
Improved hard real-time scheduling and transformations for embedded
Streaming Applications
Spasic, J.

Citation
Spasic, J. (2017, November 14). Improved hard real-time scheduling and transformations for
embedded Streaming Applications. Retrieved from https://hdl.handle.net/1887/59459

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/59459

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/59459

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/59459

Author: Spasic, J.
Title: Improved hard real-time scheduling and transformations for embedded Streaming
Applications
Issue Date: 2017-11-14

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/59459
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 3

Hard Real-Time Scheduling
Framework

Jelena Spasic, Di Liu, Emanuele Cannella, Todor Stefanov, “On the Improved Hard
Real-Time Scheduling of Cyclo-Static Dataflow”, ACM Transactions on Embedded
Computing Systems (TECS), vol. 15, Issue 4, Article 68, August 2016.

Jelena Spasic, Di Liu, Emanuele Cannella, Todor Stefanov, “Improved Hard Real-Time
Scheduling of CSDF-modeled Streaming Applications”, In Proceedings of the
IEEE/ACM/IFIP International Conference on HW/SW Codesign and System Synthesis
(CODES+ISSS’15), pp. 65–74, Amsterdam, The Netherlands, October 4-9, 2015.

IN this chapter, we present a scheduling approach to provide timing guar-
antees for streaming applications mapped on MPSoCs. In particular, we

describe in more detail our solution approach, introduced in Section 1.4, to
the research problem, Problem 1, described in Section 1.3.

The remainder of this chapter is organized as follows. Section 3.1 continues
the introduction by describing in more detail the addressed research problem.
It is followed by Section 3.2, which gives a summary of the contributions
presented in this chapter. An overview of the related work is given in Sec-
tion 3.3. Then, we give an example in Section 3.4 to motivate the need for
our scheduling approach. The proposed scheduling approach is described in
Section 3.5. The experimental evaluation of our proposed scheduling approach
is presented in Section 3.6. The concluding discussion is given in Section 3.7.

32 Chapter 3. Hard Real-Time Scheduling Framework

3.1 Problem Statement

Recently, the authors in [BS13] proposed a framework to schedule streaming
applications modeled as acyclic CSDF graphs as a set of real-time periodic
tasks on an MPSoC platform. They also derive the minimum number of
processors needed to schedule the applications on a platform. However, in
that framework, the authors use one and the same worst-case execution time
(WCET) value for all execution phases of a task in the CSDF graph, although a
task in the CSDF graph may have a different WCET value for every phase. The
authors simply take and use the maximum WCET value among the WCET
values for all phases of a task. By doing this, the cyclically changing execu-
tion nature of an application modeled by the CSDF model is hidden, which
leads to underestimation of the throughput, overestimation of the latency,
and underutilization of processors. In another recent work [BMKdD13], the
authors proposed a framework to evaluate a lower bound of the maximum
throughput of a periodically scheduled CSDF-modeled application. However,
the authors do not provide a method to determine the number of processors
required for scheduling the application. Moreover, their approach does not
ensure temporal isolation among applications, that is, the schedule of appli-
cations has to be recalculated once a new application comes in the system
and hence it may be possible that the previously calculated throughput of an
application can no longer be reached. Thus, in this chapter, we investigate
the possibility to schedule streaming applications modeled as acyclic CSDF
graphs as real-time periodic tasks on an MPSoC platform while consider-
ing different WCET values for task’s phases in an acyclic CSDF graph and
providing temporal isolation of applications and hard real-time guarantees.

3.2 Contributions

In order to address the problem described in Section 3.1, we propose a schedul-
ing approach which contributions are summarized as follows:
∙ We prove that considering a different WCET value for each execution

phase of a task we can convert the execution phases of each task in an
acyclic CSDF graph to strictly periodic real-time tasks. This enables
the use of many hard real-time scheduling algorithms to schedule such
tasks with a certain guaranteed throughput and latency. (Theorem 3.5.2)

∙ We prove that our scheduling approach gives equal or higher through-
put than the existing hard real-time scheduling approach for acyclic
CSDF graphs. (Theorem 3.5.3)

3.3. Related Work 33

∙ We propose a method for reducing the latency of an acyclic CSDF graph
scheduled as a set of strictly periodic real-time tasks. (Section 3.5.5)

∙ We show, on a set of real-life streaming applications, that scheduling
each execution phase of a CSDF task as a strictly periodic task and
considering different WCET per phase lead not only to tighter guarantee
on the throughput of an application but also to better utilization of
processor resources. (Section 3.6.1)

∙ We demonstrate, on a set of real-life streaming applications, that the
total time required by our approach to derive the schedule of the tasks,
to calculate the minimum number of processors needed to schedule
the tasks, and to calculate the size of communication buffers between
tasks is comparable to the time required by the existing hard real-time
scheduling approach for CSDF graphs. In addition, we show that the
total time needed by our approach is much shorter in comparison to the
existing periodic scheduling and self-timed scheduling approaches for
CSDF graphs. (Section 3.6.2)

∙ We show, on a set of real-life streaming applications, that the latency of
the applications scheduled by our scheduling approach can be reduced
by our proposed latency reduction method in most cases to the desirable
latency values while keeping higher or equal application throughput
and requiring equal or smaller number of processors in comparison to
the existing scheduling approaches. (Section 3.6.3)

Note that by considering acyclic CSDF graphs, our solution approach is
applicable to many streaming applications as it has been shown in [TA10] that
around 90% of streaming applications can be modeled as acyclic SDF graphs.

3.3 Related Work

Research on scheduling of streaming applications modeled by parallel MoCs
has been active for a long period of time. Below, we compare our approach
with some of the existing hard real-time scheduling approaches for streaming
applications and with the scheduling approaches which do not provide hard
real-time guarantees but are similar to our approach.

[HGWB13] proposes a two parameter (σ, ρ) workload characterization to
reduce the difference between the worst-case throughput, determined by the
analysis, and the actual throughput of the application. They consider different
execution times for task’s phases and then the average worst-case execution
time is used to improve the minimum guaranteed throughput/latency. Similar
to them, we consider different execution times for task’s phases in a CSDF

34 Chapter 3. Hard Real-Time Scheduling Framework

graph. But in contrast to them, we convert task’s phases to classical periodic
hard real-time tasks, which allows us to calculate the minimum number of
processors required to guarantee certain throughput and latency in a fast and
analytical way for global scheduling and in a polynomial time for partitioned
scheduling by using our algorithm given in Section 3.5.6.

In [BTV12], the authors propose an analysis framework for hard real-
time applications modeled as Affine Dataflow (ADF) graphs. The actors in
an ADF graph are scheduled as periodic tasks. The ADF model proposed
in [BTV12] extends the CSDF model and hence, is more expressive than the
CSDF. However, in their approach only one value is considered as the WCET
value of a task, while we consider a different WCET value per each phase of a
task, thereby efficiently exploiting the cyclic nature of the CSDF model and
providing a tighter throughput guarantee.

[BMKdD13] proposes a framework to derive the maximum throughput
of a CSDF graph under a periodic schedule and to calculate the buffer sizes
in the graph with a throughput constraint. Both problems are represented as
Linear Programming (LP) problems and solved approximately. Similar to our
work, their work considers different execution times for each phase of a task.
However, it is not explicitly given in [BMKdD13] how to compute the number
of processors needed to schedule the graph according to the derived schedule.
One possible way is to look at the derived schedules and find the maximum
number of active tasks at any given point in time. However, this procedure
has an exponential time complexity in the worst case. In contrast, in our case
the conversion of CSDF task’s phases to classical periodic hard real-time tasks
enables fast and analytical calculation of the minimum number of processors
for global scheduling of the tasks, and a polynomial time derivation of the
number of processors for partitioned scheduling by using our algorithm given
in Section 3.5.6.

The closest to our work, in terms of scope of work and methods proposed
to schedule streaming applications modeled as acyclic CSDF graphs, is the
work in [BS13]. The authors in [BS13] convert each task in a CSDF graph to
a periodic task by deriving parameters such as period and start time. Then
they use hard real-time schedulability analysis to determine the minimum
number of processors required to execute the derived task-set. Our approach
differs from [BS13] in the following: we use different WCET values for each
execution phase of a task and each phase is converted to a periodic task, while
in [BS13], only one WCET value is used for a task and every execution of
a task is periodic with a calculated period. By considering different WCET
values for each task phase and converting each phase to a periodic task, we

3.4. Motivational Example 35

can guarantee tighter throughput and better utilization of processor resources.

3.4 Motivational Example

The goal of this section is to show that the real-time strictly periodic scheduling
(SPS) approach [BS13] is not efficient in terms of throughput, latency and
utilization of processor resources. In the framework proposed in [BS13], every
actor vi in a CSDF graph G is converted to a real-time periodic task τi by
computing the task parameters Si, Di, Ti and Ci, where Ci is computed as the
maximum WCET value of actor vi, that is, Ci = max1≤ϕ≤φi{Ci(ϕ)}, where
Ci(ϕ) contains the worst-case computation, the worst-case data read and the
worst-case data write times of a phase ϕ of actor vi. To execute graph G strictly
periodically, period Ti for each actor vi, that is, each corresponding task τi, is
computed as:

Ti =
lcm(~q)

qi

⌈maxvj∈V{Cj · qj}
lcm(~q)

⌉
, ∀vi ∈ 𝒱 , (3.1)

where lcm(~q) is the least common multiple of all repetition entries in~q. The
strictly periodic schedule of all actors in G, given in Figure 2.1, is shown in
Figure 3.1(a), under the assumption that data read and write times are 0 (for
the sake of simplicity). For example, actor v2 (task τ2 in Figure 3.1(a)) executes
periodically with the calculated period T2 = 9. Note that for every actor’s
phase one and the same WCET value is considered, that is, for actor v2 we
have two phases 1 and 2 and the considered WCET value C2 for each phase is
C2 = max{C2(1), C2(2)} = max{CC

2 (1), CC
2 (2)} = max{2, 3} = 3.

To demonstrate the need of considering different WCET values of actor’s
phases and the drawback of strictly periodic schedule between actor phases,
we analyze two different schedules of the CSDF graph G in Figure 2.1. The first
schedule we consider is SPS, visualized in Figure 3.1(a). The throughputℛ,
latency ℒ of G and the required number of processors m are given in Table 3.1
under SPS.

However, by taking one and the same value as the WCET for all execution
phases of an actor, the cyclic behavior of the CSDF actors is hidden. Assume
that we convert each actor vi in G to a set of φi IDP tasks τi(1), τi(2) · · · τi(φi)
considering different WCET values for each execution phase and execute
them as periodic tasks. The execution schedule of such task-set is given in
Figure 3.1(b). Again, here we assume that data read and write times are 0. For
example, actor v2 is converted to 2 IDP tasks τ2(1) and τ2(2) where each task
is executed periodically with a period equal to 10. Moreover, the WCET values

36 Chapter 3. Hard Real-Time Scheduling Framework

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ1

τ2

τ3

1 12

C2 C2 C2

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ1(1)

τ1(2)

τ1(3)

τ2(1)

τ2(2)

τ3(1)

S 2(1)

S 2(2)

(b)

Figure 3.1: (a) The SPS and (b) ISPS of graph G in
Figure 2.1.

Table 3.1: Throughput, latency
and number of processors for G un-
der different scheduling schemes.

SPS ISPS
ℛ ℒ m ℛ ℒ m

1/18 30 2 1/10 25 2

of the tasks τ2(1) and τ2(2) are not the same but τ2(1) has WCET C2(1) = 2
and τ2(2) has WCET C2(2) = 3, as the original specification in Figure 2.1.

We can see from Table 3.1 under ISPS that by scheduling G in such a way
we can obtain almost 2 times higher graph throughput and shorter graph
latency while resources in terms of the required number of processors are
the same compared with SPS and thus, the processor resources are better
utilized in the case of ISPS. This is especially important in case of a timing
constraint because it may happen that the graph cannot meet the constraint
when scheduled under SPS. Here the throughput and latency under ISPS
are calculated by using our approach described in Section 3.5. The required
number of processors for both SPS and ISPS is calculated by Equation (2.12).
Moreover, the number of processors needed for partitioned scheduling in
both cases is the same as the number needed for global scheduling given
by Equation (2.12). We can see from the motivational example that the SPS
approach from [BS13] yields to lower throughput and larger latency of a graph
by using one and the same value for the WCET of each phase of an actor and
by strictly periodic scheduling of all executions of the actor. Thus, different
WCET values for actor phases should be considered and the constraint on
strictly periodic scheduling between the actor phases should be removed.

3.5. Improved Hard Real-Time Scheduling of CSDF 37

3.5 Improved Hard Real-Time Scheduling of CSDF

In this section, we present our scheduling framework, called improved strictly
periodic scheduling (ISPS), which enables a conversion of every actor of an
acyclic CSDF graph to a set of periodic tasks. Each set of periodic tasks
corresponding to an actor has as many elements as the number of phases
of that actor. By taking into account the WCET value of each phase of an
actor in a graph, the proposed approach computes the parameters Si and
Ti of tasks corresponding to the actor and the minimum buffer sizes of the
communication channels such that ISPS is guaranteed to exist.

The proposed conversion procedure is given in Algorithm 1. First, the
periods of tasks corresponding to actors are calculated in lines 1-2, explained
in Section 3.5.1. Then, relative deadlines Di of the tasks corresponding to
an actor vi are selected from the range Di ∈ [max1≤ϕ≤φi{Ci(ϕ)}, Ťi], lines 3-6.
For example, if one wants to minimize the number of processors needed to
schedule the converted tasks, he/she should select relative deadlines of the
tasks to be equal to the corresponding task periods, that is, Di = Ťi. On
the other hand, if one wants to reduce the graph latency, he/she should use
our latency reduction method proposed in Section 3.5.5. The start times for
each task-set corresponding to an actor are computed in lines 7-12, for details
see Section 3.5.2. Finally, the buffer sizes of the communication channels are
derived in lines 13-14, for details see Section 3.5.3.

3.5.1 Deriving Periods of Tasks

The first step in constructing the ISPS of a CSDF graph is to derive the valid
period for each periodic task corresponding to a phase of an actor in the graph.
To calculate the periods, we introduce the following definitions:

Definition 3.5.1. For each actor vi in an acyclic CSDF graph G, the WCET
sequence Ci = [Ci(1), Ci(2), · · · , Ci(φi)], represents the sequence of the WCET
values, measured in time units, for each execution phase of vi. The WCET
value Ci(ϕ) for a phase ϕ is given by:

Ci(ϕ) =
(

CR · ∑
er∈in(vi)

yr
i (ϕ)

)
+ CC

i (ϕ) +
(

CW · ∑
ew∈out(vi)

xw
i (ϕ)

)
, (3.2)

where CR represents the platform-dependent worst-case time needed to read
a single token from an input channel er from the set of input channels in(vi)
of actor vi; analogously, CW is the worst-case time needed to write a single
token to an output channel ew from the set of output channels out(vi) of vi;

38 Chapter 3. Hard Real-Time Scheduling Framework

Algorithm 1: Procedure to convert a CSDF graph to a set of periodic
tasks.

Input: A CSDF graph G = (𝒱 , ℰ).
Output: For each actor vi ∈ 𝒱 , a set of periodic tasks 𝒯vi = {τi(1), · · · , τi(φi)}, and for

each channel eu ∈ ℰ , the size of the buffer bu.
1 for actor τi ∈ 𝒱 do
2 Compute the minimum common period Ťi by using Equation (3.5);

3 for actor vi ∈ 𝒱 do
4 Select deadline Di, where Di ∈ [max1≤ϕ≤φi{Ci(ϕ)}, Ťi];
5 for phase ϕ of vi, 1 ≤ ϕ ≤ φi do
6 τi(ϕ) = (0, Ci(ϕ), Di, Ťi);

7 for actor vi ∈ 𝒱 do
8 Compute the start time of the first phase Si(1) by using Equation (3.11);
9 τi(1) = (Si(1), Ci(1), Di, Ťi);

10 for phase ϕ of vi, 2 ≤ ϕ ≤ φi do
11 Compute the start time of the ϕth phase Si(ϕ) by using Equation (3.9);
12 τi(ϕ) = (Si(ϕ), Ci(ϕ), Di, Ťi);

13 for communication channel eu ∈ ℰ do
14 Compute the buffer size bu by using Equation (3.17);

yr
i (ϕ) and xw

i (ϕ) is the number of tokens read from er and written to ew by
vi, respectively, during its execution phase ϕ; and CC

i (ϕ) is the worst-case
computation time of vi in its phase ϕ.

Definition 3.5.2. For each actor vi in an acyclic CSDF graph G, the maximum
WCET value MCi is given by MCi = max1≤ϕ≤φi{Ci(ϕ)}.

Definition 3.5.3. For an acyclic CSDF graph G, an aggregated
execution vector ~AC, where ~AC ∈ NN , represents the aggregated WCET
values of the actors in G and its elements are given by ACi = ∑

φi
ϕ=1 Ci(ϕ),

where Ci(ϕ) is the WCET value of vi’s phase ϕ.

Each actor vi ∈ V in graph G is converted to a periodic task set 𝒯vi =
{τi(1), · · · , τi(φi)}.

Definition 3.5.4. A task τi(ϕ) corresponding to a phase ϕ of an actor vi, where
1 ≤ ϕ ≤ φi, in an acyclic CSDF graph G is a strictly periodic task iff the time
period between any two consecutive firings of that task is constant.

All tasks belonging to a periodic task set 𝒯vi corresponding to an actor vi
have the same period Ti, which we call common period.

3.5. Improved Hard Real-Time Scheduling of CSDF 39

Definition 3.5.5. For an acyclic CSDF graph G, a common period vector ~T,
where ~T ∈ NN , represents the periods, measured in time units, of periodic
task-sets corresponding to actors in G. Ti ∈ ~T is common period of periodic
task-set corresponding to actor vi ∈ V. ~T is given by the solution to both

r1T1 = r2T2 = · · · = rN−1TN−1 = rNTN (3.3)

and
~T − ~AC ≥~0, (3.4)

where ri ∈ ~r, and ~r is the aggregated repetition vector introduced in Sec-
tion 2.1.1.

Lemma 3.5.1. For an acyclic CSDF graph G, the minimum common period vector ~̌T
is given by:

Ťi =
lcm(~r)

ri

⌈maxvj∈V{ACj · rj}
lcm(~r)

⌉
, ∀vi ∈ V, (3.5)

where lcm(~r) is the least common multiple of all phase repetition entries in~r.

Proof. The minimum common period vector ~̌T that solves Equation (3.3) is
given by:

Ťi = lcm{r1, r2, · · · , rN}/ri, ∀vi ∈ V.

Inequality (3.4) can be re-written as:

cŤ1 ≥ AC1, cŤ2 ≥ AC2, · · · , cŤN ≥ ACN , c ∈N. (3.6)

Further, Inequality (3.6) can be re-written as:

c ≥ AC1r1/ lcm(~r), · · · , c ≥ ACNrN/ lcm(~r). (3.7)

From Inequality (3.7), it follows that c is greater than or equal to
maxvj∈V{ACjrj}/ lcm(~r). However, maxvj∈V{ACjrj}/ lcm(~r) is not always
guaranteed to be an integer. Because of that, the value is rounded up by taking
its ceiling. Thus, the minimum common period vector which satisfies both
Equation (3.3) and Inequality (3.4) is given by Equation (3.5). �

For the CSDF graph in Figure 2.1, the derived minimum common periods
in time units are [Ť1, Ť2, Ť3] = [5, 10, 5] .

Theorem 3.5.1. For any acyclic CSDF graph G, where G has L topological sort
levels, a periodic schedule exists with start times Si(ϕ), ϕ ∈ [1, φi], for each level-k
actor vi ∈ V given by:

Si(1) = (k− 1) · 2α (3.8)

40 Chapter 3. Hard Real-Time Scheduling Framework

and
Si(ϕ) = Si(ϕ− 1) + Ci(ϕ− 1), ∀ϕ ∈ [2, φi], (3.9)

such that every phase of an actor vi ∈ V is strictly periodic with a constant period
Ti ∈ ~̌T and every communication channel eu = (vi, vj) ∈ E has a bounded buffer
capacity, given by:

bu = (l − k + 1) · 2Xu
i (φiri), (3.10)

where α = r1T1 = · · · = rNTN is the iteration period of G, vi is level-k actor and vj
is level-l actor, l ≥ k.

Proof. Let us assume that graph G is partitioned into L levels in a way similar
to topological sort. In that way, all input actors belong to level-1, the actors
from level-2 have all immediate predecessors in level-1, the actors from level-3
have immediate predecessors in level-2 and can also have immediate predeces-
sors in level-1, and so on. The graph iteration period is α = r1T1 = · · · = rNTN .
During the iteration period each phase of vi is executed ri times. Assume that
the first phase of level-1 actors starts at time t = 0. Other phases of an actor are
scheduled to be fired as soon as the WCET of the previous phase elapses. Re-
call that every actor vi in graph G is converted to a set of strictly periodic tasks
where a task corresponds to a phase of the actor. Consider now an actor from
level-1, denoted as v1. By time t = α + S1(φ1), the last phase of v1 will finish
its r1th execution, where S1(φ1) is the start time of the last phase of v1. Level-1
actors will complete a whole iteration by time t1 = α + maxvi∈level-1{Si(φi)}
and will continue executing their second iteration. According to Equation (2.4),
level-1 actors will produce enough data on all channels to level-2 actors by
time t1 such that level-2 actors can execute a whole iteration if their first phases
are started at t1, at the earliest. Let us start the first phases of level-2 actors
at time t = 2α and all the other phases of a level-2 actor one after the other.
Similarly, by time t2 = 3α + maxvi∈level-2{Si(φi)− Si(1)}, level-3 actors will
have enough data to execute one iteration. Thus, starting the first phases of
level-3 actors at time t = 4α guarantees that the actors can execute a whole
iteration. By repeating the same procedure to the actors of the last level, level
L, (by starting their first phases at t = (L− 1) · 2α and all the other phases
as soon as the WCET of previous phase elapses), we obtain an overlapping
schedule σ where all actors execute their corresponding iterations. In the
constructed schedule, the first phase of an actor vj corresponding to a level-i
will start execution at time t = (i − 1) · 2α and once it starts it will be fired
every Tj time units. The other phases start their executions one after the other
and all within period Tj. Once started, each phase is re-executed every Tj time
units.

3.5. Improved Hard Real-Time Scheduling of CSDF 41

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

τ1(1)

τ1(2)

τ1(3)

τ2(1)

τ2(2)

τ3(1)

Figure 3.2: The periodic schedule σ for the CSDF graph G shown in Figure 2.1.

Now, we will prove that the constructed schedule executes with bounded
buffers. The longest delay which may happen between production and con-
sumption of data tokens is in case when there is a dependency eu between
the first iteration of a level-1 actor and the first iteration of a level-L actor. In
this case the delay is equal to (L− 1) · 2α and during that period the level-
1 actor will produce on channel eu at most (L − 1) · 2Xu

1 (φ1r1) data tokens,
where Xu

1 (φ1r1) is the number of tokens produced during φ1r1 executions of
the level-1 actor. However, starting from L · 2α level-1 and level-L execute
in parallel, so we should increase the buffer size by 2Xu

1 (φ1r1) which then
becomes L · 2Xu

1 (φ1r1). We can now use the methodology described above
to determine the buffer size of each communication channel in a graph: each
channel eu ∈ E, connecting a level-i source actor vk and a level-j destination
actor (j ≥ i) will store according to schedule σ at most:

bu = (j− i + 1) · 2Xu
k (φkrk)

tokens. Thus, an upper bound on the buffer sizes exists. �

For the example graph G given in Figure 2.1, actors in G are grouped
into 3 levels such that v1 is level-1 actor, v2 level-2 and v3 is level-3 actor.
The calculated graph iteration period α is equal to 10. The periodic schedule
resulting from Theorem 3.5.1, namely schedule σ, is depicted in Figure 3.2.

3.5.2 Deriving the Earliest Start Time of Actor’s First Phase

In order to represent an actor of a CSDF graph as a set of strictly periodic
tasks, in Theorem 3.5.1 we already introduced the start times of phases of the
actors corresponding to different levels. However, although start times given

42 Chapter 3. Hard Real-Time Scheduling Framework

by Equation (3.9) are minimal relative to the start time of the corresponding
first phase Si(1), start times Si(1) given by Equation (3.8) are not minimal.
Minimizing the start times is very important because it has a direct impact on
the latency of the graph and the buffer sizes of the communication channels.
Therefore, the earliest (minimal) start times of actor’s first phase Si(1) are
derived below.

We derive the earliest start times assuming that the token production
happens as late as possible (at the deadlines) and the tokens consumption
happens as early as possible (at the beginning of execution of each phase).

Lemma 3.5.2. For an acyclic CSDF graph G, the earliest start time of the first phase
of an actor vj ∈ V, denoted Sj(1), under ISPS is given by:

Sj(1) =

{
0 if prec(vj) = ∅
maxvi∈prec(vj){Si→j(1)} if prec(vj) ̸= ∅

(3.11)

where prec(vj) is the set of predecessors of vj, and Si→j(1) is given by:

Si→j(1) = min
t∈[0,Si(1)+α+∆i(φi)]

{t : prdS

[Si(1),max{Si(1),t}+k)
(vi, eu)

≥ cnsS
[t,max{Si(1),t}+k]

(vj, eu), ∀k ∈ [0, α + ∆i(φi)]}, (3.12)

where Si(1) is the earliest start time of the first phase of a
predecessor actor vi, α = riTi = rjTj, ∆i(φi) = Si(φi)− Si(1), prdS[ts,te)(vi, eu) is
the number of tokens produced by vi into channel eu during the time interval [ts, te),
and cnsS[ts,te](vj, eu) is the number of tokens consumed by vj from channel eu during
the time interval [ts, te].

Proof. In Theorem 3.5.1, we have proved the existence of ISPS when the
first phase of level-k actors was started at time (k− 1) · 2α. According to the
schedule σ, level-(k− 1) predecessor vi will start the execution of its first phase
at Si(1) = (k− 2) · 2α. Level-k actor vj can then start the execution of its first
phase at:

Sj(1) = (k− 1) · 2α = (k− 2) · 2α + 2α = Si(1) + 2α.

Observe now that in the proof of Theorem 3.5.1, instead of 2α we could more
precisely take α + Si(φi)− Si(1), because the last production of an iteration of
an actor vi will happen α + ∆i(φi) time units after the start of its first phase, at
the latest. Given this and taking into account all predecessors of vj, we can
write:

Sj(1) = max
vi∈prec(vj)

{Si(1) + α + ∆i(φi)}.

3.5. Improved Hard Real-Time Scheduling of CSDF 43

We are now interested in starting the first phase of vj earlier, which means we
search for Sj(1) ≤ maxvi∈prec(vj){Si(1) + α + ∆i(φi)}, and the earliest possible
Sj(1) can be at the time when the application starts, which is t = 0. This can
be written as:

Sj(1) = max
vi∈prec(vj)

{Si→j(1)} where Si→j(1) = t′, t′ ∈ [0, Si(1) + α + ∆i(φi)].

A valid start time candidate Si→j(1) must guarantee that the number of tokens
available on channel eu = (vi, vj) at any time instant t ≥ t′ is greater than or
equal to the number of consumed tokens at the same instant such that vj can
be executed as a set of strictly periodic tasks. Here, we have two cases:

Case 1: t′ ≥ Si(1): In order to guarantee that vj can fire its first phase at
times t = t′, t′ + Tj, · · · , t′ + α and each other phase ϕ as early as possible at
times t = t′ + ∆j(ϕ), t′ + ∆j(ϕ) + Tj, · · · , t′ + ∆j(ϕ) + α− Tj, where ∆j(ϕ) =

∑
ϕ−1
l=1 Cj(l), t′ must satisfy:

∀k ∈ [0, α + ∆i(φi)] : prdS

[Si(1),t′+k)
(vi, eu) ≥ cnsS

[t′,t′+k]
(vj, eu). (3.13)

Thus, a valid value of t′ guarantees that once vj starts, it always finds enough
data to fire for one iteration.

Case 2: t′ < Si(1): This case happens when vj consumes zero tokens in
the interval [Si(1), t′] or there are initial tokens on the channel. It is suffi-
cient to check the cumulative production and consumption over the interval
[Si(1), Si(1) + α + ∆i(φi)] because by time t = Si(1) + α + ∆i(φi) both vi and
vj are guaranteed to have finished one iteration:

∀k ∈ [0, α + ∆i(φi)] : prdS

[Si(1),Si(1)+k)
(vi, eu) ≥ cnsS

[t′,Si(1)+k]
(vj, eu). (3.14)

By merging Equation (3.13) and Equation (3.14) and then selecting among
valid start times t′ the minimum one, we obtain Equation (3.12). Start times
for the tasks corresponding to the actor phases other than the first phase are
obtained by adding the WCET value of the previous phase to the derived start
time of the previous phase, which is given by Equation (3.9). The start times
derived in such a way enable the serialized execution of tasks corresponding
to actor phases, when it is needed, by careful allocation and certain scheduling
algorithms, which will be explained in more detail in Section 3.5.4. �

Note that we derive by Lemma 3.5.2 the earliest start times assuming that
the tokens production happens at the deadlines and the tokens consumption

44 Chapter 3. Hard Real-Time Scheduling Framework

happens at the beginning of the execution of each phase. In this case, the
cumulative production and the cumulative consumption functions can be
computed efficiently by:

prdS

[ts,te)
(vi, eu) =

Xu

i

((⌊
te−ts

Ti

⌋
− 1 +

⌊
∆
Ti

⌋)
· φi + k1

)
if te − ts ≥ Ti

Xu
i (k2) if Di ≤ te − ts ≤ Ti

0 if te − ts < Di
(3.15)

with ∆ = (te− ts) mod Ti +Ti−Di, k1 = maxl∈[1,φi]{l : ∆ mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)},

k2 = maxl∈[1,φi]{l : te − ts − Di ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

cnsS
[ts,te]

(vi, eu) =

Yu
i

(⌊
te−ts

Ti

⌋
+ k
)

if te ≥ ts

0 if te < ts

(3.16)

with k = maxl∈[1,φi]{l : (te − ts) mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

For example, the derived earliest start times for phases of actor v2 in G,
shown in Figure 2.1, are S2(1) = 8 and S2(2) = S2(1) + C2(1) = 10, as
illustrated in Figure 3.1(b).

3.5.3 Deriving Channel Buffer Sizes

Equation (3.10) in Theorem 3.5.1 shows that ISPS has bounded buffer sizes
bu. These buffer sizes bu are sufficient but not minimal. Therefore, we want to
derive the minimum buffer sizes that guarantee periodic execution of tasks
corresponding to actor phases.

We want to derive the minimum buffer size such that the derived buffer
size is always valid regardless of when the actor phases are actually scheduled
to produce/consume during its common period. Hence, we assume that the
token production happens as early as possible (at the beginning of execution
of each phase) and the token consumption happens as late as possible (at the
deadlines).

Lemma 3.5.3. For an acyclic CSDF graph G, the minimum buffer size bu of a
communication channel eu = (vi, vj) under ISPS is given by:

bu = max
k∈[0,α+∆j(φj)]

{ prdB

[Si(1),max{Si(1),Sj(1)}+k]
(vi, eu)− cnsB

[Sj(1),max{Si(1),Sj(1)}+k)
(vj, eu)},

(3.17)

3.5. Improved Hard Real-Time Scheduling of CSDF 45

where Si(1) is the earliest start time of the first phase of a predecessor actor vi, α =
riTi = rjTj, ∆j(φj) = Sj(φj) − Sj(1), prdB[ts,te](vi, eu) is the number of tokens
produced by vi into channel eu during the time interval [ts, te], and cnsB[ts,te)(vj, eu)
is the number of tokens consumed by vj from channel eu during the time interval
[ts, te).

Proof. Equation (3.17) tracks the maximum cumulative number of uncon-
sumed tokens on channel eu during one iteration of vi and vj. We have two
cases:

Case 1: Sj(1) ≥ Si(1): Here we have two intervals [Si(1), Sj(1)) and [Sj(1),
Sj(1) + α + ∆j(φj)]. During the first interval only phases of actor vi are execut-
ing, so tokens are only produced and buffer size should be large enough to
accommodate all produced tokens in that interval. During the second interval
phases of both actors execute in parallel. Thus, the minimum number of to-
kens that needs to be stored is given by the maximum number of unconsumed
tokens on eu at any time over this interval. At time t = Sj(1) + α + ∆j(φj),
both vi and vj have completed one iteration and the number of tokens on eu is
the same as at time t = Sj(1) + ∆j(φj) [BELP96]. Due to the periodicity of vi
and vj, their execution pattern repeats. Thus, bu given by Equation (3.17) is
the minimum buffer size which guarantees periodic execution of vi and vj.

Case 2: Sj(1) < Si(1): Here we have three intervals [Sj(1), Si(1)), [Si(1),
Sj(1) + α + ∆j(φj)] and (Sj(1) + α + ∆j(φj), Si(1) + α + ∆j(φj)]. During the
first interval there is no production nor consumption or there are initial tokens
on the channel, and hence bu during that interval is equal to the number of
initial tokens. During the second interval phases of both actors execute in
parallel and bu gives the maximum number of unconsumed tokens on eu.
During the third interval phases of actor vj executes their second iteration,
again either there is no consumption, which means that eu has to accommodate
all the tokens produced during this interval or there is consumption and
bu gives the maximum number of unconsumed tokens on eu. At time t =
Si(1)+ α+∆j(φj), both vi and vj have completed one iteration and the number
of tokens on eu is the same as at time t = Si(1) + ∆j(φj) [BELP96]. Due to
the periodicity of vi and vj, their execution pattern repeats. Thus, bu given
by Equation (3.17) is the minimum buffer size which guarantees periodic
execution of vi and vj. �

The cumulative production and consumption functions used for the calcu-
lation of buffer sizes under the assumption of the earliest token production

46 Chapter 3. Hard Real-Time Scheduling Framework

and the latest token consumption can be computed efficiently by:

prdB

[ts,te)
(vi, eu) =

Xu
i

(⌊
te−ts

Ti

⌋
+ k
)

if te ≥ ts

0 if te < ts

(3.18)

with k = maxl∈[1,φi]{l : (te − ts) mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

cnsB
[ts,te)

(vi, eu) =

Yu

i

((⌊
te−ts

Ti

⌋
− 1 +

⌊
∆
Ti

⌋)
· φi + k1

)
if te − ts ≥ Ti

Yu
i (k2) if Di ≤ te − ts ≤ Ti

0 if te − ts < Di
(3.19)

with ∆ = (te− ts) mod Ti +Ti−Di, k1 = maxl∈[1,φi]{l : ∆ mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)},

k2 = maxl∈[1,φi]{l : te − ts − Di ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

For the example graph G given in Figure 2.1, the calculated buffer sizes in
tokens are [b1, b2, b3] = [4, 15, 4].

3.5.4 Hard Real-Time Schedulability

We give now a theorem which summarizes the presented results for our
improved strictly periodic scheduling (ISPS):

Theorem 3.5.2. For an acyclic CSDF graph G, let 𝒯G be a set of periodic task sets
𝒯vi such that 𝒯vi corresponds to vi ∈ 𝒱 . 𝒯vi consists of φi periodic tasks given by:

τi(ϕ) = (Si(ϕ), Ci(ϕ), Di, Ti), 1 ≤ ϕ ≤ φi, (3.20)

where Si(ϕ) is the earliest start time of a phase ϕ of actor vi given by Equation (3.11)
and Equation (3.9), Ci(ϕ) is the WCET value of a phase ϕ given by Equation (3.2),
Di is the relative deadline, max1≤ϕ≤φi{Ci(ϕ)} ≤ Di ≤ Ti, and Ti is the period of
𝒯vi given by Equation (3.5). 𝒯G is schedulable on m processors using a hard real-time
scheduling algorithm A for periodic tasks if:

1. A is partitioned Earliest Deadline First, partitioned Rate Monotonic, parti-
tioned Deadline Monotonic or hierarchical global hard real-time scheduling
algorithm,

2. 𝒯G satisfies the schedulability test of A on m processors,
3. every communication channel eu ∈ E has a capacity of at least bu tokens,

where bu is given by Equation (3.17).

3.5. Improved Hard Real-Time Scheduling of CSDF 47

Proof. According to Theorem 3.5.1, the graph is converted into strictly periodic
tasks. The task set 𝒯vi corresponding to an actor vi should be scheduled in
a way which preserves the dependency between the actor phases. The hard
real-time scheduling algorithms which can do this are partitioned Earliest
Deadline First (EDF), Rate Monotonic (RM) [LL73] and Deadline Monotonic
(DM) [LW82], or hierarchical [HA06], [LB03]. In case of the partitioned algo-
rithms, tasks which correspond to phases of an actor should be allocated to
the same processor and scheduled by EDF or DM because the deadlines of
the phases are in the same order as the phases themselves thereby, preserving
the data-dependencies between the phases, or by RM fixed priority scheduler
where ties should be broken in favor of jobs arrived earlier in a system. In
hierarchical scheduling a set of tasks are grouped together and scheduled as a
single entity, called server task or supertask. When the entity is scheduled, one
of its tasks is selected to execute according to an internal scheduling policy.
Hence, the supertasks/servers are scheduled globally, while the scheduling
of the tasks within a supertask/server is done locally, that is, it is analogous
to scheduling on uniprocessor. By grouping the tasks which correspond to
phases of an actor with data-dependent phases into a supertask/server and
scheduling them by a scheduler which preserves their order (for example,
EDF) the synchronization problem of such dependent tasks is solved. �

3.5.5 Performance Analysis

Once an acyclic CSDF graph has been converted to a set of strictly periodic
tasks, the calculated task parameters Si, Ci, Di, and Ti, where Si is the start
time of τi, Ci is the WCET, Di is the deadline of τi, and Ti is the task period, are
used for performance analysis of the graph, that is, for analysis of the graph’s
throughput and latency.

Throughput Analysis under ISPS

The throughput of a graph G scheduled by ISPS is given by:

ℛ(G) =
1
α
=

1
riŤi

, vi ∈ 𝒱 , (3.21)

where Ťi is calculated by Equation (3.5). Given that during one graph itera-
tion every actor vi ∈ 𝒱 is executed qi times, the throughput of each actor is
calculated as:

ℛi =
qi

α
=

φi

Ťi
, vi ∈ 𝒱 . (3.22)

48 Chapter 3. Hard Real-Time Scheduling Framework

Theorem 3.5.3. For any acyclic CSDF graph G scheduled by ISPS, the throughput
of the graph is never less than the graph throughput when G is scheduled by SPS.

Proof. The throughput of a graph scheduled under SPS [BS13] is
1/αSPS = 1/(qiTSPS

i), vi ∈ V. If the same graph is scheduled under our
ISPS, then its throughput is 1/αISPS = 1/(riTISPS

i), vi ∈ V. By using Equa-

tion (3.1) and Equation (3.5) and denoting u = maxvj∈V{rj ∑
φj
ϕ=1 Cj(ϕ)} and

w = maxvj∈V {qj max1≤ϕ≤φj{Cj(ϕ)}}, we can write the relation which we
want to prove, αISPS ≤ αSPS, as follows:

lcm(~r)
⌈

u
lcm(~r)

⌉
≤ lcm(~q)

⌈
w

lcm(~q)

⌉
. (3.23)

We have that u ≤ w. Given that the least common multiple of positive
integer numbers can be found using prime factorization, and the relation
between vectors~r = [r1, · · · , rN]

T and~q = Φ ·~r = [φ1r1, · · · , φNrN]
T, we have

that lcm(~q) is divisible by lcm(~r).
Finally, to prove relation (3.23) we consider the following cases (with

regard to divisibility by the corresponding lcm term):
Case 1: workloads u and w on both sides of Inequality (3.23) are divisible

by the corresponding lcm terms. Then by removing the ceiling operation we
obtain inequality u ≤ w, which always holds.

Case 2: u is divisible by lcm(~r), w is not divisible by lcm(~q). We can
represent the ceiling operation on the right-hand side as (w + lcm(~q)−wmod
(lcm(~q)))/ lcm(~q). In the worst case wmod (lcm(~q)) is equal to lcm(~q)− 1.
By putting this into Inequality (3.23) we obtain u ≤ w + 1, which holds.

Case 3: u is not divisible by lcm(~r), w is divisible by lcm(~q) (also divisible
by lcm(~r)). We can represent u and w as ku lcm(~r) + u mod (lcm(~r)) and
kw lcm(~r), respectively, for some integer constants ku and kw, ku < kw. We
represent the ceiling operation as in Case 2, so Inequality (3.23) becomes
u + lcm(~r)− umod (lcm(~r)) ≤ w. Now, by putting the ku-representation of u
and kw-representation of w, the inequality becomes ku + 1 ≤ kw, which is true
and thus, Inequality (3.23) holds.

Case 4: workloads on both sides of Inequality (3.23) are not divisible by the
corresponding lcm terms. Similarly to Case 2 and Case 3, we can represent the
ceiling operation through the modulo operation. In the worst case, we have
on the right-hand side the smallest possible value for the ceiling operation
which is (w + 1)/ lcm(~q) and this value is divisible by both lcm(~q) and lcm(~r).
In the worst case we have u = w, which means that u also needs only 1 unit to
be rounded up to a value divisible by lcm(~r). Thus, Inequality (3.23) becomes
w + 1 ≤ w + 1, which holds. �

3.5. Improved Hard Real-Time Scheduling of CSDF 49

Latency Analysis under ISPS

The latency of G scheduled by ISPS is given by:

ℒ(G) = max
win→out∈𝒲

{Sout(gC
out) + Dout − Sin(gP

in)}, (3.24)

where𝒲 is the set of all paths from any input actor vin to any output actor vout,
and win→out is one path of the set. Sout(gC

out) and Sin(gP
in) are the earliest start

times of the first phase of τout with non-zero token consumption (phase gC
out)

and the first phase of vin with non-zero token production (phase gP
in) on a path

win→out ∈ 𝒲 , respectively. Dout is the relative deadline of vout.
From Equation (3.24) we can see that the latency of a graph depends on

start times and deadlines of the graph’s actors. Given that actor start times are
dependent on deadlines (see Section 3.5.2), in order to reduce the latency we
should reduce actor deadlines, that is, we should change the token production
times. However, given that reducing the deadlines increases the number of
processors required to schedule the graph, we are interested in selecting the
deadlines which lead to required graph latency while the number of processors
needed to obtain that latency is minimized. To select deadlines properly, we
devise the solution approach presented in this section that formulates the
problem of selecting task deadlines under a given latency constraint while
the number of processors is minimized when a CSDF graph is converted
to real-time periodic tasks by using our ISPS approach as a mathematical
programming problem. In order to formulate our problem as a mathematical
programming problem, we need to rewrite the start time computation in a
proper form.

Lemma 3.5.4. For an acyclic CSDF graph G, the earliest start time of the first phase
of an actor τj ∈ V, denoted Sj(1), under ISPS is given by:

Sj(1) =

{
0 prec(vj) = ∅
maxvi∈prec(vj)

{Si(1) + (Smin
i→j(1)− Smin

i (1)−MCi) + Di} prec(vj) ̸= ∅
(3.25)

where prec(vj) is the set of predecessors of vj, Si(1), MCi, and Di are the earliest
start time of the first phase, the maximum WCET (Definition 3.5.2), and deadline
of the predecessor actor vi, respectively. Smin

i (1) is the earliest start time of the first
phase of vi given by Equation (3.11) when Dk = MCk, ∀vk ∈ V, and Smin

i→j(1) is
given by Equation (3.12) when Dk = MCk, ∀vk ∈ V.

Proof. Let us consider an arbitrary channel eu = (vi, vj) in a CSDF graph
G = (𝒱 , ℰ). Actor vj starts execution of its first phase after vi has started and

50 Chapter 3. Hard Real-Time Scheduling Framework

Smin
i (1) Smin

i→j (1)
t

∆

Di = MCi

prdS

cnsS

Figure 3.3: Production and consumption curves on edge eu = (vi, vj).

fired a certain number of times. This number of firings is independent from
the execution speed of the actors and depends only on the production and
consumption rates of vi and vj on eu, where cumulative production and cumu-
lative consumption functions are given by Equation (3.15) and Equation (3.16).
Suppose that Dk = MCk, ∀vk ∈ V. The production (prdS) and consumption
(cnsS) curves of vi and vj are shown in Figure 3.3. Interval ∆ in Figure 3.3 can
be calculated as:

∆ = Smin
i→j(1)− Smin

i (1)−MCi. (3.26)

Now, suppose that Dk > MCk, ∀vk ∈ V. The production curve will move to
the right for certain time units, and the new start time of the first phase of vi
is Si(1). If the consumption curve does not move, the relation between the
production and consumption given by Equation (3.12) will be violated, that
is, it will happen in some point in time that the cumulative consumption is
greater than the cumulative production. This means that we have to move the
consumption curve to the right by the same number of time units such that
the new start time Si→j(1) satisfies Equation (3.12). Hence, interval ∆ will stay
the same, and it is given by:

∆ = Si→j(1)− Si(1)− Di. (3.27)

By rewriting Equation (3.26) and Equation (3.27), we obtain:

Si→j(1) = Si(1) + (Smin
i→j(1)− Smin

i (1)−MCi) + Di. (3.28)

�

We can derive from Equation (3.25) the following set of linear inequality
constraints, where the number of the linear inequality constraints is equal to

3.5. Improved Hard Real-Time Scheduling of CSDF 51

the number of edges in the CSDF:

Si(1) + (Smin
i→j(1)− Smin

i (1)−MCi) + Di ≤ Sj(1), ∀eu ∈ ℰ . (3.29)

In addition, we can rewrite Equation (3.24) as follows:

ℒ(G) = max
win→out∈𝒲

{Sout(1) +
gC

out−1

∑
k=1

Cout(k) + Dout − Sin(1)−
gP

in−1

∑
k=1

Cin(k)}.

(3.30)
Since the number of processors needed to schedule constrained-deadline

periodic (CDP) tasks depends on the total density δsum of the tasks [DB11], our
objective is to minimize δsum in order to minimize the number of processors.
Therefore, we formulate our optimization problem as follows:

Minimize δsum = ∑
vk∈V

ACk

Dk
(3.31a)

subject to:
Sout(1) + Dout − Sin(1) ≤ ℒ−

gC
out−1

∑
k=1

Cout(k) +
gP

in−1

∑
k=1

Cin(k),

∀win→out ∈ 𝒲
(3.31b)

Si(1) + Di − Sj(1) ≤ −(Smin
i→j(1)− Smin

i (1)−MCi), ∀eu ∈ ℰ
(3.31c)

− Dk ≤ −MCk, Dk ≤ Tk, ∀vk ∈ 𝒱 (3.31d)

where (3.31a) is the objective function and Dk is an optimization variable. The
objective function (3.31a) has |V| optimization variables and is subject to a
latency constraint ℒ. Therefore, (3.31b) comes from (3.30). For each channel in
a graph we have Equation (3.29), which can be rewritten as (3.31c). In addition,
(3.31d) bounds all optimization variables in the objective function. Si(1) and
Sj(1) (including Sin(1), Sout(1)) are implicit variables which are not in the
objective function (3.31a), but still need to be considered in the optimization
procedure. ℒ, gP

in, gC
out, Smin

i→j(1), Smin
i (1), MCk, and Tk are constants. Given that

all variables are integers and both the objective function and the constraints
are convex, problem (3.31) is an integer convex programming (ICP) problem
[LSZ+14] which can be solved by using existing convex programming solvers,
such as CVX solver [GB14].

52 Chapter 3. Hard Real-Time Scheduling Framework

Algorithm 2: Procedure to derive the number of processors.
Input: A CSDF graph G = (𝒱 , ℰ), a partitioned scheduling algorithm A, an allocation

heuristicℋ.
Output: Number of processors mPAR, task allocation alloc.

1 for actor vi in 𝒱 do
2 Compute the minimum common period Ťi by using Equation (3.5);

3 utotal = 0;
4 U ← ∅; (the set of allocation units, initially empty)
5 for actor vi ∈ 𝒱 do
6 ui = 0;
7 for phase ϕ of vi, 1 ≤ ϕ ≤ φi do
8 ui(ϕ) =

Ci(ϕ)

Ťi
;

9 ui = ui + ui(ϕ);
10 utotal = utotal + ui(ϕ);

11 U = U ∪ ui;

12 mPAR = mOPT = ⌈utotal⌉;
13 Reorder elements of U if required by an allocation heuristicℋ;
14 for u ∈ U do
15 Π = {π1, π2, · · · , πmPAR};
16 Apply bin-packing allocation heuristicℋ to u on πj ∈ Π and check the

schedulability test of algorithm A on πj;
17 if u is not allocated to any πj ∈ Π then
18 Allocate u on a new processor πmPAR+1;
19 mPAR = mPAR + 1;

20 return mPAR, alloc;

3.5.6 Deriving the Number of Processors

As introduced in Section 2.2.5, by using Equation (2.12) one can compute the
absolute minimum number of processors mOPT needed to schedule the tasks
with deadlines equal to the periods. The tasks can be scheduled on mOPT if an
optimal scheduling algorithm is used. The optimal scheduling algorithms are
either global or hybrid, and hence, they require task migration. On the other
hand, the partitioned scheduling algorithms do not require task migration. In
that case the tasks are first allocated to the processors, for example by using a
task partitioning heuristic, as described in Section 2.2.5, and then the tasks on
each processor are scheduled using a uniprocessor scheduling algorithm.

The procedure to calculate the number of processors required for the par-
titioned scheduling of the task set obtained by the conversion procedure
described in Section 3.5 (see Algorithm 1) is given in Algorithm 2. Algo-
rithm 2 takes as inputs a CSDF graph G, a partitioned scheduling algorithm A

3.5. Improved Hard Real-Time Scheduling of CSDF 53

and an allocation heuristicℋ. The minimum common period for each actor
is calculated in lines 1-2 of the algorithm. Once the periods are calculated,
then the total utilization of the converted task set and the utilization per task
set corresponding to an actor are calculated in lines 3-10. Line 11 in Algo-
rithm 2 ensures that the task set corresponding to an actor is considered as
one scheduling entity, that is, one allocation unit. The absolute minimum
number of processors mOPT for scheduling the tasks is computed in line 12.
Some allocation heuristics require a preprocessing step to be performed on the
tasks before applying the heuristic. This preprocessing step is usually sorting
the tasks based on some criteria, such as their utilization. That step is done
in Algorithm 2 in line 13. The following lines find the number of processors
and the allocation of tasks to processors. Given that mOPT is the lower bound
on the number of processors mPAR needed by partitioned scheduling algo-
rithms, Algorithm 2 starts with the task partitioning on mOPT processors. If
the tasks pass the schedulability test on all mPAR processors, for example, in
the case of IDP tasks and EDF scheduler the utilization of the tasks allocated
to a processor is not greater than 1, then the algorithm returns mPAR and the
corresponding allocation of the tasks to the processors alloc.

Let us now analyze the time complexity of Algorithm 2 in the worst case.
The first for loop in lines 1-2 takes linear time to calculate the minimum com-
mon period of each actor, that is, its time complexity is O(|𝒱|). The second for
loop in lines 5-11 has a nested for loop and hence, its time complexity in the
worst case is given by O(|𝒱|φ), where φ is the maximum number of execution
phases per actor, φ = maxvi∈𝒱{φi}. If the task sorting in line 13 should be per-
formed prior to performing the task allocation, it will have O(|𝒱|φ log(|𝒱|φ))
time complexity given that the maximum number of tasks is |𝒱|φ. The for loop
in lines 14-19 implements the allocation of the tasks to the processors by apply-
ing certain allocation heuristic and scheduling algorithm. Given that the maxi-
mum number of tasks is |𝒱|φ and the maximum number of processors needed
to allocate and schedule an CSDF graph is equal to the number of actors in the
graph |𝒱|, the time complexity of finding the number of processors mPAR and
the feasible task allocation is O(|𝒱|φ log |𝒱|) [PZMA04], [BF05]. Thus, we can
conclude that the running time of Algorithm 2 is polynomial and its complexity
is O(|𝒱|φ log |𝒱|) or O(|𝒱|φ log(|𝒱|φ)) if the preprocessing step is performed.

54 Chapter 3. Hard Real-Time Scheduling Framework

Table 3.2: Benchmarks used for evaluation.

Domain Benchmark |𝒱| |ℰ | |𝒯 | Source
Medical Heart pacemaker 4 3 67 [PMN+09]

Communication Reed Solomon Decoder (RSD) 6 6 904 [BMMKM10]
Financial BlackScholes 41 40 261 [BMKdD13]

Computer Vision Disparity map 5 6 11 [ZK00]
Pdetect 58 76 4045 [BMKdD13]

Audio processing
CELP algorithm 9 10 167 [BELP96]
CD2DAT rate converter 6 5 22 [OH04]
MP3 Playback 4 3 8 [WBJS07]

Image processing JPEG2000 240 703 639 [BMKdD13]

3.6 Evaluation

We evaluate our approach in terms of its performance and time complexity
by performing experiments on the benchmarks given in Table 5.2. Columns
3, 4 and 5 in Table 5.2 give for each benchmark the number of actors |𝒱|, the
number of channels |ℰ | in the corresponding CSDF graph of a benchmark,
and the number of periodic tasks |𝒯 | obtained after converting the actors of
the CSDF graph by our approach to a set of periodic tasks 𝒯 . The WCETs
of actors in the benchmarks are given in clock cycles [BMKdD13] or in time
units [BMMKM10], [WBJS07]. If the execution times of a benchmark are not
given [BELP96], [PMN+09], [OH04], certain values based on a static analysis
are assumed. The execution times of benchmark [ZK00] are obtained from the
measurements of the benchmark running on a MicroBlaze processor.

Our approach is evaluated by comparison to 3 related scheduling ap-
proaches - strictly periodic scheduling, SPS, proposed in [BS13], periodic schedul-
ing, PS, presented in [BMKdD13], and self-timed scheduling, STS, given in
[SGB08]. We implemented our approach in Python. The SPS approach was
implemented in Python within the darts tool-set [Bam12]. The approach
in [SGB08] was implemented in C++ within the SDF3 tool-set [SGB06]. In
addition, we implemented the approach in [BMKdD13] in Python as well. We
formulated both LP problems [BMKdD13] for finding the period of a graph,
and for finding the start times and the buffer sizes as integer linear program-
ming (ILP) problems, and we added the constraint that the periods of all actors
in a graph have to be integers. We used CPLEX Optimization Studio [IBM12]
to solve the ILP problems and mixed integer disciplined convex programming
(MIDCP) in CVX [GB14] to solve our latency reduction problem. We have run
all the experiments on a Dell PowerEdge T710 server running Ubuntu 11.04
(64-bit) Server OS.

3.6. Evaluation 55

3.6.1 Performance of the ISPS Approach

The main objective of the evaluation is to compare the throughput of streaming
applications and the required number of processors to guarantee the through-
put when scheduled by our ISPS with the throughput and the number of
processors under SPS [BS13], PS [BMKdD13] and STS [SGB08]. In addition,
we compare our ISPS and the other scheduling approaches in terms of applica-
tion latency and memory resources needed to implement the communication
channels.

We used the sdf3analysis-csdf tool from SDF3 [SGB06] to obtain
the maximum achievable throughput of a graph, which is the throughput
under STS, and to compute the minimum buffer sizes required to achieve that
throughput. Unfortunately, the sdf3analysis-csdf tool does not support
the latency calculation and the calculation of the number of processors. Thus,
we were not able to compare them with our approach. We were also not able
to obtain the number of processors for a graph scheduled under PS, because
the calculation of the number of processors was not considered in [BMKdD13].

Results of the performance evaluation are given in Table 3.3. We report the
throughput of the output actors under ISPS, calculated by Equation (3.22), in
the second column of Table 3.3. Here t.u. denotes the corresponding time unit
of a benchmark. Columns 7, 12 and 15 show the ratio between the throughput
of the output actors under our ISPS and SPS, PS and STS, respectively. Given
that the main objective of this experiment is to evaluate the throughput of the
benchmarks scheduled under ISPS and the minimum number of processors
needed to obtain that throughput, our ISPS approach converts the CSDF
graphs of the benchmarks to IDP tasks, which minimizes the number of
processors required to schedule the benchmarks. For processor requirements
in case of ISPS and SPS, we compute the minimum number of processors
for IDP tasks under optimal and partitioned First-Fit Decreasing (Utilization)
EDF (FFD-EDF) schedulers by using Equation (2.12) and Algorithm 2 for
ISPS, and Equation (2.12) and Equation (2.16) for SPS - see columns 4, 5,
9 and 10. By comparing the throughputs under ISPS and SPS, we can see
that for the majority of the benchmarks the throughput under our ISPS is
higher than the corresponding throughput under SPS. Only in two cases the
throughputs are the same for both schedules. The first case is MP3 Playback,
which bottleneck actor (the actor with the biggest workload over one iteration
period) is the same under both SPS and ISPS, and that actor has only one
phase, so the influence of different WCET for actor phases on throughput
cannot be seen. However, the influence can be seen from the required number
of processors needed for scheduling of MP3 Playback by optimal schedulers,

56 Chapter 3. Hard Real-Time Scheduling Framework

which is smaller in the case of our ISPS. The second case is CD2DAT. For this
benchmark lcm(~q) and lcm(~r) are equal and much higher than the maximum
workload of actors over an iteration period for both SPS and ISPS, which
leads to the same iteration period for both schedules. However, the WCET-
awareness of ISPS leads to smaller number of processors. Note that if we want
to schedule a task-set on smaller number of processors than the one calculated
by Equation (2.12) or Equation (2.12)/Algorithm 2, we should scale up the
computed actor periods by the same scaling factor [ZBS13]. Hence, to schedule
CD2DAT by SPS on the same number of processors required by ISPS, we
need to scale up actor periods by 2, which will lead to decrease in throughput
by 2. Thus, ISPS outperforms SPS in terms of throughput when CD2DAT is
scheduled on 1 processor. Benchmarks JPEG2000 and RSD can achieve much
better throughput when scheduled under ISPS, but in that case they require
larger number of processors to be scheduled. Note that the throughputs of
these two benchmarks cannot be increased under SPS even when the number
of processors is increased. If we apply the period scaling technique [ZBS13]
for these two benchmarks to schedule them under ISPS on the same number
of processors as required under SPS the throughput values for JPEG2000
and RSD under our ISPS are 3.93 and 11.2 times higher, as given in column
7 in parenthesis, than the corresponding values under SPS. Therefore, we
can conclude that in all cases the minimum number of processors required
to guarantee certain throughput under our ISPS is smaller than or equal to
the minimum number of processors under SPS while the throughput under
ISPS is increased in most cases, thus, processors are better utilized.

Column 12 in Table 3.3 shows the ratio of the maximum throughput of
the output actors achieved by our ISPS to the maximum throughput of the
output actors achieved by PS. We can see that both approaches give the same
throughput for all benchmarks, which is expected given that PS schedules
phases of an actor in a CSDF graph statically within a period of the actor, hence
the scheduling granularity is similar between these two approaches.

Table 3.3 shows in column 15 the ratio of the maximum throughput of the
output actors achieved by our approach to the absolute maximum through-
put of the output actors achieved by self-timed scheduling of actor firings,
which is the optimal scheduling in terms of throughput. We can see that the
throughput under ISPS is equal or very close to the throughput under STS
for the majority of the benchmarks. Differences in the throughput appear
as a result of the ceiling operation during the calculation of actor common
periods in Equation (3.5). The biggest difference is in the case of the CD2DAT
benchmark. For this benchmark lcm(~r) is much higher than the maximum

3.6. Evaluation 57

workload of actors over an iteration period, and thus, the calculated actor
periods are underutilized, which leads to lower throughput. The throughput
value N/A for JPEG2000 indicates that the SDF3 tool-set [SGB06] returned
an infeasible throughput (most likely related to an integer overflow).

Let us now analyze the latency and the memory resources needed to im-
plement the communication channels of the benchmarks. The graph latency
under our ISPS is calculated by Equation (3.24) for IDP tasks and shown in
column 3 of Table 3.3. Column 8 shows the ratio between the graph latency un-
der our ISPS and SPS. As we can see from columns 4, 5, 7-10 in Table 3.3: for
4 benchmarks (highlighted in the table) under ISPS we obtain higher through-
put and smaller latency than under SPS without increasing the number of
processors (with JPEG2000 and RSD scheduled on the same number of pro-
cessors as in case of the SPS); for the other 3 benchmarks (BlackScholes, Disp.
map, Pdetect) the obtained increase in throughput is less than the increase in
latency on a platform with the same (or 1 less for BlackScholes under ISPS,
partitioned scheduling) number of processors; for the rest 2 benchmarks we
obtained the same throughput with the increase in latency, but also with the
decrease in the number of processors. For the tested benchmarks, the calcu-
lated buffer sizes under ISPS are never smaller than the buffer sizes under
SPS, see column 11 in Table 3.3. The highest ratio in buffer sizes between
ISPS and SPS is obtained for BlackScholes and CD2DAT. However, the actual
increase in communication memory resources is 215 KB and less than 1 KB,
respectively, which is acceptable given the size of the memory available in
modern embedded systems. Note that both latency and buffer sizes under
our ISPS can be reduced by carefully selecting deadlines for individual actors
(actors phases). This will be shown later in Section 3.6.3.

Column 13 gives the ratio of the maximum latency of benchmarks under
our ISPS to the latency of benchmarks under PS. Although [BMKdD13] does
not provide the latency calculation for their PS, we were able to extract the
latency information from the start times obtained by solving the ILP problem.
However, for benchmarks JPEG2000 and Pdetect we could not get a solution
from the ILP solver after more than 1 day, so we could not calculate the latency
for these two benchmarks. As we can see, the latency of benchmarks under
ISPS is always larger than the latency under PS. As mentioned above, reduc-
ing the latency under ISPS can be done by carefully selecting deadlines for
individual actors (actors phases), as shown in Section 3.6.3. Moreover, ISPS re-
ports the maximum latency while PS reports the actual latency under a certain
schedule. The ratio of the calculated buffer sizes under ISPS to the calculated
buffer sizes under PS and STS is given in columns 14 and 16, respectively.

58 Chapter 3. Hard Real-Time Scheduling Framework

Table
3.3:C

om
parison

ofdifferentscheduling
approaches.

B
enchm

ark
IS

P
S

S
P

S
P

S
S

TS

ℛ
IS

P
S

out
[

1t.u.]
ℒ

IS
P

S[t.u.]
m

IS
P

S
O

PT
m

IS
P

S
PA

R
M

IS
P

S[B]
ℛ

IS
P

S
out
ℛ

S
P

S
out

ℒ
IS

P
S

ℒ
S

P
S

m
S

P
S

O
PT

m
S

P
S

PA
R

M
IS

P
S

M
S

P
S

ℛ
IS

P
S

out
ℛ

P
S

out

ℒ
IS

P
S

ℒ
P

S
M

IS
P

S

M
P

S
ℛ

IS
P

S
out
ℛ

S
TS

out

M
IS

P
S

M
S

TS

P
acem

aker
1/10

1920
2

2
436

1.5
0.99

2
2

1.47
1

2.93
4.95

0.91
5.07

R
S

D
1/1080

6295
2

2
5205

22.4
0.05

1
1

1.56
1

2.8
3.23

0.83
–

(1/2160)
(11695)

(1)
(1)

(5460)
(11.2)

(0.097)
(1.63)

B
lackS

choles
1/3234876

24764218
16

16
260284

1.33
1.58

16
17

6.41
1

5.31
11.57

1
–

D
isp.m

ap
1/65326

382593
2

2
995520

1.03
1.13

2
2

1
1

3.18
2

1
2

P
detect

1/2033760
36608557

11
13

13464910
1.0002

1.12
11

13
1.26

1
–

–
1

–
C

E
LP

1/2
964

6
6

1780
1.5

0.99
6

6
1.68

1
2.24

2.38
1

–
C

D
2D

AT
1/147

2637
1

1
116

1
3.18

2
2

4.83
1

8.88
11.6

0.17
5.09

M
P

3
P

layback
1/25

46355
3

4
3860

1
1.84

4
4

1.48
1

2.02
1.76

0.91
1.66

JP
E

G
2000

1/811008
27255343

18
18

9625878
70.65

0.02
1

1
1.17

1
–

–
N

/A
N

/A
(1/14598144)

(497471535)
(1)

(1)
(10006530)

(3.93)
(0.3)

(1.21)

Table
3.4:Tim

e
com

plexity
(in

seconds)ofdifferentscheduling
approaches.

B
enchm

ark
IS

P
S

S
P

S
P

S
S

TS
t IS

P
S

ℛ
t IS

P
S

S&
B

t S
P

S
ℛ

t S
P

S
S&

B
t P

S
ℛ

t P
S

S&
B

t S
TS
ℛ

t S
TS

S&
B

P
acem

aker
1.24e-05

0.056
1.31e-05

0.007
0.19

0.34
0.004

1.52
R

S
D

1.62e-05
4

1.74e-05
3.3

115.11
146.66

0.06
>

1
day

B
lackS

choles
9.7e-05

1.13
9.46e-05

0.43
0.28

1.22
0.05

>
1

day
D

isp.m
ap

1.36e-05
0.0014

1.69e-05
0.00087

0.027
0.055

0.004
0.01

P
detect

0.00014
3.52

0.00013
0.65

83.64
>

1
day

0.33
>

1
day

C
E

LP
2.26e-05

0.097
2.43e-05

0.029
0.56

0.95
0.01

>
1

day
C

D
2D

AT
1.67e-05

0.59
1.76e-05

0.66
0.061

0.17
0.004

108.56
M

P
3

P
layback

1.41e-05
59.07

1.37e-05
55.87

0.021
0.034

0.004
3236.31

JP
E

G
2000

0.00053
27.22

0.00053
3.55

0.51
>

1
day

N
/A

N
/A

Table
3.5:Tim

e
com

plexity
(in

seconds)
for

the
calculation

ofnum
ber

ofproces-
sors.B

enchm
ark

t IS
P

S
m

O
PT

t IS
P

S
m

PA
R

P
acem

aker
4.51e-05

0.00095
R

S
D

0.00049
0.012

B
lackS

choles
0.00017

0.0077
D

isp.m
ap

1.19e-05
0.00037

P
detect

0.0028
0.2

C
E

LP
0.0001

0.0029
C

D
2D

AT
1.72e-05

0.0021
M

P
3

P
layback

9.06e-06
0.00039

JP
E

G
2000

0.00048
0.42

3.6. Evaluation 59

Again, for benchmarks JPEG2000 and Pdetect under PS we could not get a
solution from the ILP solver after more than 1 day. Similarly, for benchmarks
RSD, BlackScholes, Pdetect and CELP under STS we could not get a solu-
tion for longer than 1 day. As mentioned before, value N/A for JPEG2000
indicates that SDF3 tool-set returned an infeasible throughput, and hence the
buffer sizes were not calculated. As we can see, the buffer sizes under PS and
STS are always smaller than the buffer sizes under ISPS. The highest ratio in
buffer sizes between ISPS and PS is obtained for BlackScholes and CD2DAT,
with the actual increase in communication memory resources of 232 KB and
less than 1 KB, respectively. The highest increase in buffer sizes under ISPS
when compared to STS is less than 1 KB. The reason for the difference in the
buffer sizes is that in both PS and STS approaches it is assumed that the pro-
duction of tokens happens at the end of the actor firing, while the consumption
happens at the start of the firing, while in our case (and in SPS case) the worst-
case scenario is considered, that is, the production of tokens happens at the
earliest possible start of the actor firing (at start times), while the consumption
happens at the latest possible end of actor firing (at deadlines). Note that in an
implementation of a dataflow application, data may be consumed from input
channels and produced to output channels at arbitrary points in time during
an actor firing. To guarantee that buffer overflow/underflow does not occur,
buffer sizes have to be sufficiently large. Thus, the assumption in PS and STS
limits the actual implementation of reading and writing of tokens, while the
buffers calculated in our case are valid regardless of the actual point in time
where reading and writing of tokens happens and thus, our approach does not
limit the implementation of the reading and writing of tokens. Moreover, the
buffer sizes calculated in PS and STS are valid for that specific schedule and
the specific production/consumption pattern, while in the case of our ISPS
the computed buffer sizes are valid for any schedule of actor firings during its
period and for any production/consumption pattern during its firing.

3.6.2 Time Complexity of the ISPS Approach

In this section, we evaluate the efficiency of our ISPS approach in terms of the
execution time of our algorithms to calculate the throughput of an application,
and to find a schedule and buffer sizes of communication channels. The
execution times are given in Table 3.4. We compare these execution times with
the corresponding execution times of related approaches – SPS, PS and STS.

Let us first analyze the time needed to calculate the throughput of an
application. The execution times needed to find the application throughput
under ISPS, SPS, PS and STS are given in columns 2, 4, 6 and 8, respectively.

60 Chapter 3. Hard Real-Time Scheduling Framework

As we can see, the times spent on calculating the throughput of an application
under ISPS and SPS are similar and much shorter than the time needed for
solving the ILP problem to find the application throughput under PS and the
time spent on finding the maximum achievable throughput of the application,
that is, the throughput under STS. Thus, our approach outperforms PS and
STS in terms of time required to calculate the throughput of an application.
Given that in most cases ISPS gives higher throughput of an application than
SPS within almost the same time, we can say that ISPS outperforms SPS as
well.

Next, we compare the time needed to derive the start times of actor firings,
that is, the schedule, and the buffer sizes of communication channels. These
times are given in columns 3, 5, 7 and 9, for ISPS, SPS, PS and STS, respec-
tively. By comparing the times under ISPS and SPS, we can see that both
approaches find the start times and the buffer sizes within less than 4 seconds
in most cases, and within a minute in two cases. Then, we compare ISPS with
PS. In all but two cases ISPS is faster than PS. For those two cases (CD2DAT
and MP3 Playback), the ILP problems for PS are not complex and hence they
can be solved very fast. As shown in Table 3.4, ISPS gives a solution for
those two cases within a second, and within a minute. On the other hand, for
benchmarks Pdetect and JPEG2000 we could not get a solution from the ILP
solver for PS after more than a day, while our ISPS produced the results in
a couple of seconds and within a minute. By comparing to STS, our ISPS
approach is always much faster. Moreover, for 4 benchmarks, we were not
able to get the solution for the buffer sizing problem under STS after more
than a day.

We report in Table 3.5 the execution time for calculating the minimum num-
ber of processors needed to temporally schedule the tasks, obtained by the con-
version of an application by using our ISPS approach, under global optimal
and partitioned FFD-EDF schedulers. In the case of global optimal scheduling,
the minimum number of processors is calculated by Equation (2.12), while
the calculation procedure for FFD-EDF partitioned scheduling is presented in
Algorithm 2 in Section 3.5.6. As we can see, the number of processors in the
case of optimal scheduling can be calculated within a millisecond for most of
the benchmarks, while in the case of partitioned scheduling the calculation
is done within less than 12 milliseconds for most cases and within less than
420 milliseconds in two cases. Thus, the calculation of the number of proces-
sors required to schedule an application under our ISPS is very efficient. We
obtained similar times for the calculation of the number of processors under
SPS and global and partitioned FFD-EDF schedulers. We could not numer-

3.6. Evaluation 61

ically compare the time complexity of our approach with regard to the PS
approach because the calculation of the number of processors was not consid-
ered in [BMKdD13]. As mentioned already in Section 3.3, one possible way to
find the minimum number of processors under PS is to trace the schedules but
that procedure has an exponential time complexity in the worst case, whereas
our Algorithm 2 for finding the minimum number of processors under ISPS
has a polynomial time complexity, see Section 3.5.6. Finding the minimum
number of processors under STS requires complex Design Space Exploration
(DSE) procedures, with an exponential time complexity in the worst case, to
find the best allocation which delivers the maximum achievable throughput.
The SDF3 tool-set used to compute the self-timed scheduling parameters does
not support such design space exploration for self-timed scheduling. Thus,
we could not numerically compare the time complexity of ISPS with the time
complexity of STS. However, given that ISPS finds the minimum number of
processors for scheduling an application in polynomial time in the worst case,
as shown in Section 3.5.6, we can conclude that our ISPS is faster than STS.

3.6.3 Reducing Latency under ISPS

We have shown in the previous experiments that when compared to the SPS
approach our ISPS delivers in 5 out of 9 cases larger graph latency. When
compared to the PS approach, our ISPS approach always results in a graph
schedule with larger graph latency. If we want to reduce graph latency under
ISPS we could use the latency reduction method presented in Section 3.5.5. We
would like to see how close we are in graph latency in comparison to the SPS
and PS approaches after applying our latency reduction method. Therefore, in
this section, we present results obtained after applying our latency reduction
method introduced in Section 3.5.5 on the benchmarks given in Table 5.2. The
results are given in Table 3.6. In order to apply our latency reduction method,
we should set a latency constraint. To compare our ISPS approach to the
SPS approach, we set the latency constraint to be equal to the graph latency
obtained under SPS, ℒSPS, and we apply our method for latency reduction.
We can see from column 3 in Table 3.6 that we significantly reduce latency for
the benchmarks that had higher latency under ISPS than SPS, see column
8 in Table 3.3, and that we were able to meet the latency constraint ℒSPS for
all the benchmarks. Moreover, we see that reduction in graph latency does
not influence the graph throughput, that is, the ratio of the graph throughput
under ISPS to the graph throughput under SPS in column 2 is the same as
the corresponding ratio given in column 7 in Table 3.3 with the period scaling
technique applied for benchmarks RSD and JPEG2000 under ISPS. Columns

62 Chapter 3. Hard Real-Time Scheduling Framework

4 to 6 give the results on resources in terms of the number of processors
required by ISPS and SPS, and the ratio between ISPS and SPS approach
in buffer sizes needed to implement communication channels in a graph. We
find the minimum number of processors under partitioned First-Fit Increasing
Deadlines EDF (FFID-EDF) [BF05] scheduler by using Algorithm 2 for ISPS,
and Equation (2.16) for SPS and FFD-EDF scheduler. We can see from columns
2 to 5 that our ISPS approach with our latency reduction method is able to
schedule almost all benchmarks on the same number of processors as the
SPS approach, while obtaining better graph throughput and shorter graph
latency. Only in one case, for benchmark BlackScholes, our approach needs
one processor more than the SPS approach. However, our approach delivers
better throughput for benchmark BlackScholes than the SPS. Although the
ratio between the buffer sizes under ISPS and the buffer sizes under SPS,
given in column 6 in Table 3.6, is smaller than the corresponding ratio in
Table 3.3, column 11, the buffer sizes under ISPS are still always bigger than
the corresponding buffer sizes under SPS.

Columns 7 to 10 give the results when our latency reduction method is
applied with the latency constraint dictated by the PS approach, ℒPS. Since
we could not obtain the solution from the ILP solver in the case of the PS
approach after 1 day for Pdetect and JPEG2000 benchmarks – see Table 3.3,
we could not provide latency and buffer sizes ratios for these two benchmarks.
We can see from column 8 in Table 3.6 that we significantly reduce the latency
for all benchmarks, see column 13 in Table 3.3. However, in four cases, for
benchmarks BlackScholes, CELP, CD2DAT, and MP3 playback, our latency
reduction method was not able to meet the latency constraint ℒPS. The rea-
son is that the PS approach gives the actual latency under a static schedule
while our ISPS approach calculates the maximum latency for a CSDF graph
converted into real-time periodic tasks. For these 4 benchmarks, column 8
gives the shortest achievable latency under ISPS obtained by applying our
latency reduction method. The ratio of the graph throughput under ISPS
to the graph throughput under PS is given in column 7 and it is the same
as the corresponding ratio given in column 12 in Table 3.3. We report in
column 9 the minimum number of processors under ISPS and FFID-EDF
found by Algorithm 2. We can see that the number of processors needed
by all the benchmarks with reduced latency under ISPS is higher than the
corresponding number of processors given in Table 3.3, column 5, which is
expected. The number of processors for a graph scheduled under PS is not
given because the calculation of the number of processors was not considered
in [BMKdD13]. Although the ratio between the buffer sizes under ISPS and

3.7. Discussion 63

the buffer sizes under PS, given in column 10 in Table 3.6, is smaller than the
corresponding ratio in Table 3.3, column 14, the buffer sizes under ISPS are
still always bigger than the buffer sizes under PS. As explained previously, the
reason for the difference in the buffer sizes is that the PS approach considers
specific schedule and the specific production/consumption pattern, while in
the case of our ISPS the computed buffer sizes are valid for any schedule of
actor firings during its periods and for any production/consumption pattern
during its firing.

We also measured the execution times of our ISPS approach enhanced
with the latency reduction method to find tasks’ deadlines and a schedule,
that is, tasks’ start times, such that the latency constraint is satisfied. In most
cases our latency reduction method needed less than a second, and in three
cases less than a minute, to find tasks’ deadlines and a schedule which meets
the latency constraint.

Table 3.6: Performance of the ISPS approach under different latency constraints.

Benchmark ℒconstraint = ℒSPS ℒconstraint = ℒPS

ℛISPS
out
ℛSPS

out

ℒISPS

ℒSPS mISPS
PAR mSPS

PAR
MISPS

MSPS
ℛISPS

out
ℛPS

out

ℒISPS

ℒPS mISPS
PAR

MISPS

MPS

Pacemaker 1.5 0.99 2 2 1.47 1 1 4 2.64
RSD 11.2 0.097 1 1 1.56 1 1 3 1.15

BlackScholes 1.33 1 18 17 5.7 1 1.16 41 6.86
Disp. map 1.03 0.95 2 2 1 1 1 5 1.33
Pdetect 1.0002 0.9 13 13 1.09 1 – 54 –
CELP 1.5 0.99 6 6 1.68 1 1.1 9 1.6

CD2DAT 1 1 2 2 4.75 1 3.35 6 8.8
MP3 Playback 1 1 4 4 1.13 1 1.1 4 1.26

JPEG2000 3.93 0.3 1 1 1.21 1 – 230 –

3.7 Discussion

The theoretical analysis presented in Section 3.5 proves that streaming applica-
tions, modeled as acyclic CSDF graphs, can be converted to real-time periodic
tasks by using our scheduling approach which converts each actor in a CSDF
graph, by considering different WCET value for each actor phase, to a set
of strictly periodic tasks. As a result, a variety of hard real-time scheduling
algorithms can be applied to temporally schedule the graph on a platform with
calculated number of processors with a certain guaranteed throughput and la-
tency. Additionally, the latency reduction method presented in Section 3.5 can
be used to reduce the graph latency when the converted tasks are scheduled
as real-time periodic tasks. The experiments on a set of real-life applications

64 Chapter 3. Hard Real-Time Scheduling Framework

showed that our ISPS approach gives tighter guarantee on the throughput
and better processor utilization with acceptable increase in terms of commu-
nication memory requirements when compared with the SPS hard real-time
scheduling approach. By applying our proposed latency reduction method,
the ISPS delivers shorter graph latency while providing better throughput
and processor utilization than the SPS approach. When compared with the
PS approach, our proposed approach gives the same throughput with in-
creased communication memory but takes much shorter time for deriving
the schedule and for calculating the minimum number of processors and the
size of communication buffers. Finally, our approach gives throughput that
is equal or very close to the absolute maximum throughput achieved by the
self-timed scheduling (STS) of actor firings but requires much shorter time to
derive the schedule.

