
Improved hard real-time scheduling and transformations for embedded
Streaming Applications
Spasic, J.

Citation
Spasic, J. (2017, November 14). Improved hard real-time scheduling and transformations for
embedded Streaming Applications. Retrieved from https://hdl.handle.net/1887/59459

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/59459

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/59459

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/59459

Author: Spasic, J.
Title: Improved hard real-time scheduling and transformations for embedded Streaming
Applications
Issue Date: 2017-11-14

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/59459
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 2

Background

THIS chapter introduces the background necessary to understand the
contribution of this thesis presented in the following chapters. First, we

give in Table 2.1 a summary of the mathematical notations used throughout
the thesis. Then, we present the dataflow models considered in this thesis
in Section 2.1, while some results from the hard real-time scheduling theory
relevant for this thesis are presented in Section 2.2.

Table 2.1: Summary of mathematical notations

Symbol Meaning
N The set of natural numbers excluding zero
N0 N∪ {0}
Z The set of integers
|x| The cardinality (size) of a set x
x̂ The maximum value of x
x̌ The minimum value of x

lcm The least common multiple operator
mod The integer modulo operator

2.1 Dataflow Models-of-Computations (MoCs)

As mentioned earlier in Section 1.1.2, dataflow MoCs have been used to ef-
ficiently express parallelism in streaming applications. In this section, we
present the dataflow MoCs considered in this thesis, that is, the CSDF and SDF
MoCs are given in Section 2.1.1, and the PPN MoC is given in Section 2.1.2.
The CSDF MoC is used to specify streaming applications within the hard

18 Chapter 2. Background

real-time scheduling framework proposed in Chapter 3. The SDF MoC is used
to specify the input streaming applications in the techniques which exploit
parallelism in streaming applications to maximize the resource utilization and
minimize the energy consumption, presented in Chapters 4 and 5, respectively.
The PPN MoC is used to specify streaming applications within the solution
for highly accurate modeling of energy consumption, presented in Chapter 6.

2.1.1 Cyclo-Static Dataflow (CSDF)

An application modeled as a CSDF [BELP96] is a directed graph G = (𝒱 , ℰ)
that consists of a set of actors 𝒱 which communicate with each other through
a set of communication channels ℰ . Actors represent a certain functionality
of the application, while communication channels are first-in first-out (FIFO)
buffers representing data dependencies and transferring data tokens between
the actors. A data token is an atomic data object belonging to a stream of
data transferred between the actors. We can associate each actor vi ∈ 𝒱 in a
graph with two sets of actors, the predecessors set, denoted by prec(vi), and the
successors set, denoted by succ(vi). These sets are given by:

prec(vi) = {vj ∈ 𝒱 : ∃eu = (vj, vi) ∈ ℰ} (2.1)
succ(vi) = {vj ∈ 𝒱 : ∃eu = (vi, vj) ∈ ℰ} (2.2)

In addition, we can define for each actor vi ∈ 𝒱 in a graph two sets of commu-
nication channels, the input set, denoted by inp(vi), and the output set, denoted
by out(vi). The input set contains all the input channels to vi, while the output
set contains all the output channels from vi. If an actor vi receives an input
data stream from the environment then vi is called input actor, and vi does not
have input channels, that is, inp(vi)= ∅. Similarly, if an actor vi produces an
output data stream for the environment then vi is called output actor, and vi
does not have output channels, that is, out(vi)= ∅. A path wi→j between actors
vi and vj is an ordered sequence of channels connecting vi and vj denoted as
wi→j = {(vi, vk), (vk, vl), · · · , (vm, vj)}.

Every actor vi ∈ 𝒱 has an execution sequence [Fi(1), Fi(2), · · · , Fi(φi)]
of length φi, that is, it has φi phases. The kth time that actor vi is fired, it
executes the function Fi(((k − 1) mod φi) + 1). As a consequence, the ex-
ecution time of actor vi is also a sequence [CC

i (1), CC
i (2), · · · , CC

i (φi)] con-
sisting of the worst-case computation time values for each phase. Simi-
larly, every output channel eu of an actor vi has a predefined token pro-
duction sequence [xu

i (1), xu
i (2), · · · , xu

i (φi)] of length φi. Analogously, token
consumption on every input channel eu of an actor vi is a predefined se-

2.1. Dataflow Models-of-Computations (MoCs) 19

[3,1,1]
υ1

[2,3]

[2]
υ3

υ2

[1,1,1]

[1,0,0]

[1,1] [0,2]

[3]

[1]e1
e2

e3

Figure 2.1: A CSDF graph G.

quence [yu
i (1), yu

i (2), · · · , yu
i (φi)], called consumption sequence. The total num-

ber of tokens on a channel eu produced by vi during its first n invocations
and the total number of tokens consumed on the same channel by vj dur-
ing its first n invocations are Xu

i (n) = ∑n
l=1 xu

i (((l − 1) mod φi) + 1) and
Yu

j (n) = ∑n
l=1 yu

j (((l − 1) mod φj) + 1), respectively.
Figure 2.1 shows an example of a CSDF graph. For instance, actor v1 has 3

phases, that is, φ1 = 3, its execution time sequence (in time units) is [CC
1 (1),

CC
1 (2), CC

1 (3)] = [3, 1, 1] and its token production sequence on channel e1 is
[1, 0, 0].

An acyclic CSDF graph can be partitioned into a number of levels, denoted
by L, in a way similar to topological sort. In that way, all input actors belong
to level-1, the actors from level-2 have all immediate predecessors in level-1,
the actors from level-3 have immediate predecessors in level-2 and can also
have immediate predecessors in level-1, and so on.

An important property of the CSDF model is the ability to derive, at design
time, a schedule for the actors. In order to derive a valid static schedule for a
CSDF graph at design time, it has to be consistent and live.

Theorem 2.1.1 (From [BELP96]). In a CSDF graph G, a repetition vector ~q =
[q1, q2, · · · , qN]

T is given by

~q = Φ ·~r, with Φjk =

{
φj if j = k
0 otherwise

(2.3)

where~r = [r1, r2, · · · , rN]
T is a positive integer solution of the balance equation

Γ ·~r =~0 (2.4)

and where the topology matrix Γ ∈ Z|ℰ |×|𝒱| is defined by

Γuj =


Xu

j (φj) if actor vj produces on channel eu

−Yu
j (φj) if actor vj consumes from channel eu

0 otherwise.

(2.5)

20 Chapter 2. Background

A CSDF graph G is said to be consistent if a positive integer solution
~r = [r1, r2, · · · , rN]

T exists for the balance equation, Equation (2.4). We call
~r aggregated repetition vector. The smallest non-trivial aggregated repetition
vector~r is called basic aggregated repetition vector~r. Its corresponding repetition
vector ~q is called basic repetition vector ~q. If a deadlock-free schedule can be
found, G is said to be live.

Definition 2.1.1. For a consistent and live CSDF graph G, an actor iteration
is the invocation of an actor vi ∈ 𝒱 for qi times, a phase iteration is the
invocation of one phase of an actor vi ∈ 𝒱 for ri times, and a graph iteration
is the invocation of every actor vi ∈ 𝒱 for qi times, where qi ∈ ~q, and every phase
of every actor vi ∈ 𝒱 for ri times, where ri ∈~r.

For the example CSDF graph G shown in Figure 2.1, we can compute
the basic repetition vectors~r and ~q by using the equations in Theorem 2.1.1,
namely, Equations (2.3), (2.4) and (2.5), as follows:

Γ =

1 −2 0
3 0 −3
0 2 −1

 ,~r =

2
1
2

 , Φ =

3 0 0
0 2 0
0 0 1

 , and ~̌q =

6
2
2

 .

Two important subsets of the CSDF MoC are the Synchronous Data Flow
(SDF) MoC [LM87] and the Homogeneous Synchronous Data Flow (HSDF)
MoC [LM87]. All actors in an SDF graph G = (𝒱 , ℰ) have only one phase, that
is, for each vi ∈ 𝒱 , φi = 1. In an HSDF graph G = (𝒱 , ℰ), in addition to ∀vi ∈
𝒱 , φi = 1, all channels have production and consumption sequences equal to
1, that is, for each eu = (vi, vj) ∈ ℰ , xu

i = [xu
i (1)] = 1, yu

j = [yu
j (1)] = 1.

2.1.2 Polyhedral Process Network (PPN)

An application modeled as a PPN [VNS07] is a directed graph G = (𝒫 , 𝒞)
that consists of a set of processes 𝒫 , which communicate with each other
via a set of communication channels 𝒞. Processes in 𝒫 represent tasks of an
application. Channels in 𝒞 are bounded FIFOs and represent one direction of
data communication between two processes, that is, a channel CHl = (Pi, Pj)
represents a data dependency between processes Pi and Pj, where Pi is the
producer and Pj is the consumer process. An example of a PPN consisting of 4
processes which communicate with each other through 5 channels is given in
Figure 2.2(a). Each PPN process has a set of input ports it reads from and a set
of output ports it writes to. Process P3 in the PPN example in Figure 2.2(a) has
3 input ports IP1, IP2, and IP3, and 2 output ports OP1 and OP2. Channels of a

2.1. Dataflow Models-of-Computations (MoCs) 21

P1

P2

P3

P4

CH1

CH2

CH3
CH4

CH5

IP1 IP2

IP3

OP1

OP2

(a)

1 for (i=1; i<=16; i++) {

2 for (j=1; j<=8; j++) {

3 READ(IP2, in2, size_d2);

4 if (j <= 3)

5 READ(IP1, in1, size_d1);

6 else

7 READ(IP3, in1, size_d1);

8 out = F(in1, in2);

9 if (i <= 12 && j <= 4)

10 WRITE(OP2, out, size_d1);

11 else

12 WRITE(OP1, out, size_d1);

 }

 }

CH2

CH3

CH4

CH5

(b)

Figure 2.2: Example of a PPN (a) and the structure of process P3 (b).

process Pi connected to its input ports are input channels of Pi, while channels
connected to the output ports of Pi are output channels of Pi.

The synchronization mechanism between the processes in the PPN MoC
is blocking read from an empty FIFO and blocking write to a full FIFO. The
execution of a PPN process is defined by using nested for loops, that is, the
process execution is a set of iterations, called process domain. The process
domain is represented using the polytope model [Fea96a]. Each PPN process
has a precisely defined structure: the process reads data from a subset of its
input ports depending on the values of loop iterators; then, it performs a
computation on input data that generates output data; and finally, the process
writes the output data through a subset of its output ports depending on the
values of loop iterators.

Figure 2.2(b) shows the structure of process P3 in the PPN example given in
Figure 2.2(a). Process P3 reads data from and writes data to channels through
read and write primitives READ(· · ·) and WRITE(· · ·), respectively. The
computation behavior of process P3 is represented by a function F(· · ·) in Line
8 in Figure 2.2(b). The process domain of process P3 is given as the polytope
DP3 = {(i, j) ∈ Z2 | 1 ≤ i ≤ 16 ∧ 1 ≤ j ≤ 8}. Accessing an input port of the
PPN process is represented as a subset of the process domain, called input port
domain. Similarly, accessing an output port of the PPN process is represented
through output port domain. Process P3 in Figure 2.2 reads data from input
ports IP1, IP2 and IP3. The input port domain of input port IP2 is equal

22 Chapter 2. Background

to process domain DP3 , while the input port domain of port IP1 is given as
DIP1 = {(i, j) ∈ Z2 | 1 ≤ i ≤ 16∧ 1 ≤ j ≤ 3}. Process P3 writes data to output
ports OP1 and OP2. Domain DOP2 = {(i, j) ∈ Z2 | 1 ≤ i ≤ 12 ∧ 1 ≤ j ≤ 4} is
the output port domain of port OP2.

2.2 Real-Time Scheduling Theory

In this section, we introduce the real-time periodic task model [DB11] and
some important real-time scheduling concepts [DB11] instrumental to the
approaches we present in Chapters 3, 4 and 5 of this thesis.

2.2.1 Task Model

The majority of the research on real-time scheduling considers a simple model
to represent applications running on a hardware platform. In this simple
model applications are modeled as a task set 𝒯 = {τ1, τ2, · · · , τn} of n periodic
tasks, which can be preempted at any time. A periodic task τi ∈ 𝒯 is defined
by the 4-tuple τi = (Si, Ci, Di, Ti), where Si is the start time of τi in absolute
time units, Ci is the worst-case execution time (WCET), Di is the deadline of τi
in relative time units, and Ti is the task period in relative time units, where
Ci ≤ Di ≤ Ti. Each task τi executes periodically through a sequence of task
invocations, that is, job releases, at si,k = Si + kTi, k ∈N0. Once released, each
job τi,k, k ∈N0, of a task τi must execute Ci time units before si,k + Di, that is,
the job must finish its execution before its deadline Di. If Di = Ti, then τi is
said to have an implicit-deadline. Otherwise, if Di < Ti, then τi is said to have a
constrained-deadline. If all the tasks in a task set 𝒯 are implicit-deadline periodic
tasks, then task set 𝒯 is an implicit-deadline periodic (IDP) task set. Otherwise,
task set 𝒯 is a constrained-deadline periodic (CDP) task set. Similarly, if all the
tasks in a task set 𝒯 have the same start time, then task set 𝒯 is synchronous.
Otherwise, task set 𝒯 is asynchronous. In this thesis, we consider asynchronous
task sets.

The utilization of task τi, denoted as ui, where ui ∈ (0, 1], is defined
as ui = Ci/Ti. For a task set 𝒯 , u𝒯 is the total utilization of 𝒯 given by
u𝒯 = ∑τi∈𝒯 ui. Similarly, the density of task τi is δi = Ci/Di and the total
density of 𝒯 is δ𝒯 = ∑τi∈𝒯 δi. The worst-case response time of task τi, denoted
as Ri, is defined as the longest time interval from the arrival of a job of task τi
to the completion of job’s execution.

The processor demand bound function of a task set 𝒯 over a time interval
[t1, t2] represents the maximum amount of task execution that can be released

2.2. Real-Time Scheduling Theory 23

and completed in the time interval [t1, t2], and is given by [BRH90]:

db f (𝒯 , t1, t2) = ∑
τi∈𝒯

max{0,
⌊ t2 − Si − Di

Ti

⌋
−max{0,

⌈ t1 − Si

Ti

⌉
}+ 1} · Ci.

(2.6)

2.2.2 System Model

To present the important results from the real-time scheduling theory relevant
for this thesis, we consider a system composed of a set Π = {π1, π2, · · · , πm}
of m identical processors. However, our contribution approaches, presented in
this thesis, are applicable to both homogeneous and heterogeneous MPSoCs,
because the processor heterogeneity is captured within the WCET of a task,
which will be explained in more detail in Chapter 5. Thus, the results presented
in the following section, Section 2.2.3, are applicable to heterogeneous MPSoCs
as well.

2.2.3 Real-Time Scheduling Algorithms

In this section, we present some important scheduling concepts for scheduling
applications modeled as real-time periodic tasks, introduced in Section 2.2.1,
on a system modeled as described in Section 2.2.2.

Real-time scheduling algorithms for multiprocessors try to solve two prob-
lems [DB11]:
∙ The allocation problem, that is, on which processor a task should execute.
∙ The priority problem, that is, when and in which order each job of a task

should execute with respect to jobs of other tasks.
Depending on how they solve the allocation problem, scheduling algorithms

are classified into:
∙ No migration. Each task is allocated to one processor and no migration is

allowed.
∙ Task-level migration. The jobs of a task can execute on different processors.

However, each job can execute only on one processor.
∙ Job-level migration. A job can migrate and execute on different processors.

However, parallel execution of a job on processors is not allowed.
Scheduling algorithms that allow any job to migrate are called global algo-
rithms. On the other hand, algorithms which do not allow migration are called
partitioned algorithms. Finally, scheduling algorithms that allow migration
of jobs released by a subset of tasks among a subset of processors are called
hybrid algorithms.

24 Chapter 2. Background

Depending on how they solve the priority problem, scheduling algorithms
are classified into:
∙ Fixed task priority. Each task has a single fixed priority shared by all its

jobs. Examples of this class are the Rate Monotonic (RM) [LL73] and the
Deadline Monotonic (DM) [LW82] scheduling algorithms.

∙ Fixed job priority. The jobs of a task may have different priorities, but each
job has a single static priority. An example of this class is the Earliest
Deadline First (EDF) scheduling algorithm [LL73].

∙ Dynamic priority. A single job may have different priorities during
its execution. An example of this class is the Least Laxity First (LLF)
scheduling algorithm [Leu89], [DK89].

A task set 𝒯 is feasible on a system Π if there exist a scheduling algorithm
that can construct a schedule of tasks such that all task deadlines are met.
A task τi ∈ 𝒯 is schedulable on Π by using a scheduling algorithm 𝒜 if its
worst-case response time Ri under 𝒜 is less than or equal to its deadline Di. If
all tasks in 𝒯 are schedulable on Π under 𝒜, then task set 𝒯 is schedulable on
Π under 𝒜. Finally, a scheduling algorithm 𝒜 is optimal with respect to a task
model and a system if it can schedule all task sets that comply with the task
model and are feasible on the system.

The real-time scheduling theory provides various schedulability tests to
check a schedulability of a task set on a system under a given scheduling
algorithm. A schedulability test is termed sufficient if all of the task sets that
are deemed schedulable according to the test are in fact schedulable [DB11].
A schedulability test is termed necessary if all of the task sets that are deemed
unschedulable according to the test are in fact unschedulable [DB11]. Finally, a
schedulability test that is both sufficient and necessary is an exact schedulability
test.

2.2.4 Uniprocessor Schedulability Analysis

In this section, we will present the most used scheduling algorithms and
their schedulability tests for real-time periodic tasks on uniprocessors. These
scheduling algorithms are the Earliest Deadline First (EDF), Rate Monotonic
(RM) and Deadline Monotonic (DM) scheduling algorithm.

Earliest Deadline First (EDF)

The EDF algorithm is a scheduling algorithm that schedules tasks’ jobs ac-
cording to their deadlines. The earlier deadline a task’s job has, the higher
execution priority is given to it. The schedulability of an implicit-deadline

2.2. Real-Time Scheduling Theory 25

periodic task set on a uniprocessor under EDF can be verified through the
processor utilization. In particular, the following theorem gives a schedula-
bility test for an implicit-deadline periodic task set on a uniprocessor under
EDF [LL73]:

Theorem 2.2.1. A set of periodic tasks 𝒯 with implicit deadlines is schedulable under
EDF if and only if

∑
τi∈𝒯

ui ≤ 1. (2.7)

This schedulability test on uniprocessors under EDF is exact. In addition,
the EDF scheduling algorithm is an optimal scheduling algorithm for periodic
tasks on uniprocessors.

The exact schedulability test for constrained-deadline periodic tasks on
uniprocessors under EDF is given by the following lemma [BRH90]:

Lemma 2.2.1. A periodic task set 𝒯 is feasible on one processor if and only if

1. ∑τi∈𝒯 ui ≤ 1, and
2. db f (𝒯 , t1, t2) ≤ (t2 − t1) for all 0 ≤ t1 < t2 < Ŝ + 2H,

where Ŝ = max{S1, · · · , Sn} and H = lcm{T1, · · · , Tn}.

However, this schedulability test is known to be co-NP-hard in the strong
sense [BRH90], hence performing the schedulability test is very time con-
suming. To improve, that is, reduce, the schedulability test time, researchers
proposed several sufficient schedulability tests for (asynchronous) constrained-
deadline periodic tasks on uniprocessors under EDF, such as [ZB09], [AS04]
and [BF05]. These algorithms either check smaller number of time points to
determine the schedulability of a task set [ZB09] or approximate the proces-
sor demand bound function to simplify the computation when checking the
schedulability of a task set [AS04], [BF05].

Rate Monotonic (RM)

The RM algorithm is a scheduling algorithm that assigns priorities to tasks
according to their rates, that is, periods. The higher rates a task has (that is the
shorter period), the higher execution priority is given to the task. Given that
the period of a periodic task is constant, RM is the fixed-priority algorithm.
The sufficient schedulability test for an implicit-deadline periodic task set on
uniprocessor under RM is given by the following theorem [LL73]:

26 Chapter 2. Background

Theorem 2.2.2. A set of periodic tasks 𝒯 = {τ1, τ2, · · · , τn} with implicit deadlines
is schedulable under RM if

∑
τi∈𝒯

ui ≤ n(21/n − 1). (2.8)

When the size of the task set is significantly big (n→ ∞), then ∑τi∈𝒯 ui =
ln(2) u 0.693. That means that any implicit-deadline task set with total
utilization less than 0.69 is schedulable using RM scheduling algorithm. It has
been shown in [LL73] that RM is optimal among all fixed-priority assignments
in the sense that no other fixed-priority algorithms can schedule an implicit-
deadline task set that cannot be scheduled by RM. However, RM is in general
not optimal on uniprocessors for real-time periodic task sets.

Deadline Monotonic (DM)

The DM algorithm [LW82] extends the RM algorithm by considering tasks
with deadlines less than or equal to their period, that is,constrained dead-
lines. According to the DM algorithm, higher priorities are given to tasks with
shorter relative deadlines. The schedulability of a task set with constrained
deadlines can be checked by using the utilization based test given by Rela-
tion (2.8), where instead of putting the sum of task utilizations on the left-hand
side, we put the sum of task densities. However, such a test would be quite
pessimistic, because the workload on the processor would be overestimated. A
less pessimistic schedulability test has been proposed in [ABRW91], [ABR+93]
based on Response Time Analysis (RTA). That test is formulated in the following
theorem:

Theorem 2.2.3. A periodic taskset 𝒯 is schedulable using DM priority scheduling if
and only if

∀τi ∈ 𝒯 : Ri ≤ Di (2.9)

where the total response time Ri is given by solving the following fixed-point equation:

Ri = Ci + ∑
∀τj∈𝒯hp(τi)

⌈
Ri

τj

⌉
Cj (2.10)

and 𝒯hp(τi) represents the set of tasks with priorities higher than the priority of τi.

The test in Theorem 2.2.3 can be used as a sufficient test for asynchronous
periodic tasks.

2.2. Real-Time Scheduling Theory 27

2.2.5 Multiprocessor Schedulability Analysis

Given a system consisting of m homogeneous processors, and a task set con-
sisting of n periodic tasks, multiprocessor schedulability analysis should deter-
mine whether the tasks can be scheduled on the processors. In the following
subsections we will present some scheduling algorithms on multiprocessors
with regard to how they solve the allocation problem, as introduced earlier in
Section 2.2.3.

Global Scheduling Algorithms

Global scheduling algorithms schedule tasks on processors while allowing
task migration. Some of these algorithms are optimal for implicit-deadline
periodic tasks, such as Pfair [BCPV96], LLREF [CRJ06], and SA [KS97]. In the
case when these algorithms are used, an exact schedulability test for a set 𝒯 of
implicit-deadline periodic tasks on m processors is:

∑
τi∈𝒯

ui ≤ m. (2.11)

From Equation (2.11) the absolute minimum number of processors needed to
schedule a set 𝒯 of implicit-deadline periodic tasks can be computed as:

mOPT =
⌈

∑
τi∈𝒯

ui
⌉
. (2.12)

In the case of constrained-deadline periodic tasks, there are no optimal
online (nonclairvoyant) algorithms for the preemptive scheduling of these
tasks on multiprocessors [Fis07].

Partitioned Scheduling Algorithms

Although global scheduling algorithms can be optimal for implicit-deadline
periodic tasks, they introduce high migration and preemption overhead. To
avoid these overheads, researchers proposed another class of scheduling al-
gorithms, namely, partitioned algorithms. As soon as a set of tasks has been
partitioned into subsets that will be executed on individual processors, the
uniprocessor real-time scheduling and analysis techniques can be applied to
each processor, which is the main advantage of using partitioning approaches
to multiprocessor scheduling.

Given a system with m processors, and a task set of n periodic tasks, a
partitioned scheduling algorithm should find a schedulable x-partition of the

28 Chapter 2. Background

tasks, with x ≤ m. The schedulable x-partition is a partition: 1) which subsets
contain different tasks among each other, that is, a task is allocated to only one
processor, 2) where all tasks are partitioned into subsets of tasks, and 3) that
guarantees that each subset of the partition is schedulable on one processor
under the considered uniprocessor scheduling algorithm.

The task allocation problem in a partitioned multiprocessor scheduling
approach is analogous to the bin packing problem [DB11], where items corre-
sponds to tasks and bins corresponds to processors. The bin packing problem
is known to be NP-hard [GJ79]. Therefore, many heuristics have been pro-
posed to approximately solve the bin packing problem [Joh74], [CGJ96]. Below,
we present the most used bin packing heuristics.

The capacity of each bin, that is, processor in a system, is equal to the
maximum possible processor utilization, that is, 1. The size of each item, that
is, task τi, is equal to task utilization ui. Let 𝒯k denote the set of tasks currently
assigned to processor πk and uπk = ∑τi∈𝒯k

ui denote the total utilization cur-
rently assigned to processor πk. At the beginning of the task partitioning no
task is assigned to a processor, that is, 𝒯k = ∅ and uπk = 0 for all πk. The
heuristics assign each task τi ∈ 𝒯 to a certain processor πk ∈ Π following a
certain, heuristic-specific, rule till the task is schedulable on a processor by a
certain (selected) scheduling algorithm 𝒜, considering one task at a time.
∙ First-Fit (FF). A task τi is assigned to the lowest-indexed processor πk

that can contain the task such that all the tasks assigned so far to πk are
schedulable. That is

k = min
j∈[1···m]

{j : ui + uπj ≤ 1∧ 𝒯j schedulable by 𝒜 on πj}. (2.13)

If the condition is not satisfied by any processor used so far, task τi is
assigned to an unused processor in the platform. If no such processor
exists, task set 𝒯 is not schedulable on system Π.

∙ Best-Fit (BF). A task τi is assigned to a processor πk such that πk has
the minimal remaining utilization after the task assignment and all the
tasks assigned so far to πk are schedulable. That is

k = min
j∈[1···m]

{j : ui + uπj is closest to, without exceeding 1

∧ 𝒯j schedulable by 𝒜 on πj}. (2.14)

If the condition is not satisfied by any processor used so far, task τi is
assigned to an unused processor in the platform. If no such processor
exists, task set 𝒯 is not schedulable on system Π.

2.2. Real-Time Scheduling Theory 29

∙ Worst-Fit (WF). A task τi is assigned to a processor πk such that πk has
the maximal remaining utilization after the task assignment and all the
tasks assigned so far to πk are schedulable. That is

k = min
j∈[1···m]

{j : ui + uπj is minimal ∧ 𝒯j schedulable by 𝒜 on πj}.

(2.15)

If the condition is not satisfied by any processor used so far, task τi is
assigned to an unused processor in the platform. If no such processor
exists, task set 𝒯 is not schedulable on system Π.

Often a preprocessing step is performed on tasks before performing a
heuristic to improve the performance of the heuristic. The preprocessing step
represents task sorting according to certain criteria, such us, increasing or
decreasing task utilization, increasing or decreasing task density, and so on.
Usually, the tasks are sorted in decreasing order of their utilization. When
adding this preprocessing step to the previously presented partitioning heuris-
tics, we obtain the First-Fit Decreasing (FFD), Best-Fit Decreasing (BFD),
and Worst-Fit Decreasing (WFD) heuristics.

The partitioning heuristics can be compared among each other by using
their approximation ratio metric. The approximation ratio of a heuristic says how
much more processors are required to schedule a set of tasks when tasks are
partitioned by using the corresponding partitioning heuristic in comparison
to an optimal partitioning algorithm. For example, the approximation ratios
for FF and BF are 17/10 [CGJ96], [GJ79], while approximation ratio for FFD is
11/9 [Yue91].

The minimum number of processors needed to schedule a task-set 𝒯 by a
partitioned scheduling algorithm is given by:

mPAR = min
x∈N
{x|∃x-partition of 𝒯 ∧ ∀k ∈ [1, x] : 𝒯k is schedulable on πk}.

(2.16)
Note that mOPT is the lower bound on the number of processors mPAR needed
by partitioned scheduling algorithms.

Hybrid Scheduling Algorithms

Although partitioned scheduling approaches have low preemption overheads
and do not introduce any migration overhead, they may not, in general, fully
utilize available processing resources in a system, that is, they may introduce
processing capacity loss. To utilize the benefits of global and partitioned

30 Chapter 2. Background

scheduling approaches, researchers proposed hybrid approaches which com-
bine elements of both. Hybrid scheduling approaches can be divided into
semi-partitioned and clustering (hierarchical) approaches [DB11].

In the semi-partitioned scheduling approaches, a small number of tasks is
allowed to migrate between certain processors to utilize better the processing
resources. Examples of semi-partitioned scheduling algorithms which split
some tasks into two components that execute at different times on different
processors are EKG [AT06], Ehd2-SIP [KY07] and EDF-fm [ABD08].

In hierarchical scheduling approaches [LB03], [HA06], a set of tasks are
grouped together and scheduled as a single entity, called server task or su-
pertask. When the entity is scheduled, one of its tasks is selected to execute
according to an internal scheduling policy. Hence, the supertasks/servers are
scheduled globally, while the scheduling of the tasks within a supertask/server
is done locally, that is, it is analogous to scheduling on a uniprocessor. In an-
other case of hierarchical scheduling approaches, for example, [SEL08], tasks
are allocated to (virtual) clusters of processors and scheduled according to a
global scheduling algorithm on processors within their cluster. In this way,
processing capacity loss is less than in fully partitioned approaches, while the
small number of processors in each cluster may reduce migration overheads,
depending on the particular hardware architecture.

