
Improved hard real-time scheduling and transformations for embedded
Streaming Applications
Spasic, J.

Citation
Spasic, J. (2017, November 14). Improved hard real-time scheduling and transformations for
embedded Streaming Applications. Retrieved from https://hdl.handle.net/1887/59459
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/59459
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/59459


 
Cover Page 

 
 

 
 
 

 
 
 

The following handle holds various files of this Leiden University dissertation: 
http://hdl.handle.net/1887/59459 
 
 
Author: Spasic, J. 
Title: Improved hard real-time scheduling and transformations for embedded Streaming 
Applications 
Issue Date: 2017-11-14 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/59459
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 1

Introduction

IN the modern-day world, electronics is not only a tool for survival but an
integral part of almost every aspect of human lives. Everything from our

home appliances, cars, tablets to our cell-phones uses electronics or electronic
components in some way. Constantly improving, the electronics technology is
making life faster, easier and more convenient for people. Modern electronics
technology is rapidly changing the way people communicate and transmit
data and information. Thus, it is possible and common today to execute
work related tasks remotely. Health-care systems have also benefited a lot
from electronics technology. There, electronics technology is helping doctors
accurately diagnose and treat illnesses in a timely manner. For example, in
Philips Healthcare, live image guided intervention has been used in treatment
of structural heart diseases. Using electronics in home automation received
popularity in the past decades. People have the capability to control almost
everything in their “smart homes” from heating, air conditioning, and lighting,
to kitchen appliances and security systems.

Even though electronics technology has been used in all of the above cases,
in each case it has its dedicated purpose within a larger system it has been em-
bedded into, hence the name “embedded electronics”. Embedded electronics,
that is, embedded systems, are tightly coupled to the environment in which
they operate. They collect information about the environment through sensors
and control that environment through actuators, hence embedded systems
must provide real-time guarantees, that is, a correct on-time output [Mar06].
Given that embedded systems are dedicated towards a certain application,
they are designed to implement well-defined set of functionalities. In addition,
having that many embedded systems are battery-operated they have to be
efficient in terms of energy consumption and resource usage.



2 Chapter 1. Introduction

An important class of embedded systems are embedded streaming sys-
tems. Embedded streaming systems process a long, potentially infinite, stream
of input data coming from the environment. Each data item is processed for
a limited time. The processing operations on different data items are self-
contained and there is little control flow between the operations. The result of
the processing is a long, potentially infinite, stream of output data fed into the
environment. Usually, streaming applications must process a large amount of
data within short periods of time. Thus, efficiency, in terms of both through-
put and latency, is of primary concern in the design of embedded streaming
systems. The throughput represents the rate at which output data items are
produced, while the latency represents the time interval between the arrival
of a data item to the application input and the production of the correspond-
ing data item at the application output. Examples of streaming applications
include audio beamforming, video encoding and decoding, image and signal
processing, network protocol processing, navigation, computer vision, and
others.

One of the key properties of embedded streaming systems is that their
correct functionality depends not only on the correct result but also on the
time at which the result is produced. Such systems, where the timing is critical
to the correct functionality, are called real-time systems. Real-time systems
can be classified into hard and soft systems. A hard real-time system is one
where not meeting the timing requirements leads to a system failure, which,
in life-critical systems, may have catastrophic consequences. In contrast, in
soft real-time systems, not meeting the timing requirements does not lead to a
failure but to degraded system performance that can be tolerated given that
the timing miss rates are below a certain threshold. Classifying a system into
hard or soft real-time depends usually on the overall system requirements and
the environment where the system is deployed.

As examples of real-time embedded streaming systems, today we have
increasing number of various autonomous mobile systems that need to inter-
act and respond to their dynamic environment extremely fast. These include
very complex systems such as self-driving cars and planes, but also modern
“toys” such as drones. In recent years, drones have been used extensively as
data collectors in many areas. For example, drones have been used in law
enforcement for surveillance, tracking and rescue operations. They have been
used for monitoring purposes in agriculture and farming, archaeological and
land surveying, for delivery purposes in healthcare, crowd monitoring and
control, and other cases of monitoring and control. They can carry various
types of equipment including live-feed video cameras, infrared cameras, in-



1.1. Trends in the Design of Embedded Streaming Systems 3

ertial, position and heat sensors. The large amount of data which should be
collected and (pre-)processed, the battery-powered operation nature, and the
need to react in a short time create demand for designing a high-performance
energy-efficient real-time embedded streaming systems. In the next section,
we discuss the current trends in designing such systems.

1.1 Trends in the Design of Embedded Streaming Sys-
tems

As introduced earlier, there is a demand in modern embedded streaming
systems for high performance, in terms of high application throughput and
short application latency, and a demand for real-time and energy-efficient
execution. In addition, the complexity of applications running on embedded
platforms increases [EJ09]. Therefore, we discuss below the trends in designing
such complex embedded streaming systems to meet all the demands.

1.1.1 Platform Trend: Multi-Processor System-on-Chip (MPSoC)

Following the trend in general purpose systems, embedded streaming systems
designers have relied for a long time on improvement of the computational
power of uniprocessors to meet the high-performance requirements of stream-
ing applications. The improvements of the computational power were driven
by the increase in the clock frequency, advances in the semiconductor technol-
ogy, that is, technology scaling, and innovations in the architecture (pipelining,
out-of-order execution, branch prediction, and others.) [HP06]. However, the
monotonically increasing performance curve with the successive generations
of uniprocessors flattened in the early 2000s [PDG06]. The reasons for the curve
flattening were increased dynamic power consumption and design complexity
with the frequency increase and architecture innovations as well as increased
static power and power density with the technology scaling [PDG06]. To in-
crease system performance further, such that high-performance requirements
of running applications are met, designers went for multi-processor platforms
as the natural next evolutionary step in staying on the increasing performance
curve [HP06]. By using multiple processors, the issue of increased power
consumption is partially addressed by lower operating voltage and frequency,
thereby decreasing the power consumption while maintaining high system
performance through parallel execution. Moreover, nowadays, embedded
systems designers integrate multiple processors, memories, interconnections,
and peripherals into a Multi-Processor System-on-Chip (MPSoC) [JTW05].



4 Chapter 1. Introduction

CPUbig

M1 M1

M1 M1

A53 A53

A53 A53

LITTLE

GPU

LTE 
modem

Mali-T880

Memory 
controller

Samsung Coherent Interconnect

Figure 1.1: An MPSoC platform example.

Usually, an MPSoC contains different kinds of processors dedicated to
certain functionalities: Central Processing Unit (CPU) for general purpose
processing, Graphics Processing Unit (GPU) for graphical processing, a ded-
icated processor for wireless communication, and others. The processors
communicate with each other through an on-chip communication infrastruc-
ture. To enable efficient communication, designers proposed and developed
high-performance buses, such as ARM AMBA communication infrastruc-
tures [ARM], and Network-on-Chip (NoC) [BDM02] infrastructures, such
as Xpipes [BB04] and Æthereal [GDR05]. Figure 1.1 gives an example of an
MPSoC, the Exynos 8 Octa 8890 [Sama], which can be found in the Samsung
S7 mobile phones. The Exynos 8 Octa has eight CPUs in a big.LITTLE architec-
ture [Gre11]. That is, by integrating CPUs with different power-performance
characteristics, namely, performance-efficient Exynos M1 cores (big cores)
and energy-efficient Cortex A53 cores (LITTLE cores), this MPSoC provides
more than 30% improvement in performance and 10% improvement in power
efficiency compared to its predecessor [Sama]. The MPSoC also contains a
16-core GPU for 2D/3D graphical processing. The on-chip LTE modem is used
for high-speed wireless data communication. All the processors are connected
through a high-performance cache coherent interconnect. In this thesis, we
consider such type of MPSoC platforms, efficiently utilizing their CPU part by
mapping streaming applications on the CPUs.



1.1. Trends in the Design of Embedded Streaming Systems 5

1.1.2 Design Trend: Model-based Design Methodology

Driven by constant improvements in the semiconductor technology, MPSoC
platforms integrate more and more processing elements on a chip. On the
other hand, the complexity of embedded software also increases [EJ09]. In
order to design such a complex embedded streaming system in an efficient
manner in terms of system quality, design effort and time, designers had
to raise the level of design abstraction from Register-Transfer-Level (RTL) to
system-level [KMN+00], [NSD08]. At the system-level, a hardware platform is
modeled as a set of primitive blocks describing, at a high-level of abstraction,
processing elements, memories and interconnects. An application is modeled
as a set of tasks which can be allocated to hardware resources in many different
ways, which means that there are many possible mappings of tasks to platform
resources. Once it is determined how the application tasks are going to be
allocated to the hardware resources such that all design constraints are met,
that is, once we have a mapping specification, an Electronic System-Level
(ESL) synthesis tool [GHP+09] generates in an automated way the hardware
description at a lower level of abstraction and the software for each processor
in a platform.

In order to achieve the desired performance, the applications which are
going to execute on the MPSoC platform have to be specified in a way which
utilizes the parallel processing elements in the platform. In general, identifying
parallelism in an application is a difficult step. In addition, designers should
determine the mapping and execution order, that is, scheduling, of application
tasks to a platform, and code should be generated for each used processor
in the platform. In order to perform all these design steps in an efficient
way, designers raise the level of abstraction, as introduced earlier, by building
high-level models of applications. Then, the designer can use these models to
analyze the performance of different applications-to-platform mappings. Such
design approach is called Model-based design and the models used in such
an approach are called Models of Computation (MoCs). A MoC describes in
a formal way how an application works. In this thesis, we consider only parallel
MoCs because they are suitable for expressing parallelism in an application
which is going to be executed on an MPSoC platform. In a parallel MoC,
an application is decomposed into tasks which can be executed in parallel.
The parallel MoC defines how tasks communicate and synchronize with each
other.

Streaming applications have ample amount of parallelism which should
be exploited efficiently to satisfy the performance requirements. Researchers
have identified three types of parallelism:



6 Chapter 1. Introduction

Video in

DCT

VLEQ

DCT

Video out

Init 

Figure 1.2: Motion JPEG encoder application.

1. Task-Level Parallelism (TLP): an application is split into set of tasks
which can execute concurrently;

2. Data-Level Parallelism (DLP): a task of an application executes in
parallel on multiple processing elements where each copy of the task
processes its own data stream;

3. Pipeline-Level Parallelism (PLP): different iterations of a pair of data
producer and consumer tasks execute in parallel.

Usually, an application contains more than one type of parallelism. Task-level
parallelism is typically considered first when specifying an application as a set
of concurrent tasks. Data-level parallelism is usually used by replicating tasks
in an application in order to process more data in parallel and, hence, increase
the application performance. However, if consecutive executions of a task
depend on each other, data-level parallelism cannot be exploited and pipeline
parallelism comes as an important form of parallelism to exploit. Figure 1.2
shows a Motion JPEG (MJPEG) encoder application represented as a set of
communicating tasks which can execute concurrently. Here, we can identify
examples of all three types of parallelism introduced above: 1) TLP between
Video in and Init; 2) DLP between the two DCT tasks; and 3) PLP between
different iterations of VLE and Video out.

It has been identified that dataflow MoCs are the most suitable parallel
MoCs to express parallelism in streaming applications [TA10]. In a dataflow
MoC, an application is represented as a directed graph, with graph nodes
representing the application tasks and graph edges representing data depen-
dences among the tasks. Thus, the parallelism is explicitly specified in the
model. Dataflow MoCs differ among each other in their expressiveness and
decidability. The expressiveness of a model indicates which type of applications
can be modeled by the model and how compact the model is [SGTB11]. The



1.2. Design Requirements and Basic Approaches to Meet the Requirements 7

decidability of a model represents the extent to which designers can analyze
liveness and performance of an application at compile-time. In general, expres-
siveness and decidability of MoCs are inversely related, meaning that more
expressive MoCs are less decidable, and the opposite; hence the choice of a
suitable MoC depends on the problem being addressed. For example, within
the DaedalusRT [BZNS12] design methodology, the Cyclo-Static Dataflow
MoC [BELP96] is used as an analysis model, to analyze design non-functional
properties such as throughput, latency, hard real-time behavior, while the
Polyhedral Process Network MoC [VNS07] is used as an implementation
model. The MoCs considered in this thesis to represent streaming appli-
cations are Synchronous Data Flow (SDF) [LM87], Cyclo-Static Dataflow
(CSDF) [BELP96] and Polyhedral Process Network (PPN) [VNS07], given in
the order of increased expressiveness, hence decreased analyzability. Because
of their very good analyzability, we use the SDF and CSDF MoCs to analyze
the application throughput, latency, hard real-time behavior and calculate the
required size of buffers used to implement inter-task communication. On the
other hand, we use the PPN MoC to generate efficient code for processors
in an MPSoC and build highly accurate energy model to analyze the energy
consumption. A more detailed and complete comparison of different dataflow
MoCs is given in [SGTB11].

1.2 Design Requirements and Basic Approaches to
Meet the Requirements

In Section 1.1.2, it has been explained that model-based design methodologies
have been used to design embedded streaming MPSoCs to provide the desired
system performance. In this section, we introduce the requirements which
are usually put on embedded streaming MPSoCs and the basic approaches
proposed by research communities to meet these requirements.

1.2.1 Timing Requirements

As mentioned earlier, the performance of a streaming application running on
an MPSoC is represented with two metrics: throughput and latency. Usually,
embedded streaming MPSoCs execute simultaneously multiple applications
and for each application throughput and latency requirements have to be
met. In addition, these multiple applications should be temporally isolated
between each other. This means that an application can be started or stopped
at run-time without violating the timing requirements of other running ap-



8 Chapter 1. Introduction

plications. Beside performance requirements, many embedded streaming
systems have to process data within a certain time interval, that is, before a
deadline, meaning that they have hard real-time requirements.

In general, to provide timing guarantees for streaming applications, re-
searchers proposed either analysis approaches on the dataflow MoCs, or they
specified applications as periodic real-time tasks, or devised techniques which
are mixture of the previous two. In the first case, techniques are devised to
provide timing guarantees for streaming applications by performing analysis
on a dataflow MoC, for example, techniques proposed in [GGS+06], [SGB08],
[MB07] and [BMKdD13]. The approach in [GGS+06], [SGB08] analyzes an
application modeled using the (C)SDF MoC [LM87] by performing state-space
exploration of the (C)SDF graph in order to find the application throughput
and latency. On the other hand, the approach in [MB07] converts an initial
SDF application specification into an equivalent homogeneous SDF (HSDF)
specification, and does the performance analysis on the HSDF. However,
the state-space of an SDF graph is exponential in the worst case, and the
conversion from an SDF into an equivalent HSDF results in an application
graph which size grows exponentially in the worst case, hence the analysis
approaches in [GGS+06] and [MB07] have high time complexity. The approach
in [BMKdD13] does application performance analysis on a CSDF graph by for-
mulating the problem of finding performance guarantees as an Integer Linear
Programming (ILP) problem. Thus, that approach has high time complexity
given that ILP-based approaches suffer from severe scalability issues. All
the approaches [GGS+06], [MB07] and [BMKdD13], do not provide temporal
isolation among applications and need complex design space exploration to
find the minimum number of processors in a platform required to provide
timing guarantees.

Another way of providing timing guarantees is by specifying applications
as classical real-time tasks [DB11]. The classical real-time task model [LL73] spec-
ifies applications as independent tasks. The invocations of tasks are periodic,
with constant execution time for each invocation and constant interval be-
tween invocations. By using the hard real-time schedulability theories [DB11],
the minimum number of processors needed to schedule applications while
providing timing guarantees, and temporal isolation between the applications
can be determined in a fast analytical way. However, this classical real-time
task model does not model data dependencies among tasks usually found in
streaming applications.

Recently, several approaches, such as [BS11], [BS13] and [BTV12], have
been proposed which combine advantages of the previously mentioned ap-



1.2. Design Requirements and Basic Approaches to Meet the Requirements 9

proaches by converting an application specified using a dataflow MoC, hence
modeling data dependencies, to real-time tasks, thus enabling temporal iso-
lation and fast calculation of the minimum number of processors to provide
timing guarantees. Therefore, in this thesis, we utilize benefits of both dataflow
MoCs and real-time task models to further improve the system timing guaran-
tees and the utilization of hardware resources.

1.2.2 Energy Requirements

As indicated in Section 1.1.1, one of the main reasons for the flattening of
the performance curve across different generations of uniprocessors was the
increased power consumption due to the increased clock frequency to boost
performance, and the technology scaling. The idea of using MPSoC platforms
partially solved the power consumption issue by allowing performance boost
through parallel execution while running processors at a lower frequency.
Given that the technology scaling is still one ongoing process which provides
more parallel processing resources but also results in larger power dissipation,
it has been identified by the International Technology Roadmap for Semicon-
ductors (ITRS) [fSI] that the power and energy consumption are the main
problems in the system design. This results in a need for design techniques
which target more performance and functionality at constant power density,
constrained by thermal issues, and constant energy consumption, constrained
by the battery capacity. The inability to manage power dissipation limits the
amount of switched-on logic content in a SoC, known as the "dark silicon"
issue [EBSA+11].

Widely used techniques to reduce the power/energy consumption are
Voltage-Frequency Scaling (VFS) and Power Management (PM). VFS reduces
the power consumption by adjusting the voltage and operating frequency
of processors while PM exploits idle times of processors by putting them
to a very low-power sleep mode. In addition, according to ITRS reports,
heterogeneous MPSoCs were identified as a promising solution in terms of
energy-efficiency [Mit15]. Heterogeneous MPSoCs [Mit15] have been also
considered as a promising solution to the dark silicon problem. Especially, the
asymmetric multi-core architecture, also known as a single-ISA heterogeneous
architecture, was recognized as a good trade-off in terms of energy-efficiency
and programming effort [Mit15]. A single-ISA heterogeneous MPSoC consists
of cores with different power-performance characteristics but with the same
instruction-set architecture (ISA). Apart from containing cores with different
power-performance characteristics, such heterogeneous MPSoCs cover large
set of power-performance design points through voltage-frequency scaling of



10 Chapter 1. Introduction

the cores [Mit15]. However, with the advent of many-core systems, per-core
VFS becomes impractical due to the high hardware cost and area requirement
[HM07]. Therefore, to balance the energy saving and the hardware cost, cores
are grouped into clusters and cores in each cluster run at the same voltage and
frequency level. In addition, it has been recognized by ITRS that the accuracy
of power modeling and estimation has to be improved in order to manage the
power consumption to extreme limits [Kah13].

1.3 Problem Statement

After introducing the trends and requirements in the design of embedded
streaming systems in Section 1.1 and Section 1.2, in this section, we formulate
the problems addressed in this thesis concerning the design of embedded
streaming systems.

1.3.1 Problem 1

Meeting the timing requirements is one of the most important design objectives
when designing embedded streaming MPSoCs. As explained in Section 1.2.1,
there are several research approaches on how to guarantee the timing behav-
ior of streaming applications. Among them, the most appropriate one is the
research approach which combines the benefits of dataflow MoC-based analy-
sis and hard real-time analysis. The existing works [BS11], [BS13], [BTV12],
following this approach, assume that each execution of an application task
takes the same amount of time. However, a common behavior in streaming
applications is that different executions of the same application task differ in
execution time. When such changing execution nature of an application is
hidden by considering one and the same value for the execution time of an
application task, the application throughput is underestimated, the applica-
tion latency overestimated, while the processors in an MPSoC platform are
underutilized. Thus, the first problem addressed in this thesis is:
Problem 1: Can we apply the hard real-time scheduling theory for real-time
periodic tasks to streaming applications while considering different exe-
cution times among different executions of an application task to obtain
tighter bounds on throughput and latency and better utilize processors?

1.3.2 Problem 2

As introduced in Section 1.1.2, streaming applications contain ample amount
of parallelism and can be efficiently represented by using parallel MoCs. How-



1.3. Problem Statement 11

ever, the initial parallel application specification often is not the most suitable
one for a given MPSoC platform. This is because application developers
mainly focus on realizing certain application behavior while the computa-
tional capacity and power consumption profile of the MPSoC platform is often
not fully taken into account. That is, the initial parallel specification does not
expose enough parallelism, particularly in the form of DLP, to better exploit
the platform to satisfy timing and energy requirements. To better utilize the
underlying MPSoC platform, the initial specification of an application, that
is, the initial task graph, should be transformed to an alternative one that
exposes more DLP while preserving the same application behavior. This
can be achieved through an unfolding transformation where the tasks from
the initial graph are replicated, in an equivalent graph, a certain number of
times. Special care should be taken during the unfolding transformation to
avoid all unnecessary overheads caused by data management among replicas.
Moreover, having more tasks’ replicas than necessary results in an inefficient
system due to overheads in code and data memory, scheduling and inter-tasks
communication. Thus, the right amount of DLP, depending on the underlying
MPSoC platform, should be determined in a parallel application specification
to achieve maximum performance and timing guarantees. Therefore, the
second problem we address in this thesis consists of two sub-problems. The
first sub-problem is:
Problem 2a: How to convert an initial application graph into input-output
equivalent graph while avoiding unnecessary overheads caused by data
management among task replicas?
The second sub-problem follows as:
Problem 2b: How many times to replicate each task in the initial appli-
cation graph, such that the obtained equivalent graph exposes the right
amount of parallelism that maximizes the utilization of the available pro-
cessors in an MPSoC platform while meeting all timing requirements?

1.3.3 Problem 3

Apart from timing requirements, energy consumption requirements are very
important requirements to be met for proper functioning of embedded sys-
tems. As introduced in Section 1.2.2, the ITRS proposed heterogeneous par-
allel processing and frequency islands as design innovations to address the
power/energy consumption requirements. In particular, the asymmetric
multi-core architecture was recognized by both academia and industry as a
good platform for design of energy-efficient embedded systems. Some exam-
ples of commercial asymmetric cluster MPSoCs are Samsung Exynos 5 Octa



12 Chapter 1. Introduction

SoC [Samb], nVidia Tegra X1 [NVI15], which include ARM big.LITTLE [Gre11]
integrating high-performance cores into big clusters and low-power cores into
LITTLE clusters. As mentioned in Section 1.3.2, when developing an applica-
tion, application designers often do not have the timing and energy behavior
of a platform in mind. Hence, it may happen that an application consists of
highly imbalanced tasks in terms of the task workload, that is, task utilization.
Especially, in cluster heterogeneous MPSoCs, when several tasks are mapped
onto the same cluster, the task with the heaviest utilization will determine the
required voltage and frequency of the whole cluster and will significantly in-
crease the energy consumption of the other tasks mapped on the same cluster.
When task replication, that is, DLP, is applied to application tasks with heavy
utilization, their utilization can be decreased while still providing the same
application performance. Thus, the third problem, we address in this thesis is:
Problem 3: How to map embedded streaming applications under timing re-
quirements by utilizing per-cluster VFS and task replication to reduce the
energy consumption of a system?

1.3.4 Problem 4

It was pointed out by ITRS that the accuracy of power/energy modeling is
very important for efficient power/energy management [Kah13]. Model accu-
racy is usually traded-off for modeling and evaluation effort. Energy models
used with more analyzable functional models, that is, MoCs, are usually more
abstract in order to be more efficient in terms of modeling and evaluation
effort and time, hence they try to capture the worst-case energy consumption.
Such a model of the energy consumption results in safe but not very accurate
estimates when compared with the actual energy consumption measurements
on real implementations. Hence, an energy model should be more closely
related to the actual running system yet be enough efficient in terms of model-
ing and evaluation effort and time. More expressive MoCs, as the PPN MoC
for example, can give better insight of the final implementation of application
tasks on a platform, hence they are often used as implementation models.
However, providing timing guarantees by doing analysis on the PPN MoC
is rather difficult, if not impossible [Zha15], hence the PPN MoC is used in
systems where the timing requirements are not necessarily specified but it is
required that the system runs at the best of its capacity (best-effort systems).
Therefore, as the forth problem, we investigate:
Problem 4: How to model as accurately as possible the energy consump-
tion of a mapping of an application onto an MPSoC platform while such a
system runs at the best of its capacity?



1.4. Research Contributions 13

1.4 Research Contributions

By addressing the research problems outlined in Section 1.3, in this section,
we summarize the research contributions of this thesis.

Contribution 1: Proposing a scheduling approach which converts data-
flow MoCs to real-time periodic tasks while considering different execu-
tion times for different executions of an application task.
To address the first problem, namely, Problem 1 in Section 1.3.1, we propose
a scheduling approach, published in [SLCS15] and [SLCS16], and presented
in Chapter 3, to schedule streaming applications modeled as acyclic CSDF
graphs on an MPSoC platform. The proposed approach converts each task in
a CSDF graph to a set of real-time periodic tasks by deriving task parameters
(periods, start times, and deadlines) while considering different execution
times for different executions of each task in the CSDF graph. The conversion
enables application of many hard real-time scheduling algorithms which offer
fast calculation of the required number of processors for scheduling the tasks
with a certain guaranteed throughput and latency. In addition, the proposed
approach calculates the minimum buffer sizes of the communication channels
between the tasks in the CSDF graph such that the converted tasks can be
scheduled as periodic real-time tasks. As part of our scheduling approach,
we propose a method to reduce the graph latency by carefully selecting the
deadlines of the converted real-time periodic tasks. We show, on a set of
real-life streaming applications, that our approach leads to equal or higher
application throughput and shorter application latency while reducing the
number of processors required to schedule a given application, compared to
a related approach which does not consider different execution times for dif-
ferent executions of CSDF tasks. However, our approach results in increased
memory requirements to implement the communication among the tasks.

Contribution 2: Proposing a graph transformation and an approach that
uses the transformation to exploit the right amount of parallelism that max-
imizes the utilization of the available processors in an MPSoC platform
while meeting all timing requirements.
We address the second problem, Problem 2a-2b stated in Section 1.3.2, by
proposing an unfolding graph transformation for SDF graphs and an algo-
rithm that adapts the exploited parallelism in an application modeled using
the SDF MoC according to the resources in an MPSoC by using the unfolding
transformation and the hard-real time scheduling approach of CSDF graphs
devised within Contribution 1 such that the application performance is max-
imized and hard real-time behavior guaranteed. Our contribution has been
published in [SLS16b] and explained in Chapter 4. In particular, our unfolding



14 Chapter 1. Introduction

graph transformation carefully distributes data among task replicas, enabling
more parallel execution of tasks, and our algorithm determines simultaneously
which SDF tasks and how many times to replicate them, and the allocation of
tasks to processors in the MPSoC. We show, on a set of real-life streaming ap-
plications, that our unfolding graph transformation for SDF graphs results in
graphs with the same application throughput, shorter application latency and
smaller communication memory compared to related approaches. In addition,
we show that our algorithm delivers, in 98% of the conducted experiments, a
solution with a shorter latency, smaller communication memory and smaller
values for task replication factors compared to a related approach while the
same performance and timing requirements are satisfied.

Contribution 3: Proposing an approach that exploits the right amount
of parallelism in an application and per-cluster VFS to map the application
onto a cluster heterogeneous MPSoC such that the energy consumption is
minimized and all timing requirements met.
In our third contribution which addresses Problem 3 in Section 1.3.3, we
propose a novel algorithm [SLS16a], presented in Chapter 5, to efficiently map
real-time streaming applications onto cluster heterogeneous MPSoCs, which
are subject to throughput constraints, such that the energy consumption of
the cluster heterogeneous MPSoC is reduced by using task replication and
per-cluster VFS. By using the hard real-time scheduling approach of CSDF
graphs, we devised within Contribution 1, we propose an efficcient way to
determine a suitable processor type for each task in an (C)SDF graph such
that the energy consumption is minimized and the throughput constraint is
met. Then, by using our unfolding graph transformation, devised within
Contribution 2, we propose a method to determine a replication factor for
each task in an SDF graph such that the distribution of the workload on the
same type of processors is balanced, which enables processors to run at a
lower frequency, hence reducing the energy consumption. We show, on a set
of real-life streaming applications, that our proposed energy minimization
approach outperforms related approaches in terms of energy consumption
while meeting the same throughput constraints.

Contribution 4: Proposing an accurate energy model for best-effort
streaming applications mapped onto heterogeneous MPSoC platforms.
To address the problem of accurate power/energy modeling, namely, Prob-
lem 4 in Section 1.3.4, we devise an accurate energy model [SS13] for streaming
applications modeled by the PPN MoC and mapped onto heterogeneous MP-
SoC platforms. The energy model is based on the well-defined properties of
the PPN application model. To guarantee the accuracy of the energy model,



1.5. Thesis Outline 15

values of important model parameters are obtained by real measurements. In
addition, our energy model can model different types of communication infras-
tructures: with and without contention. The accuracy of the proposed energy
model is evaluated on FPGA-based MPSoC platforms running two real-life
streaming applications against real measurements of the energy consumption
from the FPGA. The model and its accuracy and efficiency is presented in
Chapter 6.

1.5 Thesis Outline

Below we give an outline of this thesis, summarizing the contents of the
following chapters.

Chapter 2 gives an overview of the dataflow MoCs considered in this
thesis, and some techniques from hard-real time scheduling theories relevant
for this thesis.

Chapters 3 to 6 contain the contributions of this thesis. Each chapter is
organized in a self-contained way, meaning that each chapter contains more
specific introduction to the problem addressed, related work, the proposed
solution approach, experimental evaluation, and concluding discussion.

Chapter 3 presents our hard real-time scheduling approach for streaming
applications modeled as acyclic CSDF graphs.

Chapter 4 describes our unfolding graph transformation for SDF graphs
and our algorithm for finding proper replication factors for each task in an SDF
graph, which uses our scheduling framework described in Chapter 3, such
that the processing resources are utilized as best as possible, while providing
hard real-time guarantees.

Chapter 5 presents our energy-minimization approach which uses our
scheduling framework described in Chapter 3 and our unfolding transforma-
tion described in Chapter 4 to find task-to-processor type assignment and task
replication factors such that the energy consumption is minimized.

Chapter 6 presents our accurate energy model for streaming applications
modeled using the PPN MoC and mapped onto MPSoC platforms.

Chapter 7 ends this thesis by providing conclusions regarding the work
done within this thesis and discussions on potential future work.



16 Chapter 1. Introduction


