replica vj,l . The index of each
column in a production matrix Pi,k corresponds to the firing index of source
replica vi,k. Elements in a production matrix of a source replica contain the
number of tokens produced by a certain firing of that replica. Similar holds
for elements in a consumption matrix. The created matrices P2,0, P2,1, C3,0,
C3,1, C3,2 for the source replicas v2,0, v2,1 and destination replicas v3,0, v3,1, v3,2
on channel e2 are given in Figure 4.3. For example, the value 0 in element
P2,0[2][0] says that 0 tokens are produced by the 0 firing of source replica
v2,0 for the destination replica v3,2. Once these matrices are constructed, the
production and consumption sequences on channel replicas are extracted from
the corresponding raws in matrices, as given in lines 33 to 38 in Algorithm 3.
For example, the production sequence on the channel between v2,0 and v3,1
in Figure 4.2(d) is extracted from raw P2,0[1][] in matrix P2,0 and is equal
to [1, 1, 0]. The extracted production/consumption sequences on replicas of
channel e2 can be seen in Figure 4.2(d). The unfolded graph G′ is returned in
line 39 of Algorithm 3.

4.6 The Algorithm for Finding Proper Unfolding Fac-
tors

In order to efficiently utilize the parallelism available in an application when
mapping the application on a resource-constrained platform under hard real-
time scheduling, proper unfolding factors for actors of the application have
to be determined. Therefore, in this section, we present an algorithm which
derives the proper unfolding factors which maximize the utilization of the
platform, that is, maximize the application throughput.

The algorithm is given in Algorithm 4. It takes an SDF graph G, where
the actors are scheduled by ISPS presented in Chapter 3, a platform with m
processors, a scheduling algorithm A [LL73], an allocation heuristic H [CGJ96]
and a quality factor ρ. A quality factor ρ ∈ (0, 1] determines how much of the
platform processing resources we want to utilize, with ρ = 1 corresponding to
full utilization. The algorithm returns the best solution vector of unfolding
factors ~f best.

Line 1 in Algorithm 4 initializes each unfolding factor of an actor in G to
1 and G′ to G. Then, the upper bound f̂i of unfolding factor fi for each actor
vi in G is computed in line 2 in Algorithm 4 by using Equation (4.2) which is

76 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

similar to Equation (3) in [ZBS13]:

f̂i =
lcm{x1, x2, · · · , xn}

xi
, (4.2)

where xi =
lcm{W1,W2,··· ,Wn}

Wi
and Wi = ∑

ϕ=φi
ϕ=1 Ci(ϕ) · ri is the workload of actor

vi during one hyperperiod. The logic behind the computation of upper bounds
on unfolding factors is the same as in [ZBS13]. That is, by unfolding every
actor vi in G by an upper bound f̂i we obtain a CSDF graph G′, for which the
minimum period Ťi,k of each replica vi,k under ISPS is equal to ∑

ϕ=φi,k
ϕ=1 Ci,k(ϕ),

meaning that each actor in the unfolded graph fully utilizes the processor
which it runs on, hence, leading to the maximum throughput. Line 3 finds
the utilization of graph G′ when G′ is scheduled on m processors by invoking
Algorithm 5. The best utilization of G′ is initialized in line 4 to be the first
schedulable solution on m processors found by Algorithm 5 in line 3. Line 5
finds the bottleneck actor in G′. The bottleneck actor vb,k is the actor with the
heaviest workload during one hyperperiod, Wb,k = maxvi,k∈𝒱 ′ Wi,k. If multiple
actors have the same maximum workload, then the one with the smallest code
size is selected to be the bottleneck. If the current utilization uG′ does not
meet the quality requirement checked in line 6, the unfolding factor fb of the
bottleneck actor vb,k is increased in line 7 and the graph is unfolded by using
Algorithm 3 in line 8. Note that stateful actors and input and output actors
are not unfolded, that is, the upper bound on their unfolding factors is 1. The
utilization uG′ of the unfolded graph G′ mapped on m processors is calculated
in line 9 by Algorithm 5. If the current utilization uG′ is higher than the best
utilization in line 10, then in line 11 the best utilization becomes the one found
in line 9 and the best solution vector of unfolding factors becomes the current
vector of unfolding factors. Line 12 finds the bottleneck actor in the unfolded
graph G′. Lines 6 to 12 are repeated and the algorithm terminates when either
a pre-specified quality factor ρ is satisfied (uG′ ≥ ρ ·m) or the unfolding factor
of a bottleneck actor exceeds its upper bound f̂b (fb ≥ f̂b).

We see that Algorithm 4 uses Algorithm 5 for finding the utilization of
the unfolded graph G′ when mapped on a platform with m processors. Algo-
rithm 5 takes the unfolded CSDF graph G′, a platform with m processors, a
scheduling algorithm A [LL73] and an allocation heuristic H [CGJ96] as inputs.
Line 1 calculates periods of actors in G′ scheduled by ISPS presented in Chap-
ter 3 by using Equation (3.5). Equation (3.5) can be written as Equation (4.3)
and Equation (4.4):

Ti =
lcm(~r)

ri
· s, ∀vi ∈ 𝒱 , (4.3)

4.6. The Algorithm for Finding Proper Unfolding Factors 77

Algorithm 4: Finding proper unfolding factors for an SDF graph mapped
onto resource-constrained platform.

Input: An SDF graph G, the number of processors in a platform m, quality factor ρ, a
scheduling algorithm A, an allocation heuristic H.

Output: Vector of unfolding factors ~f best.
1 ~f = [1, 1, · · · , 1]; G′ = G;

2 Compute the upper bound ~̂f of ~f by Equation (4.2);
3 Get uG′ of G′ by Algorithm 5 when scheduled by A and H on m;
4 uGbest = uG′ ; ~f best = ~f ;
5 Find the bottleneck actor vb,k in G′;
6 while uG′ < ρ ·m and fb < f̂b do
7 fb = fb + 1;
8 Get G′ by unfolding G by Algorithm 3;
9 Get uG′ of G′ by Algorithm 5 when scheduled by A and H on m;

10 if uG′ > uGbest then
11 uGbest = uG′ ; ~f best = ~f ;

12 Find the bottleneck actor vb,k in G′;

13 return ~f best.

Algorithm 5: Procedure to find the utilization of a CSDF graph mapped
onto resource-constrained platform.

Input: A CSDF graph G′, the number of processors in a platform m, a scheduling
algorithm A, an allocation heuristic H.

Output: Graph utilization uG′ .
1 Calculate s by Equation (4.4); calculate Ti by Equation (4.3) by using the calculated s;
2 Calculate uG′ by Equation (4.5);
3 while G′ is not schedulable on m by A and H do
4 s = s + 1;
5 Calculate Ti by using s in Equation (4.3); calculate uG′ by Equation (4.5);

6 return uG′ .

s =

⌈
Ŵ

lcm(~r)

⌉
, (4.4)

where lcm(~r) is the least common multiple of all repetition entries in~r and
Ŵ = maxvi∈𝒱 Wi is the maximum workload during one hyperperiod. Note
that periods computed by Equation (4.3) are the minimum periods for actors
scheduled by ISPS and that there exist other larger valid periods for actors

by taking any integer s >

⌈
Ŵ

lcm(~r)

⌉
. Once the actor periods are computed, the

78 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

utilization of actor vi, denoted as ui, can be computed as ui = ∑
ϕ=φi
ϕ=1 Ci(ϕ)/Ti,

where ui ∈ (0, 1]. For a graph G, uG is the total utilization of G given by:

uG = ∑
vi∈𝒱

ui = ∑
vi∈𝒱

∑
ϕ=φi
ϕ=1 Ci(ϕ)

Ti
. (4.5)

The total utilization of a graph directly determines the minimum number of
processors needed to schedule the graph, as explained earlier in Section 2.2.5.
The utilization uG′ of G′ is calculated in line 2 in Algorithm 5 by using Equa-
tion (4.5). Actor periods computed by Equation (4.3) and Equation (4.4) rep-
resent the minimum periods when the actors are scheduled under ISPS on
a platform with unlimited number of processors. It may happen that these
minimum periods lead to a graph which is not schedulable on a platform with
only m processors. Hence, in line 3 by using the utilization uG′ calculated in
line 2 we check if G′ can be scheduled on m processors by using the corre-
sponding schedulability test for A and H [DB11]. If G′ is not schedulable on
the platform, we decrease uG′ until G′ becomes schedulable by increasing the
actor periods Ti. This is done in lines 4 and 5 in Algorithm 5. Once the graph
G′ becomes schedulable on m processors by A and H, Algorithm 5 returns the
utilization of the unfolded graph G′ in line 6.

4.7 Evaluation

We present two experiments to evaluate the techniques proposed in Section 4.5
and Section 4.6. In the first experiment, we evaluate the efficiency of our un-
folding transformation in comparison to the unfolding transformation meth-
ods in [KM08], [FKBS11], [SLA12], and [ZBS13]. In the second experiment,
we evaluate the efficiency of Algorithm 4 presented in Section 4.6 in terms
of performance and time complexity by comparing our approach to the re-
lated approach in [ZBS13]. The experiments were performed on the real-life
applications from the StreamIt benchmarks suit [TA10], given in Table 4.3.
These applications were modeled as SDF graphs and |𝒱| denotes the number
of actors in an SDF graph, while |ℰ | denotes the number of communication
channels. The results of the evaluations are shown in Figure 4.4, Figure 4.5,
and Figure 4.6. In all these figures, each vertical line shows the variations in
the corresponding results among all the applications. The upper and lower
ends of a vertical line represent the maximum and minimum values of the
corresponding result while the marker at the middle of each vertical line rep-
resents the geometric mean of the result. Note that the Y axis in Figure 4.4 to

4.7. Evaluation 79

Table 4.3: Benchmarks used for evaluation.

Benchmark |𝒱| |ℰ |
Discrete cosine transform (DCT) 8 7
Fast Fourier transform (FFT) 17 16
Time delay equalization (TDE) 29 28
Data encryption standard (DES) 53 60
Bitonic Sorting 40 46
Channel Vocoder 55 70
Filterbank 85 99
Serpent 120 128
MPEG2 23 26
Vocoder 114 147
FMRadio 43 53

Figure 4.6 has a logarithmic scale. We run all the experiments on an Intel Core
i7-2620M CPU running at 2.70 GHz with Linux Ubuntu 12.4.

4.7.1 Efficiency of the Proposed Unfolding Transformation

In this section, we evaluate the performance of our unfolding transformation
method proposed in Section 4.5 by comparison to the related unfolding trans-
formation methods in [KM08], [FKBS11], [SLA12], and [ZBS13]. In this experi-
ment, first we use Algorithm 4 to find a vector of unfolding factors for each ap-
plication in Table 4.3 mapped on a platform with 64 processors with partitioned
First-Fit Decreasing Earliest Deadline First (FFD-EDF) scheduler and quality
factor ρ = 0.9. Then, for each application, we use the found vector of unfolding
factors to unfold the application graph by applying our transformation method
and the related transformation methods [KM08], [FKBS11], [SLA12], [ZBS13].
Finally, we use the ISPS framework presented in Chapter 3 to calculate the
latency, buffer sizes and code size when the unfolded graphs are scheduled by
FFD-EDF on 64-processor platform. The ratios between the results obtained by
related transformation methods and our transformation in terms of application
latency (ℒ), buffer sizes (M) and code size (CS) are given in Figure 4.4. We
can see that our method outperforms all the related methods, and delivers
on average 2.82, 3.95, and 1.43 times shorter latency and 1.98, 2.5, and 1.08
times smaller buffers than the method in [KM08] and [FKBS11], [SLA12],
and [ZBS13], respectively. Although the methods in [KM08] and [FKBS11]
introduce additional actors for data management, the average increase in the
total code size is only 1%. The other two transformation methods, [SLA12]

80 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

 1

 10

L M CS

R
a

ti
o

s
 =

 r
e

la
te

d
/o

u
r

latency L, buffer size M, code size CS

 [KM08],[FKBS11]
 [SLA12]
 [ZBS13]

Figure 4.4: Comparison of our unfolding transformation to the approaches in [KM08],
[FKBS11], [SLA12], [ZBS13].

and [ZBS13], have the same code size as our method. Note that all the methods
achieve the same application throughput.

4.7.2 Performance of Algorithm 4

We evaluate the performance of Algorithm 4 by comparison to the related
approach in [ZBS13]. For each application app in Table 4.3, we construct
28 system configurations (app, m, ρ) with number of processors m ∈ {2,
4, 8, 16, 32, 64, 128}, and utilization quality ρ ∈ {0.8, 0.85, 0.9, 0.95}. We
run Algorithm 4 with FFD-EDF scheduler for each (app, m, ρ) configuration
to obtain a vector of unfolding factors ~f best. Then, for each configuration,
we unfold the corresponding application graph by the obtained vector ~f best

by using Algorithm 3. Finally, we use the ISPS framework presented in
Chapter 3 to calculate the latency of an application, buffer sizes and code size
when the unfolded graphs are scheduled by FFD-EDF on the corresponding
platform. We perform the same experiment by running the related algorithm
proposed in [ZBS13] and using the ISPS framework in Chapter 3 for each
(app, m, ρ). The obtained ratios for the total code size, total buffer sizes,
and latency between the approach in [ZBS13] and our approach are given
in Figure 4.5(a), Figure 4.5(b), and Figure 4.5(c), respectively. We can see
that by using Algorithm 4 we can achieve up to 17.85 times smaller code
size (see Figure 4.5(a), ρ=0.95, m=32), up to 24.4 times smaller buffers (see
Fig. 4.5(b), ρ=0.95, m=32) and up to 11.47 shorter latency (see Figure 4.5(c),
ρ=0.95, m=32) than the approach in [ZBS13]. Note that both approaches meet

4.7. Evaluation 81

 1

 10

2 4 8 16 32 64 128

C
o
d
e
 s

iz
e
 r

a
ti
o
 =

 [
Z

B
S

1
3
]/
o
u
r

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(a) Code size ratio (higher is better)

 1

 10

2 4 8 16 32 64 128

B
u
ff
e
r

s
iz

e
 r

a
ti
o
 =

 [
Z

B
S

1
3
]/
o
u
r

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(b) Buffer size ratio (higher is better)

 1

 10

2 4 8 16 32 64 128

L
a
te

n
c
y
 r

a
ti
o
 =

 [
Z

B
S

1
3
]/
o
u
r

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(c) Latency ratio (higher is better)

Figure 4.5: Results of performance evaluation of our proposed approach in comparison to the
approach in [ZBS13].

82 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

the same throughput requirements. Regarding the buffer sizes, we obtain in
5 experiments out of 308 experiments larger buffer sizes by up to 1.16 times
than the approach in [ZBS13] (see for example Figure 4.5(b), ρ=0.85, m=64).
However, for all these experiments we do less unfolding, so we obtain smaller
code size. In the case of latency, in 2 experiments out of 308 we get latency
which is by 2% larger than the corresponding latency when the approach
in [ZBS13] is applied (see Figure 4.5(c), m=8). However, in these two cases, we
obtain smaller code size and smaller buffer sizes than the approach in [ZBS13].

4.7.3 Time Complexity of Algorithm 4

We evaluate the efficiency of our algorithm for finding proper values of un-
folding factors in terms of the execution time of our Algorithm 4 to find a
solution. The execution times for different quality factors and different number
of processors in a platform are given in Figure 4.6(a). We compare these exe-
cution times with the corresponding execution times of the related approach
in [ZBS13]. The comparison is given in Figure 4.6(b).

As can be seen from Figure 4.6(a), for platforms containing up to 16 proces-
sors, our Algorithm 4 takes in the worst case 32 seconds to find a solution, and
less than 1 second on average for all values of quality factor ρ. For a platform
with 32 processors, the execution time of our algorithm is 5 minutes in the
worst case, and up to 4 seconds on average. In the case of a 64-processor
platform our algorithm needs 25 minutes in the worst case to find a solution,
and up to 53 seconds on average. Finally, for a platform with 128 processors
Algorithm 4 takes 88 minutes in the worst case and up to 9 minutes on average
to find a solution. In addition, it can be seen in Figure 4.6(b) that our approach
is on average up to 8 times slower than the approach in [ZBS13] which is ac-
ceptable given that our approach delivers solutions of better quality, as shown
in Section 4.7.2, within a matter of minutes.

4.8 Discussion

As a solution to a problem of exploiting the right amount of parallelism with
the aim to achieve the maximum achievable throughput when mapping a
streaming application modeled by an SDF graph on a resource-constrained
platform under hard real-time scheduling, we presented in this chapter a new
unfolding graph transformation and an algorithm which uses the transforma-
tion to adapt the parallelism in the application when mapping the application
on the platform. Experiments on a set of real-life streaming applications

4.8. Discussion 83

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 4 8 16 32 64 128

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(a) Running time (in seconds) of Algorithm 4

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

2 4 8 16 32 64 128

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 r
a

ti
o

 =
 o

u
r/

[Z
B

S
1

3
]

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(b) Execution time ratio (lower is better)

Figure 4.6: Results of time evaluation of our proposed approach in comparison to the approach
in [ZBS13]

demonstrate that: 1) our unfolding transformation gives shorter latency and
smaller buffer sizes when compared to the related approaches; and 2) our algo-
rithm finds, in a matter of minutes, a solution with smaller code size, smaller
buffer sizes and shorter latency in 98% of the experiments, while meeting the
same performance and timing requirements when compared to an existing
approach.

84 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

