
Improved hard real-time scheduling and transformations for embedded
Streaming Applications
Spasic, J.

Citation
Spasic, J. (2017, November 14). Improved hard real-time scheduling and transformations for
embedded Streaming Applications. Retrieved from https://hdl.handle.net/1887/59459

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/59459

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/59459

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/59459

Author: Spasic, J.
Title: Improved hard real-time scheduling and transformations for embedded Streaming
Applications
Issue Date: 2017-11-14

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/59459
https://openaccess.leidenuniv.nl/handle/1887/1�

Improved Hard Real-Time
Scheduling and Transformations

for Embedded Streaming Applications

Jelena Spasić

Improved Hard Real-Time
Scheduling and Transformations

for Embedded Streaming Applications

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus Prof.mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties

te verdedigen op dinsdag 14 november 2017
klokke 13:45 uur

door

Jelena Spasić
geboren te Trgovište, Servië

in 1984

Promotor: Prof. dr. Joost N. Kok Universiteit Leiden
Co-Promotor: Dr. Todor P. Stefanov Universiteit Leiden

Promotion Committee: Prof. dr. Alix Munier Kordon Université de Paris - LIP6
Prof. dr. Petru Eles Linköpings Universitet
Dr. Andy Pimentel Universiteit van Amsterdam
Prof. dr. Aske Plaat Universiteit Leiden
Prof. dr. Jaap van den Herik Universiteit Leiden
Prof. dr. Harry Wijshoff Universiteit Leiden

Improved Hard Real-Time Scheduling and Transformations
for Embedded Streaming Applications
Jelena Spasić. -
Dissertation Universiteit Leiden. - With ref. - With summary in Dutch.

Copyright c○ 2017 by Jelena Spasić. All rights reserved.

Cover designed by Miloš Ačanski.

This dissertation was typeset using LATEX.

ISBN 978-94-6299-783-7
Printed by Ridderprint, Ridderkerk, The Netherlands.

Mojoj porodici
To my family

Contents

Table of Contents vii

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Trends in the Design of Embedded Streaming Systems 3

1.1.1 Platform Trend: Multi-Processor System-on-Chip (MPSoC) 3
1.1.2 Design Trend: Model-based Design Methodology . . . 5

1.2 Design Requirements and Basic Approaches to Meet the Re-
quirements . 7
1.2.1 Timing Requirements . 7
1.2.2 Energy Requirements 9

1.3 Problem Statement . 10
1.3.1 Problem 1 . 10
1.3.2 Problem 2 . 10
1.3.3 Problem 3 . 11
1.3.4 Problem 4 . 12

1.4 Research Contributions . 13
1.5 Thesis Outline . 15

2 Background 17
2.1 Dataflow Models-of-Computations (MoCs) 17

2.1.1 Cyclo-Static Dataflow (CSDF) 18
2.1.2 Polyhedral Process Network (PPN) 20

2.2 Real-Time Scheduling Theory 22
2.2.1 Task Model . 22

viii Contents

2.2.2 System Model . 23
2.2.3 Real-Time Scheduling Algorithms 23
2.2.4 Uniprocessor Schedulability Analysis 24
2.2.5 Multiprocessor Schedulability Analysis 27

3 Hard Real-Time Scheduling Framework 31
3.1 Problem Statement . 32
3.2 Contributions . 32
3.3 Related Work . 33
3.4 Motivational Example . 35
3.5 Improved Hard Real-Time Scheduling of CSDF 37

3.5.1 Deriving Periods of Tasks 37
3.5.2 Deriving the Earliest Start Time of Actor’s First Phase . . 41
3.5.3 Deriving Channel Buffer Sizes 44
3.5.4 Hard Real-Time Schedulability 46
3.5.5 Performance Analysis . 47
3.5.6 Deriving the Number of Processors 52

3.6 Evaluation . 54
3.6.1 Performance of the ISPS Approach 55
3.6.2 Time Complexity of the ISPS Approach 59
3.6.3 Reducing Latency under ISPS 61

3.7 Discussion . 63

4 Exploiting Parallelism in Hard Real-Time Systems to Maximize Per-
formance 65
4.1 Problem Statement . 66
4.2 Contributions . 67
4.3 Related Work . 67
4.4 Motivational Example . 69
4.5 New Unfolding Transformation for SDF Graphs 72
4.6 The Algorithm for Finding Proper Unfolding Factors 75
4.7 Evaluation . 78

4.7.1 Efficiency of the Proposed Unfolding Transformation . 79
4.7.2 Performance of Algorithm 4 80
4.7.3 Time Complexity of Algorithm 4 82

4.8 Discussion . 82

5 Exploiting Parallelism in Hard Real-Time Systems to Minimize En-
ergy 85
5.1 Problem Statement . 86

Contents ix

5.2 Contributions . 87
5.3 Related Work . 87
5.4 Motivational Example . 90
5.5 System Model . 93
5.6 Energy Model . 94
5.7 The Proposed Energy Minimization Approach 95

5.7.1 The Data-Parallel Energy Minimization Algorithm . . 95
5.7.2 Task Classification for Energy Minimization 98
5.7.3 Task Mapping for Energy Minimization 99

5.8 Evaluation . 103
5.8.1 Comparison with [CKR14], [LSCS15], [SDK13] on Het-

erogeneous MPSoCs . 104
5.8.2 Comparison with [Lee09] on Heterogeneous MPSoCs . 106
5.8.3 Comparison on Homogeneous MPSoC 107
5.8.4 Overhead and Time Complexity Analysis 109

5.9 Discussion . 110

6 An Accurate Energy Modeling of Streaming Systems 111
6.1 Problem Statement . 111
6.2 Contributions . 112
6.3 Related Work . 113
6.4 System Model . 115

6.4.1 Application Model . 115
6.4.2 Platform Model . 116
6.4.3 Application-to-Platform Mapping 117

6.5 Energy Model . 118
6.5.1 Model Formulation . 118
6.5.2 Derivation of Model Parameters 121

6.6 Evaluation of the Energy Model 127
6.7 Discussion . 130

7 Summary and Conclusions 133

Bibliography 137

Samenvatting 153

List of Publications 156

Curriculum Vitae 159

x Contents

Acknowledgments 161

List of Figures

1.1 An MPSoC platform example. 4
1.2 Motion JPEG encoder application. 6

2.1 A CSDF graph G. 19
2.2 Example of a PPN (a) and the structure of process P3 (b). 21

3.1 (a) The SPS and (b) ISPS of graph G in Figure 2.1. 36
3.2 The periodic schedule σ for the CSDF graph G shown in Figure 2.1. 41
3.3 Production and consumption curves on edge eu = (vi, vj). . . 50

4.1 An SDF graph G. 69
4.2 Equivalent graphs of the SDF graph in Figure 4.1 by unfolding

actor v2 by factor 2 and v3 by factor 3. 70
4.3 Unfolding channel e2 from the graph in Figure 4.1 by using

Algorithm 3 when ~f = [1, 2, 3, 1, 1]. 74
4.4 Comparison of our unfolding transformation to the approaches

in [KM08], [FKBS11], [SLA12], [ZBS13]. 80
4.5 Results of performance evaluation of our proposed approach

in comparison to the approach in [ZBS13]. 81
4.6 Results of time evaluation of our proposed approach in com-

parison to the approach in [ZBS13] 83

5.1 An SDF graph G. 91
5.2 A CSDF graph G′ obtained by unfolding SDF graph G in Fig-

ure 5.1 with ~f = [1, 2, 2, 1]. 91
5.3 Comparison of our proposed DPEM approach with related ap-

proaches on heterogeneous MPSoCs. 105
5.4 Comparison between DPEM and WYL on heterogeneous MP-

SoCs. 107
5.5 Comparison on homogeneous MPSoC. 108

xii List of Figures

6.1 The read primitive implemented in software (a) and hardware
(b). 115

6.2 The architecture template of MPSoC platforms. 117

List of Tables

2.1 Summary of mathematical notations 17

3.1 Throughput, latency and number of processors for G under
different scheduling schemes. 36

3.2 Benchmarks used for evaluation. 54
3.3 Comparison of different scheduling approaches. 58
3.4 Time complexity (in seconds) of different scheduling approaches. 58
3.5 Time complexity (in seconds) for the calculation of number of

processors. 58
3.6 Performance of the ISPS approach under different latency con-

straints. 63

4.1 Results for G transformed by different transformation approaches. 71
4.2 Results for G transformed and mapped on 2 processors by dif-

ferent approaches. 71
4.3 Benchmarks used for evaluation. 79

5.1 Different MPSoC designs for G in Figure 5.1. 91
5.2 Benchmarks used for evaluation. 103

6.1 Accuracy of the energy model for CB, ShB and P2P MPSoC
platforms . 129

6.2 Accuracy of the energy estimation when contention is not con-
sidered in the model . 130

List of Abbreviations

ADF Affine Dataflow

BF Best-Fit

BFD Best-Fit Decreasing

CDP Constrained-Deadline Periodic

CPU Central Processing Unit

CSDF Cyclo-Static Dataflow

DCT Discrete Cosine Transform

DLP Data-Level Parallelism

DM Deadline Monotonic

DPEM Data Parallel Energy Minimization

DSE Design Space Exploration

EDF Earliest Deadline First

EE Energy Efficient

ESL Electronic System-Level

FF First-Fit

FFD First-Fit Decreasing

FFID First-Fit Increasing Deadlines

FIFO First-In First-Out

xv

xvi List of Tables

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

HSDF Homogeneous SDF

ICP Integer Convex Programming

IDP Implicit-Deadline Periodic

ILP Integer Linear Programming

ISA Instruction-Set Architecture

ISPS Improved Strictly Periodic Scheduling

ISS Instruction Set Simulators

ITRS International Technology Roadmap for Semiconductors

KPN Kahn Process Network

LLF Least Laxity First

LP Linear Programming

LTE Long-Term Evolution

MIDCP Mixed Integer Disciplined Convex Programming

MJPEG Motion JPEG

MoC Model of Computation

MPSoC Multi-Processor System-on-Chip

NoC Network-on-Chip

NP Non-deterministic Polynomial-time

PE Performance Efficient

PLP Pipeline-Level Parallelism

PM Power Management

PPN Polyhedral Process Network

List of Tables xvii

PS Periodic Scheduling

RM Rate Monotonic

RSD Reed Solomon Decoder

RTA Response Time Analysis

RTL Register-Transfer-Level

SDF Synchronous Data Flow

SPS Strictly Periodic Scheduling

STS Self-timed Scheduling

TLP Task-Level Parallelism

VFS Voltage-Frequency Scaling

VLE Variable Length Encoder

WCET Worst-Case Execution Time

WF Worst-Fit

WFD Worst-Fit Decreasing

Chapter 1

Introduction

IN the modern-day world, electronics is not only a tool for survival but an
integral part of almost every aspect of human lives. Everything from our

home appliances, cars, tablets to our cell-phones uses electronics or electronic
components in some way. Constantly improving, the electronics technology is
making life faster, easier and more convenient for people. Modern electronics
technology is rapidly changing the way people communicate and transmit
data and information. Thus, it is possible and common today to execute
work related tasks remotely. Health-care systems have also benefited a lot
from electronics technology. There, electronics technology is helping doctors
accurately diagnose and treat illnesses in a timely manner. For example, in
Philips Healthcare, live image guided intervention has been used in treatment
of structural heart diseases. Using electronics in home automation received
popularity in the past decades. People have the capability to control almost
everything in their “smart homes” from heating, air conditioning, and lighting,
to kitchen appliances and security systems.

Even though electronics technology has been used in all of the above cases,
in each case it has its dedicated purpose within a larger system it has been em-
bedded into, hence the name “embedded electronics”. Embedded electronics,
that is, embedded systems, are tightly coupled to the environment in which
they operate. They collect information about the environment through sensors
and control that environment through actuators, hence embedded systems
must provide real-time guarantees, that is, a correct on-time output [Mar06].
Given that embedded systems are dedicated towards a certain application,
they are designed to implement well-defined set of functionalities. In addition,
having that many embedded systems are battery-operated they have to be
efficient in terms of energy consumption and resource usage.

2 Chapter 1. Introduction

An important class of embedded systems are embedded streaming sys-
tems. Embedded streaming systems process a long, potentially infinite, stream
of input data coming from the environment. Each data item is processed for
a limited time. The processing operations on different data items are self-
contained and there is little control flow between the operations. The result of
the processing is a long, potentially infinite, stream of output data fed into the
environment. Usually, streaming applications must process a large amount of
data within short periods of time. Thus, efficiency, in terms of both through-
put and latency, is of primary concern in the design of embedded streaming
systems. The throughput represents the rate at which output data items are
produced, while the latency represents the time interval between the arrival
of a data item to the application input and the production of the correspond-
ing data item at the application output. Examples of streaming applications
include audio beamforming, video encoding and decoding, image and signal
processing, network protocol processing, navigation, computer vision, and
others.

One of the key properties of embedded streaming systems is that their
correct functionality depends not only on the correct result but also on the
time at which the result is produced. Such systems, where the timing is critical
to the correct functionality, are called real-time systems. Real-time systems
can be classified into hard and soft systems. A hard real-time system is one
where not meeting the timing requirements leads to a system failure, which,
in life-critical systems, may have catastrophic consequences. In contrast, in
soft real-time systems, not meeting the timing requirements does not lead to a
failure but to degraded system performance that can be tolerated given that
the timing miss rates are below a certain threshold. Classifying a system into
hard or soft real-time depends usually on the overall system requirements and
the environment where the system is deployed.

As examples of real-time embedded streaming systems, today we have
increasing number of various autonomous mobile systems that need to inter-
act and respond to their dynamic environment extremely fast. These include
very complex systems such as self-driving cars and planes, but also modern
“toys” such as drones. In recent years, drones have been used extensively as
data collectors in many areas. For example, drones have been used in law
enforcement for surveillance, tracking and rescue operations. They have been
used for monitoring purposes in agriculture and farming, archaeological and
land surveying, for delivery purposes in healthcare, crowd monitoring and
control, and other cases of monitoring and control. They can carry various
types of equipment including live-feed video cameras, infrared cameras, in-

1.1. Trends in the Design of Embedded Streaming Systems 3

ertial, position and heat sensors. The large amount of data which should be
collected and (pre-)processed, the battery-powered operation nature, and the
need to react in a short time create demand for designing a high-performance
energy-efficient real-time embedded streaming systems. In the next section,
we discuss the current trends in designing such systems.

1.1 Trends in the Design of Embedded Streaming Sys-
tems

As introduced earlier, there is a demand in modern embedded streaming
systems for high performance, in terms of high application throughput and
short application latency, and a demand for real-time and energy-efficient
execution. In addition, the complexity of applications running on embedded
platforms increases [EJ09]. Therefore, we discuss below the trends in designing
such complex embedded streaming systems to meet all the demands.

1.1.1 Platform Trend: Multi-Processor System-on-Chip (MPSoC)

Following the trend in general purpose systems, embedded streaming systems
designers have relied for a long time on improvement of the computational
power of uniprocessors to meet the high-performance requirements of stream-
ing applications. The improvements of the computational power were driven
by the increase in the clock frequency, advances in the semiconductor technol-
ogy, that is, technology scaling, and innovations in the architecture (pipelining,
out-of-order execution, branch prediction, and others.) [HP06]. However, the
monotonically increasing performance curve with the successive generations
of uniprocessors flattened in the early 2000s [PDG06]. The reasons for the curve
flattening were increased dynamic power consumption and design complexity
with the frequency increase and architecture innovations as well as increased
static power and power density with the technology scaling [PDG06]. To in-
crease system performance further, such that high-performance requirements
of running applications are met, designers went for multi-processor platforms
as the natural next evolutionary step in staying on the increasing performance
curve [HP06]. By using multiple processors, the issue of increased power
consumption is partially addressed by lower operating voltage and frequency,
thereby decreasing the power consumption while maintaining high system
performance through parallel execution. Moreover, nowadays, embedded
systems designers integrate multiple processors, memories, interconnections,
and peripherals into a Multi-Processor System-on-Chip (MPSoC) [JTW05].

4 Chapter 1. Introduction

CPUbig

M1 M1

M1 M1

A53 A53

A53 A53

LITTLE

GPU

LTE
modem

Mali-T880

Memory
controller

Samsung Coherent Interconnect

Figure 1.1: An MPSoC platform example.

Usually, an MPSoC contains different kinds of processors dedicated to
certain functionalities: Central Processing Unit (CPU) for general purpose
processing, Graphics Processing Unit (GPU) for graphical processing, a ded-
icated processor for wireless communication, and others. The processors
communicate with each other through an on-chip communication infrastruc-
ture. To enable efficient communication, designers proposed and developed
high-performance buses, such as ARM AMBA communication infrastruc-
tures [ARM], and Network-on-Chip (NoC) [BDM02] infrastructures, such
as Xpipes [BB04] and Æthereal [GDR05]. Figure 1.1 gives an example of an
MPSoC, the Exynos 8 Octa 8890 [Sama], which can be found in the Samsung
S7 mobile phones. The Exynos 8 Octa has eight CPUs in a big.LITTLE architec-
ture [Gre11]. That is, by integrating CPUs with different power-performance
characteristics, namely, performance-efficient Exynos M1 cores (big cores)
and energy-efficient Cortex A53 cores (LITTLE cores), this MPSoC provides
more than 30% improvement in performance and 10% improvement in power
efficiency compared to its predecessor [Sama]. The MPSoC also contains a
16-core GPU for 2D/3D graphical processing. The on-chip LTE modem is used
for high-speed wireless data communication. All the processors are connected
through a high-performance cache coherent interconnect. In this thesis, we
consider such type of MPSoC platforms, efficiently utilizing their CPU part by
mapping streaming applications on the CPUs.

1.1. Trends in the Design of Embedded Streaming Systems 5

1.1.2 Design Trend: Model-based Design Methodology

Driven by constant improvements in the semiconductor technology, MPSoC
platforms integrate more and more processing elements on a chip. On the
other hand, the complexity of embedded software also increases [EJ09]. In
order to design such a complex embedded streaming system in an efficient
manner in terms of system quality, design effort and time, designers had
to raise the level of design abstraction from Register-Transfer-Level (RTL) to
system-level [KMN+00], [NSD08]. At the system-level, a hardware platform is
modeled as a set of primitive blocks describing, at a high-level of abstraction,
processing elements, memories and interconnects. An application is modeled
as a set of tasks which can be allocated to hardware resources in many different
ways, which means that there are many possible mappings of tasks to platform
resources. Once it is determined how the application tasks are going to be
allocated to the hardware resources such that all design constraints are met,
that is, once we have a mapping specification, an Electronic System-Level
(ESL) synthesis tool [GHP+09] generates in an automated way the hardware
description at a lower level of abstraction and the software for each processor
in a platform.

In order to achieve the desired performance, the applications which are
going to execute on the MPSoC platform have to be specified in a way which
utilizes the parallel processing elements in the platform. In general, identifying
parallelism in an application is a difficult step. In addition, designers should
determine the mapping and execution order, that is, scheduling, of application
tasks to a platform, and code should be generated for each used processor
in the platform. In order to perform all these design steps in an efficient
way, designers raise the level of abstraction, as introduced earlier, by building
high-level models of applications. Then, the designer can use these models to
analyze the performance of different applications-to-platform mappings. Such
design approach is called Model-based design and the models used in such
an approach are called Models of Computation (MoCs). A MoC describes in
a formal way how an application works. In this thesis, we consider only parallel
MoCs because they are suitable for expressing parallelism in an application
which is going to be executed on an MPSoC platform. In a parallel MoC,
an application is decomposed into tasks which can be executed in parallel.
The parallel MoC defines how tasks communicate and synchronize with each
other.

Streaming applications have ample amount of parallelism which should
be exploited efficiently to satisfy the performance requirements. Researchers
have identified three types of parallelism:

6 Chapter 1. Introduction

Video in

DCT

VLEQ

DCT

Video out

Init

Figure 1.2: Motion JPEG encoder application.

1. Task-Level Parallelism (TLP): an application is split into set of tasks
which can execute concurrently;

2. Data-Level Parallelism (DLP): a task of an application executes in
parallel on multiple processing elements where each copy of the task
processes its own data stream;

3. Pipeline-Level Parallelism (PLP): different iterations of a pair of data
producer and consumer tasks execute in parallel.

Usually, an application contains more than one type of parallelism. Task-level
parallelism is typically considered first when specifying an application as a set
of concurrent tasks. Data-level parallelism is usually used by replicating tasks
in an application in order to process more data in parallel and, hence, increase
the application performance. However, if consecutive executions of a task
depend on each other, data-level parallelism cannot be exploited and pipeline
parallelism comes as an important form of parallelism to exploit. Figure 1.2
shows a Motion JPEG (MJPEG) encoder application represented as a set of
communicating tasks which can execute concurrently. Here, we can identify
examples of all three types of parallelism introduced above: 1) TLP between
Video in and Init; 2) DLP between the two DCT tasks; and 3) PLP between
different iterations of VLE and Video out.

It has been identified that dataflow MoCs are the most suitable parallel
MoCs to express parallelism in streaming applications [TA10]. In a dataflow
MoC, an application is represented as a directed graph, with graph nodes
representing the application tasks and graph edges representing data depen-
dences among the tasks. Thus, the parallelism is explicitly specified in the
model. Dataflow MoCs differ among each other in their expressiveness and
decidability. The expressiveness of a model indicates which type of applications
can be modeled by the model and how compact the model is [SGTB11]. The

1.2. Design Requirements and Basic Approaches to Meet the Requirements 7

decidability of a model represents the extent to which designers can analyze
liveness and performance of an application at compile-time. In general, expres-
siveness and decidability of MoCs are inversely related, meaning that more
expressive MoCs are less decidable, and the opposite; hence the choice of a
suitable MoC depends on the problem being addressed. For example, within
the DaedalusRT [BZNS12] design methodology, the Cyclo-Static Dataflow
MoC [BELP96] is used as an analysis model, to analyze design non-functional
properties such as throughput, latency, hard real-time behavior, while the
Polyhedral Process Network MoC [VNS07] is used as an implementation
model. The MoCs considered in this thesis to represent streaming appli-
cations are Synchronous Data Flow (SDF) [LM87], Cyclo-Static Dataflow
(CSDF) [BELP96] and Polyhedral Process Network (PPN) [VNS07], given in
the order of increased expressiveness, hence decreased analyzability. Because
of their very good analyzability, we use the SDF and CSDF MoCs to analyze
the application throughput, latency, hard real-time behavior and calculate the
required size of buffers used to implement inter-task communication. On the
other hand, we use the PPN MoC to generate efficient code for processors
in an MPSoC and build highly accurate energy model to analyze the energy
consumption. A more detailed and complete comparison of different dataflow
MoCs is given in [SGTB11].

1.2 Design Requirements and Basic Approaches to
Meet the Requirements

In Section 1.1.2, it has been explained that model-based design methodologies
have been used to design embedded streaming MPSoCs to provide the desired
system performance. In this section, we introduce the requirements which
are usually put on embedded streaming MPSoCs and the basic approaches
proposed by research communities to meet these requirements.

1.2.1 Timing Requirements

As mentioned earlier, the performance of a streaming application running on
an MPSoC is represented with two metrics: throughput and latency. Usually,
embedded streaming MPSoCs execute simultaneously multiple applications
and for each application throughput and latency requirements have to be
met. In addition, these multiple applications should be temporally isolated
between each other. This means that an application can be started or stopped
at run-time without violating the timing requirements of other running ap-

8 Chapter 1. Introduction

plications. Beside performance requirements, many embedded streaming
systems have to process data within a certain time interval, that is, before a
deadline, meaning that they have hard real-time requirements.

In general, to provide timing guarantees for streaming applications, re-
searchers proposed either analysis approaches on the dataflow MoCs, or they
specified applications as periodic real-time tasks, or devised techniques which
are mixture of the previous two. In the first case, techniques are devised to
provide timing guarantees for streaming applications by performing analysis
on a dataflow MoC, for example, techniques proposed in [GGS+06], [SGB08],
[MB07] and [BMKdD13]. The approach in [GGS+06], [SGB08] analyzes an
application modeled using the (C)SDF MoC [LM87] by performing state-space
exploration of the (C)SDF graph in order to find the application throughput
and latency. On the other hand, the approach in [MB07] converts an initial
SDF application specification into an equivalent homogeneous SDF (HSDF)
specification, and does the performance analysis on the HSDF. However,
the state-space of an SDF graph is exponential in the worst case, and the
conversion from an SDF into an equivalent HSDF results in an application
graph which size grows exponentially in the worst case, hence the analysis
approaches in [GGS+06] and [MB07] have high time complexity. The approach
in [BMKdD13] does application performance analysis on a CSDF graph by for-
mulating the problem of finding performance guarantees as an Integer Linear
Programming (ILP) problem. Thus, that approach has high time complexity
given that ILP-based approaches suffer from severe scalability issues. All
the approaches [GGS+06], [MB07] and [BMKdD13], do not provide temporal
isolation among applications and need complex design space exploration to
find the minimum number of processors in a platform required to provide
timing guarantees.

Another way of providing timing guarantees is by specifying applications
as classical real-time tasks [DB11]. The classical real-time task model [LL73] spec-
ifies applications as independent tasks. The invocations of tasks are periodic,
with constant execution time for each invocation and constant interval be-
tween invocations. By using the hard real-time schedulability theories [DB11],
the minimum number of processors needed to schedule applications while
providing timing guarantees, and temporal isolation between the applications
can be determined in a fast analytical way. However, this classical real-time
task model does not model data dependencies among tasks usually found in
streaming applications.

Recently, several approaches, such as [BS11], [BS13] and [BTV12], have
been proposed which combine advantages of the previously mentioned ap-

1.2. Design Requirements and Basic Approaches to Meet the Requirements 9

proaches by converting an application specified using a dataflow MoC, hence
modeling data dependencies, to real-time tasks, thus enabling temporal iso-
lation and fast calculation of the minimum number of processors to provide
timing guarantees. Therefore, in this thesis, we utilize benefits of both dataflow
MoCs and real-time task models to further improve the system timing guaran-
tees and the utilization of hardware resources.

1.2.2 Energy Requirements

As indicated in Section 1.1.1, one of the main reasons for the flattening of
the performance curve across different generations of uniprocessors was the
increased power consumption due to the increased clock frequency to boost
performance, and the technology scaling. The idea of using MPSoC platforms
partially solved the power consumption issue by allowing performance boost
through parallel execution while running processors at a lower frequency.
Given that the technology scaling is still one ongoing process which provides
more parallel processing resources but also results in larger power dissipation,
it has been identified by the International Technology Roadmap for Semicon-
ductors (ITRS) [fSI] that the power and energy consumption are the main
problems in the system design. This results in a need for design techniques
which target more performance and functionality at constant power density,
constrained by thermal issues, and constant energy consumption, constrained
by the battery capacity. The inability to manage power dissipation limits the
amount of switched-on logic content in a SoC, known as the "dark silicon"
issue [EBSA+11].

Widely used techniques to reduce the power/energy consumption are
Voltage-Frequency Scaling (VFS) and Power Management (PM). VFS reduces
the power consumption by adjusting the voltage and operating frequency
of processors while PM exploits idle times of processors by putting them
to a very low-power sleep mode. In addition, according to ITRS reports,
heterogeneous MPSoCs were identified as a promising solution in terms of
energy-efficiency [Mit15]. Heterogeneous MPSoCs [Mit15] have been also
considered as a promising solution to the dark silicon problem. Especially, the
asymmetric multi-core architecture, also known as a single-ISA heterogeneous
architecture, was recognized as a good trade-off in terms of energy-efficiency
and programming effort [Mit15]. A single-ISA heterogeneous MPSoC consists
of cores with different power-performance characteristics but with the same
instruction-set architecture (ISA). Apart from containing cores with different
power-performance characteristics, such heterogeneous MPSoCs cover large
set of power-performance design points through voltage-frequency scaling of

10 Chapter 1. Introduction

the cores [Mit15]. However, with the advent of many-core systems, per-core
VFS becomes impractical due to the high hardware cost and area requirement
[HM07]. Therefore, to balance the energy saving and the hardware cost, cores
are grouped into clusters and cores in each cluster run at the same voltage and
frequency level. In addition, it has been recognized by ITRS that the accuracy
of power modeling and estimation has to be improved in order to manage the
power consumption to extreme limits [Kah13].

1.3 Problem Statement

After introducing the trends and requirements in the design of embedded
streaming systems in Section 1.1 and Section 1.2, in this section, we formulate
the problems addressed in this thesis concerning the design of embedded
streaming systems.

1.3.1 Problem 1

Meeting the timing requirements is one of the most important design objectives
when designing embedded streaming MPSoCs. As explained in Section 1.2.1,
there are several research approaches on how to guarantee the timing behav-
ior of streaming applications. Among them, the most appropriate one is the
research approach which combines the benefits of dataflow MoC-based analy-
sis and hard real-time analysis. The existing works [BS11], [BS13], [BTV12],
following this approach, assume that each execution of an application task
takes the same amount of time. However, a common behavior in streaming
applications is that different executions of the same application task differ in
execution time. When such changing execution nature of an application is
hidden by considering one and the same value for the execution time of an
application task, the application throughput is underestimated, the applica-
tion latency overestimated, while the processors in an MPSoC platform are
underutilized. Thus, the first problem addressed in this thesis is:
Problem 1: Can we apply the hard real-time scheduling theory for real-time
periodic tasks to streaming applications while considering different exe-
cution times among different executions of an application task to obtain
tighter bounds on throughput and latency and better utilize processors?

1.3.2 Problem 2

As introduced in Section 1.1.2, streaming applications contain ample amount
of parallelism and can be efficiently represented by using parallel MoCs. How-

1.3. Problem Statement 11

ever, the initial parallel application specification often is not the most suitable
one for a given MPSoC platform. This is because application developers
mainly focus on realizing certain application behavior while the computa-
tional capacity and power consumption profile of the MPSoC platform is often
not fully taken into account. That is, the initial parallel specification does not
expose enough parallelism, particularly in the form of DLP, to better exploit
the platform to satisfy timing and energy requirements. To better utilize the
underlying MPSoC platform, the initial specification of an application, that
is, the initial task graph, should be transformed to an alternative one that
exposes more DLP while preserving the same application behavior. This
can be achieved through an unfolding transformation where the tasks from
the initial graph are replicated, in an equivalent graph, a certain number of
times. Special care should be taken during the unfolding transformation to
avoid all unnecessary overheads caused by data management among replicas.
Moreover, having more tasks’ replicas than necessary results in an inefficient
system due to overheads in code and data memory, scheduling and inter-tasks
communication. Thus, the right amount of DLP, depending on the underlying
MPSoC platform, should be determined in a parallel application specification
to achieve maximum performance and timing guarantees. Therefore, the
second problem we address in this thesis consists of two sub-problems. The
first sub-problem is:
Problem 2a: How to convert an initial application graph into input-output
equivalent graph while avoiding unnecessary overheads caused by data
management among task replicas?
The second sub-problem follows as:
Problem 2b: How many times to replicate each task in the initial appli-
cation graph, such that the obtained equivalent graph exposes the right
amount of parallelism that maximizes the utilization of the available pro-
cessors in an MPSoC platform while meeting all timing requirements?

1.3.3 Problem 3

Apart from timing requirements, energy consumption requirements are very
important requirements to be met for proper functioning of embedded sys-
tems. As introduced in Section 1.2.2, the ITRS proposed heterogeneous par-
allel processing and frequency islands as design innovations to address the
power/energy consumption requirements. In particular, the asymmetric
multi-core architecture was recognized by both academia and industry as a
good platform for design of energy-efficient embedded systems. Some exam-
ples of commercial asymmetric cluster MPSoCs are Samsung Exynos 5 Octa

12 Chapter 1. Introduction

SoC [Samb], nVidia Tegra X1 [NVI15], which include ARM big.LITTLE [Gre11]
integrating high-performance cores into big clusters and low-power cores into
LITTLE clusters. As mentioned in Section 1.3.2, when developing an applica-
tion, application designers often do not have the timing and energy behavior
of a platform in mind. Hence, it may happen that an application consists of
highly imbalanced tasks in terms of the task workload, that is, task utilization.
Especially, in cluster heterogeneous MPSoCs, when several tasks are mapped
onto the same cluster, the task with the heaviest utilization will determine the
required voltage and frequency of the whole cluster and will significantly in-
crease the energy consumption of the other tasks mapped on the same cluster.
When task replication, that is, DLP, is applied to application tasks with heavy
utilization, their utilization can be decreased while still providing the same
application performance. Thus, the third problem, we address in this thesis is:
Problem 3: How to map embedded streaming applications under timing re-
quirements by utilizing per-cluster VFS and task replication to reduce the
energy consumption of a system?

1.3.4 Problem 4

It was pointed out by ITRS that the accuracy of power/energy modeling is
very important for efficient power/energy management [Kah13]. Model accu-
racy is usually traded-off for modeling and evaluation effort. Energy models
used with more analyzable functional models, that is, MoCs, are usually more
abstract in order to be more efficient in terms of modeling and evaluation
effort and time, hence they try to capture the worst-case energy consumption.
Such a model of the energy consumption results in safe but not very accurate
estimates when compared with the actual energy consumption measurements
on real implementations. Hence, an energy model should be more closely
related to the actual running system yet be enough efficient in terms of model-
ing and evaluation effort and time. More expressive MoCs, as the PPN MoC
for example, can give better insight of the final implementation of application
tasks on a platform, hence they are often used as implementation models.
However, providing timing guarantees by doing analysis on the PPN MoC
is rather difficult, if not impossible [Zha15], hence the PPN MoC is used in
systems where the timing requirements are not necessarily specified but it is
required that the system runs at the best of its capacity (best-effort systems).
Therefore, as the forth problem, we investigate:
Problem 4: How to model as accurately as possible the energy consump-
tion of a mapping of an application onto an MPSoC platform while such a
system runs at the best of its capacity?

1.4. Research Contributions 13

1.4 Research Contributions

By addressing the research problems outlined in Section 1.3, in this section,
we summarize the research contributions of this thesis.

Contribution 1: Proposing a scheduling approach which converts data-
flow MoCs to real-time periodic tasks while considering different execu-
tion times for different executions of an application task.
To address the first problem, namely, Problem 1 in Section 1.3.1, we propose
a scheduling approach, published in [SLCS15] and [SLCS16], and presented
in Chapter 3, to schedule streaming applications modeled as acyclic CSDF
graphs on an MPSoC platform. The proposed approach converts each task in
a CSDF graph to a set of real-time periodic tasks by deriving task parameters
(periods, start times, and deadlines) while considering different execution
times for different executions of each task in the CSDF graph. The conversion
enables application of many hard real-time scheduling algorithms which offer
fast calculation of the required number of processors for scheduling the tasks
with a certain guaranteed throughput and latency. In addition, the proposed
approach calculates the minimum buffer sizes of the communication channels
between the tasks in the CSDF graph such that the converted tasks can be
scheduled as periodic real-time tasks. As part of our scheduling approach,
we propose a method to reduce the graph latency by carefully selecting the
deadlines of the converted real-time periodic tasks. We show, on a set of
real-life streaming applications, that our approach leads to equal or higher
application throughput and shorter application latency while reducing the
number of processors required to schedule a given application, compared to
a related approach which does not consider different execution times for dif-
ferent executions of CSDF tasks. However, our approach results in increased
memory requirements to implement the communication among the tasks.

Contribution 2: Proposing a graph transformation and an approach that
uses the transformation to exploit the right amount of parallelism that max-
imizes the utilization of the available processors in an MPSoC platform
while meeting all timing requirements.
We address the second problem, Problem 2a-2b stated in Section 1.3.2, by
proposing an unfolding graph transformation for SDF graphs and an algo-
rithm that adapts the exploited parallelism in an application modeled using
the SDF MoC according to the resources in an MPSoC by using the unfolding
transformation and the hard-real time scheduling approach of CSDF graphs
devised within Contribution 1 such that the application performance is max-
imized and hard real-time behavior guaranteed. Our contribution has been
published in [SLS16b] and explained in Chapter 4. In particular, our unfolding

14 Chapter 1. Introduction

graph transformation carefully distributes data among task replicas, enabling
more parallel execution of tasks, and our algorithm determines simultaneously
which SDF tasks and how many times to replicate them, and the allocation of
tasks to processors in the MPSoC. We show, on a set of real-life streaming ap-
plications, that our unfolding graph transformation for SDF graphs results in
graphs with the same application throughput, shorter application latency and
smaller communication memory compared to related approaches. In addition,
we show that our algorithm delivers, in 98% of the conducted experiments, a
solution with a shorter latency, smaller communication memory and smaller
values for task replication factors compared to a related approach while the
same performance and timing requirements are satisfied.

Contribution 3: Proposing an approach that exploits the right amount
of parallelism in an application and per-cluster VFS to map the application
onto a cluster heterogeneous MPSoC such that the energy consumption is
minimized and all timing requirements met.
In our third contribution which addresses Problem 3 in Section 1.3.3, we
propose a novel algorithm [SLS16a], presented in Chapter 5, to efficiently map
real-time streaming applications onto cluster heterogeneous MPSoCs, which
are subject to throughput constraints, such that the energy consumption of
the cluster heterogeneous MPSoC is reduced by using task replication and
per-cluster VFS. By using the hard real-time scheduling approach of CSDF
graphs, we devised within Contribution 1, we propose an efficcient way to
determine a suitable processor type for each task in an (C)SDF graph such
that the energy consumption is minimized and the throughput constraint is
met. Then, by using our unfolding graph transformation, devised within
Contribution 2, we propose a method to determine a replication factor for
each task in an SDF graph such that the distribution of the workload on the
same type of processors is balanced, which enables processors to run at a
lower frequency, hence reducing the energy consumption. We show, on a set
of real-life streaming applications, that our proposed energy minimization
approach outperforms related approaches in terms of energy consumption
while meeting the same throughput constraints.

Contribution 4: Proposing an accurate energy model for best-effort
streaming applications mapped onto heterogeneous MPSoC platforms.
To address the problem of accurate power/energy modeling, namely, Prob-
lem 4 in Section 1.3.4, we devise an accurate energy model [SS13] for streaming
applications modeled by the PPN MoC and mapped onto heterogeneous MP-
SoC platforms. The energy model is based on the well-defined properties of
the PPN application model. To guarantee the accuracy of the energy model,

1.5. Thesis Outline 15

values of important model parameters are obtained by real measurements. In
addition, our energy model can model different types of communication infras-
tructures: with and without contention. The accuracy of the proposed energy
model is evaluated on FPGA-based MPSoC platforms running two real-life
streaming applications against real measurements of the energy consumption
from the FPGA. The model and its accuracy and efficiency is presented in
Chapter 6.

1.5 Thesis Outline

Below we give an outline of this thesis, summarizing the contents of the
following chapters.

Chapter 2 gives an overview of the dataflow MoCs considered in this
thesis, and some techniques from hard-real time scheduling theories relevant
for this thesis.

Chapters 3 to 6 contain the contributions of this thesis. Each chapter is
organized in a self-contained way, meaning that each chapter contains more
specific introduction to the problem addressed, related work, the proposed
solution approach, experimental evaluation, and concluding discussion.

Chapter 3 presents our hard real-time scheduling approach for streaming
applications modeled as acyclic CSDF graphs.

Chapter 4 describes our unfolding graph transformation for SDF graphs
and our algorithm for finding proper replication factors for each task in an SDF
graph, which uses our scheduling framework described in Chapter 3, such
that the processing resources are utilized as best as possible, while providing
hard real-time guarantees.

Chapter 5 presents our energy-minimization approach which uses our
scheduling framework described in Chapter 3 and our unfolding transforma-
tion described in Chapter 4 to find task-to-processor type assignment and task
replication factors such that the energy consumption is minimized.

Chapter 6 presents our accurate energy model for streaming applications
modeled using the PPN MoC and mapped onto MPSoC platforms.

Chapter 7 ends this thesis by providing conclusions regarding the work
done within this thesis and discussions on potential future work.

16 Chapter 1. Introduction

Chapter 2

Background

THIS chapter introduces the background necessary to understand the
contribution of this thesis presented in the following chapters. First, we

give in Table 2.1 a summary of the mathematical notations used throughout
the thesis. Then, we present the dataflow models considered in this thesis
in Section 2.1, while some results from the hard real-time scheduling theory
relevant for this thesis are presented in Section 2.2.

Table 2.1: Summary of mathematical notations

Symbol Meaning
N The set of natural numbers excluding zero
N0 N∪ {0}
Z The set of integers
|x| The cardinality (size) of a set x
x̂ The maximum value of x
x̌ The minimum value of x

lcm The least common multiple operator
mod The integer modulo operator

2.1 Dataflow Models-of-Computations (MoCs)

As mentioned earlier in Section 1.1.2, dataflow MoCs have been used to ef-
ficiently express parallelism in streaming applications. In this section, we
present the dataflow MoCs considered in this thesis, that is, the CSDF and SDF
MoCs are given in Section 2.1.1, and the PPN MoC is given in Section 2.1.2.
The CSDF MoC is used to specify streaming applications within the hard

18 Chapter 2. Background

real-time scheduling framework proposed in Chapter 3. The SDF MoC is used
to specify the input streaming applications in the techniques which exploit
parallelism in streaming applications to maximize the resource utilization and
minimize the energy consumption, presented in Chapters 4 and 5, respectively.
The PPN MoC is used to specify streaming applications within the solution
for highly accurate modeling of energy consumption, presented in Chapter 6.

2.1.1 Cyclo-Static Dataflow (CSDF)

An application modeled as a CSDF [BELP96] is a directed graph G = (𝒱 , ℰ)
that consists of a set of actors 𝒱 which communicate with each other through
a set of communication channels ℰ . Actors represent a certain functionality
of the application, while communication channels are first-in first-out (FIFO)
buffers representing data dependencies and transferring data tokens between
the actors. A data token is an atomic data object belonging to a stream of
data transferred between the actors. We can associate each actor vi ∈ 𝒱 in a
graph with two sets of actors, the predecessors set, denoted by prec(vi), and the
successors set, denoted by succ(vi). These sets are given by:

prec(vi) = {vj ∈ 𝒱 : ∃eu = (vj, vi) ∈ ℰ} (2.1)
succ(vi) = {vj ∈ 𝒱 : ∃eu = (vi, vj) ∈ ℰ} (2.2)

In addition, we can define for each actor vi ∈ 𝒱 in a graph two sets of commu-
nication channels, the input set, denoted by inp(vi), and the output set, denoted
by out(vi). The input set contains all the input channels to vi, while the output
set contains all the output channels from vi. If an actor vi receives an input
data stream from the environment then vi is called input actor, and vi does not
have input channels, that is, inp(vi)= ∅. Similarly, if an actor vi produces an
output data stream for the environment then vi is called output actor, and vi
does not have output channels, that is, out(vi)= ∅. A path wi→j between actors
vi and vj is an ordered sequence of channels connecting vi and vj denoted as
wi→j = {(vi, vk), (vk, vl), · · · , (vm, vj)}.

Every actor vi ∈ 𝒱 has an execution sequence [Fi(1), Fi(2), · · · , Fi(φi)]
of length φi, that is, it has φi phases. The kth time that actor vi is fired, it
executes the function Fi(((k − 1) mod φi) + 1). As a consequence, the ex-
ecution time of actor vi is also a sequence [CC

i (1), CC
i (2), · · · , CC

i (φi)] con-
sisting of the worst-case computation time values for each phase. Simi-
larly, every output channel eu of an actor vi has a predefined token pro-
duction sequence [xu

i (1), xu
i (2), · · · , xu

i (φi)] of length φi. Analogously, token
consumption on every input channel eu of an actor vi is a predefined se-

2.1. Dataflow Models-of-Computations (MoCs) 19

[3,1,1]
υ1

[2,3]

[2]
υ3

υ2

[1,1,1]

[1,0,0]

[1,1] [0,2]

[3]

[1]e1
e2

e3

Figure 2.1: A CSDF graph G.

quence [yu
i (1), yu

i (2), · · · , yu
i (φi)], called consumption sequence. The total num-

ber of tokens on a channel eu produced by vi during its first n invocations
and the total number of tokens consumed on the same channel by vj dur-
ing its first n invocations are Xu

i (n) = ∑n
l=1 xu

i (((l − 1) mod φi) + 1) and
Yu

j (n) = ∑n
l=1 yu

j (((l − 1) mod φj) + 1), respectively.
Figure 2.1 shows an example of a CSDF graph. For instance, actor v1 has 3

phases, that is, φ1 = 3, its execution time sequence (in time units) is [CC
1 (1),

CC
1 (2), CC

1 (3)] = [3, 1, 1] and its token production sequence on channel e1 is
[1, 0, 0].

An acyclic CSDF graph can be partitioned into a number of levels, denoted
by L, in a way similar to topological sort. In that way, all input actors belong
to level-1, the actors from level-2 have all immediate predecessors in level-1,
the actors from level-3 have immediate predecessors in level-2 and can also
have immediate predecessors in level-1, and so on.

An important property of the CSDF model is the ability to derive, at design
time, a schedule for the actors. In order to derive a valid static schedule for a
CSDF graph at design time, it has to be consistent and live.

Theorem 2.1.1 (From [BELP96]). In a CSDF graph G, a repetition vector ~q =
[q1, q2, · · · , qN]

T is given by

~q = Φ ·~r, with Φjk =

{
φj if j = k
0 otherwise

(2.3)

where~r = [r1, r2, · · · , rN]
T is a positive integer solution of the balance equation

Γ ·~r =~0 (2.4)

and where the topology matrix Γ ∈ Z|ℰ |×|𝒱| is defined by

Γuj =

Xu

j (φj) if actor vj produces on channel eu

−Yu
j (φj) if actor vj consumes from channel eu

0 otherwise.

(2.5)

20 Chapter 2. Background

A CSDF graph G is said to be consistent if a positive integer solution
~r = [r1, r2, · · · , rN]

T exists for the balance equation, Equation (2.4). We call
~r aggregated repetition vector. The smallest non-trivial aggregated repetition
vector~r is called basic aggregated repetition vector~r. Its corresponding repetition
vector ~q is called basic repetition vector ~q. If a deadlock-free schedule can be
found, G is said to be live.

Definition 2.1.1. For a consistent and live CSDF graph G, an actor iteration
is the invocation of an actor vi ∈ 𝒱 for qi times, a phase iteration is the
invocation of one phase of an actor vi ∈ 𝒱 for ri times, and a graph iteration
is the invocation of every actor vi ∈ 𝒱 for qi times, where qi ∈ ~q, and every phase
of every actor vi ∈ 𝒱 for ri times, where ri ∈~r.

For the example CSDF graph G shown in Figure 2.1, we can compute
the basic repetition vectors~r and ~q by using the equations in Theorem 2.1.1,
namely, Equations (2.3), (2.4) and (2.5), as follows:

Γ =

1 −2 0
3 0 −3
0 2 −1

 ,~r =

2
1
2

 , Φ =

3 0 0
0 2 0
0 0 1

 , and ~̌q =

6
2
2

 .

Two important subsets of the CSDF MoC are the Synchronous Data Flow
(SDF) MoC [LM87] and the Homogeneous Synchronous Data Flow (HSDF)
MoC [LM87]. All actors in an SDF graph G = (𝒱 , ℰ) have only one phase, that
is, for each vi ∈ 𝒱 , φi = 1. In an HSDF graph G = (𝒱 , ℰ), in addition to ∀vi ∈
𝒱 , φi = 1, all channels have production and consumption sequences equal to
1, that is, for each eu = (vi, vj) ∈ ℰ , xu

i = [xu
i (1)] = 1, yu

j = [yu
j (1)] = 1.

2.1.2 Polyhedral Process Network (PPN)

An application modeled as a PPN [VNS07] is a directed graph G = (𝒫 , 𝒞)
that consists of a set of processes 𝒫 , which communicate with each other
via a set of communication channels 𝒞. Processes in 𝒫 represent tasks of an
application. Channels in 𝒞 are bounded FIFOs and represent one direction of
data communication between two processes, that is, a channel CHl = (Pi, Pj)
represents a data dependency between processes Pi and Pj, where Pi is the
producer and Pj is the consumer process. An example of a PPN consisting of 4
processes which communicate with each other through 5 channels is given in
Figure 2.2(a). Each PPN process has a set of input ports it reads from and a set
of output ports it writes to. Process P3 in the PPN example in Figure 2.2(a) has
3 input ports IP1, IP2, and IP3, and 2 output ports OP1 and OP2. Channels of a

2.1. Dataflow Models-of-Computations (MoCs) 21

P1

P2

P3

P4

CH1

CH2

CH3
CH4

CH5

IP1 IP2

IP3

OP1

OP2

(a)

1 for (i=1; i<=16; i++) {

2 for (j=1; j<=8; j++) {

3 READ(IP2, in2, size_d2);

4 if (j <= 3)

5 READ(IP1, in1, size_d1);

6 else

7 READ(IP3, in1, size_d1);

8 out = F(in1, in2);

9 if (i <= 12 && j <= 4)

10 WRITE(OP2, out, size_d1);

11 else

12 WRITE(OP1, out, size_d1);

 }

 }

CH2

CH3

CH4

CH5

(b)

Figure 2.2: Example of a PPN (a) and the structure of process P3 (b).

process Pi connected to its input ports are input channels of Pi, while channels
connected to the output ports of Pi are output channels of Pi.

The synchronization mechanism between the processes in the PPN MoC
is blocking read from an empty FIFO and blocking write to a full FIFO. The
execution of a PPN process is defined by using nested for loops, that is, the
process execution is a set of iterations, called process domain. The process
domain is represented using the polytope model [Fea96a]. Each PPN process
has a precisely defined structure: the process reads data from a subset of its
input ports depending on the values of loop iterators; then, it performs a
computation on input data that generates output data; and finally, the process
writes the output data through a subset of its output ports depending on the
values of loop iterators.

Figure 2.2(b) shows the structure of process P3 in the PPN example given in
Figure 2.2(a). Process P3 reads data from and writes data to channels through
read and write primitives READ(· · ·) and WRITE(· · ·), respectively. The
computation behavior of process P3 is represented by a function F(· · ·) in Line
8 in Figure 2.2(b). The process domain of process P3 is given as the polytope
DP3 = {(i, j) ∈ Z2 | 1 ≤ i ≤ 16 ∧ 1 ≤ j ≤ 8}. Accessing an input port of the
PPN process is represented as a subset of the process domain, called input port
domain. Similarly, accessing an output port of the PPN process is represented
through output port domain. Process P3 in Figure 2.2 reads data from input
ports IP1, IP2 and IP3. The input port domain of input port IP2 is equal

22 Chapter 2. Background

to process domain DP3 , while the input port domain of port IP1 is given as
DIP1 = {(i, j) ∈ Z2 | 1 ≤ i ≤ 16∧ 1 ≤ j ≤ 3}. Process P3 writes data to output
ports OP1 and OP2. Domain DOP2 = {(i, j) ∈ Z2 | 1 ≤ i ≤ 12 ∧ 1 ≤ j ≤ 4} is
the output port domain of port OP2.

2.2 Real-Time Scheduling Theory

In this section, we introduce the real-time periodic task model [DB11] and
some important real-time scheduling concepts [DB11] instrumental to the
approaches we present in Chapters 3, 4 and 5 of this thesis.

2.2.1 Task Model

The majority of the research on real-time scheduling considers a simple model
to represent applications running on a hardware platform. In this simple
model applications are modeled as a task set 𝒯 = {τ1, τ2, · · · , τn} of n periodic
tasks, which can be preempted at any time. A periodic task τi ∈ 𝒯 is defined
by the 4-tuple τi = (Si, Ci, Di, Ti), where Si is the start time of τi in absolute
time units, Ci is the worst-case execution time (WCET), Di is the deadline of τi
in relative time units, and Ti is the task period in relative time units, where
Ci ≤ Di ≤ Ti. Each task τi executes periodically through a sequence of task
invocations, that is, job releases, at si,k = Si + kTi, k ∈N0. Once released, each
job τi,k, k ∈N0, of a task τi must execute Ci time units before si,k + Di, that is,
the job must finish its execution before its deadline Di. If Di = Ti, then τi is
said to have an implicit-deadline. Otherwise, if Di < Ti, then τi is said to have a
constrained-deadline. If all the tasks in a task set 𝒯 are implicit-deadline periodic
tasks, then task set 𝒯 is an implicit-deadline periodic (IDP) task set. Otherwise,
task set 𝒯 is a constrained-deadline periodic (CDP) task set. Similarly, if all the
tasks in a task set 𝒯 have the same start time, then task set 𝒯 is synchronous.
Otherwise, task set 𝒯 is asynchronous. In this thesis, we consider asynchronous
task sets.

The utilization of task τi, denoted as ui, where ui ∈ (0, 1], is defined
as ui = Ci/Ti. For a task set 𝒯 , u𝒯 is the total utilization of 𝒯 given by
u𝒯 = ∑τi∈𝒯 ui. Similarly, the density of task τi is δi = Ci/Di and the total
density of 𝒯 is δ𝒯 = ∑τi∈𝒯 δi. The worst-case response time of task τi, denoted
as Ri, is defined as the longest time interval from the arrival of a job of task τi
to the completion of job’s execution.

The processor demand bound function of a task set 𝒯 over a time interval
[t1, t2] represents the maximum amount of task execution that can be released

2.2. Real-Time Scheduling Theory 23

and completed in the time interval [t1, t2], and is given by [BRH90]:

db f (𝒯 , t1, t2) = ∑
τi∈𝒯

max{0,
⌊ t2 − Si − Di

Ti

⌋
−max{0,

⌈ t1 − Si

Ti

⌉
}+ 1} · Ci.

(2.6)

2.2.2 System Model

To present the important results from the real-time scheduling theory relevant
for this thesis, we consider a system composed of a set Π = {π1, π2, · · · , πm}
of m identical processors. However, our contribution approaches, presented in
this thesis, are applicable to both homogeneous and heterogeneous MPSoCs,
because the processor heterogeneity is captured within the WCET of a task,
which will be explained in more detail in Chapter 5. Thus, the results presented
in the following section, Section 2.2.3, are applicable to heterogeneous MPSoCs
as well.

2.2.3 Real-Time Scheduling Algorithms

In this section, we present some important scheduling concepts for scheduling
applications modeled as real-time periodic tasks, introduced in Section 2.2.1,
on a system modeled as described in Section 2.2.2.

Real-time scheduling algorithms for multiprocessors try to solve two prob-
lems [DB11]:
∙ The allocation problem, that is, on which processor a task should execute.
∙ The priority problem, that is, when and in which order each job of a task

should execute with respect to jobs of other tasks.
Depending on how they solve the allocation problem, scheduling algorithms

are classified into:
∙ No migration. Each task is allocated to one processor and no migration is

allowed.
∙ Task-level migration. The jobs of a task can execute on different processors.

However, each job can execute only on one processor.
∙ Job-level migration. A job can migrate and execute on different processors.

However, parallel execution of a job on processors is not allowed.
Scheduling algorithms that allow any job to migrate are called global algo-
rithms. On the other hand, algorithms which do not allow migration are called
partitioned algorithms. Finally, scheduling algorithms that allow migration
of jobs released by a subset of tasks among a subset of processors are called
hybrid algorithms.

24 Chapter 2. Background

Depending on how they solve the priority problem, scheduling algorithms
are classified into:
∙ Fixed task priority. Each task has a single fixed priority shared by all its

jobs. Examples of this class are the Rate Monotonic (RM) [LL73] and the
Deadline Monotonic (DM) [LW82] scheduling algorithms.

∙ Fixed job priority. The jobs of a task may have different priorities, but each
job has a single static priority. An example of this class is the Earliest
Deadline First (EDF) scheduling algorithm [LL73].

∙ Dynamic priority. A single job may have different priorities during
its execution. An example of this class is the Least Laxity First (LLF)
scheduling algorithm [Leu89], [DK89].

A task set 𝒯 is feasible on a system Π if there exist a scheduling algorithm
that can construct a schedule of tasks such that all task deadlines are met.
A task τi ∈ 𝒯 is schedulable on Π by using a scheduling algorithm 𝒜 if its
worst-case response time Ri under 𝒜 is less than or equal to its deadline Di. If
all tasks in 𝒯 are schedulable on Π under 𝒜, then task set 𝒯 is schedulable on
Π under 𝒜. Finally, a scheduling algorithm 𝒜 is optimal with respect to a task
model and a system if it can schedule all task sets that comply with the task
model and are feasible on the system.

The real-time scheduling theory provides various schedulability tests to
check a schedulability of a task set on a system under a given scheduling
algorithm. A schedulability test is termed sufficient if all of the task sets that
are deemed schedulable according to the test are in fact schedulable [DB11].
A schedulability test is termed necessary if all of the task sets that are deemed
unschedulable according to the test are in fact unschedulable [DB11]. Finally, a
schedulability test that is both sufficient and necessary is an exact schedulability
test.

2.2.4 Uniprocessor Schedulability Analysis

In this section, we will present the most used scheduling algorithms and
their schedulability tests for real-time periodic tasks on uniprocessors. These
scheduling algorithms are the Earliest Deadline First (EDF), Rate Monotonic
(RM) and Deadline Monotonic (DM) scheduling algorithm.

Earliest Deadline First (EDF)

The EDF algorithm is a scheduling algorithm that schedules tasks’ jobs ac-
cording to their deadlines. The earlier deadline a task’s job has, the higher
execution priority is given to it. The schedulability of an implicit-deadline

2.2. Real-Time Scheduling Theory 25

periodic task set on a uniprocessor under EDF can be verified through the
processor utilization. In particular, the following theorem gives a schedula-
bility test for an implicit-deadline periodic task set on a uniprocessor under
EDF [LL73]:

Theorem 2.2.1. A set of periodic tasks 𝒯 with implicit deadlines is schedulable under
EDF if and only if

∑
τi∈𝒯

ui ≤ 1. (2.7)

This schedulability test on uniprocessors under EDF is exact. In addition,
the EDF scheduling algorithm is an optimal scheduling algorithm for periodic
tasks on uniprocessors.

The exact schedulability test for constrained-deadline periodic tasks on
uniprocessors under EDF is given by the following lemma [BRH90]:

Lemma 2.2.1. A periodic task set 𝒯 is feasible on one processor if and only if

1. ∑τi∈𝒯 ui ≤ 1, and
2. db f (𝒯 , t1, t2) ≤ (t2 − t1) for all 0 ≤ t1 < t2 < Ŝ + 2H,

where Ŝ = max{S1, · · · , Sn} and H = lcm{T1, · · · , Tn}.

However, this schedulability test is known to be co-NP-hard in the strong
sense [BRH90], hence performing the schedulability test is very time con-
suming. To improve, that is, reduce, the schedulability test time, researchers
proposed several sufficient schedulability tests for (asynchronous) constrained-
deadline periodic tasks on uniprocessors under EDF, such as [ZB09], [AS04]
and [BF05]. These algorithms either check smaller number of time points to
determine the schedulability of a task set [ZB09] or approximate the proces-
sor demand bound function to simplify the computation when checking the
schedulability of a task set [AS04], [BF05].

Rate Monotonic (RM)

The RM algorithm is a scheduling algorithm that assigns priorities to tasks
according to their rates, that is, periods. The higher rates a task has (that is the
shorter period), the higher execution priority is given to the task. Given that
the period of a periodic task is constant, RM is the fixed-priority algorithm.
The sufficient schedulability test for an implicit-deadline periodic task set on
uniprocessor under RM is given by the following theorem [LL73]:

26 Chapter 2. Background

Theorem 2.2.2. A set of periodic tasks 𝒯 = {τ1, τ2, · · · , τn} with implicit deadlines
is schedulable under RM if

∑
τi∈𝒯

ui ≤ n(21/n − 1). (2.8)

When the size of the task set is significantly big (n→ ∞), then ∑τi∈𝒯 ui =
ln(2) u 0.693. That means that any implicit-deadline task set with total
utilization less than 0.69 is schedulable using RM scheduling algorithm. It has
been shown in [LL73] that RM is optimal among all fixed-priority assignments
in the sense that no other fixed-priority algorithms can schedule an implicit-
deadline task set that cannot be scheduled by RM. However, RM is in general
not optimal on uniprocessors for real-time periodic task sets.

Deadline Monotonic (DM)

The DM algorithm [LW82] extends the RM algorithm by considering tasks
with deadlines less than or equal to their period, that is,constrained dead-
lines. According to the DM algorithm, higher priorities are given to tasks with
shorter relative deadlines. The schedulability of a task set with constrained
deadlines can be checked by using the utilization based test given by Rela-
tion (2.8), where instead of putting the sum of task utilizations on the left-hand
side, we put the sum of task densities. However, such a test would be quite
pessimistic, because the workload on the processor would be overestimated. A
less pessimistic schedulability test has been proposed in [ABRW91], [ABR+93]
based on Response Time Analysis (RTA). That test is formulated in the following
theorem:

Theorem 2.2.3. A periodic taskset 𝒯 is schedulable using DM priority scheduling if
and only if

∀τi ∈ 𝒯 : Ri ≤ Di (2.9)

where the total response time Ri is given by solving the following fixed-point equation:

Ri = Ci + ∑
∀τj∈𝒯hp(τi)

⌈
Ri

τj

⌉
Cj (2.10)

and 𝒯hp(τi) represents the set of tasks with priorities higher than the priority of τi.

The test in Theorem 2.2.3 can be used as a sufficient test for asynchronous
periodic tasks.

2.2. Real-Time Scheduling Theory 27

2.2.5 Multiprocessor Schedulability Analysis

Given a system consisting of m homogeneous processors, and a task set con-
sisting of n periodic tasks, multiprocessor schedulability analysis should deter-
mine whether the tasks can be scheduled on the processors. In the following
subsections we will present some scheduling algorithms on multiprocessors
with regard to how they solve the allocation problem, as introduced earlier in
Section 2.2.3.

Global Scheduling Algorithms

Global scheduling algorithms schedule tasks on processors while allowing
task migration. Some of these algorithms are optimal for implicit-deadline
periodic tasks, such as Pfair [BCPV96], LLREF [CRJ06], and SA [KS97]. In the
case when these algorithms are used, an exact schedulability test for a set 𝒯 of
implicit-deadline periodic tasks on m processors is:

∑
τi∈𝒯

ui ≤ m. (2.11)

From Equation (2.11) the absolute minimum number of processors needed to
schedule a set 𝒯 of implicit-deadline periodic tasks can be computed as:

mOPT =
⌈

∑
τi∈𝒯

ui
⌉
. (2.12)

In the case of constrained-deadline periodic tasks, there are no optimal
online (nonclairvoyant) algorithms for the preemptive scheduling of these
tasks on multiprocessors [Fis07].

Partitioned Scheduling Algorithms

Although global scheduling algorithms can be optimal for implicit-deadline
periodic tasks, they introduce high migration and preemption overhead. To
avoid these overheads, researchers proposed another class of scheduling al-
gorithms, namely, partitioned algorithms. As soon as a set of tasks has been
partitioned into subsets that will be executed on individual processors, the
uniprocessor real-time scheduling and analysis techniques can be applied to
each processor, which is the main advantage of using partitioning approaches
to multiprocessor scheduling.

Given a system with m processors, and a task set of n periodic tasks, a
partitioned scheduling algorithm should find a schedulable x-partition of the

28 Chapter 2. Background

tasks, with x ≤ m. The schedulable x-partition is a partition: 1) which subsets
contain different tasks among each other, that is, a task is allocated to only one
processor, 2) where all tasks are partitioned into subsets of tasks, and 3) that
guarantees that each subset of the partition is schedulable on one processor
under the considered uniprocessor scheduling algorithm.

The task allocation problem in a partitioned multiprocessor scheduling
approach is analogous to the bin packing problem [DB11], where items corre-
sponds to tasks and bins corresponds to processors. The bin packing problem
is known to be NP-hard [GJ79]. Therefore, many heuristics have been pro-
posed to approximately solve the bin packing problem [Joh74], [CGJ96]. Below,
we present the most used bin packing heuristics.

The capacity of each bin, that is, processor in a system, is equal to the
maximum possible processor utilization, that is, 1. The size of each item, that
is, task τi, is equal to task utilization ui. Let 𝒯k denote the set of tasks currently
assigned to processor πk and uπk = ∑τi∈𝒯k

ui denote the total utilization cur-
rently assigned to processor πk. At the beginning of the task partitioning no
task is assigned to a processor, that is, 𝒯k = ∅ and uπk = 0 for all πk. The
heuristics assign each task τi ∈ 𝒯 to a certain processor πk ∈ Π following a
certain, heuristic-specific, rule till the task is schedulable on a processor by a
certain (selected) scheduling algorithm 𝒜, considering one task at a time.
∙ First-Fit (FF). A task τi is assigned to the lowest-indexed processor πk

that can contain the task such that all the tasks assigned so far to πk are
schedulable. That is

k = min
j∈[1···m]

{j : ui + uπj ≤ 1∧ 𝒯j schedulable by 𝒜 on πj}. (2.13)

If the condition is not satisfied by any processor used so far, task τi is
assigned to an unused processor in the platform. If no such processor
exists, task set 𝒯 is not schedulable on system Π.

∙ Best-Fit (BF). A task τi is assigned to a processor πk such that πk has
the minimal remaining utilization after the task assignment and all the
tasks assigned so far to πk are schedulable. That is

k = min
j∈[1···m]

{j : ui + uπj is closest to, without exceeding 1

∧ 𝒯j schedulable by 𝒜 on πj}. (2.14)

If the condition is not satisfied by any processor used so far, task τi is
assigned to an unused processor in the platform. If no such processor
exists, task set 𝒯 is not schedulable on system Π.

2.2. Real-Time Scheduling Theory 29

∙ Worst-Fit (WF). A task τi is assigned to a processor πk such that πk has
the maximal remaining utilization after the task assignment and all the
tasks assigned so far to πk are schedulable. That is

k = min
j∈[1···m]

{j : ui + uπj is minimal ∧ 𝒯j schedulable by 𝒜 on πj}.

(2.15)

If the condition is not satisfied by any processor used so far, task τi is
assigned to an unused processor in the platform. If no such processor
exists, task set 𝒯 is not schedulable on system Π.

Often a preprocessing step is performed on tasks before performing a
heuristic to improve the performance of the heuristic. The preprocessing step
represents task sorting according to certain criteria, such us, increasing or
decreasing task utilization, increasing or decreasing task density, and so on.
Usually, the tasks are sorted in decreasing order of their utilization. When
adding this preprocessing step to the previously presented partitioning heuris-
tics, we obtain the First-Fit Decreasing (FFD), Best-Fit Decreasing (BFD),
and Worst-Fit Decreasing (WFD) heuristics.

The partitioning heuristics can be compared among each other by using
their approximation ratio metric. The approximation ratio of a heuristic says how
much more processors are required to schedule a set of tasks when tasks are
partitioned by using the corresponding partitioning heuristic in comparison
to an optimal partitioning algorithm. For example, the approximation ratios
for FF and BF are 17/10 [CGJ96], [GJ79], while approximation ratio for FFD is
11/9 [Yue91].

The minimum number of processors needed to schedule a task-set 𝒯 by a
partitioned scheduling algorithm is given by:

mPAR = min
x∈N
{x|∃x-partition of 𝒯 ∧ ∀k ∈ [1, x] : 𝒯k is schedulable on πk}.

(2.16)
Note that mOPT is the lower bound on the number of processors mPAR needed
by partitioned scheduling algorithms.

Hybrid Scheduling Algorithms

Although partitioned scheduling approaches have low preemption overheads
and do not introduce any migration overhead, they may not, in general, fully
utilize available processing resources in a system, that is, they may introduce
processing capacity loss. To utilize the benefits of global and partitioned

30 Chapter 2. Background

scheduling approaches, researchers proposed hybrid approaches which com-
bine elements of both. Hybrid scheduling approaches can be divided into
semi-partitioned and clustering (hierarchical) approaches [DB11].

In the semi-partitioned scheduling approaches, a small number of tasks is
allowed to migrate between certain processors to utilize better the processing
resources. Examples of semi-partitioned scheduling algorithms which split
some tasks into two components that execute at different times on different
processors are EKG [AT06], Ehd2-SIP [KY07] and EDF-fm [ABD08].

In hierarchical scheduling approaches [LB03], [HA06], a set of tasks are
grouped together and scheduled as a single entity, called server task or su-
pertask. When the entity is scheduled, one of its tasks is selected to execute
according to an internal scheduling policy. Hence, the supertasks/servers are
scheduled globally, while the scheduling of the tasks within a supertask/server
is done locally, that is, it is analogous to scheduling on a uniprocessor. In an-
other case of hierarchical scheduling approaches, for example, [SEL08], tasks
are allocated to (virtual) clusters of processors and scheduled according to a
global scheduling algorithm on processors within their cluster. In this way,
processing capacity loss is less than in fully partitioned approaches, while the
small number of processors in each cluster may reduce migration overheads,
depending on the particular hardware architecture.

Chapter 3

Hard Real-Time Scheduling
Framework

Jelena Spasic, Di Liu, Emanuele Cannella, Todor Stefanov, “On the Improved Hard
Real-Time Scheduling of Cyclo-Static Dataflow”, ACM Transactions on Embedded
Computing Systems (TECS), vol. 15, Issue 4, Article 68, August 2016.

Jelena Spasic, Di Liu, Emanuele Cannella, Todor Stefanov, “Improved Hard Real-Time
Scheduling of CSDF-modeled Streaming Applications”, In Proceedings of the
IEEE/ACM/IFIP International Conference on HW/SW Codesign and System Synthesis
(CODES+ISSS’15), pp. 65–74, Amsterdam, The Netherlands, October 4-9, 2015.

IN this chapter, we present a scheduling approach to provide timing guar-
antees for streaming applications mapped on MPSoCs. In particular, we

describe in more detail our solution approach, introduced in Section 1.4, to
the research problem, Problem 1, described in Section 1.3.

The remainder of this chapter is organized as follows. Section 3.1 continues
the introduction by describing in more detail the addressed research problem.
It is followed by Section 3.2, which gives a summary of the contributions
presented in this chapter. An overview of the related work is given in Sec-
tion 3.3. Then, we give an example in Section 3.4 to motivate the need for
our scheduling approach. The proposed scheduling approach is described in
Section 3.5. The experimental evaluation of our proposed scheduling approach
is presented in Section 3.6. The concluding discussion is given in Section 3.7.

32 Chapter 3. Hard Real-Time Scheduling Framework

3.1 Problem Statement

Recently, the authors in [BS13] proposed a framework to schedule streaming
applications modeled as acyclic CSDF graphs as a set of real-time periodic
tasks on an MPSoC platform. They also derive the minimum number of
processors needed to schedule the applications on a platform. However, in
that framework, the authors use one and the same worst-case execution time
(WCET) value for all execution phases of a task in the CSDF graph, although a
task in the CSDF graph may have a different WCET value for every phase. The
authors simply take and use the maximum WCET value among the WCET
values for all phases of a task. By doing this, the cyclically changing execu-
tion nature of an application modeled by the CSDF model is hidden, which
leads to underestimation of the throughput, overestimation of the latency,
and underutilization of processors. In another recent work [BMKdD13], the
authors proposed a framework to evaluate a lower bound of the maximum
throughput of a periodically scheduled CSDF-modeled application. However,
the authors do not provide a method to determine the number of processors
required for scheduling the application. Moreover, their approach does not
ensure temporal isolation among applications, that is, the schedule of appli-
cations has to be recalculated once a new application comes in the system
and hence it may be possible that the previously calculated throughput of an
application can no longer be reached. Thus, in this chapter, we investigate
the possibility to schedule streaming applications modeled as acyclic CSDF
graphs as real-time periodic tasks on an MPSoC platform while consider-
ing different WCET values for task’s phases in an acyclic CSDF graph and
providing temporal isolation of applications and hard real-time guarantees.

3.2 Contributions

In order to address the problem described in Section 3.1, we propose a schedul-
ing approach which contributions are summarized as follows:
∙ We prove that considering a different WCET value for each execution

phase of a task we can convert the execution phases of each task in an
acyclic CSDF graph to strictly periodic real-time tasks. This enables
the use of many hard real-time scheduling algorithms to schedule such
tasks with a certain guaranteed throughput and latency. (Theorem 3.5.2)

∙ We prove that our scheduling approach gives equal or higher through-
put than the existing hard real-time scheduling approach for acyclic
CSDF graphs. (Theorem 3.5.3)

3.3. Related Work 33

∙ We propose a method for reducing the latency of an acyclic CSDF graph
scheduled as a set of strictly periodic real-time tasks. (Section 3.5.5)

∙ We show, on a set of real-life streaming applications, that scheduling
each execution phase of a CSDF task as a strictly periodic task and
considering different WCET per phase lead not only to tighter guarantee
on the throughput of an application but also to better utilization of
processor resources. (Section 3.6.1)

∙ We demonstrate, on a set of real-life streaming applications, that the
total time required by our approach to derive the schedule of the tasks,
to calculate the minimum number of processors needed to schedule
the tasks, and to calculate the size of communication buffers between
tasks is comparable to the time required by the existing hard real-time
scheduling approach for CSDF graphs. In addition, we show that the
total time needed by our approach is much shorter in comparison to the
existing periodic scheduling and self-timed scheduling approaches for
CSDF graphs. (Section 3.6.2)

∙ We show, on a set of real-life streaming applications, that the latency of
the applications scheduled by our scheduling approach can be reduced
by our proposed latency reduction method in most cases to the desirable
latency values while keeping higher or equal application throughput
and requiring equal or smaller number of processors in comparison to
the existing scheduling approaches. (Section 3.6.3)

Note that by considering acyclic CSDF graphs, our solution approach is
applicable to many streaming applications as it has been shown in [TA10] that
around 90% of streaming applications can be modeled as acyclic SDF graphs.

3.3 Related Work

Research on scheduling of streaming applications modeled by parallel MoCs
has been active for a long period of time. Below, we compare our approach
with some of the existing hard real-time scheduling approaches for streaming
applications and with the scheduling approaches which do not provide hard
real-time guarantees but are similar to our approach.

[HGWB13] proposes a two parameter (σ, ρ) workload characterization to
reduce the difference between the worst-case throughput, determined by the
analysis, and the actual throughput of the application. They consider different
execution times for task’s phases and then the average worst-case execution
time is used to improve the minimum guaranteed throughput/latency. Similar
to them, we consider different execution times for task’s phases in a CSDF

34 Chapter 3. Hard Real-Time Scheduling Framework

graph. But in contrast to them, we convert task’s phases to classical periodic
hard real-time tasks, which allows us to calculate the minimum number of
processors required to guarantee certain throughput and latency in a fast and
analytical way for global scheduling and in a polynomial time for partitioned
scheduling by using our algorithm given in Section 3.5.6.

In [BTV12], the authors propose an analysis framework for hard real-
time applications modeled as Affine Dataflow (ADF) graphs. The actors in
an ADF graph are scheduled as periodic tasks. The ADF model proposed
in [BTV12] extends the CSDF model and hence, is more expressive than the
CSDF. However, in their approach only one value is considered as the WCET
value of a task, while we consider a different WCET value per each phase of a
task, thereby efficiently exploiting the cyclic nature of the CSDF model and
providing a tighter throughput guarantee.

[BMKdD13] proposes a framework to derive the maximum throughput
of a CSDF graph under a periodic schedule and to calculate the buffer sizes
in the graph with a throughput constraint. Both problems are represented as
Linear Programming (LP) problems and solved approximately. Similar to our
work, their work considers different execution times for each phase of a task.
However, it is not explicitly given in [BMKdD13] how to compute the number
of processors needed to schedule the graph according to the derived schedule.
One possible way is to look at the derived schedules and find the maximum
number of active tasks at any given point in time. However, this procedure
has an exponential time complexity in the worst case. In contrast, in our case
the conversion of CSDF task’s phases to classical periodic hard real-time tasks
enables fast and analytical calculation of the minimum number of processors
for global scheduling of the tasks, and a polynomial time derivation of the
number of processors for partitioned scheduling by using our algorithm given
in Section 3.5.6.

The closest to our work, in terms of scope of work and methods proposed
to schedule streaming applications modeled as acyclic CSDF graphs, is the
work in [BS13]. The authors in [BS13] convert each task in a CSDF graph to
a periodic task by deriving parameters such as period and start time. Then
they use hard real-time schedulability analysis to determine the minimum
number of processors required to execute the derived task-set. Our approach
differs from [BS13] in the following: we use different WCET values for each
execution phase of a task and each phase is converted to a periodic task, while
in [BS13], only one WCET value is used for a task and every execution of
a task is periodic with a calculated period. By considering different WCET
values for each task phase and converting each phase to a periodic task, we

3.4. Motivational Example 35

can guarantee tighter throughput and better utilization of processor resources.

3.4 Motivational Example

The goal of this section is to show that the real-time strictly periodic scheduling
(SPS) approach [BS13] is not efficient in terms of throughput, latency and
utilization of processor resources. In the framework proposed in [BS13], every
actor vi in a CSDF graph G is converted to a real-time periodic task τi by
computing the task parameters Si, Di, Ti and Ci, where Ci is computed as the
maximum WCET value of actor vi, that is, Ci = max1≤ϕ≤φi{Ci(ϕ)}, where
Ci(ϕ) contains the worst-case computation, the worst-case data read and the
worst-case data write times of a phase ϕ of actor vi. To execute graph G strictly
periodically, period Ti for each actor vi, that is, each corresponding task τi, is
computed as:

Ti =
lcm(~q)

qi

⌈maxvj∈V{Cj · qj}
lcm(~q)

⌉
, ∀vi ∈ 𝒱 , (3.1)

where lcm(~q) is the least common multiple of all repetition entries in~q. The
strictly periodic schedule of all actors in G, given in Figure 2.1, is shown in
Figure 3.1(a), under the assumption that data read and write times are 0 (for
the sake of simplicity). For example, actor v2 (task τ2 in Figure 3.1(a)) executes
periodically with the calculated period T2 = 9. Note that for every actor’s
phase one and the same WCET value is considered, that is, for actor v2 we
have two phases 1 and 2 and the considered WCET value C2 for each phase is
C2 = max{C2(1), C2(2)} = max{CC

2 (1), CC
2 (2)} = max{2, 3} = 3.

To demonstrate the need of considering different WCET values of actor’s
phases and the drawback of strictly periodic schedule between actor phases,
we analyze two different schedules of the CSDF graph G in Figure 2.1. The first
schedule we consider is SPS, visualized in Figure 3.1(a). The throughputℛ,
latency ℒ of G and the required number of processors m are given in Table 3.1
under SPS.

However, by taking one and the same value as the WCET for all execution
phases of an actor, the cyclic behavior of the CSDF actors is hidden. Assume
that we convert each actor vi in G to a set of φi IDP tasks τi(1), τi(2) · · · τi(φi)
considering different WCET values for each execution phase and execute
them as periodic tasks. The execution schedule of such task-set is given in
Figure 3.1(b). Again, here we assume that data read and write times are 0. For
example, actor v2 is converted to 2 IDP tasks τ2(1) and τ2(2) where each task
is executed periodically with a period equal to 10. Moreover, the WCET values

36 Chapter 3. Hard Real-Time Scheduling Framework

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ1

τ2

τ3

1 12

C2 C2 C2

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ1(1)

τ1(2)

τ1(3)

τ2(1)

τ2(2)

τ3(1)

S 2(1)

S 2(2)

(b)

Figure 3.1: (a) The SPS and (b) ISPS of graph G in
Figure 2.1.

Table 3.1: Throughput, latency
and number of processors for G un-
der different scheduling schemes.

SPS ISPS
ℛ ℒ m ℛ ℒ m

1/18 30 2 1/10 25 2

of the tasks τ2(1) and τ2(2) are not the same but τ2(1) has WCET C2(1) = 2
and τ2(2) has WCET C2(2) = 3, as the original specification in Figure 2.1.

We can see from Table 3.1 under ISPS that by scheduling G in such a way
we can obtain almost 2 times higher graph throughput and shorter graph
latency while resources in terms of the required number of processors are
the same compared with SPS and thus, the processor resources are better
utilized in the case of ISPS. This is especially important in case of a timing
constraint because it may happen that the graph cannot meet the constraint
when scheduled under SPS. Here the throughput and latency under ISPS
are calculated by using our approach described in Section 3.5. The required
number of processors for both SPS and ISPS is calculated by Equation (2.12).
Moreover, the number of processors needed for partitioned scheduling in
both cases is the same as the number needed for global scheduling given
by Equation (2.12). We can see from the motivational example that the SPS
approach from [BS13] yields to lower throughput and larger latency of a graph
by using one and the same value for the WCET of each phase of an actor and
by strictly periodic scheduling of all executions of the actor. Thus, different
WCET values for actor phases should be considered and the constraint on
strictly periodic scheduling between the actor phases should be removed.

3.5. Improved Hard Real-Time Scheduling of CSDF 37

3.5 Improved Hard Real-Time Scheduling of CSDF

In this section, we present our scheduling framework, called improved strictly
periodic scheduling (ISPS), which enables a conversion of every actor of an
acyclic CSDF graph to a set of periodic tasks. Each set of periodic tasks
corresponding to an actor has as many elements as the number of phases
of that actor. By taking into account the WCET value of each phase of an
actor in a graph, the proposed approach computes the parameters Si and
Ti of tasks corresponding to the actor and the minimum buffer sizes of the
communication channels such that ISPS is guaranteed to exist.

The proposed conversion procedure is given in Algorithm 1. First, the
periods of tasks corresponding to actors are calculated in lines 1-2, explained
in Section 3.5.1. Then, relative deadlines Di of the tasks corresponding to
an actor vi are selected from the range Di ∈ [max1≤ϕ≤φi{Ci(ϕ)}, Ťi], lines 3-6.
For example, if one wants to minimize the number of processors needed to
schedule the converted tasks, he/she should select relative deadlines of the
tasks to be equal to the corresponding task periods, that is, Di = Ťi. On
the other hand, if one wants to reduce the graph latency, he/she should use
our latency reduction method proposed in Section 3.5.5. The start times for
each task-set corresponding to an actor are computed in lines 7-12, for details
see Section 3.5.2. Finally, the buffer sizes of the communication channels are
derived in lines 13-14, for details see Section 3.5.3.

3.5.1 Deriving Periods of Tasks

The first step in constructing the ISPS of a CSDF graph is to derive the valid
period for each periodic task corresponding to a phase of an actor in the graph.
To calculate the periods, we introduce the following definitions:

Definition 3.5.1. For each actor vi in an acyclic CSDF graph G, the WCET
sequence Ci = [Ci(1), Ci(2), · · · , Ci(φi)], represents the sequence of the WCET
values, measured in time units, for each execution phase of vi. The WCET
value Ci(ϕ) for a phase ϕ is given by:

Ci(ϕ) =
(

CR · ∑
er∈in(vi)

yr
i (ϕ)

)
+ CC

i (ϕ) +
(

CW · ∑
ew∈out(vi)

xw
i (ϕ)

)
, (3.2)

where CR represents the platform-dependent worst-case time needed to read
a single token from an input channel er from the set of input channels in(vi)
of actor vi; analogously, CW is the worst-case time needed to write a single
token to an output channel ew from the set of output channels out(vi) of vi;

38 Chapter 3. Hard Real-Time Scheduling Framework

Algorithm 1: Procedure to convert a CSDF graph to a set of periodic
tasks.

Input: A CSDF graph G = (𝒱 , ℰ).
Output: For each actor vi ∈ 𝒱 , a set of periodic tasks 𝒯vi = {τi(1), · · · , τi(φi)}, and for

each channel eu ∈ ℰ , the size of the buffer bu.
1 for actor τi ∈ 𝒱 do
2 Compute the minimum common period Ťi by using Equation (3.5);

3 for actor vi ∈ 𝒱 do
4 Select deadline Di, where Di ∈ [max1≤ϕ≤φi{Ci(ϕ)}, Ťi];
5 for phase ϕ of vi, 1 ≤ ϕ ≤ φi do
6 τi(ϕ) = (0, Ci(ϕ), Di, Ťi);

7 for actor vi ∈ 𝒱 do
8 Compute the start time of the first phase Si(1) by using Equation (3.11);
9 τi(1) = (Si(1), Ci(1), Di, Ťi);

10 for phase ϕ of vi, 2 ≤ ϕ ≤ φi do
11 Compute the start time of the ϕth phase Si(ϕ) by using Equation (3.9);
12 τi(ϕ) = (Si(ϕ), Ci(ϕ), Di, Ťi);

13 for communication channel eu ∈ ℰ do
14 Compute the buffer size bu by using Equation (3.17);

yr
i (ϕ) and xw

i (ϕ) is the number of tokens read from er and written to ew by
vi, respectively, during its execution phase ϕ; and CC

i (ϕ) is the worst-case
computation time of vi in its phase ϕ.

Definition 3.5.2. For each actor vi in an acyclic CSDF graph G, the maximum
WCET value MCi is given by MCi = max1≤ϕ≤φi{Ci(ϕ)}.

Definition 3.5.3. For an acyclic CSDF graph G, an aggregated
execution vector ~AC, where ~AC ∈ NN , represents the aggregated WCET
values of the actors in G and its elements are given by ACi = ∑

φi
ϕ=1 Ci(ϕ),

where Ci(ϕ) is the WCET value of vi’s phase ϕ.

Each actor vi ∈ V in graph G is converted to a periodic task set 𝒯vi =
{τi(1), · · · , τi(φi)}.

Definition 3.5.4. A task τi(ϕ) corresponding to a phase ϕ of an actor vi, where
1 ≤ ϕ ≤ φi, in an acyclic CSDF graph G is a strictly periodic task iff the time
period between any two consecutive firings of that task is constant.

All tasks belonging to a periodic task set 𝒯vi corresponding to an actor vi
have the same period Ti, which we call common period.

3.5. Improved Hard Real-Time Scheduling of CSDF 39

Definition 3.5.5. For an acyclic CSDF graph G, a common period vector ~T,
where ~T ∈ NN , represents the periods, measured in time units, of periodic
task-sets corresponding to actors in G. Ti ∈ ~T is common period of periodic
task-set corresponding to actor vi ∈ V. ~T is given by the solution to both

r1T1 = r2T2 = · · · = rN−1TN−1 = rNTN (3.3)

and
~T − ~AC ≥~0, (3.4)

where ri ∈ ~r, and ~r is the aggregated repetition vector introduced in Sec-
tion 2.1.1.

Lemma 3.5.1. For an acyclic CSDF graph G, the minimum common period vector ~̌T
is given by:

Ťi =
lcm(~r)

ri

⌈maxvj∈V{ACj · rj}
lcm(~r)

⌉
, ∀vi ∈ V, (3.5)

where lcm(~r) is the least common multiple of all phase repetition entries in~r.

Proof. The minimum common period vector ~̌T that solves Equation (3.3) is
given by:

Ťi = lcm{r1, r2, · · · , rN}/ri, ∀vi ∈ V.

Inequality (3.4) can be re-written as:

cŤ1 ≥ AC1, cŤ2 ≥ AC2, · · · , cŤN ≥ ACN , c ∈N. (3.6)

Further, Inequality (3.6) can be re-written as:

c ≥ AC1r1/ lcm(~r), · · · , c ≥ ACNrN/ lcm(~r). (3.7)

From Inequality (3.7), it follows that c is greater than or equal to
maxvj∈V{ACjrj}/ lcm(~r). However, maxvj∈V{ACjrj}/ lcm(~r) is not always
guaranteed to be an integer. Because of that, the value is rounded up by taking
its ceiling. Thus, the minimum common period vector which satisfies both
Equation (3.3) and Inequality (3.4) is given by Equation (3.5). �

For the CSDF graph in Figure 2.1, the derived minimum common periods
in time units are [Ť1, Ť2, Ť3] = [5, 10, 5] .

Theorem 3.5.1. For any acyclic CSDF graph G, where G has L topological sort
levels, a periodic schedule exists with start times Si(ϕ), ϕ ∈ [1, φi], for each level-k
actor vi ∈ V given by:

Si(1) = (k− 1) · 2α (3.8)

40 Chapter 3. Hard Real-Time Scheduling Framework

and
Si(ϕ) = Si(ϕ− 1) + Ci(ϕ− 1), ∀ϕ ∈ [2, φi], (3.9)

such that every phase of an actor vi ∈ V is strictly periodic with a constant period
Ti ∈ ~̌T and every communication channel eu = (vi, vj) ∈ E has a bounded buffer
capacity, given by:

bu = (l − k + 1) · 2Xu
i (φiri), (3.10)

where α = r1T1 = · · · = rNTN is the iteration period of G, vi is level-k actor and vj
is level-l actor, l ≥ k.

Proof. Let us assume that graph G is partitioned into L levels in a way similar
to topological sort. In that way, all input actors belong to level-1, the actors
from level-2 have all immediate predecessors in level-1, the actors from level-3
have immediate predecessors in level-2 and can also have immediate predeces-
sors in level-1, and so on. The graph iteration period is α = r1T1 = · · · = rNTN .
During the iteration period each phase of vi is executed ri times. Assume that
the first phase of level-1 actors starts at time t = 0. Other phases of an actor are
scheduled to be fired as soon as the WCET of the previous phase elapses. Re-
call that every actor vi in graph G is converted to a set of strictly periodic tasks
where a task corresponds to a phase of the actor. Consider now an actor from
level-1, denoted as v1. By time t = α + S1(φ1), the last phase of v1 will finish
its r1th execution, where S1(φ1) is the start time of the last phase of v1. Level-1
actors will complete a whole iteration by time t1 = α + maxvi∈level-1{Si(φi)}
and will continue executing their second iteration. According to Equation (2.4),
level-1 actors will produce enough data on all channels to level-2 actors by
time t1 such that level-2 actors can execute a whole iteration if their first phases
are started at t1, at the earliest. Let us start the first phases of level-2 actors
at time t = 2α and all the other phases of a level-2 actor one after the other.
Similarly, by time t2 = 3α + maxvi∈level-2{Si(φi)− Si(1)}, level-3 actors will
have enough data to execute one iteration. Thus, starting the first phases of
level-3 actors at time t = 4α guarantees that the actors can execute a whole
iteration. By repeating the same procedure to the actors of the last level, level
L, (by starting their first phases at t = (L− 1) · 2α and all the other phases
as soon as the WCET of previous phase elapses), we obtain an overlapping
schedule σ where all actors execute their corresponding iterations. In the
constructed schedule, the first phase of an actor vj corresponding to a level-i
will start execution at time t = (i − 1) · 2α and once it starts it will be fired
every Tj time units. The other phases start their executions one after the other
and all within period Tj. Once started, each phase is re-executed every Tj time
units.

3.5. Improved Hard Real-Time Scheduling of CSDF 41

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

τ1(1)

τ1(2)

τ1(3)

τ2(1)

τ2(2)

τ3(1)

Figure 3.2: The periodic schedule σ for the CSDF graph G shown in Figure 2.1.

Now, we will prove that the constructed schedule executes with bounded
buffers. The longest delay which may happen between production and con-
sumption of data tokens is in case when there is a dependency eu between
the first iteration of a level-1 actor and the first iteration of a level-L actor. In
this case the delay is equal to (L− 1) · 2α and during that period the level-
1 actor will produce on channel eu at most (L − 1) · 2Xu

1 (φ1r1) data tokens,
where Xu

1 (φ1r1) is the number of tokens produced during φ1r1 executions of
the level-1 actor. However, starting from L · 2α level-1 and level-L execute
in parallel, so we should increase the buffer size by 2Xu

1 (φ1r1) which then
becomes L · 2Xu

1 (φ1r1). We can now use the methodology described above
to determine the buffer size of each communication channel in a graph: each
channel eu ∈ E, connecting a level-i source actor vk and a level-j destination
actor (j ≥ i) will store according to schedule σ at most:

bu = (j− i + 1) · 2Xu
k (φkrk)

tokens. Thus, an upper bound on the buffer sizes exists. �

For the example graph G given in Figure 2.1, actors in G are grouped
into 3 levels such that v1 is level-1 actor, v2 level-2 and v3 is level-3 actor.
The calculated graph iteration period α is equal to 10. The periodic schedule
resulting from Theorem 3.5.1, namely schedule σ, is depicted in Figure 3.2.

3.5.2 Deriving the Earliest Start Time of Actor’s First Phase

In order to represent an actor of a CSDF graph as a set of strictly periodic
tasks, in Theorem 3.5.1 we already introduced the start times of phases of the
actors corresponding to different levels. However, although start times given

42 Chapter 3. Hard Real-Time Scheduling Framework

by Equation (3.9) are minimal relative to the start time of the corresponding
first phase Si(1), start times Si(1) given by Equation (3.8) are not minimal.
Minimizing the start times is very important because it has a direct impact on
the latency of the graph and the buffer sizes of the communication channels.
Therefore, the earliest (minimal) start times of actor’s first phase Si(1) are
derived below.

We derive the earliest start times assuming that the token production
happens as late as possible (at the deadlines) and the tokens consumption
happens as early as possible (at the beginning of execution of each phase).

Lemma 3.5.2. For an acyclic CSDF graph G, the earliest start time of the first phase
of an actor vj ∈ V, denoted Sj(1), under ISPS is given by:

Sj(1) =

{
0 if prec(vj) = ∅
maxvi∈prec(vj){Si→j(1)} if prec(vj) ̸= ∅

(3.11)

where prec(vj) is the set of predecessors of vj, and Si→j(1) is given by:

Si→j(1) = min
t∈[0,Si(1)+α+∆i(φi)]

{t : prdS

[Si(1),max{Si(1),t}+k)
(vi, eu)

≥ cnsS
[t,max{Si(1),t}+k]

(vj, eu), ∀k ∈ [0, α + ∆i(φi)]}, (3.12)

where Si(1) is the earliest start time of the first phase of a
predecessor actor vi, α = riTi = rjTj, ∆i(φi) = Si(φi)− Si(1), prdS[ts,te)(vi, eu) is
the number of tokens produced by vi into channel eu during the time interval [ts, te),
and cnsS[ts,te](vj, eu) is the number of tokens consumed by vj from channel eu during
the time interval [ts, te].

Proof. In Theorem 3.5.1, we have proved the existence of ISPS when the
first phase of level-k actors was started at time (k− 1) · 2α. According to the
schedule σ, level-(k− 1) predecessor vi will start the execution of its first phase
at Si(1) = (k− 2) · 2α. Level-k actor vj can then start the execution of its first
phase at:

Sj(1) = (k− 1) · 2α = (k− 2) · 2α + 2α = Si(1) + 2α.

Observe now that in the proof of Theorem 3.5.1, instead of 2α we could more
precisely take α + Si(φi)− Si(1), because the last production of an iteration of
an actor vi will happen α + ∆i(φi) time units after the start of its first phase, at
the latest. Given this and taking into account all predecessors of vj, we can
write:

Sj(1) = max
vi∈prec(vj)

{Si(1) + α + ∆i(φi)}.

3.5. Improved Hard Real-Time Scheduling of CSDF 43

We are now interested in starting the first phase of vj earlier, which means we
search for Sj(1) ≤ maxvi∈prec(vj){Si(1) + α + ∆i(φi)}, and the earliest possible
Sj(1) can be at the time when the application starts, which is t = 0. This can
be written as:

Sj(1) = max
vi∈prec(vj)

{Si→j(1)} where Si→j(1) = t′, t′ ∈ [0, Si(1) + α + ∆i(φi)].

A valid start time candidate Si→j(1) must guarantee that the number of tokens
available on channel eu = (vi, vj) at any time instant t ≥ t′ is greater than or
equal to the number of consumed tokens at the same instant such that vj can
be executed as a set of strictly periodic tasks. Here, we have two cases:

Case 1: t′ ≥ Si(1): In order to guarantee that vj can fire its first phase at
times t = t′, t′ + Tj, · · · , t′ + α and each other phase ϕ as early as possible at
times t = t′ + ∆j(ϕ), t′ + ∆j(ϕ) + Tj, · · · , t′ + ∆j(ϕ) + α− Tj, where ∆j(ϕ) =

∑
ϕ−1
l=1 Cj(l), t′ must satisfy:

∀k ∈ [0, α + ∆i(φi)] : prdS

[Si(1),t′+k)
(vi, eu) ≥ cnsS

[t′,t′+k]
(vj, eu). (3.13)

Thus, a valid value of t′ guarantees that once vj starts, it always finds enough
data to fire for one iteration.

Case 2: t′ < Si(1): This case happens when vj consumes zero tokens in
the interval [Si(1), t′] or there are initial tokens on the channel. It is suffi-
cient to check the cumulative production and consumption over the interval
[Si(1), Si(1) + α + ∆i(φi)] because by time t = Si(1) + α + ∆i(φi) both vi and
vj are guaranteed to have finished one iteration:

∀k ∈ [0, α + ∆i(φi)] : prdS

[Si(1),Si(1)+k)
(vi, eu) ≥ cnsS

[t′,Si(1)+k]
(vj, eu). (3.14)

By merging Equation (3.13) and Equation (3.14) and then selecting among
valid start times t′ the minimum one, we obtain Equation (3.12). Start times
for the tasks corresponding to the actor phases other than the first phase are
obtained by adding the WCET value of the previous phase to the derived start
time of the previous phase, which is given by Equation (3.9). The start times
derived in such a way enable the serialized execution of tasks corresponding
to actor phases, when it is needed, by careful allocation and certain scheduling
algorithms, which will be explained in more detail in Section 3.5.4. �

Note that we derive by Lemma 3.5.2 the earliest start times assuming that
the tokens production happens at the deadlines and the tokens consumption

44 Chapter 3. Hard Real-Time Scheduling Framework

happens at the beginning of the execution of each phase. In this case, the
cumulative production and the cumulative consumption functions can be
computed efficiently by:

prdS

[ts,te)
(vi, eu) =

Xu

i

((⌊
te−ts

Ti

⌋
− 1 +

⌊
∆
Ti

⌋)
· φi + k1

)
if te − ts ≥ Ti

Xu
i (k2) if Di ≤ te − ts ≤ Ti

0 if te − ts < Di
(3.15)

with ∆ = (te− ts) mod Ti +Ti−Di, k1 = maxl∈[1,φi]{l : ∆ mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)},

k2 = maxl∈[1,φi]{l : te − ts − Di ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

cnsS
[ts,te]

(vi, eu) =

Yu
i

(⌊
te−ts

Ti

⌋
+ k
)

if te ≥ ts

0 if te < ts

(3.16)

with k = maxl∈[1,φi]{l : (te − ts) mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

For example, the derived earliest start times for phases of actor v2 in G,
shown in Figure 2.1, are S2(1) = 8 and S2(2) = S2(1) + C2(1) = 10, as
illustrated in Figure 3.1(b).

3.5.3 Deriving Channel Buffer Sizes

Equation (3.10) in Theorem 3.5.1 shows that ISPS has bounded buffer sizes
bu. These buffer sizes bu are sufficient but not minimal. Therefore, we want to
derive the minimum buffer sizes that guarantee periodic execution of tasks
corresponding to actor phases.

We want to derive the minimum buffer size such that the derived buffer
size is always valid regardless of when the actor phases are actually scheduled
to produce/consume during its common period. Hence, we assume that the
token production happens as early as possible (at the beginning of execution
of each phase) and the token consumption happens as late as possible (at the
deadlines).

Lemma 3.5.3. For an acyclic CSDF graph G, the minimum buffer size bu of a
communication channel eu = (vi, vj) under ISPS is given by:

bu = max
k∈[0,α+∆j(φj)]

{ prdB

[Si(1),max{Si(1),Sj(1)}+k]
(vi, eu)− cnsB

[Sj(1),max{Si(1),Sj(1)}+k)
(vj, eu)},

(3.17)

3.5. Improved Hard Real-Time Scheduling of CSDF 45

where Si(1) is the earliest start time of the first phase of a predecessor actor vi, α =
riTi = rjTj, ∆j(φj) = Sj(φj) − Sj(1), prdB[ts,te](vi, eu) is the number of tokens
produced by vi into channel eu during the time interval [ts, te], and cnsB[ts,te)(vj, eu)
is the number of tokens consumed by vj from channel eu during the time interval
[ts, te).

Proof. Equation (3.17) tracks the maximum cumulative number of uncon-
sumed tokens on channel eu during one iteration of vi and vj. We have two
cases:

Case 1: Sj(1) ≥ Si(1): Here we have two intervals [Si(1), Sj(1)) and [Sj(1),
Sj(1) + α + ∆j(φj)]. During the first interval only phases of actor vi are execut-
ing, so tokens are only produced and buffer size should be large enough to
accommodate all produced tokens in that interval. During the second interval
phases of both actors execute in parallel. Thus, the minimum number of to-
kens that needs to be stored is given by the maximum number of unconsumed
tokens on eu at any time over this interval. At time t = Sj(1) + α + ∆j(φj),
both vi and vj have completed one iteration and the number of tokens on eu is
the same as at time t = Sj(1) + ∆j(φj) [BELP96]. Due to the periodicity of vi
and vj, their execution pattern repeats. Thus, bu given by Equation (3.17) is
the minimum buffer size which guarantees periodic execution of vi and vj.

Case 2: Sj(1) < Si(1): Here we have three intervals [Sj(1), Si(1)), [Si(1),
Sj(1) + α + ∆j(φj)] and (Sj(1) + α + ∆j(φj), Si(1) + α + ∆j(φj)]. During the
first interval there is no production nor consumption or there are initial tokens
on the channel, and hence bu during that interval is equal to the number of
initial tokens. During the second interval phases of both actors execute in
parallel and bu gives the maximum number of unconsumed tokens on eu.
During the third interval phases of actor vj executes their second iteration,
again either there is no consumption, which means that eu has to accommodate
all the tokens produced during this interval or there is consumption and
bu gives the maximum number of unconsumed tokens on eu. At time t =
Si(1)+ α+∆j(φj), both vi and vj have completed one iteration and the number
of tokens on eu is the same as at time t = Si(1) + ∆j(φj) [BELP96]. Due to
the periodicity of vi and vj, their execution pattern repeats. Thus, bu given
by Equation (3.17) is the minimum buffer size which guarantees periodic
execution of vi and vj. �

The cumulative production and consumption functions used for the calcu-
lation of buffer sizes under the assumption of the earliest token production

46 Chapter 3. Hard Real-Time Scheduling Framework

and the latest token consumption can be computed efficiently by:

prdB

[ts,te)
(vi, eu) =

Xu
i

(⌊
te−ts

Ti

⌋
+ k
)

if te ≥ ts

0 if te < ts

(3.18)

with k = maxl∈[1,φi]{l : (te − ts) mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

cnsB
[ts,te)

(vi, eu) =

Yu

i

((⌊
te−ts

Ti

⌋
− 1 +

⌊
∆
Ti

⌋)
· φi + k1

)
if te − ts ≥ Ti

Yu
i (k2) if Di ≤ te − ts ≤ Ti

0 if te − ts < Di
(3.19)

with ∆ = (te− ts) mod Ti +Ti−Di, k1 = maxl∈[1,φi]{l : ∆ mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)},

k2 = maxl∈[1,φi]{l : te − ts − Di ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

For the example graph G given in Figure 2.1, the calculated buffer sizes in
tokens are [b1, b2, b3] = [4, 15, 4].

3.5.4 Hard Real-Time Schedulability

We give now a theorem which summarizes the presented results for our
improved strictly periodic scheduling (ISPS):

Theorem 3.5.2. For an acyclic CSDF graph G, let 𝒯G be a set of periodic task sets
𝒯vi such that 𝒯vi corresponds to vi ∈ 𝒱 . 𝒯vi consists of φi periodic tasks given by:

τi(ϕ) = (Si(ϕ), Ci(ϕ), Di, Ti), 1 ≤ ϕ ≤ φi, (3.20)

where Si(ϕ) is the earliest start time of a phase ϕ of actor vi given by Equation (3.11)
and Equation (3.9), Ci(ϕ) is the WCET value of a phase ϕ given by Equation (3.2),
Di is the relative deadline, max1≤ϕ≤φi{Ci(ϕ)} ≤ Di ≤ Ti, and Ti is the period of
𝒯vi given by Equation (3.5). 𝒯G is schedulable on m processors using a hard real-time
scheduling algorithm A for periodic tasks if:

1. A is partitioned Earliest Deadline First, partitioned Rate Monotonic, parti-
tioned Deadline Monotonic or hierarchical global hard real-time scheduling
algorithm,

2. 𝒯G satisfies the schedulability test of A on m processors,
3. every communication channel eu ∈ E has a capacity of at least bu tokens,

where bu is given by Equation (3.17).

3.5. Improved Hard Real-Time Scheduling of CSDF 47

Proof. According to Theorem 3.5.1, the graph is converted into strictly periodic
tasks. The task set 𝒯vi corresponding to an actor vi should be scheduled in
a way which preserves the dependency between the actor phases. The hard
real-time scheduling algorithms which can do this are partitioned Earliest
Deadline First (EDF), Rate Monotonic (RM) [LL73] and Deadline Monotonic
(DM) [LW82], or hierarchical [HA06], [LB03]. In case of the partitioned algo-
rithms, tasks which correspond to phases of an actor should be allocated to
the same processor and scheduled by EDF or DM because the deadlines of
the phases are in the same order as the phases themselves thereby, preserving
the data-dependencies between the phases, or by RM fixed priority scheduler
where ties should be broken in favor of jobs arrived earlier in a system. In
hierarchical scheduling a set of tasks are grouped together and scheduled as a
single entity, called server task or supertask. When the entity is scheduled, one
of its tasks is selected to execute according to an internal scheduling policy.
Hence, the supertasks/servers are scheduled globally, while the scheduling
of the tasks within a supertask/server is done locally, that is, it is analogous
to scheduling on uniprocessor. By grouping the tasks which correspond to
phases of an actor with data-dependent phases into a supertask/server and
scheduling them by a scheduler which preserves their order (for example,
EDF) the synchronization problem of such dependent tasks is solved. �

3.5.5 Performance Analysis

Once an acyclic CSDF graph has been converted to a set of strictly periodic
tasks, the calculated task parameters Si, Ci, Di, and Ti, where Si is the start
time of τi, Ci is the WCET, Di is the deadline of τi, and Ti is the task period, are
used for performance analysis of the graph, that is, for analysis of the graph’s
throughput and latency.

Throughput Analysis under ISPS

The throughput of a graph G scheduled by ISPS is given by:

ℛ(G) =
1
α
=

1
riŤi

, vi ∈ 𝒱 , (3.21)

where Ťi is calculated by Equation (3.5). Given that during one graph itera-
tion every actor vi ∈ 𝒱 is executed qi times, the throughput of each actor is
calculated as:

ℛi =
qi

α
=

φi

Ťi
, vi ∈ 𝒱 . (3.22)

48 Chapter 3. Hard Real-Time Scheduling Framework

Theorem 3.5.3. For any acyclic CSDF graph G scheduled by ISPS, the throughput
of the graph is never less than the graph throughput when G is scheduled by SPS.

Proof. The throughput of a graph scheduled under SPS [BS13] is
1/αSPS = 1/(qiTSPS

i), vi ∈ V. If the same graph is scheduled under our
ISPS, then its throughput is 1/αISPS = 1/(riTISPS

i), vi ∈ V. By using Equa-

tion (3.1) and Equation (3.5) and denoting u = maxvj∈V{rj ∑
φj
ϕ=1 Cj(ϕ)} and

w = maxvj∈V {qj max1≤ϕ≤φj{Cj(ϕ)}}, we can write the relation which we
want to prove, αISPS ≤ αSPS, as follows:

lcm(~r)
⌈

u
lcm(~r)

⌉
≤ lcm(~q)

⌈
w

lcm(~q)

⌉
. (3.23)

We have that u ≤ w. Given that the least common multiple of positive
integer numbers can be found using prime factorization, and the relation
between vectors~r = [r1, · · · , rN]

T and~q = Φ ·~r = [φ1r1, · · · , φNrN]
T, we have

that lcm(~q) is divisible by lcm(~r).
Finally, to prove relation (3.23) we consider the following cases (with

regard to divisibility by the corresponding lcm term):
Case 1: workloads u and w on both sides of Inequality (3.23) are divisible

by the corresponding lcm terms. Then by removing the ceiling operation we
obtain inequality u ≤ w, which always holds.

Case 2: u is divisible by lcm(~r), w is not divisible by lcm(~q). We can
represent the ceiling operation on the right-hand side as (w + lcm(~q)−wmod
(lcm(~q)))/ lcm(~q). In the worst case wmod (lcm(~q)) is equal to lcm(~q)− 1.
By putting this into Inequality (3.23) we obtain u ≤ w + 1, which holds.

Case 3: u is not divisible by lcm(~r), w is divisible by lcm(~q) (also divisible
by lcm(~r)). We can represent u and w as ku lcm(~r) + u mod (lcm(~r)) and
kw lcm(~r), respectively, for some integer constants ku and kw, ku < kw. We
represent the ceiling operation as in Case 2, so Inequality (3.23) becomes
u + lcm(~r)− umod (lcm(~r)) ≤ w. Now, by putting the ku-representation of u
and kw-representation of w, the inequality becomes ku + 1 ≤ kw, which is true
and thus, Inequality (3.23) holds.

Case 4: workloads on both sides of Inequality (3.23) are not divisible by the
corresponding lcm terms. Similarly to Case 2 and Case 3, we can represent the
ceiling operation through the modulo operation. In the worst case, we have
on the right-hand side the smallest possible value for the ceiling operation
which is (w + 1)/ lcm(~q) and this value is divisible by both lcm(~q) and lcm(~r).
In the worst case we have u = w, which means that u also needs only 1 unit to
be rounded up to a value divisible by lcm(~r). Thus, Inequality (3.23) becomes
w + 1 ≤ w + 1, which holds. �

3.5. Improved Hard Real-Time Scheduling of CSDF 49

Latency Analysis under ISPS

The latency of G scheduled by ISPS is given by:

ℒ(G) = max
win→out∈𝒲

{Sout(gC
out) + Dout − Sin(gP

in)}, (3.24)

where𝒲 is the set of all paths from any input actor vin to any output actor vout,
and win→out is one path of the set. Sout(gC

out) and Sin(gP
in) are the earliest start

times of the first phase of τout with non-zero token consumption (phase gC
out)

and the first phase of vin with non-zero token production (phase gP
in) on a path

win→out ∈ 𝒲 , respectively. Dout is the relative deadline of vout.
From Equation (3.24) we can see that the latency of a graph depends on

start times and deadlines of the graph’s actors. Given that actor start times are
dependent on deadlines (see Section 3.5.2), in order to reduce the latency we
should reduce actor deadlines, that is, we should change the token production
times. However, given that reducing the deadlines increases the number of
processors required to schedule the graph, we are interested in selecting the
deadlines which lead to required graph latency while the number of processors
needed to obtain that latency is minimized. To select deadlines properly, we
devise the solution approach presented in this section that formulates the
problem of selecting task deadlines under a given latency constraint while
the number of processors is minimized when a CSDF graph is converted
to real-time periodic tasks by using our ISPS approach as a mathematical
programming problem. In order to formulate our problem as a mathematical
programming problem, we need to rewrite the start time computation in a
proper form.

Lemma 3.5.4. For an acyclic CSDF graph G, the earliest start time of the first phase
of an actor τj ∈ V, denoted Sj(1), under ISPS is given by:

Sj(1) =

{
0 prec(vj) = ∅
maxvi∈prec(vj)

{Si(1) + (Smin
i→j(1)− Smin

i (1)−MCi) + Di} prec(vj) ̸= ∅
(3.25)

where prec(vj) is the set of predecessors of vj, Si(1), MCi, and Di are the earliest
start time of the first phase, the maximum WCET (Definition 3.5.2), and deadline
of the predecessor actor vi, respectively. Smin

i (1) is the earliest start time of the first
phase of vi given by Equation (3.11) when Dk = MCk, ∀vk ∈ V, and Smin

i→j(1) is
given by Equation (3.12) when Dk = MCk, ∀vk ∈ V.

Proof. Let us consider an arbitrary channel eu = (vi, vj) in a CSDF graph
G = (𝒱 , ℰ). Actor vj starts execution of its first phase after vi has started and

50 Chapter 3. Hard Real-Time Scheduling Framework

Smin
i (1) Smin

i→j (1)
t

∆

Di = MCi

prdS

cnsS

Figure 3.3: Production and consumption curves on edge eu = (vi, vj).

fired a certain number of times. This number of firings is independent from
the execution speed of the actors and depends only on the production and
consumption rates of vi and vj on eu, where cumulative production and cumu-
lative consumption functions are given by Equation (3.15) and Equation (3.16).
Suppose that Dk = MCk, ∀vk ∈ V. The production (prdS) and consumption
(cnsS) curves of vi and vj are shown in Figure 3.3. Interval ∆ in Figure 3.3 can
be calculated as:

∆ = Smin
i→j(1)− Smin

i (1)−MCi. (3.26)

Now, suppose that Dk > MCk, ∀vk ∈ V. The production curve will move to
the right for certain time units, and the new start time of the first phase of vi
is Si(1). If the consumption curve does not move, the relation between the
production and consumption given by Equation (3.12) will be violated, that
is, it will happen in some point in time that the cumulative consumption is
greater than the cumulative production. This means that we have to move the
consumption curve to the right by the same number of time units such that
the new start time Si→j(1) satisfies Equation (3.12). Hence, interval ∆ will stay
the same, and it is given by:

∆ = Si→j(1)− Si(1)− Di. (3.27)

By rewriting Equation (3.26) and Equation (3.27), we obtain:

Si→j(1) = Si(1) + (Smin
i→j(1)− Smin

i (1)−MCi) + Di. (3.28)

�

We can derive from Equation (3.25) the following set of linear inequality
constraints, where the number of the linear inequality constraints is equal to

3.5. Improved Hard Real-Time Scheduling of CSDF 51

the number of edges in the CSDF:

Si(1) + (Smin
i→j(1)− Smin

i (1)−MCi) + Di ≤ Sj(1), ∀eu ∈ ℰ . (3.29)

In addition, we can rewrite Equation (3.24) as follows:

ℒ(G) = max
win→out∈𝒲

{Sout(1) +
gC

out−1

∑
k=1

Cout(k) + Dout − Sin(1)−
gP

in−1

∑
k=1

Cin(k)}.

(3.30)
Since the number of processors needed to schedule constrained-deadline

periodic (CDP) tasks depends on the total density δsum of the tasks [DB11], our
objective is to minimize δsum in order to minimize the number of processors.
Therefore, we formulate our optimization problem as follows:

Minimize δsum = ∑
vk∈V

ACk

Dk
(3.31a)

subject to:
Sout(1) + Dout − Sin(1) ≤ ℒ−

gC
out−1

∑
k=1

Cout(k) +
gP

in−1

∑
k=1

Cin(k),

∀win→out ∈ 𝒲
(3.31b)

Si(1) + Di − Sj(1) ≤ −(Smin
i→j(1)− Smin

i (1)−MCi), ∀eu ∈ ℰ
(3.31c)

− Dk ≤ −MCk, Dk ≤ Tk, ∀vk ∈ 𝒱 (3.31d)

where (3.31a) is the objective function and Dk is an optimization variable. The
objective function (3.31a) has |V| optimization variables and is subject to a
latency constraint ℒ. Therefore, (3.31b) comes from (3.30). For each channel in
a graph we have Equation (3.29), which can be rewritten as (3.31c). In addition,
(3.31d) bounds all optimization variables in the objective function. Si(1) and
Sj(1) (including Sin(1), Sout(1)) are implicit variables which are not in the
objective function (3.31a), but still need to be considered in the optimization
procedure. ℒ, gP

in, gC
out, Smin

i→j(1), Smin
i (1), MCk, and Tk are constants. Given that

all variables are integers and both the objective function and the constraints
are convex, problem (3.31) is an integer convex programming (ICP) problem
[LSZ+14] which can be solved by using existing convex programming solvers,
such as CVX solver [GB14].

52 Chapter 3. Hard Real-Time Scheduling Framework

Algorithm 2: Procedure to derive the number of processors.
Input: A CSDF graph G = (𝒱 , ℰ), a partitioned scheduling algorithm A, an allocation

heuristicℋ.
Output: Number of processors mPAR, task allocation alloc.

1 for actor vi in 𝒱 do
2 Compute the minimum common period Ťi by using Equation (3.5);

3 utotal = 0;
4 U ← ∅; (the set of allocation units, initially empty)
5 for actor vi ∈ 𝒱 do
6 ui = 0;
7 for phase ϕ of vi, 1 ≤ ϕ ≤ φi do
8 ui(ϕ) =

Ci(ϕ)

Ťi
;

9 ui = ui + ui(ϕ);
10 utotal = utotal + ui(ϕ);

11 U = U ∪ ui;

12 mPAR = mOPT = ⌈utotal⌉;
13 Reorder elements of U if required by an allocation heuristicℋ;
14 for u ∈ U do
15 Π = {π1, π2, · · · , πmPAR};
16 Apply bin-packing allocation heuristicℋ to u on πj ∈ Π and check the

schedulability test of algorithm A on πj;
17 if u is not allocated to any πj ∈ Π then
18 Allocate u on a new processor πmPAR+1;
19 mPAR = mPAR + 1;

20 return mPAR, alloc;

3.5.6 Deriving the Number of Processors

As introduced in Section 2.2.5, by using Equation (2.12) one can compute the
absolute minimum number of processors mOPT needed to schedule the tasks
with deadlines equal to the periods. The tasks can be scheduled on mOPT if an
optimal scheduling algorithm is used. The optimal scheduling algorithms are
either global or hybrid, and hence, they require task migration. On the other
hand, the partitioned scheduling algorithms do not require task migration. In
that case the tasks are first allocated to the processors, for example by using a
task partitioning heuristic, as described in Section 2.2.5, and then the tasks on
each processor are scheduled using a uniprocessor scheduling algorithm.

The procedure to calculate the number of processors required for the par-
titioned scheduling of the task set obtained by the conversion procedure
described in Section 3.5 (see Algorithm 1) is given in Algorithm 2. Algo-
rithm 2 takes as inputs a CSDF graph G, a partitioned scheduling algorithm A

3.5. Improved Hard Real-Time Scheduling of CSDF 53

and an allocation heuristicℋ. The minimum common period for each actor
is calculated in lines 1-2 of the algorithm. Once the periods are calculated,
then the total utilization of the converted task set and the utilization per task
set corresponding to an actor are calculated in lines 3-10. Line 11 in Algo-
rithm 2 ensures that the task set corresponding to an actor is considered as
one scheduling entity, that is, one allocation unit. The absolute minimum
number of processors mOPT for scheduling the tasks is computed in line 12.
Some allocation heuristics require a preprocessing step to be performed on the
tasks before applying the heuristic. This preprocessing step is usually sorting
the tasks based on some criteria, such as their utilization. That step is done
in Algorithm 2 in line 13. The following lines find the number of processors
and the allocation of tasks to processors. Given that mOPT is the lower bound
on the number of processors mPAR needed by partitioned scheduling algo-
rithms, Algorithm 2 starts with the task partitioning on mOPT processors. If
the tasks pass the schedulability test on all mPAR processors, for example, in
the case of IDP tasks and EDF scheduler the utilization of the tasks allocated
to a processor is not greater than 1, then the algorithm returns mPAR and the
corresponding allocation of the tasks to the processors alloc.

Let us now analyze the time complexity of Algorithm 2 in the worst case.
The first for loop in lines 1-2 takes linear time to calculate the minimum com-
mon period of each actor, that is, its time complexity is O(|𝒱|). The second for
loop in lines 5-11 has a nested for loop and hence, its time complexity in the
worst case is given by O(|𝒱|φ), where φ is the maximum number of execution
phases per actor, φ = maxvi∈𝒱{φi}. If the task sorting in line 13 should be per-
formed prior to performing the task allocation, it will have O(|𝒱|φ log(|𝒱|φ))
time complexity given that the maximum number of tasks is |𝒱|φ. The for loop
in lines 14-19 implements the allocation of the tasks to the processors by apply-
ing certain allocation heuristic and scheduling algorithm. Given that the maxi-
mum number of tasks is |𝒱|φ and the maximum number of processors needed
to allocate and schedule an CSDF graph is equal to the number of actors in the
graph |𝒱|, the time complexity of finding the number of processors mPAR and
the feasible task allocation is O(|𝒱|φ log |𝒱|) [PZMA04], [BF05]. Thus, we can
conclude that the running time of Algorithm 2 is polynomial and its complexity
is O(|𝒱|φ log |𝒱|) or O(|𝒱|φ log(|𝒱|φ)) if the preprocessing step is performed.

54 Chapter 3. Hard Real-Time Scheduling Framework

Table 3.2: Benchmarks used for evaluation.

Domain Benchmark |𝒱| |ℰ | |𝒯 | Source
Medical Heart pacemaker 4 3 67 [PMN+09]

Communication Reed Solomon Decoder (RSD) 6 6 904 [BMMKM10]
Financial BlackScholes 41 40 261 [BMKdD13]

Computer Vision Disparity map 5 6 11 [ZK00]
Pdetect 58 76 4045 [BMKdD13]

Audio processing
CELP algorithm 9 10 167 [BELP96]
CD2DAT rate converter 6 5 22 [OH04]
MP3 Playback 4 3 8 [WBJS07]

Image processing JPEG2000 240 703 639 [BMKdD13]

3.6 Evaluation

We evaluate our approach in terms of its performance and time complexity
by performing experiments on the benchmarks given in Table 5.2. Columns
3, 4 and 5 in Table 5.2 give for each benchmark the number of actors |𝒱|, the
number of channels |ℰ | in the corresponding CSDF graph of a benchmark,
and the number of periodic tasks |𝒯 | obtained after converting the actors of
the CSDF graph by our approach to a set of periodic tasks 𝒯 . The WCETs
of actors in the benchmarks are given in clock cycles [BMKdD13] or in time
units [BMMKM10], [WBJS07]. If the execution times of a benchmark are not
given [BELP96], [PMN+09], [OH04], certain values based on a static analysis
are assumed. The execution times of benchmark [ZK00] are obtained from the
measurements of the benchmark running on a MicroBlaze processor.

Our approach is evaluated by comparison to 3 related scheduling ap-
proaches - strictly periodic scheduling, SPS, proposed in [BS13], periodic schedul-
ing, PS, presented in [BMKdD13], and self-timed scheduling, STS, given in
[SGB08]. We implemented our approach in Python. The SPS approach was
implemented in Python within the darts tool-set [Bam12]. The approach
in [SGB08] was implemented in C++ within the SDF3 tool-set [SGB06]. In
addition, we implemented the approach in [BMKdD13] in Python as well. We
formulated both LP problems [BMKdD13] for finding the period of a graph,
and for finding the start times and the buffer sizes as integer linear program-
ming (ILP) problems, and we added the constraint that the periods of all actors
in a graph have to be integers. We used CPLEX Optimization Studio [IBM12]
to solve the ILP problems and mixed integer disciplined convex programming
(MIDCP) in CVX [GB14] to solve our latency reduction problem. We have run
all the experiments on a Dell PowerEdge T710 server running Ubuntu 11.04
(64-bit) Server OS.

3.6. Evaluation 55

3.6.1 Performance of the ISPS Approach

The main objective of the evaluation is to compare the throughput of streaming
applications and the required number of processors to guarantee the through-
put when scheduled by our ISPS with the throughput and the number of
processors under SPS [BS13], PS [BMKdD13] and STS [SGB08]. In addition,
we compare our ISPS and the other scheduling approaches in terms of applica-
tion latency and memory resources needed to implement the communication
channels.

We used the sdf3analysis-csdf tool from SDF3 [SGB06] to obtain
the maximum achievable throughput of a graph, which is the throughput
under STS, and to compute the minimum buffer sizes required to achieve that
throughput. Unfortunately, the sdf3analysis-csdf tool does not support
the latency calculation and the calculation of the number of processors. Thus,
we were not able to compare them with our approach. We were also not able
to obtain the number of processors for a graph scheduled under PS, because
the calculation of the number of processors was not considered in [BMKdD13].

Results of the performance evaluation are given in Table 3.3. We report the
throughput of the output actors under ISPS, calculated by Equation (3.22), in
the second column of Table 3.3. Here t.u. denotes the corresponding time unit
of a benchmark. Columns 7, 12 and 15 show the ratio between the throughput
of the output actors under our ISPS and SPS, PS and STS, respectively. Given
that the main objective of this experiment is to evaluate the throughput of the
benchmarks scheduled under ISPS and the minimum number of processors
needed to obtain that throughput, our ISPS approach converts the CSDF
graphs of the benchmarks to IDP tasks, which minimizes the number of
processors required to schedule the benchmarks. For processor requirements
in case of ISPS and SPS, we compute the minimum number of processors
for IDP tasks under optimal and partitioned First-Fit Decreasing (Utilization)
EDF (FFD-EDF) schedulers by using Equation (2.12) and Algorithm 2 for
ISPS, and Equation (2.12) and Equation (2.16) for SPS - see columns 4, 5,
9 and 10. By comparing the throughputs under ISPS and SPS, we can see
that for the majority of the benchmarks the throughput under our ISPS is
higher than the corresponding throughput under SPS. Only in two cases the
throughputs are the same for both schedules. The first case is MP3 Playback,
which bottleneck actor (the actor with the biggest workload over one iteration
period) is the same under both SPS and ISPS, and that actor has only one
phase, so the influence of different WCET for actor phases on throughput
cannot be seen. However, the influence can be seen from the required number
of processors needed for scheduling of MP3 Playback by optimal schedulers,

56 Chapter 3. Hard Real-Time Scheduling Framework

which is smaller in the case of our ISPS. The second case is CD2DAT. For this
benchmark lcm(~q) and lcm(~r) are equal and much higher than the maximum
workload of actors over an iteration period for both SPS and ISPS, which
leads to the same iteration period for both schedules. However, the WCET-
awareness of ISPS leads to smaller number of processors. Note that if we want
to schedule a task-set on smaller number of processors than the one calculated
by Equation (2.12) or Equation (2.12)/Algorithm 2, we should scale up the
computed actor periods by the same scaling factor [ZBS13]. Hence, to schedule
CD2DAT by SPS on the same number of processors required by ISPS, we
need to scale up actor periods by 2, which will lead to decrease in throughput
by 2. Thus, ISPS outperforms SPS in terms of throughput when CD2DAT is
scheduled on 1 processor. Benchmarks JPEG2000 and RSD can achieve much
better throughput when scheduled under ISPS, but in that case they require
larger number of processors to be scheduled. Note that the throughputs of
these two benchmarks cannot be increased under SPS even when the number
of processors is increased. If we apply the period scaling technique [ZBS13]
for these two benchmarks to schedule them under ISPS on the same number
of processors as required under SPS the throughput values for JPEG2000
and RSD under our ISPS are 3.93 and 11.2 times higher, as given in column
7 in parenthesis, than the corresponding values under SPS. Therefore, we
can conclude that in all cases the minimum number of processors required
to guarantee certain throughput under our ISPS is smaller than or equal to
the minimum number of processors under SPS while the throughput under
ISPS is increased in most cases, thus, processors are better utilized.

Column 12 in Table 3.3 shows the ratio of the maximum throughput of
the output actors achieved by our ISPS to the maximum throughput of the
output actors achieved by PS. We can see that both approaches give the same
throughput for all benchmarks, which is expected given that PS schedules
phases of an actor in a CSDF graph statically within a period of the actor, hence
the scheduling granularity is similar between these two approaches.

Table 3.3 shows in column 15 the ratio of the maximum throughput of the
output actors achieved by our approach to the absolute maximum through-
put of the output actors achieved by self-timed scheduling of actor firings,
which is the optimal scheduling in terms of throughput. We can see that the
throughput under ISPS is equal or very close to the throughput under STS
for the majority of the benchmarks. Differences in the throughput appear
as a result of the ceiling operation during the calculation of actor common
periods in Equation (3.5). The biggest difference is in the case of the CD2DAT
benchmark. For this benchmark lcm(~r) is much higher than the maximum

3.6. Evaluation 57

workload of actors over an iteration period, and thus, the calculated actor
periods are underutilized, which leads to lower throughput. The throughput
value N/A for JPEG2000 indicates that the SDF3 tool-set [SGB06] returned
an infeasible throughput (most likely related to an integer overflow).

Let us now analyze the latency and the memory resources needed to im-
plement the communication channels of the benchmarks. The graph latency
under our ISPS is calculated by Equation (3.24) for IDP tasks and shown in
column 3 of Table 3.3. Column 8 shows the ratio between the graph latency un-
der our ISPS and SPS. As we can see from columns 4, 5, 7-10 in Table 3.3: for
4 benchmarks (highlighted in the table) under ISPS we obtain higher through-
put and smaller latency than under SPS without increasing the number of
processors (with JPEG2000 and RSD scheduled on the same number of pro-
cessors as in case of the SPS); for the other 3 benchmarks (BlackScholes, Disp.
map, Pdetect) the obtained increase in throughput is less than the increase in
latency on a platform with the same (or 1 less for BlackScholes under ISPS,
partitioned scheduling) number of processors; for the rest 2 benchmarks we
obtained the same throughput with the increase in latency, but also with the
decrease in the number of processors. For the tested benchmarks, the calcu-
lated buffer sizes under ISPS are never smaller than the buffer sizes under
SPS, see column 11 in Table 3.3. The highest ratio in buffer sizes between
ISPS and SPS is obtained for BlackScholes and CD2DAT. However, the actual
increase in communication memory resources is 215 KB and less than 1 KB,
respectively, which is acceptable given the size of the memory available in
modern embedded systems. Note that both latency and buffer sizes under
our ISPS can be reduced by carefully selecting deadlines for individual actors
(actors phases). This will be shown later in Section 3.6.3.

Column 13 gives the ratio of the maximum latency of benchmarks under
our ISPS to the latency of benchmarks under PS. Although [BMKdD13] does
not provide the latency calculation for their PS, we were able to extract the
latency information from the start times obtained by solving the ILP problem.
However, for benchmarks JPEG2000 and Pdetect we could not get a solution
from the ILP solver after more than 1 day, so we could not calculate the latency
for these two benchmarks. As we can see, the latency of benchmarks under
ISPS is always larger than the latency under PS. As mentioned above, reduc-
ing the latency under ISPS can be done by carefully selecting deadlines for
individual actors (actors phases), as shown in Section 3.6.3. Moreover, ISPS re-
ports the maximum latency while PS reports the actual latency under a certain
schedule. The ratio of the calculated buffer sizes under ISPS to the calculated
buffer sizes under PS and STS is given in columns 14 and 16, respectively.

58 Chapter 3. Hard Real-Time Scheduling Framework

Table
3.3:C

om
parison

ofdifferentscheduling
approaches.

B
enchm

ark
IS

P
S

S
P

S
P

S
S

TS

ℛ
IS

P
S

out
[

1t.u.]
ℒ

IS
P

S[t.u.]
m

IS
P

S
O

PT
m

IS
P

S
PA

R
M

IS
P

S[B]
ℛ

IS
P

S
out
ℛ

S
P

S
out

ℒ
IS

P
S

ℒ
S

P
S

m
S

P
S

O
PT

m
S

P
S

PA
R

M
IS

P
S

M
S

P
S

ℛ
IS

P
S

out
ℛ

P
S

out

ℒ
IS

P
S

ℒ
P

S
M

IS
P

S

M
P

S
ℛ

IS
P

S
out
ℛ

S
TS

out

M
IS

P
S

M
S

TS

P
acem

aker
1/10

1920
2

2
436

1.5
0.99

2
2

1.47
1

2.93
4.95

0.91
5.07

R
S

D
1/1080

6295
2

2
5205

22.4
0.05

1
1

1.56
1

2.8
3.23

0.83
–

(1/2160)
(11695)

(1)
(1)

(5460)
(11.2)

(0.097)
(1.63)

B
lackS

choles
1/3234876

24764218
16

16
260284

1.33
1.58

16
17

6.41
1

5.31
11.57

1
–

D
isp.m

ap
1/65326

382593
2

2
995520

1.03
1.13

2
2

1
1

3.18
2

1
2

P
detect

1/2033760
36608557

11
13

13464910
1.0002

1.12
11

13
1.26

1
–

–
1

–
C

E
LP

1/2
964

6
6

1780
1.5

0.99
6

6
1.68

1
2.24

2.38
1

–
C

D
2D

AT
1/147

2637
1

1
116

1
3.18

2
2

4.83
1

8.88
11.6

0.17
5.09

M
P

3
P

layback
1/25

46355
3

4
3860

1
1.84

4
4

1.48
1

2.02
1.76

0.91
1.66

JP
E

G
2000

1/811008
27255343

18
18

9625878
70.65

0.02
1

1
1.17

1
–

–
N

/A
N

/A
(1/14598144)

(497471535)
(1)

(1)
(10006530)

(3.93)
(0.3)

(1.21)

Table
3.4:Tim

e
com

plexity
(in

seconds)ofdifferentscheduling
approaches.

B
enchm

ark
IS

P
S

S
P

S
P

S
S

TS
t IS

P
S

ℛ
t IS

P
S

S&
B

t S
P

S
ℛ

t S
P

S
S&

B
t P

S
ℛ

t P
S

S&
B

t S
TS
ℛ

t S
TS

S&
B

P
acem

aker
1.24e-05

0.056
1.31e-05

0.007
0.19

0.34
0.004

1.52
R

S
D

1.62e-05
4

1.74e-05
3.3

115.11
146.66

0.06
>

1
day

B
lackS

choles
9.7e-05

1.13
9.46e-05

0.43
0.28

1.22
0.05

>
1

day
D

isp.m
ap

1.36e-05
0.0014

1.69e-05
0.00087

0.027
0.055

0.004
0.01

P
detect

0.00014
3.52

0.00013
0.65

83.64
>

1
day

0.33
>

1
day

C
E

LP
2.26e-05

0.097
2.43e-05

0.029
0.56

0.95
0.01

>
1

day
C

D
2D

AT
1.67e-05

0.59
1.76e-05

0.66
0.061

0.17
0.004

108.56
M

P
3

P
layback

1.41e-05
59.07

1.37e-05
55.87

0.021
0.034

0.004
3236.31

JP
E

G
2000

0.00053
27.22

0.00053
3.55

0.51
>

1
day

N
/A

N
/A

Table
3.5:Tim

e
com

plexity
(in

seconds)
for

the
calculation

ofnum
ber

ofproces-
sors.B

enchm
ark

t IS
P

S
m

O
PT

t IS
P

S
m

PA
R

P
acem

aker
4.51e-05

0.00095
R

S
D

0.00049
0.012

B
lackS

choles
0.00017

0.0077
D

isp.m
ap

1.19e-05
0.00037

P
detect

0.0028
0.2

C
E

LP
0.0001

0.0029
C

D
2D

AT
1.72e-05

0.0021
M

P
3

P
layback

9.06e-06
0.00039

JP
E

G
2000

0.00048
0.42

3.6. Evaluation 59

Again, for benchmarks JPEG2000 and Pdetect under PS we could not get a
solution from the ILP solver after more than 1 day. Similarly, for benchmarks
RSD, BlackScholes, Pdetect and CELP under STS we could not get a solu-
tion for longer than 1 day. As mentioned before, value N/A for JPEG2000
indicates that SDF3 tool-set returned an infeasible throughput, and hence the
buffer sizes were not calculated. As we can see, the buffer sizes under PS and
STS are always smaller than the buffer sizes under ISPS. The highest ratio in
buffer sizes between ISPS and PS is obtained for BlackScholes and CD2DAT,
with the actual increase in communication memory resources of 232 KB and
less than 1 KB, respectively. The highest increase in buffer sizes under ISPS
when compared to STS is less than 1 KB. The reason for the difference in the
buffer sizes is that in both PS and STS approaches it is assumed that the pro-
duction of tokens happens at the end of the actor firing, while the consumption
happens at the start of the firing, while in our case (and in SPS case) the worst-
case scenario is considered, that is, the production of tokens happens at the
earliest possible start of the actor firing (at start times), while the consumption
happens at the latest possible end of actor firing (at deadlines). Note that in an
implementation of a dataflow application, data may be consumed from input
channels and produced to output channels at arbitrary points in time during
an actor firing. To guarantee that buffer overflow/underflow does not occur,
buffer sizes have to be sufficiently large. Thus, the assumption in PS and STS
limits the actual implementation of reading and writing of tokens, while the
buffers calculated in our case are valid regardless of the actual point in time
where reading and writing of tokens happens and thus, our approach does not
limit the implementation of the reading and writing of tokens. Moreover, the
buffer sizes calculated in PS and STS are valid for that specific schedule and
the specific production/consumption pattern, while in the case of our ISPS
the computed buffer sizes are valid for any schedule of actor firings during its
period and for any production/consumption pattern during its firing.

3.6.2 Time Complexity of the ISPS Approach

In this section, we evaluate the efficiency of our ISPS approach in terms of the
execution time of our algorithms to calculate the throughput of an application,
and to find a schedule and buffer sizes of communication channels. The
execution times are given in Table 3.4. We compare these execution times with
the corresponding execution times of related approaches – SPS, PS and STS.

Let us first analyze the time needed to calculate the throughput of an
application. The execution times needed to find the application throughput
under ISPS, SPS, PS and STS are given in columns 2, 4, 6 and 8, respectively.

60 Chapter 3. Hard Real-Time Scheduling Framework

As we can see, the times spent on calculating the throughput of an application
under ISPS and SPS are similar and much shorter than the time needed for
solving the ILP problem to find the application throughput under PS and the
time spent on finding the maximum achievable throughput of the application,
that is, the throughput under STS. Thus, our approach outperforms PS and
STS in terms of time required to calculate the throughput of an application.
Given that in most cases ISPS gives higher throughput of an application than
SPS within almost the same time, we can say that ISPS outperforms SPS as
well.

Next, we compare the time needed to derive the start times of actor firings,
that is, the schedule, and the buffer sizes of communication channels. These
times are given in columns 3, 5, 7 and 9, for ISPS, SPS, PS and STS, respec-
tively. By comparing the times under ISPS and SPS, we can see that both
approaches find the start times and the buffer sizes within less than 4 seconds
in most cases, and within a minute in two cases. Then, we compare ISPS with
PS. In all but two cases ISPS is faster than PS. For those two cases (CD2DAT
and MP3 Playback), the ILP problems for PS are not complex and hence they
can be solved very fast. As shown in Table 3.4, ISPS gives a solution for
those two cases within a second, and within a minute. On the other hand, for
benchmarks Pdetect and JPEG2000 we could not get a solution from the ILP
solver for PS after more than a day, while our ISPS produced the results in
a couple of seconds and within a minute. By comparing to STS, our ISPS
approach is always much faster. Moreover, for 4 benchmarks, we were not
able to get the solution for the buffer sizing problem under STS after more
than a day.

We report in Table 3.5 the execution time for calculating the minimum num-
ber of processors needed to temporally schedule the tasks, obtained by the con-
version of an application by using our ISPS approach, under global optimal
and partitioned FFD-EDF schedulers. In the case of global optimal scheduling,
the minimum number of processors is calculated by Equation (2.12), while
the calculation procedure for FFD-EDF partitioned scheduling is presented in
Algorithm 2 in Section 3.5.6. As we can see, the number of processors in the
case of optimal scheduling can be calculated within a millisecond for most of
the benchmarks, while in the case of partitioned scheduling the calculation
is done within less than 12 milliseconds for most cases and within less than
420 milliseconds in two cases. Thus, the calculation of the number of proces-
sors required to schedule an application under our ISPS is very efficient. We
obtained similar times for the calculation of the number of processors under
SPS and global and partitioned FFD-EDF schedulers. We could not numer-

3.6. Evaluation 61

ically compare the time complexity of our approach with regard to the PS
approach because the calculation of the number of processors was not consid-
ered in [BMKdD13]. As mentioned already in Section 3.3, one possible way to
find the minimum number of processors under PS is to trace the schedules but
that procedure has an exponential time complexity in the worst case, whereas
our Algorithm 2 for finding the minimum number of processors under ISPS
has a polynomial time complexity, see Section 3.5.6. Finding the minimum
number of processors under STS requires complex Design Space Exploration
(DSE) procedures, with an exponential time complexity in the worst case, to
find the best allocation which delivers the maximum achievable throughput.
The SDF3 tool-set used to compute the self-timed scheduling parameters does
not support such design space exploration for self-timed scheduling. Thus,
we could not numerically compare the time complexity of ISPS with the time
complexity of STS. However, given that ISPS finds the minimum number of
processors for scheduling an application in polynomial time in the worst case,
as shown in Section 3.5.6, we can conclude that our ISPS is faster than STS.

3.6.3 Reducing Latency under ISPS

We have shown in the previous experiments that when compared to the SPS
approach our ISPS delivers in 5 out of 9 cases larger graph latency. When
compared to the PS approach, our ISPS approach always results in a graph
schedule with larger graph latency. If we want to reduce graph latency under
ISPS we could use the latency reduction method presented in Section 3.5.5. We
would like to see how close we are in graph latency in comparison to the SPS
and PS approaches after applying our latency reduction method. Therefore, in
this section, we present results obtained after applying our latency reduction
method introduced in Section 3.5.5 on the benchmarks given in Table 5.2. The
results are given in Table 3.6. In order to apply our latency reduction method,
we should set a latency constraint. To compare our ISPS approach to the
SPS approach, we set the latency constraint to be equal to the graph latency
obtained under SPS, ℒSPS, and we apply our method for latency reduction.
We can see from column 3 in Table 3.6 that we significantly reduce latency for
the benchmarks that had higher latency under ISPS than SPS, see column
8 in Table 3.3, and that we were able to meet the latency constraint ℒSPS for
all the benchmarks. Moreover, we see that reduction in graph latency does
not influence the graph throughput, that is, the ratio of the graph throughput
under ISPS to the graph throughput under SPS in column 2 is the same as
the corresponding ratio given in column 7 in Table 3.3 with the period scaling
technique applied for benchmarks RSD and JPEG2000 under ISPS. Columns

62 Chapter 3. Hard Real-Time Scheduling Framework

4 to 6 give the results on resources in terms of the number of processors
required by ISPS and SPS, and the ratio between ISPS and SPS approach
in buffer sizes needed to implement communication channels in a graph. We
find the minimum number of processors under partitioned First-Fit Increasing
Deadlines EDF (FFID-EDF) [BF05] scheduler by using Algorithm 2 for ISPS,
and Equation (2.16) for SPS and FFD-EDF scheduler. We can see from columns
2 to 5 that our ISPS approach with our latency reduction method is able to
schedule almost all benchmarks on the same number of processors as the
SPS approach, while obtaining better graph throughput and shorter graph
latency. Only in one case, for benchmark BlackScholes, our approach needs
one processor more than the SPS approach. However, our approach delivers
better throughput for benchmark BlackScholes than the SPS. Although the
ratio between the buffer sizes under ISPS and the buffer sizes under SPS,
given in column 6 in Table 3.6, is smaller than the corresponding ratio in
Table 3.3, column 11, the buffer sizes under ISPS are still always bigger than
the corresponding buffer sizes under SPS.

Columns 7 to 10 give the results when our latency reduction method is
applied with the latency constraint dictated by the PS approach, ℒPS. Since
we could not obtain the solution from the ILP solver in the case of the PS
approach after 1 day for Pdetect and JPEG2000 benchmarks – see Table 3.3,
we could not provide latency and buffer sizes ratios for these two benchmarks.
We can see from column 8 in Table 3.6 that we significantly reduce the latency
for all benchmarks, see column 13 in Table 3.3. However, in four cases, for
benchmarks BlackScholes, CELP, CD2DAT, and MP3 playback, our latency
reduction method was not able to meet the latency constraint ℒPS. The rea-
son is that the PS approach gives the actual latency under a static schedule
while our ISPS approach calculates the maximum latency for a CSDF graph
converted into real-time periodic tasks. For these 4 benchmarks, column 8
gives the shortest achievable latency under ISPS obtained by applying our
latency reduction method. The ratio of the graph throughput under ISPS
to the graph throughput under PS is given in column 7 and it is the same
as the corresponding ratio given in column 12 in Table 3.3. We report in
column 9 the minimum number of processors under ISPS and FFID-EDF
found by Algorithm 2. We can see that the number of processors needed
by all the benchmarks with reduced latency under ISPS is higher than the
corresponding number of processors given in Table 3.3, column 5, which is
expected. The number of processors for a graph scheduled under PS is not
given because the calculation of the number of processors was not considered
in [BMKdD13]. Although the ratio between the buffer sizes under ISPS and

3.7. Discussion 63

the buffer sizes under PS, given in column 10 in Table 3.6, is smaller than the
corresponding ratio in Table 3.3, column 14, the buffer sizes under ISPS are
still always bigger than the buffer sizes under PS. As explained previously, the
reason for the difference in the buffer sizes is that the PS approach considers
specific schedule and the specific production/consumption pattern, while in
the case of our ISPS the computed buffer sizes are valid for any schedule of
actor firings during its periods and for any production/consumption pattern
during its firing.

We also measured the execution times of our ISPS approach enhanced
with the latency reduction method to find tasks’ deadlines and a schedule,
that is, tasks’ start times, such that the latency constraint is satisfied. In most
cases our latency reduction method needed less than a second, and in three
cases less than a minute, to find tasks’ deadlines and a schedule which meets
the latency constraint.

Table 3.6: Performance of the ISPS approach under different latency constraints.

Benchmark ℒconstraint = ℒSPS ℒconstraint = ℒPS

ℛISPS
out
ℛSPS

out

ℒISPS

ℒSPS mISPS
PAR mSPS

PAR
MISPS

MSPS
ℛISPS

out
ℛPS

out

ℒISPS

ℒPS mISPS
PAR

MISPS

MPS

Pacemaker 1.5 0.99 2 2 1.47 1 1 4 2.64
RSD 11.2 0.097 1 1 1.56 1 1 3 1.15

BlackScholes 1.33 1 18 17 5.7 1 1.16 41 6.86
Disp. map 1.03 0.95 2 2 1 1 1 5 1.33
Pdetect 1.0002 0.9 13 13 1.09 1 – 54 –
CELP 1.5 0.99 6 6 1.68 1 1.1 9 1.6

CD2DAT 1 1 2 2 4.75 1 3.35 6 8.8
MP3 Playback 1 1 4 4 1.13 1 1.1 4 1.26

JPEG2000 3.93 0.3 1 1 1.21 1 – 230 –

3.7 Discussion

The theoretical analysis presented in Section 3.5 proves that streaming applica-
tions, modeled as acyclic CSDF graphs, can be converted to real-time periodic
tasks by using our scheduling approach which converts each actor in a CSDF
graph, by considering different WCET value for each actor phase, to a set
of strictly periodic tasks. As a result, a variety of hard real-time scheduling
algorithms can be applied to temporally schedule the graph on a platform with
calculated number of processors with a certain guaranteed throughput and la-
tency. Additionally, the latency reduction method presented in Section 3.5 can
be used to reduce the graph latency when the converted tasks are scheduled
as real-time periodic tasks. The experiments on a set of real-life applications

64 Chapter 3. Hard Real-Time Scheduling Framework

showed that our ISPS approach gives tighter guarantee on the throughput
and better processor utilization with acceptable increase in terms of commu-
nication memory requirements when compared with the SPS hard real-time
scheduling approach. By applying our proposed latency reduction method,
the ISPS delivers shorter graph latency while providing better throughput
and processor utilization than the SPS approach. When compared with the
PS approach, our proposed approach gives the same throughput with in-
creased communication memory but takes much shorter time for deriving
the schedule and for calculating the minimum number of processors and the
size of communication buffers. Finally, our approach gives throughput that
is equal or very close to the absolute maximum throughput achieved by the
self-timed scheduling (STS) of actor firings but requires much shorter time to
derive the schedule.

Chapter 4

Exploiting Parallelism in Hard
Real-Time Systems to
Maximize Performance

Jelena Spasic, Di Liu, Todor Stefanov, “Exploiting Resource-constrained Parallelism in
Hard Real-Time Streaming Applications”, In Proceedings of the International Conference on
Design, Automation and Test in Europe (DATE’16), pp. 954–959, Dresden, Germany,
March 14-18, 2016.

THIS chapter presents our solution to the problem of exploiting the right
amount of parallelism in a streaming application, Problem 2 given in

Section 1.3, according to an MPSoC platform such that performance is maxi-
mized and the timing guarantees are provided. That is, the chapter describes
our solution approach consisting of an unfolding graph transformation and
an algorithm that adapts the parallelism in the application according to the
resources in an MPSoC by using the unfolding transformation.

The remainder of this chapter continues with the problem description in
Section 4.1 and summarizes our contributions in Section 4.2. Then, we give
an overview of the related work in Section 4.3. A motivational example is
given in Section 4.4. It is followed by the description of our proposed solution
approach given in Sections 4.5 and 4.6. The experimental evaluation of our
proposed approach is presented in Section 4.7. The concluding discussion is
given in Section 4.8.

66 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

4.1 Problem Statement

To meet the computational demands and timing requirements of modern
streaming applications, the parallel processing power of MPSoC platforms has
to be exploited efficiently. Exploiting the available parallelism in an MPSoC
platform to guarantee performance and timing constraints is a challenging
task. This is because it requires the designer to expose the right amount of
parallelism available in the application and to decide how to allocate and
schedule the tasks of the application on the available processing elements
such that the platform is utilized efficiently and the timing constraints are met.
However, as introduced in Section 1.3, the given initial parallel application
specification often is not the most suitable one for the given MPSoC platform.
To better utilize the underlying MPSoC platform, the initial specification of an
application, that is, the initial task graph, should be transformed by an unfold-
ing graph transformation to an alternative one that exposes more parallelism
while preserving the same application behavior. The unfolding graph trans-
formations proposed so far: 1) introduce additional tasks for managing data
among tasks’ replicas [KM08], [FKBS11], which introduces communication
and scheduling overhead; 2) do data reordering or increase rates of data pro-
duction/consumption on channels [ZBS13], [SLA12], which causes an increase
of buffer sizes of data communication channels between the tasks and an in-
crease of the application latency. Thus, special care should be taken during the
unfolding transformation to avoid all the unnecessary overheads. Moreover,
having more tasks’ replicas than necessary results in an inefficient system
due to overheads in code and data memory, scheduling and inter-tasks com-
munication [FKBS11], [ZBS13]. Thus, the right amount of parallelism (tasks’
replicas), that is, the proper values of unfolding factors, depending on the
underlying MPSoC platform, should be determined in a parallel application
specification to achieve maximum performance and timing guarantees.

Therefore, in this chapter, we investigate the following sub-problems: (1)
How to efficiently unfold a given initial acyclic SDF graph of an application
to avoid unnecessary communication/scheduling overheads and unneces-
sary increases in buffer sizes and the application latency?, and (2) How to
find a proper unfolding factor of each task in the initial graph, such that the
obtained alternative graph exposes the right amount of parallelism that max-
imizes the utilization of the available processors in an MPSoC platform
under hard real-time scheduling?

4.2. Contributions 67

4.2 Contributions

Our contributions to the solution of the research problem described in Sec-
tion 4.1 are summarized as follows:
∙ We propose a new unfolding graph transformation for SDF graphs

which results in graphs with shorter application latency and smaller
buffer sizes compared to the related approaches [KM08], [FKBS11],
[SLA12], [ZBS13], as shown in Section 4.7.

∙ We propose a new algorithm for finding a proper value for the unfolding
factor of each task in a graph when mapping the graph on a platform
such that the platform is utilized as much as possible under hard real-
time scheduling.

∙ We show, on a set of real-life streaming applications, that in more than
98% of the experiments, our unfolding graph transformation and algo-
rithm result in a solution with a shorter latency, smaller buffer sizes and
smaller values for unfolding factors compared to the solution obtained
from [ZBS13] while the same performance and timing requirements are
satisfied.

Scope of work. We assume that a given SDF graph is acyclic. This limitation
comes from the hard real-time scheduling framework, presented in Chapter 3,
we use to schedule an SDF graph. However, as already mentioned earlier in
Chapter 3, even with this limitation our approach is still applicable to many
real-life streaming applications because a recent work [TA10] has shown that
around 90% of streaming applications can be modeled as acyclic SDF graphs.
In addition, our approach does not unfold stateful tasks and input/output
tasks. A stateful task is a task which current execution depends on its previous
execution, thus those executions cannot be run in parallel. Input and output
tasks are the tasks connected to the environment, hence they are not unfolded.

4.3 Related Work

[KM08] proposes an Integer Linear Programming (ILP) based approach for
maximizing the throughput of an application modeled as an SDF graph by
exploiting data parallelism when mapping the application on a platform with
fixed number of processors. However, an ILP-based approach suffers from an
exponential worst-case time complexity. To overcome the time complexity is-
sue of the approach in [KM08], [FKBS11] separates the task replication and the
allocation of replicas. However, decomposing the problem into two strongly
related problems and solving them separately has a negative impact on the

68 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

solution quality. In addition, the maximum data-level parallelism is revealed
in the application without considering the platform constraints. In contrast,
in our approach, we solve the problem of task replication and the mapping
of replicas simultaneously while taking into account the platform constraints.
Both approaches [KM08] and [FKBS11] use splitter (S) and joiner (J) tasks to
distribute and merge data streams processed by replicas, see Figure 4.2(a).
Those tasks introduce additional communication overhead as data streams
have to be sent to them and to the replicas. Moreover, the splitter/joiner tasks
have to be considered in the process of mapping and scheduling of tasks. In
contrast, in our approach, we do not introduce additional tasks for data man-
agement, but we propose a new transformation on an SDF graph in Section 4.5
where the data is sent by replicas of the original tasks only to replicas which
need the data for computation. Thus, we avoid the overhead of scheduling
splitter/joiner tasks and duplicated data transfers, as shown in Section 4.7.

[SLA12] proposes a throughput driven transformation of an application
modeled as an SDF graph for mapping the application on a platform. The
graph transformation method in [SLA12] increases the rates of data produc-
tion/consumption and hence increases the buffer capacities needed to store
the data, see Figure 4.2(b). In addition, to enable unfolding of tasks, multiple
firings of a certain task in the initial graph are combined into one firing of
the corresponding task in the transformed graph, see the increased execu-
tion times of tasks in Figure 4.2(b), which leads to an increase in latency. In
contrast, our transformation technique does not increase the rates of data
production/consumption on communication channels and does not combine
multiple task firings into one firing which in turn leads to shorter application
latency and smaller buffer sizes of the communication channels, as shown in
Section 4.7.

The closest to our work, in terms of scope and methods proposed to
efficiently utilize the parallelism of an application mapped onto resource-
constrained platform, is the work in [ZBS13]. The authors in [ZBS13] propose
an approach for exploiting just-enough parallelism when mapping a streaming
application modeled as an SDF graph on a platform with fixed number of
processing elements. The graph transformation method in [ZBS13] transforms
an initial SDF graph to functionally equivalent CSDF graph while keeping the
same rates of data production/consumption on communication channels, see
Figure 4.2(c). However, the transformation approach in [ZBS13] is not efficient
in terms of application latency and buffer sizes of the communication channels,
as shown in Section 4.7. Moreover, the proposed algorithm in [ZBS13] for
finding the values of unfolding factors and the mapping of task replicas does

4.4. Motivational Example 69

1
υ1

8 12
υ3υ21

e1
1 2

e2
1

2
υ41

e3
2

1
υ51

e4
1

Figure 4.1: An SDF graph G.

not reveal the right amount of parallelism, but it reveals more parallelism
than needed and hence the platform is unnecessarily overloaded, as shown in
Section 4.7. In contrast, the approach we propose unfolds a graph by doing
more aggressive token-flow analysis leading to shorter application latency and
smaller buffer sizes. In addition, our approach finds smaller unfolding factors
for tasks which leads to less memory needed to store the code of replicas and
less memory to implement communication channels between the replicas.

4.4 Motivational Example

In the first part of this section, we motivate the need for our new unfolding
graph transformation. The throughput of graph G given in Figure 4.1 when
scheduled under our ISPS presented in Chapter 3 is the same as the through-
put obtained under self-timed scheduling [SGB08] and it is equal to 1

24 . Note
that an unfolding graph transformation is used to increase the application
throughput if it is allowed by the hardware platform on which the application
is executed. Let us assume that actors v2 and v3 of graph G in Figure 4.1 are
unfolded by factors 2 and 3, respectively, in order to increase the through-
put of G. Figure 4.2 shows four functionally equivalent graphs obtained
after applying the unfolding transformations proposed by [KM08], [FKBS11] –
see Figure 4.2(a), by [SLA12] – see Figure 4.2(b), and by the transformation
in [ZBS13] – see Figure 4.2(c), while the graph given in Figure 4.2(d) is obtained
by applying our transformation described in Section 4.5. Our transformation
method unfolds an SDF graph by doing more aggressive data token flow
analysis with the aim to spread equally the workload of an actor during the
hyperperiod and run in parallel as much replicas of the actor as possible.

Table 4.1 gives for all four equivalent graphs of G the throughputℛout of
the output actor, actor v5, the maximum latency ℒin→out on an input-output
path, the total size M, of the communication buffers, the total code size CS,
and the total number of processors m needed to schedule the graphs under
ISPS and the self-timed scheduling while achieving the same throughput
ℛout. We can see from the table that by applying our unfolding transformation
we can obtain, under ISPS, 2.29, 3.14, and 1.43 times shorter latency and 2.08,
2.75, and 1.33 times smaller buffers than the unfolding methods in [KM08]

70 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

1
υ1

8

υ3,0

υ2,1
1

2
2
υ4

1
υ5

1

12
υ3,2

υ3,1

2

3 23 1

8
υ2,0 2

1
2

1
12

12

1
1 1

2

1
1 4 1S1 J1 S2 J2

1

1

1 1

1

1

1

1

(a) Equivalent of G in Figure 4.1 after the transformation in [KM08],
[FKBS11]

2
υ1

24

υ3,0

υ2,1
3

2

6
υ4

1
υ51

48
υ3,2

υ3,1
2

2

3

2

2

2
24
υ2,0

2
2

2

2

2

48

482

2

2

2

1

31

4

4

4

(b) Equivalent of G in Figure 4.1 after the transformation in
[SLA12]

ሾ1,1ሿ
υ1

ሾ8,8,8ሿ

υ3,0

υ2,1
ሾ1,1,1ሿ

ሾ2,0,0ሿ
ሾ2,2,2ሿ
υ4

1
υ51

ሾ12,12,12,12ሿ

υ3,2

υ3,1

ሾ0,2,0ሿ

ሾ0,0,2ሿ

ሾ1,1,1ሿ

ሾ2,0,0ሿ

ሾ0,0,2ሿ

ሾ0,2,0ሿ

ሾ8,8,8ሿ
υ2,0

ሾ2,0,0ሿ

ሾ0,2,0ሿ
ሾ0,0,2ሿ ሾ1,1,0,0ሿ

ሾ1,1,0,0ሿ

ሾ12,12,12,12ሿ

ሾ12,12,12,12ሿ
ሾ0,0,1,1ሿ

ሾ1,1,0,0ሿ

ሾ0,0,1,1ሿ

ሾ0,0,1,1ሿ
ሾ0,1ሿ

ሾ1,1,1ሿ

ሾ1,0ሿ

ሾ1,1,1,1ሿ

ሾ1,1,1,1ሿ

ሾ1,1,1,1ሿ

(c) Equivalent of G in Figure 4.1 after the transformation in [ZBS13]

ሾ1,1ሿ
υ1

ሾ8,8,8ሿ

υ3,0

υ2,1
ሾ1,1,1ሿ

ሾ1,1,0ሿ
ሾ2,2,2ሿ
υ4

1
υ51

ሾ12,12,12,12ሿ

υ3,2

υ3,1

ሾ0,1,1ሿ

ሾ1,0,1ሿ

ሾ1,1,1ሿ

ሾ1,1,0ሿ

ሾ0,1,1ሿ

ሾ1,0,1ሿ

ሾ8,8,8ሿ
υ2,0

ሾ1,0,1ሿ

ሾ1,1,0ሿ
ሾ0,1,1ሿ ሾ1,1,0,0ሿ

ሾ1,0,0,1ሿ

ሾ12,12,12,12ሿ

ሾ12,12,12,12ሿ
ሾ0,1,1,0ሿ

ሾ0,1,1,0ሿ

ሾ1,0,0,1ሿ

ሾ0,0,1,1ሿ
ሾ0,1ሿ

ሾ1,1,1ሿ

ሾ1,0ሿ

ሾ1,1,1,1ሿ

ሾ1,1,1,1ሿ

ሾ1,1,1,1ሿ

(d) Equivalent of G in Figure 4.1 after our transformation

Figure 4.2: Equivalent graphs of the SDF graph in Figure 4.1 by unfolding actor v2 by factor
2 and v3 by factor 3.

4.4. Motivational Example 71

Table 4.1: Results for G transformed by different transformation approaches.

Approach ISPS [SGB08]
ℛout[

1
µs] ℒin→out[µs] M[B] CS[kB] m ℛout[

1
µs] ℒin→out[µs] M[B] CS[kB] m

[KM08], [FKBS11] 1/8 128 50 40 5 1/8 67 31 40 12
[SLA12] 1/8 176 66 36 5 1/8 93 57 36 8
[ZBS13] 1/8 80 32 36 5 1/8 76 24 36 8

our 1/8 56 24 36 5 1/8 62 21 36 8

Table 4.2: Results for G transformed and mapped on 2 processors by different approaches.

Approach ℛout[
1
µs] ℒin→out[µs] M[B] CS[kB] m

[ZBS13] 1/18 180 31 44 2
our 1/18 108 16 32 2

and [FKBS11], [SLA12], and [ZBS13], respectively. The number of processors
needed to schedule the graph obtained after the transformation under ISPS is
equal for all the transformation methods. Under self-timed scheduling [SGB08]
we obtain 1.08, 1.5, and 1.23 times shorter latency, while buffers are smaller
1.47, 2.71, and 1.14 times compared to the related approaches. Assuming one-
to-one mapping for the self-timed scheduling, we need the same number of
processors to schedule the unfolded graph obtained by the methods in [SLA12]
and [ZBS13], and 1.5 times less processors than the unfolding methods in
[KM08] and [FKBS11]. For both scheduling algorithms we obtain equal code
size as the unfolding methods in [SLA12] and [ZBS13], and 1.11 times smaller
code size than the methods in [KM08] and [FKBS11]. From Table 4.1, we see
that our unfolding transformation approach presented in Section 4.5 is more
efficient than the approaches in [KM08], [FKBS11], [SLA12], and [ZBS13].

So far, we considered only the unfolding transformation. Now, we would
like to focus on the algorithm for finding the proper unfolding factors for actors
when a graph is mapped onto resource-constrained platform and scheduled by
a hard real-time scheduler such that the throughput of the graph is maximized.
Here, we want to compare our algorithm in Section 4.6 with the approach
in [ZBS13], because only that approach, among the related approaches, ex-
ploits the parallelism in an application under hard real-time scheduling. For
example, in order to schedule graph G in Figure 4.1 on a platform with 2
processors while maximizing the throughput under hard real-time scheduling,
the approach in [ZBS13] finds a vector of unfolding factors ~f = [1, 2, 4, 1, 1].

However, there exists a smaller vector of unfolding factors, such as ~f =
[1, 1, 3, 1, 1], such that G is schedulable on 2 processors and the throughput
is maximized. This smaller vector ~f is found by our algorithm in Section 4.6.
Table 4.2 gives the throughputℛout, latency ℒin→out, buffer sizes M and code

72 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

size CS when G is unfolded and mapped on m = 2 processors by applying the
approach in [ZBS13] and by applying our algorithm presented in Section 4.6.
We can see from the table that by applying our algorithm we obtain under
ISPS 1.67 times shorter latency, 1.94 times smaller buffers, and 1.38 smaller
code size than the approach in [ZBS13]. From these results and the results
given in Table 4.1, we clearly show the necessity and usefulness of the graph
unfolding transformation presented in Section 4.5, and the algorithm for
finding proper values for the unfolding factors presented in Section 4.6.

4.5 New Unfolding Transformation for SDF Graphs

Our new unfolding transformation method is given in Algorithm 3. The
algorithm takes an SDF graph G and a vector of unfolding factors ~f and
produces an unfolded graph G′, which is a CSDF graph. The initial SDF graph
and its unfolded version given in the form of a CSDF graph are functionally
equivalent, meaning that both of them generate the same sequence of output
data tokens for a given sequence of input data tokens. The algorithm consists
of three phases. The first phase is given in lines 1 to 4 in Algorithm 3. Given
that the execution semantics of the SDF model allows any integer multiple
of the basic repetition vector also as a valid repetition vector, in line 1 of
Algorithm 3 the basic repetition vector ~q of G is replaced by ~q f = lcm(~f) ·~q,
where lcm(~f) is the least common multiple of all elements in ~f . Then in lines
2 to 4, for each channel eu in G, a matrix d is constructed containing as many
columns as the number of tokens produced/consumed on the channel during
one iteration of G with repetition vector ~q f . Each column in d contains in
raw 0 an index p, d[0][t] = p, which is the index of the firing of the producer
actor, p ≥ 0, which produces the tth token, and an index c in raw 1, d[1][t] = c,
representing the index of the firing of the consumer actor, c ≥ 0, which
consumes the tth token on eu. Constructing matrix d for channel e2 of graph G
in Figure 4.1 when ~f = [1, 2, 3, 1, 1] is given in Figure 4.3, lines 2 to 4.

In the second phase the topology of the equivalent CSDF graph G′ is
created, which is given in lines 5 to 14 in Algorithm 3. In the equivalent CSDF
graph G′, every actor is replicated a certain number of times, as determined
by the unfolding vector, lines 6 to 8. Then each channel eu in the initial graph
is replicated a certain number of times in the equivalent graph such that each
replica of the producer on eu is connected to each replica of the consumer on
eu, as given in lines 9 to 12 of Algorithm 3. The motivation behind unfolding is
to equally distribute the workload of an actor in the initial graph by running in
parallel replicas corresponding to that actor. The workload of an actor within

4.5. New Unfolding Transformation for SDF Graphs 73

Algorithm 3: Procedure to unfold an SDF graph.
Input: An SDF graph G = (𝒱 , ℰ), a vector of unfolding factors ~f .
Output: The equivalent CSDF graph G′ = (𝒱 ′, ℰ ′).

1 Take~q f = [lcm(~f) · q1, · · · , lcm(~f) · qN] as a repetition vector of G;
2 for communication channel eu = (vi , vj) ∈ ℰ do
3 Get production rate prd and consumption rate cns on eu;

4 Construct a matrix d, d[0][t] = p, d[1][t] = c, t ∈ [0, prd · q f
i − 1], p is the index of vi firing

which produces tth token, c is the index of vj firing which consumes tth token on eu;

5 𝒱 ′ ← ∅, ℰ ′ ← ∅;
6 for actor vi ∈ 𝒱 do
7 for k = 0 to fi − 1 do
8 Add replica vi,k to 𝒱 ′;

9 for communication channel eu = (vi , vj) ∈ ℰ do
10 for replica vi,k of vi do
11 for replica vj,l of vj do
12 Add e′u = (vi,k , vj,l) to ℰ ′;

13 for t = 0 to prd · q f
i − 1 do

14 d[0][t] = d[0][t] mod fi , d[1][t] = d[1][t] mod f j;

15 for communication channel eu = (vi , vj) ∈ ℰ do
16 Get production rate prd and consumption rate cns on eu;
17 Create empty/zero matrices Pi,k with size f j × qi,k , k ∈ [0, fi − 1];
18 Create empty/zero matrices Cj,l with size fi × qj,l , l ∈ [0, f j − 1];
19 for h = 0 to qi,0 − 1 do
20 for k = 0 to fi − 1 do
21 Initialize a prod. counter seq. cntprod of length f j to 0;
22 for o = 0 to prd− 1 do
23 cntprod[d[1][h · k · prd + o]] = cntprod[d[1][h · k · prd + o]] + 1;

24 for l = 0 to f j − 1 do
25 Pi,k [l][h] = cntprod[l];

26 for h = 0 to qj,0 − 1 do
27 for l = 0 to f j − 1 do
28 Initialize a cons. counter seq. cntcons of length fi to 0;
29 for o = 0 to cns− 1 do
30 cntcons[d[0][h · l · cns + o]] = cntcons[d[0][h · l · cns + o]] + 1;

31 for k = 0 to fi − 1 do
32 Cj,l [k][h] = cntcons[k];

33 for k = 0 to fi − 1 do
34 for l = 0 to f j − 1 do
35 if all entries in raw Pi,k [l][] are 0 then
36 Delete a channel e′u connecting replicas vi,k and vj,l ;

37 else
38 Associate production sequence Pi,k [l][] and consumption sequence Cj,l [k][]

with e′u = (vi,k , vj,l);

39 return G′;

74 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

1

 0

0

0

1

11 2 2 3 3 4 4 5 5

1098765432 11

p

c
4

0

0

0

1

11 0 0 1 1 0 0 1 1

102102102 2

p

c

P2,0=
1

1

0

1

0

1

0

1

1

1

1

0

1

0

1

0

1

1

1

0

1

0

0

1

0

1

1

0

1

0

0

1

0

1

1

0

1

0

0

1

0

1

3

2

13

14

15

32

. . .

16

. . .

III

II

Id

d[0][0] d[0][11]

. . .

P2,1 =

C3,0=

C3,1=

C3,2=
39

d

d[1][0] d[1][11]

. . .

. . .

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

Figure 4.3: Unfolding channel e2 from the graph in Figure 4.1 by using Algorithm 3 when
~f = [1, 2, 3, 1, 1].

one graph iteration is determined by the corresponding repetition value of the
actor. Thus, each replica vi,k ∈ G′ of an actor vi ∈ G will have the repetition
qi,k:

qi,k =
q f

i
fi

=
qi · lcm(~f)

fi
. (4.1)

For example, after the unfolding of the SDF graph in Figure 4.1 with the un-
folding vector ~f = [1, 2, 3, 1, 1] we obtain the graph shown in Figure 4.2(d) with
the repetition vector~q′ = [6, 3, 3, 4, 4, 4, 6, 6], where q2,0 = q2,1 = 1·lcm(1,2,3,1,1)

2 =
3. Lines 13 to 14 convert the firing production/consumption indexes in
d[0][t]/d[1][t] for each token t produced/consumed on channel eu into the
indexes corresponding to the index k of the replica which produces/consumes
t. This is illustrated for channel e2 in Figure 4.3, lines 13 and 14.

Lines 15 to 39 represent the third phase of Algorithm 3 and they derive
the production and consumption sequences for new channels and perform
final placement of the new channels between the corresponding actor replicas.
More specifically, for each source replica vi,k and destination replica vj,l of
a channel, a production matrix Pi,k and consumption matrix Cj,l is created
from matrix d in lines 15 to 32. The index of each raw in a production matrix

4.6. The Algorithm for Finding Proper Unfolding Factors 75

Pi,k corresponds to the index l of a destination replica vj,l . The index of each
column in a production matrix Pi,k corresponds to the firing index of source
replica vi,k. Elements in a production matrix of a source replica contain the
number of tokens produced by a certain firing of that replica. Similar holds
for elements in a consumption matrix. The created matrices P2,0, P2,1, C3,0,
C3,1, C3,2 for the source replicas v2,0, v2,1 and destination replicas v3,0, v3,1, v3,2
on channel e2 are given in Figure 4.3. For example, the value 0 in element
P2,0[2][0] says that 0 tokens are produced by the 0 firing of source replica
v2,0 for the destination replica v3,2. Once these matrices are constructed, the
production and consumption sequences on channel replicas are extracted from
the corresponding raws in matrices, as given in lines 33 to 38 in Algorithm 3.
For example, the production sequence on the channel between v2,0 and v3,1
in Figure 4.2(d) is extracted from raw P2,0[1][] in matrix P2,0 and is equal
to [1, 1, 0]. The extracted production/consumption sequences on replicas of
channel e2 can be seen in Figure 4.2(d). The unfolded graph G′ is returned in
line 39 of Algorithm 3.

4.6 The Algorithm for Finding Proper Unfolding Fac-
tors

In order to efficiently utilize the parallelism available in an application when
mapping the application on a resource-constrained platform under hard real-
time scheduling, proper unfolding factors for actors of the application have
to be determined. Therefore, in this section, we present an algorithm which
derives the proper unfolding factors which maximize the utilization of the
platform, that is, maximize the application throughput.

The algorithm is given in Algorithm 4. It takes an SDF graph G, where
the actors are scheduled by ISPS presented in Chapter 3, a platform with m
processors, a scheduling algorithm A [LL73], an allocation heuristic H [CGJ96]
and a quality factor ρ. A quality factor ρ ∈ (0, 1] determines how much of the
platform processing resources we want to utilize, with ρ = 1 corresponding to
full utilization. The algorithm returns the best solution vector of unfolding
factors ~f best.

Line 1 in Algorithm 4 initializes each unfolding factor of an actor in G to
1 and G′ to G. Then, the upper bound f̂i of unfolding factor fi for each actor
vi in G is computed in line 2 in Algorithm 4 by using Equation (4.2) which is

76 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

similar to Equation (3) in [ZBS13]:

f̂i =
lcm{x1, x2, · · · , xn}

xi
, (4.2)

where xi =
lcm{W1,W2,··· ,Wn}

Wi
and Wi = ∑

ϕ=φi
ϕ=1 Ci(ϕ) · ri is the workload of actor

vi during one hyperperiod. The logic behind the computation of upper bounds
on unfolding factors is the same as in [ZBS13]. That is, by unfolding every
actor vi in G by an upper bound f̂i we obtain a CSDF graph G′, for which the
minimum period Ťi,k of each replica vi,k under ISPS is equal to ∑

ϕ=φi,k
ϕ=1 Ci,k(ϕ),

meaning that each actor in the unfolded graph fully utilizes the processor
which it runs on, hence, leading to the maximum throughput. Line 3 finds
the utilization of graph G′ when G′ is scheduled on m processors by invoking
Algorithm 5. The best utilization of G′ is initialized in line 4 to be the first
schedulable solution on m processors found by Algorithm 5 in line 3. Line 5
finds the bottleneck actor in G′. The bottleneck actor vb,k is the actor with the
heaviest workload during one hyperperiod, Wb,k = maxvi,k∈𝒱 ′ Wi,k. If multiple
actors have the same maximum workload, then the one with the smallest code
size is selected to be the bottleneck. If the current utilization uG′ does not
meet the quality requirement checked in line 6, the unfolding factor fb of the
bottleneck actor vb,k is increased in line 7 and the graph is unfolded by using
Algorithm 3 in line 8. Note that stateful actors and input and output actors
are not unfolded, that is, the upper bound on their unfolding factors is 1. The
utilization uG′ of the unfolded graph G′ mapped on m processors is calculated
in line 9 by Algorithm 5. If the current utilization uG′ is higher than the best
utilization in line 10, then in line 11 the best utilization becomes the one found
in line 9 and the best solution vector of unfolding factors becomes the current
vector of unfolding factors. Line 12 finds the bottleneck actor in the unfolded
graph G′. Lines 6 to 12 are repeated and the algorithm terminates when either
a pre-specified quality factor ρ is satisfied (uG′ ≥ ρ ·m) or the unfolding factor
of a bottleneck actor exceeds its upper bound f̂b (fb ≥ f̂b).

We see that Algorithm 4 uses Algorithm 5 for finding the utilization of
the unfolded graph G′ when mapped on a platform with m processors. Algo-
rithm 5 takes the unfolded CSDF graph G′, a platform with m processors, a
scheduling algorithm A [LL73] and an allocation heuristic H [CGJ96] as inputs.
Line 1 calculates periods of actors in G′ scheduled by ISPS presented in Chap-
ter 3 by using Equation (3.5). Equation (3.5) can be written as Equation (4.3)
and Equation (4.4):

Ti =
lcm(~r)

ri
· s, ∀vi ∈ 𝒱 , (4.3)

4.6. The Algorithm for Finding Proper Unfolding Factors 77

Algorithm 4: Finding proper unfolding factors for an SDF graph mapped
onto resource-constrained platform.

Input: An SDF graph G, the number of processors in a platform m, quality factor ρ, a
scheduling algorithm A, an allocation heuristic H.

Output: Vector of unfolding factors ~f best.
1 ~f = [1, 1, · · · , 1]; G′ = G;

2 Compute the upper bound ~̂f of ~f by Equation (4.2);
3 Get uG′ of G′ by Algorithm 5 when scheduled by A and H on m;
4 uGbest = uG′ ; ~f best = ~f ;
5 Find the bottleneck actor vb,k in G′;
6 while uG′ < ρ ·m and fb < f̂b do
7 fb = fb + 1;
8 Get G′ by unfolding G by Algorithm 3;
9 Get uG′ of G′ by Algorithm 5 when scheduled by A and H on m;

10 if uG′ > uGbest then
11 uGbest = uG′ ; ~f best = ~f ;

12 Find the bottleneck actor vb,k in G′;

13 return ~f best.

Algorithm 5: Procedure to find the utilization of a CSDF graph mapped
onto resource-constrained platform.

Input: A CSDF graph G′, the number of processors in a platform m, a scheduling
algorithm A, an allocation heuristic H.

Output: Graph utilization uG′ .
1 Calculate s by Equation (4.4); calculate Ti by Equation (4.3) by using the calculated s;
2 Calculate uG′ by Equation (4.5);
3 while G′ is not schedulable on m by A and H do
4 s = s + 1;
5 Calculate Ti by using s in Equation (4.3); calculate uG′ by Equation (4.5);

6 return uG′ .

s =

⌈
Ŵ

lcm(~r)

⌉
, (4.4)

where lcm(~r) is the least common multiple of all repetition entries in~r and
Ŵ = maxvi∈𝒱 Wi is the maximum workload during one hyperperiod. Note
that periods computed by Equation (4.3) are the minimum periods for actors
scheduled by ISPS and that there exist other larger valid periods for actors

by taking any integer s >

⌈
Ŵ

lcm(~r)

⌉
. Once the actor periods are computed, the

78 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

utilization of actor vi, denoted as ui, can be computed as ui = ∑
ϕ=φi
ϕ=1 Ci(ϕ)/Ti,

where ui ∈ (0, 1]. For a graph G, uG is the total utilization of G given by:

uG = ∑
vi∈𝒱

ui = ∑
vi∈𝒱

∑
ϕ=φi
ϕ=1 Ci(ϕ)

Ti
. (4.5)

The total utilization of a graph directly determines the minimum number of
processors needed to schedule the graph, as explained earlier in Section 2.2.5.
The utilization uG′ of G′ is calculated in line 2 in Algorithm 5 by using Equa-
tion (4.5). Actor periods computed by Equation (4.3) and Equation (4.4) rep-
resent the minimum periods when the actors are scheduled under ISPS on
a platform with unlimited number of processors. It may happen that these
minimum periods lead to a graph which is not schedulable on a platform with
only m processors. Hence, in line 3 by using the utilization uG′ calculated in
line 2 we check if G′ can be scheduled on m processors by using the corre-
sponding schedulability test for A and H [DB11]. If G′ is not schedulable on
the platform, we decrease uG′ until G′ becomes schedulable by increasing the
actor periods Ti. This is done in lines 4 and 5 in Algorithm 5. Once the graph
G′ becomes schedulable on m processors by A and H, Algorithm 5 returns the
utilization of the unfolded graph G′ in line 6.

4.7 Evaluation

We present two experiments to evaluate the techniques proposed in Section 4.5
and Section 4.6. In the first experiment, we evaluate the efficiency of our un-
folding transformation in comparison to the unfolding transformation meth-
ods in [KM08], [FKBS11], [SLA12], and [ZBS13]. In the second experiment,
we evaluate the efficiency of Algorithm 4 presented in Section 4.6 in terms
of performance and time complexity by comparing our approach to the re-
lated approach in [ZBS13]. The experiments were performed on the real-life
applications from the StreamIt benchmarks suit [TA10], given in Table 4.3.
These applications were modeled as SDF graphs and |𝒱| denotes the number
of actors in an SDF graph, while |ℰ | denotes the number of communication
channels. The results of the evaluations are shown in Figure 4.4, Figure 4.5,
and Figure 4.6. In all these figures, each vertical line shows the variations in
the corresponding results among all the applications. The upper and lower
ends of a vertical line represent the maximum and minimum values of the
corresponding result while the marker at the middle of each vertical line rep-
resents the geometric mean of the result. Note that the Y axis in Figure 4.4 to

4.7. Evaluation 79

Table 4.3: Benchmarks used for evaluation.

Benchmark |𝒱| |ℰ |
Discrete cosine transform (DCT) 8 7
Fast Fourier transform (FFT) 17 16
Time delay equalization (TDE) 29 28
Data encryption standard (DES) 53 60
Bitonic Sorting 40 46
Channel Vocoder 55 70
Filterbank 85 99
Serpent 120 128
MPEG2 23 26
Vocoder 114 147
FMRadio 43 53

Figure 4.6 has a logarithmic scale. We run all the experiments on an Intel Core
i7-2620M CPU running at 2.70 GHz with Linux Ubuntu 12.4.

4.7.1 Efficiency of the Proposed Unfolding Transformation

In this section, we evaluate the performance of our unfolding transformation
method proposed in Section 4.5 by comparison to the related unfolding trans-
formation methods in [KM08], [FKBS11], [SLA12], and [ZBS13]. In this experi-
ment, first we use Algorithm 4 to find a vector of unfolding factors for each ap-
plication in Table 4.3 mapped on a platform with 64 processors with partitioned
First-Fit Decreasing Earliest Deadline First (FFD-EDF) scheduler and quality
factor ρ = 0.9. Then, for each application, we use the found vector of unfolding
factors to unfold the application graph by applying our transformation method
and the related transformation methods [KM08], [FKBS11], [SLA12], [ZBS13].
Finally, we use the ISPS framework presented in Chapter 3 to calculate the
latency, buffer sizes and code size when the unfolded graphs are scheduled by
FFD-EDF on 64-processor platform. The ratios between the results obtained by
related transformation methods and our transformation in terms of application
latency (ℒ), buffer sizes (M) and code size (CS) are given in Figure 4.4. We
can see that our method outperforms all the related methods, and delivers
on average 2.82, 3.95, and 1.43 times shorter latency and 1.98, 2.5, and 1.08
times smaller buffers than the method in [KM08] and [FKBS11], [SLA12],
and [ZBS13], respectively. Although the methods in [KM08] and [FKBS11]
introduce additional actors for data management, the average increase in the
total code size is only 1%. The other two transformation methods, [SLA12]

80 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

 1

 10

L M CS

R
a

ti
o

s
 =

 r
e

la
te

d
/o

u
r

latency L, buffer size M, code size CS

 [KM08],[FKBS11]
 [SLA12]
 [ZBS13]

Figure 4.4: Comparison of our unfolding transformation to the approaches in [KM08],
[FKBS11], [SLA12], [ZBS13].

and [ZBS13], have the same code size as our method. Note that all the methods
achieve the same application throughput.

4.7.2 Performance of Algorithm 4

We evaluate the performance of Algorithm 4 by comparison to the related
approach in [ZBS13]. For each application app in Table 4.3, we construct
28 system configurations (app, m, ρ) with number of processors m ∈ {2,
4, 8, 16, 32, 64, 128}, and utilization quality ρ ∈ {0.8, 0.85, 0.9, 0.95}. We
run Algorithm 4 with FFD-EDF scheduler for each (app, m, ρ) configuration
to obtain a vector of unfolding factors ~f best. Then, for each configuration,
we unfold the corresponding application graph by the obtained vector ~f best

by using Algorithm 3. Finally, we use the ISPS framework presented in
Chapter 3 to calculate the latency of an application, buffer sizes and code size
when the unfolded graphs are scheduled by FFD-EDF on the corresponding
platform. We perform the same experiment by running the related algorithm
proposed in [ZBS13] and using the ISPS framework in Chapter 3 for each
(app, m, ρ). The obtained ratios for the total code size, total buffer sizes,
and latency between the approach in [ZBS13] and our approach are given
in Figure 4.5(a), Figure 4.5(b), and Figure 4.5(c), respectively. We can see
that by using Algorithm 4 we can achieve up to 17.85 times smaller code
size (see Figure 4.5(a), ρ=0.95, m=32), up to 24.4 times smaller buffers (see
Fig. 4.5(b), ρ=0.95, m=32) and up to 11.47 shorter latency (see Figure 4.5(c),
ρ=0.95, m=32) than the approach in [ZBS13]. Note that both approaches meet

4.7. Evaluation 81

 1

 10

2 4 8 16 32 64 128

C
o
d
e
 s

iz
e
 r

a
ti
o
 =

 [
Z

B
S

1
3
]/
o
u
r

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(a) Code size ratio (higher is better)

 1

 10

2 4 8 16 32 64 128

B
u
ff
e
r

s
iz

e
 r

a
ti
o
 =

 [
Z

B
S

1
3
]/
o
u
r

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(b) Buffer size ratio (higher is better)

 1

 10

2 4 8 16 32 64 128

L
a
te

n
c
y
 r

a
ti
o
 =

 [
Z

B
S

1
3
]/
o
u
r

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(c) Latency ratio (higher is better)

Figure 4.5: Results of performance evaluation of our proposed approach in comparison to the
approach in [ZBS13].

82 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

the same throughput requirements. Regarding the buffer sizes, we obtain in
5 experiments out of 308 experiments larger buffer sizes by up to 1.16 times
than the approach in [ZBS13] (see for example Figure 4.5(b), ρ=0.85, m=64).
However, for all these experiments we do less unfolding, so we obtain smaller
code size. In the case of latency, in 2 experiments out of 308 we get latency
which is by 2% larger than the corresponding latency when the approach
in [ZBS13] is applied (see Figure 4.5(c), m=8). However, in these two cases, we
obtain smaller code size and smaller buffer sizes than the approach in [ZBS13].

4.7.3 Time Complexity of Algorithm 4

We evaluate the efficiency of our algorithm for finding proper values of un-
folding factors in terms of the execution time of our Algorithm 4 to find a
solution. The execution times for different quality factors and different number
of processors in a platform are given in Figure 4.6(a). We compare these exe-
cution times with the corresponding execution times of the related approach
in [ZBS13]. The comparison is given in Figure 4.6(b).

As can be seen from Figure 4.6(a), for platforms containing up to 16 proces-
sors, our Algorithm 4 takes in the worst case 32 seconds to find a solution, and
less than 1 second on average for all values of quality factor ρ. For a platform
with 32 processors, the execution time of our algorithm is 5 minutes in the
worst case, and up to 4 seconds on average. In the case of a 64-processor
platform our algorithm needs 25 minutes in the worst case to find a solution,
and up to 53 seconds on average. Finally, for a platform with 128 processors
Algorithm 4 takes 88 minutes in the worst case and up to 9 minutes on average
to find a solution. In addition, it can be seen in Figure 4.6(b) that our approach
is on average up to 8 times slower than the approach in [ZBS13] which is ac-
ceptable given that our approach delivers solutions of better quality, as shown
in Section 4.7.2, within a matter of minutes.

4.8 Discussion

As a solution to a problem of exploiting the right amount of parallelism with
the aim to achieve the maximum achievable throughput when mapping a
streaming application modeled by an SDF graph on a resource-constrained
platform under hard real-time scheduling, we presented in this chapter a new
unfolding graph transformation and an algorithm which uses the transforma-
tion to adapt the parallelism in the application when mapping the application
on the platform. Experiments on a set of real-life streaming applications

4.8. Discussion 83

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 4 8 16 32 64 128

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(a) Running time (in seconds) of Algorithm 4

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

2 4 8 16 32 64 128

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 r
a

ti
o

 =
 o

u
r/

[Z
B

S
1

3
]

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(b) Execution time ratio (lower is better)

Figure 4.6: Results of time evaluation of our proposed approach in comparison to the approach
in [ZBS13]

demonstrate that: 1) our unfolding transformation gives shorter latency and
smaller buffer sizes when compared to the related approaches; and 2) our algo-
rithm finds, in a matter of minutes, a solution with smaller code size, smaller
buffer sizes and shorter latency in 98% of the experiments, while meeting the
same performance and timing requirements when compared to an existing
approach.

84 Chapter 4. Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance

Chapter 5

Exploiting Parallelism in Hard
Real-Time Systems to
Minimize Energy

Jelena Spasic, Di Liu, Todor Stefanov, “Energy-Efficient Mapping of Real-Time
Applications on Heterogeneous MPSoCs using Task Replication”, In Proceedings of the
IEEE/ACM/IFIP International Conference on HW/SW Codesign and System Synthesis
(CODES+ISSS’16), pp. 28:1–28:10, Pittsburgh, Pennsylvania, USA, October 2-7, 2016.

IN this chapter, we devise an approach to exploit the right amount of par-
allelism in streaming applications in order to minimize the energy con-

sumption of streaming applications with throughput constraints when they
are mapped on cluster heterogeneous MPSoCs. That is, this chapter describes
our solution to Problem 3 given in Section 1.3.

The problem of energy minimization by exploiting parallelism in stream-
ing applications is further described in Section 5.1. Then, our contributions
are summarized in Section 5.2. The related work is addressed in Section 5.3.
Section 5.4 gives a motivational example to demonstrate the need for a new en-
ergy minimization approach. The considered system model and energy model
are described in Sections 5.5 and 5.6. Then, the new energy minimization
approach, that is, our proposed solution approach, is given in Section 5.7. Our
proposed approach is experimentally evaluated in Section 5.8. The concluding
discussion is given in Section 5.9.

86 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

5.1 Problem Statement

As introduced in Sections 1.2.2 and 1.3, cluster heterogeneous MPSoCs with
per-cluster VFS capability are recognized as energy-efficient platforms for
embedded systems. In order to efficiently utilize these cluster heterogeneous
platforms to achieve all the desired requirements, the underlying hardware
platform and the running streaming application have to be closely related.
This requires the embedded designer to expose the right amount of paral-
lelism available in the application and to decide how to allocate and schedule
the tasks of the application on the available processing elements such that
the platform is utilized efficiently and the timing and energy consumption
constraints are met. As explained in Chapter 4 already, the given initial par-
allel application specification is often constructed without fully considering
the computational capacity and power consumption profile of an MPSoC
platform. This may lead to an application specification which consists of
highly imbalanced tasks in terms of the task workload, that is, task utilization.
This may further lead to unnecessary increase in the energy consumption of
such a system because when several tasks are mapped onto the same cluster
in cluster heterogeneous MPSoCs, the one with the heaviest utilization will
determine the required voltage and frequency of the whole cluster and will
significantly increase the energy consumption of the other tasks mapped on
the same cluster. As shown in Chapter 4, by applying task replication to
application tasks with heavy utilization, their utilization can be decreased
while still providing the same application performance. Thus, to better utilize
the underlying MPSoC platform while minimizing the energy consumption,
the initial specification of an application, that is, the initial task graph, should
be transformed to an alternative one that exposes more parallelism while pre-
serving the same application behavior and timing performance. However, as
mentioned in Chapter 4, having more tasks’ replicas than necessary introduces
more overheads in code and data memory, scheduling and inter-tasks commu-
nication, which in turn will result in higher energy consumption. Therefore, in
this chapter, we investigate how to exploit the right amount of parallelism,
that is, find the proper values of replication (unfolding) factors, depending
on the underlying MPSoC platform, to achieve the required performance
and timing guarantees while minimizing the energy consumption.

5.2. Contributions 87

5.2 Contributions

As a solution to the research problem described in Section 5.1, we propose
a novel algorithm to efficiently map real-time streaming applications onto
cluster heterogeneous MPSoCs, which are subject to throughput constraints,
such that the energy consumption of the cluster heterogeneous MPSoC is
reduced by using task replication and per-cluster VFS. The specific novel
contributions of this chapter are the following:
∙ We propose a novel polynomial-time algorithm, called Data Parallel

Energy Minimization (DPEM), to map and schedule hard real-time
streaming applications modeled as acyclic SDF graphs onto a cluster
heterogeneous MPSoC such that the energy consumption is minimized
while the throughput constraints are guaranteed. By using the hard real-
time scheduling framework for CSDF graphs, presented in Chapter 3,
we propose within our DPEM algorithm an efficient way to determine a
suitable processor type for each task in an (C)SDF graph such that the
energy consumption is minimized and the throughput constraint is met.
Then, by using the unfolding graph transformation in Chapter 4, we
propose a method in DPEM to determine a replication factor for each
task in an SDF graph such that the distribution of the workload on the
same type of processors is balanced, which enables processors to run at
a lower frequency, hence reducing the energy consumption.

∙ We show, on a set of real-life streaming applications, that our proposed
energy minimization approach outperforms related approaches in terms
of energy consumption while meeting the same throughput constraints.

5.3 Related Work

Energy-efficient mapping and scheduling of streaming applications repre-
sented as dataflow graphs which guarantees certain throughput has been ex-
tensively studied. The related works can be divided into several categories de-
pending on the MPSoC platform they consider: homogeneous [SDK13, DSB+13,
ZSJ08, LW13, NMM+11, BL13, HNP+15], or heterogeneous [HMGM13, SJE11].
Depending on the VFS technique they apply to minimize the energy con-
sumption, the related works can be divided into those considering per-core
VFS [SDK13,DSB+13,ZSJ08,LW13,NMM+11,HMGM13,BL13], those consider-
ing global VFS [HMGM13,HNP+15] and the works which do not consider VFS
but they utilize platform heterogeneity to achieve energy-efficiency [SJE11].
The approaches in [HMGM13,LW13,NMM+11, SJE11,HNP+15] convert an

88 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

initial SDF graph into equivalent Homogeneous SDF (HSDF) graph to exploit
the parallelism of an application and achieve energy-efficiency. However, the
HSDF graph obtained from the initial SDF graph may grow in size exponen-
tially, making the analysis performed on the HSDF graph time-consuming.
Instead, the approaches in [SDK13, ZSJ08, DSB+13, BL13] perform energy min-
imization directly on an SDF graph. Works [SDK13] and [ZSJ08] perform
design space exploration at design time to find the energy-efficient map-
ping solution of an SDF scheduled in self-timed manner on a homogeneous
MPSoC platform with per-core VFS capability such that certain throughput
is guaranteed. In addition, the approach in [SDK13] has a run-time phase
where slack created at run time is exploited to further minimize the energy
consumption. In [DSB+13] the authors propose a heuristic to find per-core
voltage-frequency points for a given task mapping and the execution order
such that the throughput constraint is met. The authors in [BL13] propose a
technique to transform an SDF graph at run time into its equivalent SDF graph
to adapt to environmental and demand changes. One possible scenario where
the SDF graph should be transformed to adapt to the new circumstances is
when some processors become available on a homogeneous platform with
per-core VFS capability. In that case the tasks in the SDF graph are replicated
such that all processors are occupied, which enables processors to run at a
lower frequency hence consuming less energy. However, the authors in [BL13]
focus more on the transformation itself and not on the energy minimization.
In contrast to all related works, discussed above, our approach: 1) considers
heterogeneous MPSoC platforms with per-cluster VFS capability, which is a
good trade-off in terms of energy-efficiency and the implementation cost; 2)
utilizes an unfolding graph transformation to balance the workload put on
the MPSoC and to reduce energy consumption by finding how many times
each task in a graph should be replicated; 3) uses preemptive hard real-time
scheduling to schedule the tasks which gives more opportunities to meet the
lowest frequency for schedulability supported by the platform.

Energy-efficient mapping and scheduling of periodic hard real-time tasks
has been widely researched in the past. [BMAB16] gives a comprehensive
review of works dealing with energy-aware scheduling for real-time systems.
As stated in [BMAB16], most of the existing work considers homogeneous
MPSoCs and in recent years people started considering heterogeneous plat-
forms and platforms with voltage/frequency levels shared among multiple
processors as energy-efficient design solutions. Regarding the considered het-
erogeneous MPSoC platforms, the closest to our work are the works in [CKR14]
and [LSCS15]. The approach in [CKR14] proposes and evaluates several parti-

5.3. Related Work 89

tioned Earliest Deadline First (EDF) scheduling strategies for real-time tasks
mapped on cluster heterogeneous platforms in terms of energy-efficiency.
However, because of the bin-packing issue in partitioned scheduling, the ap-
proach in [CKR14] may not fully utilize the energy-efficient cores in a cluster
heterogeneous MPSoC, hence the energy minimization is limited. In contrast,
by replicating the tasks with heavy utilization, we can reduce their utilization
and hence fully utilize the energy-efficient cores. The approach in [LSCS15]
considers cluster scheduling for cluster heterogeneous MPSoCs where tasks
are allowed to migrate at run-time among processors within the same cluster
in order to achieve better resource utilization. However, cluster scheduling
suffers from high scheduling overhead caused by task migration and increased
context switching. Moreover, the frequency of some clusters in [LSCS15] is
still determined by the tasks with the heaviest utilization. In contrast, in our
approach, we use partitioned scheduling which has low scheduling overhead
and we avoid the capacity loss and we lower the operating frequency by
replicating the tasks with heavy utilizations.

The works in [XKD12], [WYK+10] and [Lee09] consider parallel execution
of task replicas to achieve energy efficiency, as we do. The authors in [XKD12]
consider frame-based tasks with an implicit deadline and a homogeneous
platform with per-core VFS capability where the frequency of a core may be
changed for each task. In contrast, in our work, we consider more general pe-
riodic task model and more realistic heterogeneous platform with per-cluster
VFS capability, hence our approach is more applicable in practice than the
approach in [XKD12]. The approach in [WYK+10] exploits the data paral-
lelism in an application by replicating the tasks of the application over all
processors available in an MPSoC. This means that, in distributed memory
architectures, the code of the whole application has to be replicated on all the
processors in an MPSoC. By contrast, in our approach, only certain tasks of
the application have to be replicated, which reduces significantly the mem-
ory overhead of our approach compared to the one in [WYK+10]. Moreover,
the work in [WYK+10] assumes homogeneous systems with per-core VFS
and continuous frequencies, while we consider heterogeneous systems with
per-cluster VFS capability, which is more practical in modern embedded sys-
tems. The approach presented in [Lee09] replicates computation-intensive
tasks which yields to a more balanced load on processors, and in turn allows
the system to run at a lower frequency. In addition, the authors in [Lee09]
consider systems with discrete set of operating frequencies and homogeneous
platforms with per-core VFS capability. As discussed earlier, per-core VFS is
not practical in modern many-core systems. Hence, our work considers het-

90 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

erogeneous platforms with per-cluster VFS capability. The approach in [Lee09]
is devised and, hence efficient only for platforms with performance-efficient
processors. This means that the approach in [Lee09] would never replicate
the tasks which are going to be mapped on energy-efficient processors. In
addition, if the total number of tasks with heavy utilization is equal to the
number of processors in a platform, tasks will not be replicated in [Lee09].
In contrast, our approach will replicate the tasks mapped on energy-efficient
processors and it will replicate the tasks even if the number of heavy tasks is
equal to the number of processors if this leads to more energy-efficient design.

5.4 Motivational Example

In the first part of this section, we motivate the need for using the unfolding
graph transformation, presented in Chapter 4, to achieve energy-efficient
MPSoC design under a throughput constraint. We first show the drawback
of the energy minimization approaches for heterogeneous MPSoCs and hard
real-time scheduling, that is, the approaches in [CKR14] and [LSCS15]. We
analyze three different designs obtained by mapping the SDF graph G in
Figure 5.1 to a heterogeneous platform consisting of one performance efficient
(PE) cluster with 2 PE processors and one energy-efficient (EE) cluster with
2 EE processors, namely, the platform given in column 1, row 2 in Table 5.1,
under a throughput constraint of 1 output token per 100 µs. An example of PE
and EE clusters and processors is given in Figure 1.1, where a cluster of ’big’
cores corresponds to a PE cluster, and a cluster of ’LITTLE’ corresponds to an
EE cluster.

The first design out of the three analyzed is obtained by using the best
mapping approach evaluated in [CKR14] and we refer to that approach as
CKR. The CKR approach allocates actors v2 and v3 to PE processors in one-
to-one manner, and it allocates actors v1 and v4 to one EE processor, while
the other EE processor is switched-off. Once the actors are allocated, the
minimum frequency which ensures the schedulability of the actors mapped
to a processor in a cluster is selected from a discrete set of frequencies per
cluster. The energy consumption of such design is given in Table 5.1, column 2,
row 2. After applying the approach in [LSCS15], we obtain the second design
where actors v2 and v3 are allocated to the PE cluster, while actors v1 and v4
are allocated to the EE cluster. The corresponding energy consumption after
applying the approach in [LSCS15], denoted by FDM, is given in Table 5.1,
column 3, row 2. If we apply our approach presented in Section 5.7 which
uses the unfolding transformation in Chapter 4 on graph G in Figure 5.1,

5.4. Motivational Example 91

5
υ1

100 66
υ3υ21

e1
1 2

e2
2

5
υ41

e3
1

Figure 5.1: An SDF graph G.

υ1

υ3,0

υ4

υ3,1

υ2,0

υ2,1

Figure 5.2: A CSDF graph G′ obtained by unfolding SDF graph G in Figure 5.1 with
~f = [1, 2, 2, 1].

Table 5.1: Different MPSoC designs for G in Figure 5.1.

MPSoC CKR [µJ] FDM [µJ] SDK [µJ] our [µJ] WYL [µJ]
(2PE)(2EE) 343.55 343.55 346.30 97.76 343.55

(PE)(PE)(PE)(PE) 357.94 392.18 389.09 192.80 240.32

under the same throughput constraint as in the CKR and FDM approaches,
we can lower the utilization of the actors with high utilization, v2 and v3, and
achieve better load balancing on the processors of the same type and hence,
the frequency of the power-hungry processors can be lowered further than
in [CKR14], [LSCS15]. For example, by unfolding actors v2 and v3 twice, as
given in Figure 5.2, our approach in Section 5.7 allocates v2,0 and v3,0 one-
to-one to PE processors, and it allocates v2,1 to an EE processor and v3,1, v1
and v4 to another EE processor. The energy consumption value for this third
design is given in Table 5.1, column 5, row 2. We can see that our approach
reduces the energy consumption by 71% when compared to the CKR and
FDM approaches.

Now, we would like to analyze an approach which was devised for ho-
mogeneous platforms with per-core VFS capability, that is, the approach
in [SDK13], denoted by SDK in Table 5.1. To this end, we compare the energy
consumption of two designs in which the SDF graph G in Figure 5.1 is mapped
to a homogeneous MPSoC consisting of four PE clusters with 1 processor per
cluster, under a throughput constraint of 1 output token per 100 µs. The SDK
approach will allocate actors to processors in one-to-one manner, while our

92 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

approach, proposed in Section 5.7, will replicate actors v2 and v3 twice, as
shown in Figure 5.2, to lower their utilization. We can see from columns 4 and
5, row 3 in Table 5.1 that our approach reduces the energy consumption by
50% when compared to the SDK approach. The main reason is that we are
using the unfolding graph transformation to reduce the influence of heavy
actors and hence minimize the energy of an MPSoC. Another reason is that
the SDK approach uses self-timed scheduling which is non-preemptive, hence,
less flexible for scheduling and that the SDK only minimizes dynamic energy
consumption. The energy consumption values of the approaches CKR, FDM
and SDK in Table 5.1 which were not discussed above are given only for com-
pleteness. However, we can see that these values are always higher than the
corresponding energy consumption of our approach in Section 5.7. Thus, our
approach outperforms these related approaches.

Above, we motivated the need to use the unfolding transformation, pre-
sented in Chapter 4, within our new approach described in Section 5.7 to
achieve energy-efficiency for MPSoCs under a throughput constraint. Now,
we would like to motivate the need for our whole approach, presented in Sec-
tion 5.7, which efficiently finds task replication factors and task mappings to
achieve further reductions in the energy consumption. Although the approach
in [Lee09] exploits the energy-saving capability of data-parallel execution for
a homogeneous MPSoC with per-core VFS capability, that approach is not
efficient in terms of energy reduction, especially in the case of platforms with
EE processors. Below we show its inefficiency for the homogeneous platform
in column 1, row 3, and for the heterogeneous MPSoC platform in column
1, row 2, in Table 5.1. The approach in [Lee09], called the WYL approach,
considers platforms which power consumption curve is increasing “fast” with
the increase of processor utilization. Such power consumption curve corre-
sponds to PE processors. Let us consider the mapping of the SDF graph in
Figure 5.1 on the homogeneous platform under a throughput constraint of
1 output token per 100 µs. The WYL approach will classify actors v2 and v3
as “heavy” tasks, that is, tasks eligible for replication. However, because the
platform contains only 4 processors, the WYL will decide that the number of
processors is not sufficient to replicate both actors and it will only replicate
actor v2 twice. In contrast, our algorithm will replicate both actors v2 and v3
twice, which will lead to an energy reduction of 20%, see Table 5.1, row 3,
columns 5 and 6.

Let us now analyze the designs obtained by applying the WYL and our
new approach for mapping graph G in Figure 5.1 on the heterogeneous plat-
form in column 1, row 2, in Table 5.1. Given that the power consumption curve

5.5. System Model 93

of EE processors is a “slowly” increasing curve with the increase of processor
utilization, the WYL approach will never replicate actors assigned to EE pro-
cessors. In contrast, our approach presented in Section 5.7 will replicate actors
assigned to EE processors as well if their replication leads to more energy-
efficient MPSoC. We can see in row 2, columns 5 and 6, in Table 5.1, that our
approach leads to a design with 71% reduction in energy consumption when
compared to the WYL approach, for the heterogeneous MPSoC with one PE
and one EE cluster each containing 2 processors. This happens because after
the classifications of actors into PE and EE in order to satisfy the throughput
constraint of 1 output token per 100 µs, EE actors will not be considered for
replication in the WYL approach, while PE actors will be considered yet never
replicated because of the algorithm in [Lee09] which does not replicate the
actors once the number of “heavy” actors is equal to the number of (PE) cores,
which happens for this platform.

From the above examples, we can see the necessity and usefulness of our
approach, presented in Section 5.7, which uses the graph unfolding transfor-
mation, given in Chapter 4, to obtain energy-efficient cluster heterogeneous
MPSoC designs.

5.5 System Model

In this section, we describe the system model we use in this chapter. We
consider a cluster heterogeneous MPSoC containing two types of clusters –
performance-efficient (PE) clusters and energy-efficient (EE) clusters. Each
cluster has a number of identical PE processors, denoted as NPE

p , or a number
of EE processors, denoted as NEE

p . Thus, in total, a cluster heterogeneous
MPSoC contains NPE

c × NPE
p PE processors and NEE

c × NEE
p EE processors,

where NPE
c and NEE

c represent the total number of PE clusters and the total
number of EE clusters, respectively. All processors on the same cluster operate
at the same voltage and frequency level. The voltage and frequency level of a
cluster can be changed to control the power consumption. A cluster can be
switched-off, thereby consuming no power.

Since the actors of a (C)SDF graph G modeling an application may run
on two different types of processors (PE and EE), the worst-case execution
time value Ci(ϕ) for each phase ϕ of an actor vi has two values – CPE

i (ϕ) and
CEE

i (ϕ). The total utilizations of the actors/tasks assigned to PE cluster j and

94 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

EE cluster k can be calculated by:

uPE
j = ∑

vi∈𝒱PE
j

∑
ϕ=φi
ϕ=1 CPE

i (ϕ)

Ti
, uEE

k = ∑
vi∈𝒱EE

k

∑
ϕ=φi
ϕ=1 CEE

i (ϕ)

Ti
, (5.1)

where 𝒱PE
j and 𝒱EE

k represent sets of CSDF actors/tasks assigned to PE cluster
j and EE cluster k, respectively.

5.6 Energy Model

This section defines the energy model used in this chapter. Given that all
processors in the same cluster operate at the same voltage and frequency level,
we can reduce the energy consumption of a cluster heterogeneous MPSoC
by using per-cluster VFS and by switching-off some clusters. The authors in
[LSCS15] give a power model for cluster heterogeneous MPSoC systems with
discrete voltage and frequency levels based on real measurements performed
on the ODROID XU-3 [ODR] board containing an MPSoC with two clusters
– one quad core Cortex A15 big (PE) cluster and one quad core Cortex A7
LITTLE (EE) cluster. The power model of a cluster is given by:

P(f) = α f b + βNp,ac + Ps(f), (5.2)

where the first term is the dynamic power consumption, β is the static power
consumption of one processor and Np,ac is the number of active processors on
the cluster, Ps(f) is the “uncore” power consumption and f is the frequency
level. The “uncore” power consumption is the power consumption from
some components not pertaining to a processor, such as a shared cache, an
integrated memory controller, and others. Parameters α, b and β, and Ps(f)
depend on the platform and cluster type, and they are determined in [LSCS15].

We calculate the total energy consumption for an application graph G
mapped onto a cluster heterogeneous MPSoC over one hyperperiod TG by:

E = EPE + EEE. (5.3)

EPE in Equation (5.3) contains the total energy consumption of PE clusters
and is given by:

EPE = TG

(NPE
ac

∑
j=1

(
uPE

j αPE(f j)
bPE

+ βPENPE
p,acj

+ PPE
s (f j)

))
, (5.4)

5.7. The Proposed Energy Minimization Approach 95

where NPE
ac is the number of active PE clusters, NPE

p,acj
is the number of active

processors on PE cluster j, uPE
j is the total utilization for tasks successfully

scheduled by a partitioned scheduling algorithm on the corresponding PE
cluster j, f j is the operating frequency for the corresponding PE cluster j,
and αPE, bPE and βPE are the power parameters for PE clusters taken from
[LSCS15].

The total energy consumption of EE clusters, EEE in Equation (5.3), is given
by:

EEE = TG

(NEE
ac

∑
k=1

(
uEE

k αEE(fk)
bEE

+ βEENEE
p,ack

+ PEE
s (fk)

))
, (5.5)

where NEE
ac is the number of active PE clusters, NEE

p,ack
is the number of active

processors on EE cluster k, uEE
k is the total utilization for tasks successfully

scheduled by a partitioned scheduling algorithm on EE cluster k, fk is the
operating frequency for the corresponding EE cluster k, and αEE, bEE and βEE

are the power parameters for EE clusters taken from [LSCS15].

5.7 The Proposed Energy Minimization Approach

In this section, we present our novel energy minimization approach called
Data-Parallel Energy Minimization (DPEM) which energy-efficiently exploits a
given cluster heterogeneous MPSoC platform when mapping a hard real-time
streaming application under a throughput constraint. The logic behind our
energy minimization approach is the following: our approach replicates the
tasks with heavy utilization to reduce their utilization and lower the operating
frequency, thereby reducing the energy consumption; it tries to map as many
tasks as possible to EE processors such that the energy consumption is further
reduced, while the throughput constraint is met. The DPEM approach is
given in Algorithm 6 and explained in Section 5.7.1 while its constituents are
desribed in Section 5.7.2 and Section 5.7.3.

5.7.1 The Data-Parallel Energy Minimization Algorithm

In this section, we present our integral algorithm for Data-Parallel Energy
Minimization (DPEM). The inputs to DPEM are an SDF graph G, a cluster
heterogeneous MPSoC, and a throughput constraint ℛout. The outputs are
a vector of unfolding factors ~fbest according to which each actor in the initial
SDF graph should be replicated, the task mapping to processors in the clusters
𝒞best, a vector of operating frequencies for clusters ~Fbest and the minimum

96 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

energy consumption of the system Ebest. The DPEM algorithm is shown in
Algorithm 6. Line 1 in Algorithm 6 initializes each unfolding factor of an actor
in graph G to 1. In Lines 2 and 3, the initial graph G is converted to periodic
tasks by the ISPS approach in Chapter 3, where periods for each actor in G
are set, by using scaling factor s in Line 3, to be as large as possible while
meeting the throughput constraintℛout. The corresponding hyperperiod TG
of graph G is calculated as well in Line 3. Line 4 finds the bottleneck actor in G.
The bottleneck actor is the actor with the heaviest workload among the actor
workloads for PE type of processors during one hyperperiod. If multiple actors
have the same maximum workload, then the one with the smallest code size
is selected to be the bottleneck. Note that stateful actors and input and output
actors are not unfolded. In Line 5, Algorithm 7, explained in Section 5.7.2, is
applied to classify actors into two groups – EE and PE. Here, by splitting actors
into two groups, the required throughput of G under ISPS is guaranteed. Line
6 uses Algorithm 8, described in Section 5.7.3, to energy-efficiently map graph
G on the input MPSoC platform. It may happen that the input platform is
not big enough to map the input application, that is, graph G. In that case
Algorithm 8 will return an empty mapping, 𝒞best = ∅. If this happens, the
algorithm terminates and signals failure in Line 8. Otherwise, after obtaining
the initial energy-efficient solution in Line 6, we further search to reduce the
energy consumption by exploiting task replication via the unfolding, Lines 9
to 20.

Line 9 checks if the upper bound on the unfolding factor for the bottleneck
actor has been reached and if the bottleneck actor is one of the actors which
cannot be unfolded (input, output actors and stateful actors). If one of these
happens, Algorithm 6 terminates and returns in Line 21 the most energy-
efficient solution found so far. Otherwise, the initial SDF graph is transformed
into an equivalent CSDF graph by replicating, in Line 10, the bottleneck
actor previously found in Line 4. The graph transformation is performed in
Line 11 by using the unfolding transformation method given by Algorithm 3,
described in Chapter 4. Given that the transformed graph contains more actors
than the original one, the WCETs of the actors have to be recomputed because
the worst-case communication time may change. This is done in Line 12. Once
the WCETs in the CSDF graph are recalculated, actors in the CSDF graph are
transformed into periodic tasks by using the ISPS approach in Chapter 3. The
unfolding graph transformation is usually used to increase the throughput of
a graph by exposing more parallelism through task replication. However, here
we want just to meet the same throughput constraintℛout as the initial graph,
and use the unfolding transformation to change the utilization of the periodic

5.7. The Proposed Energy Minimization Approach 97

Algorithm 6: Data-Parallel Energy Minimization (DPEM).
Input: An SDF graph G = (𝒱 , ℰ), a cluster heterogeneous MPSoC and a throughput

constraintℛout.
Output: Vector of unfolding factors ~fbest, task mapping to processors in the clusters

𝒞best, vector of operating frequencies for clusters ~Fbest and the minimum energy
consumption Ebest.

1 ~f = [1, 1, · · · , 1];
2 Calculate WCETs for each actor vi in G by using Equation (3.2);
3 Calculate period Ti for PE type of processors for each actor vi in G by using

Equation (4.3) and s =
⌊

φout ·rout
ℛout·lcm(~r)

⌋
; Tbest = TG = rout · Tout;

4 Find the bottleneck actor vb,k in G;
5 𝒱EE, 𝒱PE ← Classify actors in G by Algorithm 7(G, φout

Tout
);

6 Find 𝒞best, ~Fbest, Ebest by Algorithm 8(𝒱EE, 𝒱PE);
7 if 𝒞best = ∅ then
8 return Unschedulable;

9 while fb < (NEE
c × NEE

p + NPE
c × NPE

p) ∧ vb,k not stateful/in/out do
10 fb = fb + 1;
11 Get G′ by unfolding G using the method in Chapter 4 (Algorithm 3);
12 Calculate WCETs for each actor v′i in G′ by using Equation (3.2);

13 Calculate period T′i for each actor v′i by using Equation (4.3) and s =
⌊

φ′out ·r′out
ℛout·lcm(~r′)

⌋
;

TG′ = r′out · T′out;
14 Find the bottleneck actor vb,k in G′;

15 𝒱 ′EE, 𝒱 ′PE ← Classify actors in G′ by Algorithm 7(G′, φ′out
T′out

);

16 Find 𝒞best,u, ~Fbest,u, Ebest,u by Algorithm 8(𝒱 ′EE, 𝒱 ′PE);
17 if 𝒞best,u = ∅ then
18 go to 9;

19 if lcm(TG′ ,Tbest)
TG′

· Ebest,u <
lcm(TG′ ,Tbest)

Tbest
· Ebest then

20 Ebest = Ebest,u, Tbest = TG′ , ~Fbest = ~Fbest,u, 𝒞best = 𝒞best,u, ~fbest = ~f ;

21 return ~fbest, 𝒞best, ~Fbest, Ebest;

tasks. To meet throughput constraintℛout and keep the throughput as close as
possible to the initial throughput in Line 3, we scale the periods of the periodic
tasks obtained after the conversion by scaling factor s, which is given in Line
13. Then, we find in Line 14 the bottleneck actor in the equivalent CSDF graph
G′, which is replicated in the next pass of the algorithm. The actors in G′ are
classified into PE and EE actors and the minimum energy of mapping the tasks
corresponding to actors in G′ onto the MPSoC is calculated in Lines 15 and 16.
If there is no feasible mapping we continue with the task replication, Lines 17

98 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

and 18. On the other hand, if we could map G′ on the MPSoC, the obtained
energy is compared against the best, that is, the minimum, energy obtained
so far over the same time interval in Line 19. If we detect that the energy
consumption of the current solution is smaller than the energy consumption
of the best solution found so far, the current solution becomes the best one
in Line 20. Line 9 checks whether the termination criteria for Algorithm 6 is
met. If it is not, the algorithm will repeat Lines 10 to 20. Otherwise, the best
solution is returned in Line 21.

Finally, we can analyze the time complexity of our DPEM algorithm in
the worst case. The complexity of Algorithm 6 is determined by the while
loop in Lines 9 to 20. In the worst case, the while loop will be executed
until all the actors in the initial graph are replicated in the equivalent graph
maximum number of times, which is equal to the number of processors N in
the platform. So, the while loop will be executed |𝒱|N times in the worst case.
The complexity of the graph unfolding algorithm in Chapter 4, Algorithm 3,
which is called in Line 11, is O(|ℰ |N2φ), where φ is the maximum number
of execution phases per actor in the equivalent CSDF graph obtained after
unfolding, φ = maxvi∈𝒱 ′{φi}. The complexity of the other parts of the while
loop is determined by Algorithm 8, see Section 5.7.3. Thus, the worst-case
complexity of Algorithm 6 is O(N|𝒱| · (N2φ|ℰ |+ (N|𝒱|)2 log(N|𝒱|))), which
is polynomial.

5.7.2 Task Classification for Energy Minimization

In Algorithm 6, we used Algorithm 7 in Lines 5 and 15 to classify tasks of
a graph into two groups, depending on the processor type they should be
executed. Selecting the processor type to execute a task in an application
is very important because different type of processors in a heterogeneous
MPSoC have significantly different power and timing profiles. Algorithm 7
gives our task classification method. It takes a CSDF graph G and a throughput
requirement φout

Tout
as inputs and it produces PE and EE subsets of tasks in G.

First, we sort the tasks in order of increasing workload assuming all of
them are assigned to EE processors – see Line 1 in Algorithm 7. Then, with the
sorted tasks, we use the hyperperiod rout · Tout as the classification threshold
such that throughput requirement φout

Tout
is met and the energy consumption is

minimized, and deploy a binary search algorithm in Line 2 to find the pivotal
point by which we can split the sorted tasks into two sets, one for the EE type
of processor and another for the PE type of processor. The goal is to put as
many tasks as possible to EE processors to reduce the energy consumption
while satisfying the throughput requirement. All the tasks, which do not

5.7. The Proposed Energy Minimization Approach 99

Algorithm 7: Procedure to classify tasks according to processor type.

Input: A CSDF graph G = (𝒱 , ℰ) and a throughput constraint φout
Tout

.
Output: Subsets 𝒱PE and 𝒱EE ⊂ 𝒱 .

1 V ← Sort actors vi in 𝒱 in increasing order of WEE
i ;

2 b← Binary search to find the position in 𝒱 with the biggest index where actor vi can
meet WEE

i ≤ routTout;
3 𝒱EE ← 𝒱 [0 : b];
4 𝒱PE ← 𝒱 −𝒱EE;
5 return 𝒱EE, 𝒱PE;

violate the throughput constraint, that is, the hyperperiod rout · Tout, when
assigned to EE processors are classified as EE tasks, Line 3, and all the rest as
PE tasks, Line 4. In this way we guarantee that the throughput requirement
will be met while minimizing the energy consumption.

Since the sorting algorithm in Line 1 has the worst-case complexity of
O(|𝒱| log |𝒱|) and the worst-case complexity of the binary search in Line 2 is
O(log |𝒱|), the worst-case complexity of Algorithm 7 is O(|𝒱| log |𝒱|).

5.7.3 Task Mapping for Energy Minimization

In Algorithm 6, once the actors in a graph are classified by Algorithm 7 in Lines
5 and 15 into two sets of EE and PE actors, each set is mapped by Algorithm 8
in Lines 6 and 16 onto the corresponding type of clusters, EE and PE clusters,
such that the energy consumption of the whole cluster heterogeneous MPSoC
is minimized. Our algorithm of energy-efficient tasks mapping is given in
Algorithm 8.

Algorithm 8 takes sets 𝒱EE and 𝒱PE of actors and a cluster heterogeneous
MPSoC, and it returns the task mapping on processors in the clusters 𝒞, a
vector of operating frequencies for clusters ~F and the minimum energy con-
sumption E. The authors in [AY03] showed that the most balanced workload
distribution leads to the least energy consumption, and that the the most bal-
anced distribution is obtained when the Worst-Fit Decreasing (WFD) heuris-
tic [CGJ96] is used to allocate tasks to processors. Thus, in this work, we use
the WFD heuristic for task allocation. First, Algorithm 8 checks in Lines 1
to 4 whether the input MPSoC has enough resource to map (allocate) and
schedule the tasks by using the WFD allocation heuristic [CGJ96], applied
among the processors of the same type, and a given per-processor schedu-
lability test [LL73] when processors are running at the maximum available
frequency for each processor type. If there is no enough EE type of processors,

100 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

Algorithm 8: Procedure to find the minimum energy when the given
tasks are mapped onto a cluster heterogeneous MPSoC.

Input: Sets of actors 𝒱EE and 𝒱PE and a cluster heterogeneous MPSoC.
Output: Task mapping to processor in the clusters 𝒞, vector of operating frequencies for

clusters ~F and the minimum energy consumption E.
1 if 𝒱EE cannot be scheduled on NEE

c × NEE
p processors by WFD algorithm and max frequency

f EE
max then

2 Move some actors vi ∈ 𝒱EE to PE set 𝒱PE in order of non-increasing ui such that
𝒱EE is schedulable on NEE

c × NEE
p processors;

3 if 𝒱PE cannot be scheduled on NPE
c × NPE

p processors by WFD algorithm and max frequency
f PE
max then

4 return 𝒞 ← ∅, ~F ← ∅, E = ∞;

5 if |𝒱EE| = 0 then
6 𝒞EE ← ∅, ~FEE ← ∅, EEE = 0;

7 else

8 nEE
lb =

⌈
⌈uEE⌉
NEE

p

⌉
, nEE

ub = min{
⌈
|𝒱EE |
NEE

p

⌉
, NEE

c };

9 Find 𝒞EE, ~FEE, EEE by Algorithm 9(nEE
lb , nEE

ub ,𝒱EE, Equation (5.5));

10 if |𝒱PE| = 0 then
11 𝒞PE ← ∅, ~FPE ← ∅, EPE = 0;

12 else

13 nPE
lb =

⌈
⌈uPE⌉
NPE

p

⌉
, nPE

ub = min{
⌈
|𝒱PE |
NPE

p

⌉
, NPE

c };

14 Find 𝒞PE, ~FPE, EPE by Algorithm 9(nPE
lb , nPE

ub ,𝒱PE, Equation (5.4));

15 𝒞 = {𝒞EE, 𝒞PE}, ~F = {~FEE,~FPE}, E = EEE + EPE;
16 return 𝒞, ~F, E;

we select some actors from set 𝒱EE and assign them to set 𝒱PE. The actors are
selected in order of decreasing utilization and the selection is terminated as
soon as the tasks corresponding to actors in set 𝒱EE are schedulable on the EE
processors. However, if there is no enough PE type of processors, that means
the application is not schedulable on the input MPSoC. The algorithm termi-
nates and signals the failure by returning an empty set for tasks-to-processors
mapping 𝒞 in Line 4. Line 5 checks if there are tasks that should be mapped
on processors in EE clusters. If no task should be mapped to EE clusters, then
EE clusters will not be used within the input MPSoC, hence they will not
contribute to the total energy consumption, Line 6. Otherwise, the bounds
on the number of active EE clusters are calculated in Line 8 and the energy
consumption of mapping task set 𝒱EE to EE clusters is calculated in Line 9.

5.7. The Proposed Energy Minimization Approach 101

The lower bound nEE
lb corresponds to the minimum possible number of active

clusters to schedule the tasks because it is determined according to the ceiling
of the utilization uEE of EE tasks. The upper bound nEE

ub is selected to be the
minimum value among the case when tasks are mapped onto processors in
one-to-one manner, and the case when all clusters available on the platform
are active. We find the minimum energy for mapping the tasks on EE clusters
by using Algorithm 9 (described later) in Line 9. Similarly, Line 10 checks
whether there are tasks that should be mapped onto processors in PE clus-
ters. If there are such tasks, lower and upper bounds of active PE clusters are
calculated in Line 13 and the minimum energy for mapping the tasks on PE
clusters by using Algorithm 9 is obtained in Line 14. Finally, the EE solution
and the PE solution mappings are grouped together in Line 15 and the integral
solution mapping of the given tasks onto the given MPSoC which results in
minimum energy consumption is returned in Line 16 of Algorithm 8.

Within Algorithm 8, described above, Algorithm 9 is used to map the tasks
which are in the same group, EE or PE, such that the energy consumption is
minimized. Algorithm 9 takes the bounds on the number of active clusters
of certain type (PE or EE), nlb and nub, tasks 𝒱 that are going to be mapped
onto PE/EE clusters, the corresponding equation, Equation (5.4) or (5.5) – see
Section 5.6, for the calculation of the energy consumption and returns the task
partitions among the processors in the clusters 𝒞best and a vector of operating
frequencies for clusters ~Fbest which lead to the minimal energy consumption
Ebest. In Lines 2 to 15 in Algorithm 9, the best task mapping and the frequency
assignment is determined among different number of active clusters in the
range from nlb to nub. For each number of active clusters n, n ∈ [nlb, nub], the
algorithm in Line 4 performs the WFD allocation heuristic [CGJ96] and uses a
given per-processor schedulability test [LL73] to check the schedulability of
the tasks. In this way, we want to achieve load balancing among the processors
of the same type. If all tasks are allocated on processors, Line 5, we group
processors into clusters according to their workload such that all processors
in one cluster run at the frequency which matches their workload as much
as possible. This is done in Lines 6 and 7, where processors πj ∈ Π are first
sorted in non-increasing order of their workload, that is, their utilization uj,
and then starting from the processor with the highest utilization, every Np
processors are grouped into a cluster. For each cluster, we select the smallest
frequency which guarantees the schedulability and is supported by the cluster
type, that is, it is in the set ℱ of available frequencies, Lines 9 to 11. The energy
consumption of the mapping is calculated in Lines 12 and 13 of Algorithm 9.
In Lines 14 and 15, we check whether the energy consumption obtained by

102 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

Algorithm 9: Procedure to find the minimum energy when the given
tasks are mapped onto the same type of clusters.

Input: Lower nlb and upper nub bound on the number of clusters, set 𝒱 of tasks that
should be mapped onto clusters, equation Eq. for calculating the energy
consumption.

Output: Task mapping to processor in the clusters 𝒞best, vector of operating frequencies
for clusters ~Fbest and the minimum energy consumption Ebest.

1 Ebest = ∞, ~Fbest ← ∅, 𝒞best ← ∅;
2 for n = nlb to nub do
3 Create a set Π of n× Np empty processors, ∀πj ∈ Π : uj = 0;
4 Perform WFD allocation heuristic and a corresponding schedulability test for all

tasks in 𝒱 ;
5 if all vi ∈ 𝒱 can be scheduled on Π then
6 Π← Sort Π in non-increasing order of uj;
7 𝒞 ← group every Np processors in Π to a cluster Ck, k ∈ [1, n];
8 E = 0, Fk = 0, k ∈ [1, n];
9 for cluster Ck ∈ 𝒞 do

10 Find processor πj ∈ Ck with the highest utilization uj, umax = uj;
11 Compute frequency of Ck as Fk ≥ umax · fmax ∧ Fk ∈ ℱ ;
12 Calculate energy Ek for cluster Ck by using Eq.;
13 E = E + Ek;

14 if E < Ebest then
15 Ebest = E, ~Fbest ← ~F, 𝒞best ← 𝒞;

16 return Ebest, ~Fbest, 𝒞best;

mapping the tasks on the current number of active clusters n is the smallest
one obtained so far. If that is the case, the mapping on the current number
of active clusters becomes the best mapping solution. Finally, in Line 16,
Algorithm 9 returns the minimum energy Ebest obtained after mapping the
tasks on clusters of the same type, the frequency assignment ~Fbest for clusters
and the cluster partitions 𝒞best.

Let us now analyze the time complexity of Algorithm 9 and Algorithm 8 in
the worst case. The complexity of Algorithm 9 is determined by the for loop
in Lines 2 to 15. Due to the sorting algorithms used within the WFD heuristic,
in Lines 4, and in Line 6, the complexity of Algorithm 9 is O(Nc|𝒱| log |𝒱|),
where Nc is the number of active clusters. The worst-case complexity of
Algorithm 8 is then determined by Line 2, which is executed in the worst case
|𝒱| times, and every time the WFD allocation heuristic is applied, thus the
complexity of Algorithm 8 is O(|𝒱|2 log |𝒱|).

5.8. Evaluation 103

Table 5.2: Benchmarks used for evaluation.

Benchmark |𝒱| |ℰ | ℛout[1/time unit]
Discrete cosine transform (DCT) 8 7 1/47616
Fast Fourier transform (FFT) 17 16 1/12032
Filterbank 85 99 1/11312
Time delay equalization (TDE) 29 28 1/36960
Data encryption standard (DES) 53 60 1/1024
Serpent 120 128 1/3336
Bitonic Sorting 40 46 1/95
MPEG2 23 26 1/7680
Vocoder 114 147 1/9105
FMRadio 43 53 1/1434
Channel Vocoder 55 70 1/35500

5.8 Evaluation

We have performed three experiments to evaluate the efficiency of our DPEM
approach in comparison to the related energy minimization approaches in
[CKR14], [LSCS15], [SDK13] and [Lee09]. We have selected the approaches
in [CKR14] and [LSCS15] for comparison because they consider the same task
and system models as we do. We selected to compare with the approach
in [SDK13] because it is a very good representative among the approaches for
energy-efficient mapping and scheduling of streaming applications modeled
as SDF graphs. Finally, we compare our approach with the approach in [Lee09]
which is the only approach among the related approaches which considers
task replication for energy minimization for classical periodic real-time tasks.
In the first two experiments, we compare the approaches when the streaming
applications are executed on a cluster heterogeneous platform. We apply our
task classification method, given in Algorithm 7, for the approaches in [SDK13]
and [Lee09] which were originally devised for homogeneous platforms and
then we apply these approaches on the two sets of tasks, PE and EE, obtained
by the classification. Since two of the related approaches, [SDK13] and [Lee09],
originally consider homogeneous platforms with per-core VFS capability, in
the third experiment, we compare our approach with these related approaches
on this type of platform.

The experiments have been performed on the real-life applications from the
StreamIt benchmarks suit [TA10], given in Table 5.2. |𝒱| denotes the number
of actors in an SDF graph, while |ℰ | denotes the number of communication
channels. ℛout is the maximum achievable throughput, computed by using
Equation (3.5) and (3.22), when the applications are scheduled by the ISPS
approach described in Chapter 3. We consider these throughput values as the

104 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

throughput constraints in our experiments.
In the experiments on heterogeneous MPSoC platforms, we consider the

same MPSoC platforms considered in [LSCS15]. These platforms have the
same number of PE processors and EE processors but they have different
cluster granularities, that is, different number of processors per cluster, and
hence, different number of clusters. We use the same MPSoC notation MPSoC_-
x_pe_ee as in [LSCS15]. For example, MPSoC_2_20_28 corresponds to an
MPSoC platform with 2 processors per cluster, 20 PE clusters and 28 EE
clusters. The approaches in [CKR14], [LSCS15] and [Lee09] use hard real-time
scheduling algorithms to schedule the tasks on an MPSoC while the approach
in [SDK13] uses self-timed scheduling. The application tasks are permanently
assigned to processors in [CKR14], [Lee09] and [SDK13], while in [LSCS15],
the tasks are permanently assigned to clusters, but within a cluster tasks are
scheduled by a global scheduling algorithm, hence, they can migrate. In the
experiments, we use the EDF [LL73] scheduling algorithm within our DPEM
approach which is also used in [CKR14] and [Lee09]. In all experiments,
we use the power parameters in [LSCS15] obtained from real measurements
performed on the ODROID XU-3 [ODR] board. The results of the evaluations
are shown in Figure 5.3, Figure 5.4 and Figure 5.5. In all these figures, we
show the energy reduction obtained by our DPEM approach in comparison
with the related approaches. The energy reduction r is computed by:

r =
Erel − EDPEM

Erel
, (5.6)

where Erel is the energy consumption of an application to MPSoC mapping
configuration obtained by a related approach and EDPEM denotes the energy
consumption achieved by our DPEM approach.

5.8.1 Comparison with [CKR14], [LSCS15], [SDK13] on Hetero-
geneous MPSoCs

In this section, we compare the energy consumption on cluster heterogeneous
MPSoCs obtained by our proposed DPEM approach with the energy con-
sumption delivered by the related approaches which do not consider task
replication [CKR14] – CKR, [LSCS15] – FDM, [SDK13] – SDK.

The comparison results with the CKR, FDM and SDK approaches on the
three considered heterogeneous MPSoCs are given in Figure 5.3(a)-5.3(c). In
each of these figures, the x-axis shows the application benchmarks and the
y-axis shows the energy reduction. Both approaches CKR and FDM are de-
vised for cluster heterogeneous MPSoCs and both of them use preemptive

5.8. Evaluation 105

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

Bitonic Sor.

M
PEG

2

Vocoder

FM
 R

adio

C
h. Vocoder

E
n

e
rg

y
 r

e
d

u
c
ti
o

n

 CKR
 FDM
 SDK

(a) MPSoC_2_20_28 (higher is better)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

Bitonic Sor.

M
PEG

2

Vocoder

FM
 R

adio

C
h. Vocoder

E
n

e
rg

y
 r

e
d

u
c
ti
o

n

 CKR
 FDM
 SDK

(b) MPSoC_4_10_14 (higher is better)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

Bitonic Sor.

M
PEG

2

Vocoder

FM
 R

adio

C
h. Vocoder

E
n

e
rg

y
 r

e
d

u
c
ti
o

n

 CKR
 FDM
 SDK

(c) MPSoC_8_5_7 (higher is better)

Figure 5.3: Comparison of our proposed DPEM approach with related approaches on hetero-
geneous MPSoCs.

106 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

hard real-time scheduling algorithms, which is also the case in our DPEM
algorithm. We can see in Figure 5.3 that our DPEM approach reduces the
energy consumption when compared to CKR and FDM for all but two con-
sidered benchmarks. The two benchmarks for which our approach results in
the same energy consumption as CKR and FDM are Filterbank and Channel
Vocoder. The workload which these two benchmarks put on the considered
MPSoCs is balanced among processors, hence our approach will not replicate
tasks of these benchmarks which leads to the same energy consumption as
obtained by the CKR and FDM approaches. The average energy reduction of
our approach when compared to the CKR approach is 62%, 62% and 63.1% for
the three MPSoCs with 2, 4 and 8 processors per cluster, respectively. When
compared to the FDM approach the corresponding average energy reductions
are 61.6%, 61.4% and 61.6%. When compared to the SDK approach, our ap-
proach achieves energy reduction for all benchmarks because we use both task
replication and preemptive scheduling. Note that we only use the design-time
phase in the SDK approach for the comparison because our approach is a
design-time approach. Our approach obtains on average the energy reduc-
tion of 65%, 65.1% and 66% for the three MPSoCs with 2, 4 and 8 processors
per cluster, respectively, when compared to the SDK approach. We can con-
clude from these results that our approach achieves large energy reduction by
utilizing task replication.

5.8.2 Comparison with [Lee09] on Heterogeneous MPSoCs

In this section, we compare the energy consumption on cluster heterogeneous
MPSoCs of our DPEM approach with the related approach in [Lee09], denoted
by WYL, which considers task replication as well. The results are given in
Figure 5.4. Here again, both approaches will not replicate tasks in Filterbank
and Channel Vocoder and hence both approaches will lead to the same energy
consumption in these two cases. Given that the task classification in the WYL
approach is based on the power consumption curve of a processor, the WYL
approach will never replicate tasks assigned to EE processors. In addition, the
WYL approach will never replicate the tasks of an application once the total
number of heavy tasks is equal to the number of processors on an MPSoC
platform. All these limitations of WYL explain the energy reduction achieved
when our approach is used to map the benchmarks in Table 5.2 onto the three
considered MPSoCs. The average energy reduction obtained by our DPEM
approach is 51.3%, 57.2% and 60.7% for the MPSoCs with 2, 4 and 8 processors
per cluster, respectively.

5.8. Evaluation 107

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

Bitonic Sort.

M
PEG

2

Vocoder

FM
 R

adio

C
h. Vocoder

E
n
e
rg

y
 r

e
d
u
c
ti
o
n

 MPSoC_2_20_28
 MPSoC_4_10_14

 MPSoC_8_5_7

Figure 5.4: Comparison between DPEM and WYL on heterogeneous MPSoCs.

5.8.3 Comparison on Homogeneous MPSoC

Given that both the SDK and WYL approaches were originally proposed for
homogeneous platforms with per-core VFS capability, in this section, we com-
pare the energy consumption on such systems when our DPEM approach is
used with the energy consumption values when the SDK and WYL approaches
are used. The results of the energy reduction on a homogeneous MPSoC plat-
form consisting of 96 PE processors with per-core VFS capability are given in
Figure 5.5. Here, we also give the results of energy reduction when our DPEM
approach is compared with the CKR and FDM approaches for completeness.

The benchmarks Filterbank and Channel Vocoder were the only two bench-
marks for which our approach could not obtain any reduction in energy con-
sumption on heterogeneous MPSoCs when compared to the approaches which
use hard real-time scheduling algorithms – CKR, FDM and WYL. In the case
of a homogeneous platform, we can see in Figure 5.5 that there is still no
difference in energy consumption between our DPEM and the CKR, FDM
and WYL for the Filterbank benchmark. This happens because when mapped
onto a homogeneous MPSoC, Filterbank has balanced workload among the
processors, hence both our DPEM and the WYL approaches will not replicate
tasks. However, in the case of the Channel Vocoder benchmark, we see in
Figure 5.5 that the situation changes, that is, now there is a reduction in the
energy consumption when our approach is compared to the CKR and FDM,
because our approach will replicate tasks to balance the workload of Channel

108 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

Bitonic Sort.

M
PEG

2

Vocoder

FM
 R

adio

C
h. Vocoder

E
n
e
rg

y
 r

e
d
u
c
ti
o
n

 CKR
 FDM
 SDK
 WYL

Figure 5.5: Comparison on homogeneous MPSoC.

Vocoder on a homogeneous platform. The WYL approach will replicate tasks
as well, leading to the same energy consumption as obtained by our DPEM
approach. Although the WYL approach was devised for homogeneous plat-
forms with types of processors which match the PE type and with per-core
VFS capability, still our DPEM approach outperforms the WYL approach by
reducing the energy consumption on average by 10.4%, and in the best case
up to 22%. The reason is that our task replication procedure is more flexible
than the procedure in the WYL approach.

When compared to the another approach devised for homogeneous MP-
SoCs with per-core VFS capability, that is, the SDK approach, our DPEM
approach leads to an energy reduction of 36% on average and up to 90% in the
best case. The reason is that our approach replicates tasks to lower the utiliza-
tion per-processor, and hence, lower operating frequencies can be achieved. In
addition, the SDK approach minimizes only the dynamic energy consumption
and uses non-preemptive scheduling which both lead to higher total energy
consumption.

Finally, when compared to the CKR and FDM approaches on a homoge-
neous platform, our DPEM approach delivers systems with energy reduction
of 21.2% and 25.6% on average, respectively. The main reason is the task
replication which our approach uses to lower the utilization per processor
while keeping the application throughput.

We performed an additional experiment to evaluate the influence of the

5.8. Evaluation 109

number of processors in an MPSoC on the energy reduction of our DPEM
approach in comparison with the related approaches. In this experiment,
beside the MPSoC platform with 96 PE processors, we considered two addi-
tional platforms with 48 and 192 PE processors with per-core VFS capability.
On the 48-processor platform, our DPEM approach resulted in the energy
reduction of 6%, 18.5%, 20.5% and 30.3% when compared with the WYL, CKR,
FDM and SDK approaches, respectively. In comparison with the same related
approaches, our DPEM approach obtains on the 192-processor platform the
following energy reductions – 10.7%, 24.9%, 29.4% and 39.8%. We can con-
clude that the energy reduction of our approach with regard to the related
approaches slowly increases with the increase of the number of processors in
the platform.

5.8.4 Overhead and Time Complexity Analysis

In this section, we briefly discuss the code and data memory overhead of our
approach when compared to the related approaches and the time complexity
of our and the related approaches. The code and data memory overhead
of our approach on heterogeneous platforms when compared to the WYL
approach is 2 times higher on average, and 2.3 times higher on average than
the approaches which do not consider task replication, that is, approaches
CKR, FDM and SDK. The memory overhead of our DPEM approach on the
homogeneous platform is 16% higher on average when compared to the WYL
approach, and 85% higher on average when compared to the CKR, FDM and
SDK approaches. Given that the actual memory increase in the worst case is
213 KB and given the size of memory available in modern embedded systems,
we can conclude that the memory overhead introduced by our approach is
acceptable.

The time complexity in the worst-case of our DPEM approach and the ap-
proaches CKR, FDM and WYL is polynomial, while the worst-case time com-
plexity of the SDK approach is exponential. In the worst-case, our approach
needs 62 minutes, the WYL approach needs 5 minutes, the CKR approach
takes 11 minutes, the FDM less than 1 second and the SDK approach needs 6
days to find an energy-efficient solution. Given that our DPEM approach is a
design-time approach and that it delivers solutions of better quality, we can
conclude that our approach outperforms the related approaches.

110 Chapter 5. Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy

5.9 Discussion

In this chapter, we proposed a novel energy minimization mapping approach
to reduce the energy consumption of embedded multiprocessor streaming
systems with throughput constraints. To map energy-efficiently an SDF graph
onto cluster-heterogeneous MPSoC, our polynomial-time solution approach:
1) determines a processor type for each task in an SDF graph such that the
throughput constraint is met and the energy consumption is minimized; 2)
determines a replication factor for each task in an SDF graph such that the
distribution of the workload on the same type of processors is balanced, which
enables processors to run at a lower frequency, hence reducing the energy con-
sumption. The experiments on a set of real-life streaming applications showed
that our approach reduces energy consumption by 66% on average among all
the performed experiments while meeting the same throughput requirement
when compared to related energy minimization mapping approaches.

Chapter 6

An Accurate Energy Modeling
of Streaming Systems

Jelena Spasic and Todor Stefanov, “An Accurate Energy Model for Streaming
Applications Mapped on MPSoC Platforms”, In Proceedings of the IEEE International
Conference on Embedded Computer Systems: Architectures, MOdeling, and Simulation
(IC-SAMOS’13), pp. 205–212, Samos, Greece, July 15-18, 2013.

THE solution to the problem of accurate energy modeling of an application-
to-MPSoC mapping, that is, Problem 4 introduced in Section 1.3, is pre-

sented in this chapter.
The investigated research problem is further described in Section 6.1. It

is followed by a summary of our contributions in Section 6.2. The related
work is addressed in Section 6.3. The considered system model is described
in Section 6.4. The energy model formulation and the procedure to extract
the parameters of the energy model are given in Section 6.5. The model is
experimentally evaluated in Section 6.6. The concluding discussion is given in
Section 6.7.

6.1 Problem Statement

As discussed in Sections 1.2.2 and 1.3, finding an efficient application-to-
platform mapping is the key issue for optimizing the energy consumption
and performance of streaming MPSoC systems. Since there are many possi-
ble application-to-platform mapping combinations forming a design space,
this design space should be efficiently explored by using high-level system

112 Chapter 6. An Accurate Energy Modeling of Streaming Systems

performance/energy models. Early in the design process of a system with
certain performance/energy requirements, the design space is very large and
decisions taken at higher level of abstraction have greater impact on the final
design in terms of system performance and energy consumption. Therefore,
high-level performance/energy models of a system should be accurate enough
to steer the selection of optimal design points under given constraints in the
right direction. Model accuracy is usually traded-off for modeling and eval-
uation effort. Especially accuracy of energy models is very important as the
International Technology Roadmap for Semiconductors (ITRS) [Int11] reports
that the power/energy consumption is the dominating constraint in the new
generations of embedded systems.

In the embedded systems domain the research and results on performance
modeling are very mature, while the research on system-level power/energy
modeling and estimation has received attention only in recent years. So far,
research on power/energy modeling has been mainly done for a single system
component in isolation [QKUP00,LJSM04,SC01,VJD+07,BTM00,YVKI00,CAC,
PPKD10, BZZ04, KLPS09, BVC04]. Only in a few cases, the power/energy
consumption of the whole system has been modeled [LPB04, C+10, HLF+11,
RAN+11,SRH+11,PP12]. However, in most cases power/energy consumption
due to the contention on shared resources is not considered. Moreover, in
most cases, characterization and validation of the models have been done by
using lower-level simulators or data-sheet values [QKUP00, BTM00, YVKI00,
KLPS09, BVC04, LPB04, HLF+11, PP12], introducing additional inaccuracy in
the model. Therefore, in order to find accurately an energy optimal application-
to-platform mapping: 1) the energy model should describe the system as a
whole and take into account the parallel nature of MPSoCs and possible energy
consumption due to contention on shared resources; 2) the energy modeling
and estimation should be done with high level of accuracy and efficiency. For
the above mentioned reasons, we address the problem of accurate and efficient
energy modeling of an application-to-platform mapping when a streaming
application is modeled using the Polyhedral Process Network (PPN) [VNS07]
MoC and mapped onto a tile-based MPSoC platform with distributed memory.

6.2 Contributions

Our energy model describes the system as a whole as well as it considers
and models accurately the energy consumption due to data communication
among the processors in a platform and the contention on non-contention-free
communication infrastructures. The model is based on the well-defined prop-

6.3. Related Work 113

erties of the PPN application model and the values of important energy model
parameters are obtained by real measurements of energy consumption for the
accuracy reason. It models the total (static and dynamic) energy consump-
tion and is applicable to different types of processors. The energy model is
integrated in the existing Daedalus design flow [TNS+07], enabling a system
designer to explore a large design space starting from a high-level description
of the system behavior and having energy consumption as a primary design
constraint.

6.3 Related Work

Research on power/energy modeling has been mainly done for individual
system components in isolation – processors [QKUP00, LJSM04, SC01, VJD+07,
BTM00,YVKI00], memories [CAC], interconnections [PPKD10,BZZ04,KLPS09,
BVC04]. In contrast, our energy model models the system as a whole and
thus enables more accurate energy estimation and exploration of different
application-to-platform mappings.

Only a few works deal with power/energy modeling of the whole system.
[LPB04] analyzes power distribution among components in a homogeneous
shared bus based MPSoC platform. However, there is no accuracy information
for any model of a component in the system. In contrast, our energy model is
more general in the sense that it can model platforms with contention-free and
different configurations of non-contention-free communication infrastructures.
In addition, we provide accuracy information concerning the obtained energy
estimates.

[C+10] presents the performance and power modeling of multi-program-
med multi-core systems. In this work, it is assumed that there is no data
dependency between the processes running on a platform. The model is char-
acterized and validated by real measurements. However, real applications
usually consist of data dependent processes, and thus the energy consump-
tion due to communication between the processes should be considered. In
contrast to [C+10], our model considers the data dependency between the
processes, and hence the energy consumption due to interprocessor communi-
cation is modeled.

[HLF+11] presents a multi-core power modeling and estimation tool flow
which consists of two tools: PowerMixerIP, an IP power model builder, and
PowerDepot, a power estimation tool which generates and embeds power mon-
itors into a SystemC simulation environment. Power model characterization
and validation are done by using transistor-level and gate-level simulations.

114 Chapter 6. An Accurate Energy Modeling of Streaming Systems

The authors report an average power estimation error of 2% compared to
gate-level simulations which accuracy is not known. In addition, the con-
tention on shared resources is not discussed in [HLF+11]. In contrast, our
energy model considers the contention on different kinds of non-contention-
free communication structures with the energy estimates close to real energy
measurements.

The FLPA power estimation methodology for MPSoCs is presented in
[RAN+11]. The power consumption estimation consists of two parts: 1) power
model development – a system is divided into functional blocks, and the
power consumption is evaluated for selected activity parameters; 2) activity
estimation and power calculation – a transaction level SystemC simulator and
an Instruction Set Simulator (ISS) are used for detection of the activities. Mod-
els are characterized and validated by real measurements. Power modeling of
shared resources and the contention on shared resources are not discussed in
detail. In contrast, we give a general methodology for modeling the energy
consumption for both contention-free and non-contention-free communication
infrastructures. By considering the energy consumption due to the contention
on non-contention-free communication structures we achieve energy estimates
close to real energy measurements.

[SRH+11] proposes a top-down power and performance estimation method-
ology for MPSoCs. The system architecture is modeled by a set of resources –
processors, memories, interconnects, and dedicated hardware resources. Each
resource is characterized by power and performance attributes. Power costs
of the power attributes are extracted from measurements. There is no informa-
tion about the accuracy of the proposed model and modeling of contention
on non-contention-free communication infrastructures is not considered. In
contrast, our energy model is more detailed, and consequently highly accurate
with accuracy numbers obtained by comparison with real measurements. In
addition, our work considers various contention-free and non-contention-free
communication infrastructures in the energy modeling.

In terms of application and platform models, the closest work to ours
is [PP12]. An application is modeled as a Kahn Process Network (KPN) where
every process has read, execute and write events. The proposed power model-
ing technique estimates the power consumption of an application-to-FPGA
MPSoC mapping based on "event signatures". The "event signatures" for
execute, read and write events are used together with a micro-architecture de-
scription, lower-level simulators and some additional parameters obtained
from literature and through synthesis to calculate the power consumption of
an application-to-MPSoC mapping. The model is validated by comparison

6.4. System Model 115

READ(IP, in, size_d) {
1 rcnt = IP[1];
2 while(1) {
3 wcnt = IP[0];
4 if (wcnt != rcnt) {
5 for(i=0; i<size_d; i++)
6 in[i] = IP[rcnt+2+i];
7 rcnt += size_d;
8 IP[1] = rcnt;
9 break;
} }

READ(IP, in, size_d) {
1 for(i=0; i<size_d; i++)
2 readHW(in[i], IP);
}

(a) (b)

Figure 6.1: The read primitive implemented in software (a) and hardware (b).

to measurements. However, it is not clear how the "scaling factors" used for
pre-calibration of the power models for interconnections and memories are ob-
tained and what the relation is between these factors and application/MPSoC
properties. This fact does not give high credibility to the accuracy of the model.
Moreover, the authors assume that the data communication transactions per-
formed by the KPN application model are not interleaved at the architecture
level. In contrast, our energy model considers contention on shared resources
and its parameters are extracted from measurements, which make the model
very accurate. In addition, we do not use scaling factors and thus the accuracy
of our model is highly credible.

6.4 System Model

Since our energy model is based on the well-defined properties of the PPN
application model and the MPSoC platform model, in this section, we first
give more details on the PPN application model presented in Chapter 2, and
then describe the MPSoC platform model we consider in this chapter.

6.4.1 Application Model

An example of a PPN and the structure of its process P3 is given in Figure 2.2.
Each process has a set of channels it reads from, a set of channels it writes
to, and a function that represents a computation performed on input data
that generates output data. A read/write from/to a channel is realized by
blocking read/write primitives implemented in software (SW) or hardware

116 Chapter 6. An Accurate Energy Modeling of Streaming Systems

(HW). Figure 6.1 gives the structure of the read primitive implemented in
software and hardware. In case of the SW read primitive, blocking FIFO access
is implemented in software: check for data, see Figure 6.1(a) lines 1, 3 and 4, read
data, see Figure 6.1(a) lines 5 and 6, and release space, see Figure 6.1(a) lines 7 and
8. In case of the HW read primitive, blocking FIFO access is encapsulated in
the readHW function and realized in hardware, see Figure 6.1(b). As explained
in Chapter 2, the execution of a PPN process represents a process domain,
described by using the polytope model [Fea96b]. In addition, accessing input
and output ports of the PPN process is represented by the corresponding
input and output port domains which are subsets of the process domain. By
counting the integer points in the process domain polytope, we can determine
the number of iterations each process function is executed. Similarly, by
counting the integer points in the corresponding input/output port domain
we can determine the number of read/write accesses for each channel of a
process. Counting of the integer points in a polytope can be done automatically
by using the Barvinok library in the pn compiler [VNS07]. The counting
ability of the PPN model is used in Section 6.5.2 for the computation of the
so-called N energy model parameters Nrk , Nwk and NFk . In the example given
in Figure 2.2(b), by counting the integer points (i, j) in the process domain DP3
we can see that function F is executed 128 times and by counting the integer
points in the port domains DIP1 and DOP2 we obtain that channel CH3 is read
48 times and channel CH5 is written 48 times.

6.4.2 Platform Model

In this work, we consider tile-based MPSoC platforms with distributed mem-
ory. The generic architecture template of our platforms is shown in Figure 6.2.
A programmable processor with its local data and program memory, a timer,
and a bus bridge constitute a processing tile within the platform. Different
processing tiles can have different types of processors. The communication
infrastructure consists of a contention-free or non-contention-free communica-
tion component and distributed communication memories (every tile has its
own communication memory). A contention-free communication component
is a point-to-point (P2P) medium where every channel in the PPN application
model has its own communication link. Non-contention-free communication
components are mediums with shared communication links – a shared bus
(ShB) or a crossbar switch (CB). Communication memories are assumed to
be dual-port memories. This means that the communication memory can be
accessed by its own processing tile and a remote processing tile at the same
time. The processing tile produces data to its communication memory, lo-

6.4. System Model 117

Program

memory

Data

memory

Processor

Timer

Communication

memory 1

Bridge

TILE 1

C

o

m

m

u

n

i

c

a

t

i

o

n

c

o

m

p

o

n

e

n

t

Program

memory

Data

memory

Processor

Timer

Communication

memory m

Bridge

TILE m

COMMUNICATION

INFRASTRUCTURE

Figure 6.2: The architecture template of MPSoC platforms.

cally accessing it through the local data bus, and consumes data from its own
and/or other communication memories remotely through the communication
component. Within our platforms, HW read/write primitives are used for P2P
communication components, while SW read/write primitives can be used for
both P2P and shared (CB, ShB) communication components.

More formally, a platform can be represented as a directed graph Π =
(π, CL), where π = {π1, π2, ..., πm} is a set of m processing tiles (homogeneous
or heterogeneous) and CL ⊆ π × π is a set of physical communication links
between the tiles.

6.4.3 Application-to-Platform Mapping

The mapping of an application modeled as a PPN G = (𝒫 , 𝒞) onto a plat-
form Π = (π, CL) can be expressed as a tuple M = (𝒫m, 𝒞m), where 𝒫m =
{Pm

1 , Pm
2 , ..., Pm

m } is an m-partition of set 𝒫 of the processes, and 𝒞m = {CHm
1 ,

CHm
2 , ...,CHm

m} is a set of communication channels constructed from the set 𝒞
of all channels in a PPN. A subset Pm

i represents the set of processes mapped

118 Chapter 6. An Accurate Energy Modeling of Streaming Systems

onto tile πi. These processes produce data to the communication memory
that is assigned to tile πi. If the number of processes of a PPN is greater than
the number of processing tiles in a platform, then some of the tiles execute
more than one process. In this case, static schedule of processes is derived
for every tile. This is done automatically by using the pn compiler [VNS07].
Each channel CHm

l ∈ 𝒞m corresponds to one channel CHl = (Pi, Pj) ∈ 𝒞 and
is given by a tuple (proc(Pi), proc(Pj)), where proc(Pi) = πi represents the
processor πi on which process Pi is mapped.

Recall that in our platforms FIFO channels reside in the communication
memories and reading from channels is performed remotely through the
communication component, while writing to channels is done locally by a
processor through the local tile’s bus on which the processor is the only master,
see Section 6.4.2. This means that writing is always contention-free, while
reading is not because non-contention-free communication component may
be used in the platform. In case of non-contention-free communication com-
ponents, for each application-to-platform mapping, we define Read contention
matrix R ∈Nm×m as:

Rij =

{
1, ∃CHm

l = (πi, πj) ∈ 𝒞m

0, otherwise
(6.1)

The matrix is used in Section 6.5.2 to analyze the influence of contention on
the energy consumption of an application-to-platform mapping.

6.5 Energy Model

The proposed energy model is used to estimate the energy consumption
of a mapping of a streaming application modeled as a PPN described in
Sections 2.1.2 and 6.4.1 onto an MPSoC platform modeled as described in
Section 6.4.2. The energy model relies on the properties of the PPN application
model and the platform model. The following subsections describe our energy
model.

6.5.1 Model Formulation

Without loss of generality and for the sake of clarity, we assume in the follow-
ing that each process within an application is mapped to a different processing
tile in a platform, that is, the number of processes is equal to the number of pro-
cessing tiles. In general, the proposed model is applicable to any application-
to-platform mapping given that multiple processes of an application can be

6.5. Energy Model 119

grouped and represented as a single process by finding a sequential schedule
between the processes, as explained in Section 6.4.3.

Since the PPN representation of an application is a set of concurrent pro-
cesses, we can express the energy consumption of the application-to-platform
mapping Eapp→pla as the sum of energies consumed by processes EPk :

Eapp→pla =
n

∑
k=1

EPk . (6.2)

A PPN process reads input data from (a part of) input channels, performs
computation on input data and generates output data which is further written
to (a part of) output channels (see Figure 2.2(b)). Read and write accesses to
channels are blocked if the required data is not available or if there is no space
for new data. Having this in mind, we can express the energy consumed by a
process EPk as:

EPk = ERDk + EEXEk + EWRk + EBLKk + ECTRLk , (6.3)

where ERDk and EWRk are the energies consumed by reading from and writing
to channels without blocking, respectively; EEXEk is the energy consumed by
performing the computation in the process; EBLKk is the energy consumed
while the process is blocked on read and write, and ECTRLk is the energy
consumed by control structures in the process code. In the example given in
Figure 2.2(b), ECTRLk corresponds to the control structures in lines 1, 2, 4, 6, 9
and 11. Further, ERDk and EWRk can be expressed as:

ERDk = ∑
rk

Nrk(Erk
RDk

+ c · Erk
c) (6.4)

and
EWRk = ∑

wk

Nwk · Ewk
WRk

, (6.5)

where rk/wk is a communication channel process Pk reads from/writes to;
Nrk /Nwk is the number of times Pk accesses each read/write channel, and
Erk

RDk
/Ewk

WRk
is the energy profile of one read/write from/to a channel. Recall

that in our platforms writing to channels is local and reading from channels
is remote (Section 6.4.2). This means that reading from channels may go
through a non-contention-free communication component and hence, energy
consumed by reading from channels contains the contention dependent part
c · Erk

c . If the communication component is contention-free, c is 0, if it is non-
contention-free, c is 1, while Erk

c is the energy consumed while Pk is waiting for

120 Chapter 6. An Accurate Energy Modeling of Streaming Systems

data from channel rk when the communication component is non-contention-
free. Similarly to Erk

RDk
and Ewk

WRk
, EEXEk becomes:

EEXEk = NFk · EFk , (6.6)

where NFk is the number of times process Pk executes its computation function
Fk, and EFk is the energy profile of the function. The energy EBLKk consumed
while the process is blocked can be divided to energy ERD

BLKk
consumed while

the process is blocked on reading due to unavailable data and energy EWR
BLKk

consumed while the process is blocked on writing due to unavailable space.
EBLKk can be expressed as:

EBLKk = ERD
BLKk

+ EWR
BLKk

. (6.7)

The energies ERD
BLKk

and EWR
BLKk

can be further expressed as:

ERD
BLKk

=
Ttotal

BLKRDk

(T1
BLKRDk

+ c · T1k
c)
· (Erd

BLKk
+ c · E1k

c) (6.8)

and

EWR
BLKk

=
Ttotal

BLKWRk

T1
BLKWRk

· Ewr
BLKk

, (6.9)

where Ttotal
BLKRDk

/Ttotal
BLKWRk

is the time spent in blocking on read/write by all the
channels during the whole execution of the process Pk, T1

BLKRDk
/T1

BLKWRk
is

the time spent in one blocking on read/write by a channel, and Erd
BLKk

/Ewr
BLKk

is the energy profile of one blocking on read/write by a channel. During
blocking on read, the process checks the write counter of the corresponding
FIFO channel by reading its value through the communication component –
see Figure 6.1(a) line 3. If contention may occur (c is 1), checking the write
counter on average will last longer with additional time T1k

c , and the energy
consumed by the checking will increase on average with E1k

c .
The above mentioned energy profiles Erk

RDk
, Ewk

WRk
, EFk , Erd

BLKk
, Ewr

BLKk
and

ECTRLk associated with an application process are obtained by first converting
the corresponding part of the process code to its assembly equivalent, then
counting the number of times Ninst each assembly instruction inst is executed
in the corresponding assembly equivalent, and finally assigning the energy
cost Einst to each instruction in the processor ISA. Therefore, each energy
profile is the sum of the number of times Ninst each instruction inst is executed
in the corresponding assembly equivalent multiplied by the energy cost Einst

6.5. Energy Model 121

of the given instruction inst on a selected platform type. Hence, each of the
above mentioned energy profiles can be represented with:

(Erk
RDk

, Ewk
WRk

, EFk , Erd
BLKk

, Ewr
BLKk

, ECTRLk) = ∑
inst

NinstEinst. (6.10)

The contention dependent energy Erk
c consumed by one read from a chan-

nel through a non-contention-free communication component can be ex-
pressed as:

Erk
c =

Trk
stall

T1stall
· Estall , (6.11)

where Trk
stall is the total estimated stall time during one read access on channel rk

through non-contention-free communication component, T1stall is the latency
of one stall, the ratio Trk

stall/T1stall is the estimated number of stalls on the
communication component for one read access on channel rk, and Estall is the
energy cost of one stall.

The contention dependent energy E1k
c consumed by one checking of the

write FIFO counter through a non-contention-free communication component
can be expressed as:

E1k
c =

T1k
c

T1stall
· Estall =

T1k
stall

T1stall
· Estall , (6.12)

where T1k
stall is the total estimated stall time through non-contention-free com-

munication component for one check for data availability and the ratio T1k
stall/

T1stall is the estimated number of stalls for one check for data availability.

6.5.2 Derivation of Model Parameters

From the energy model formulation in Section 6.5.1 we can see that the en-
ergy model has three types of parameters – N parameters such as Nrk , Nwk ,
NFk , Ninst; T parameters such as Ttotal

BLKRDk
, Ttotal

BLKWRk
, T1

BLKRDk
, T1

BLKWRk
, Trk

stall ,
T1k

stall(T
1k
c), T1stall ; and E parameters such as Einst, Estall . This section explains

how the value of each of the parameters is obtained. Parameters Nrk , Nwk

and NFk are obtained by counting integer points in input, output and process
domain polytopes of Pk, see Section 6.4.1, which can be done automatically by
using the Barvinok library in the pn compiler [VNS07]. It is done only once per
application and the obtained parameters can be used for any mapping of that
application to any MPSoC platform. Parameter Ninst is obtained by counting
how many times an instruction from the processor ISA is executed in the cor-
responding assembly equivalent of the process code. This is obtained by using

122 Chapter 6. An Accurate Energy Modeling of Streaming Systems

Instruction Set Simulators (ISS) or some hardware tracing circuits and our
profiler tool. It is done only once per application for a selected processor type.
Parameters Ttotal

BLKRDk
and Ttotal

BLKWRk
are obtained from a cycle-accurate SystemC

timing simulation of PPNs [vHHK10]. This SystemC simulation should be
performed for each application-to-platform mapping, because the blocking
time, that is, waiting for data/space, depends on the specific mapping of the
processes of an application to the platform. Parameters T1

BLKRDk
and T1

BLKWRk
are obtained by using ISS or some hardware tracing circuits. It is done only
once for a selected processor type and for a selected implementation of the
read/write primitives. Parameters Trk

stall and T1k
stall are obtained for each map-

ping, by performing the analysis explained later in Section 6.5.2. Parameter
T1stall is obtained from data-sheets or from measurements. The energy cost
Einst for each instruction inst and the energy cost Estall for a stall are obtained
from measurements, and this is done only once per platform type (processor
type, communication infrastructure type, selected technology).

Extraction of the Energy Costs

In this subsection we will describe how the energy costs Einst for each instruc-
tion inst and the energy cost Estall for a stall are derived.

Since our platforms consist of processing tiles and communication infras-
tructure, the energy costs Einst and Estall can be expressed as:

Einst = Einsttile + Ecomm = (pinsttile +
pcomm

m
)linst (6.13)

and
Estall = Estalltile + Ecomm = (pstalltile +

pcomm

m
)lstall , (6.14)

where Einsttile and Estalltile are tile-dependent energy costs and Ecomm is a commu-
nication infrastructure-dependent energy cost. The energy costs are obtained
by multiplying the corresponding power costs pinsttile , pstalltile , pcomm with the
instruction latency linst, and the stall latency lstall . The power consumption
pinsttile is the power consumed by an instruction inst during its execution on
a processing tile. The power cost pstalltile is the power consumption of a tile
when a stall occurs. pcomm is the power consumed by the communication in-
frastructure when there is no communication over the infrastructure, while m
is the maximum number of tiles that the interconnect allows. The power con-
sumption of communication is captured within the pinsttile power cost for load
and store instructions. These power costs are extracted from measurements.

There may be instructions with different latencies depending on cases they
are used. An example is a conditional branch instruction which can be taken

6.5. Energy Model 123

or not taken with different latencies for both cases. In this case, we consider
an instruction as a set of instructions with finite number of elements equal to
the number of possible cases. We consider every instruction from that set as
an individual instruction and assign a power cost to each of them.

For each instruction inst we determine its power cost pinsttile by measuring
the power consumption with minimum activity and maximum activity of the
instruction. The final power cost is an average of the measured maximum
and minimum power consumption. In order to measure the maximum and
minimum power consumption, we create simple test codes with the instruction
under test in a loop and run them on the tile. In the "minimum activity" case
an instruction performs its action each time on the same operands, so there
is no switching activity on processor core buses. In the "maximum activity"
case an instruction performs its action each time on different operands such
that switching activity on the buses is maximized. The power cost of a stall
pstalltile is obtained by measuring the power consumption of a system when
stall occurs. The power cost pcomm is measured on a platform with maximum
number of tiles m, which the corresponding interconnect allows, while there
is no communication between the tiles. These estimations of energy costs are
performed only once for the selected processor type and only once for the
selected communication infrastructure.

Extraction of the Energy Profiles

In order to create the energy profiles Erk
RDk

, Ewk
WRk

, EFk , Erd
BLKk

, Ewr
BLKk

and ECTRLk

associated with an application process Pk, we should first obtain the assembly
instruction profiles of the corresponding parts of the process code. The instruc-
tion profile of a code consists of instruction counters which show how many
times each instruction from a processor ISA is executed in the corresponding
code. In case of branch instructions we also need the number of taken and
the number of not-taken branches for each branch instruction. We need the
execution trace of an application in order to obtain the needed instruction
profiles. Since the PPN application consists of processes repeated a number
of times, we do not need the instruction trace of the whole execution of an
application and we only need the traces of each process, the read and write
primitives for each channel and the control structures. Each process of an
application is executed as many times as many different execution traces can
occur for that process. The execution traces can be obtained by ISS or by
some hardware tracing circuits. The execution traces usually contain program
counter values, instructions and can also contain some additional information
(such as branch is taken or not, and others). By analyzing program counter

124 Chapter 6. An Accurate Energy Modeling of Streaming Systems

values we can determine if a branch is taken or not. Our profiler tool reads
the execution traces of an application and creates the instruction profiles of
the application. The final instruction profile of the process with many possible
execution traces is the average profile, where counters of each instructions
are averaged. Profiling of an application is done only once for the selected
processor type and selected implementation of read/write primitives (HW or
SW).

Analysis of Communication Contention

The derivation of the energy model parameters Trk
stall and T1k

stall related to
non-contention-free communication components is explained in this sub-
section. Since our procedure analyzes the contention on a remote tile-to-
communication memory link, that is, πj ← πi link, we will use in the follow-
ing the notation rij for a read channel of a process mapped onto tile πj that
reads from communication memory of a tile πi. Thus, Trk

stall and T1k
stall become

T
rij
stall and T1j

stall from a tile point of view.
The communication contention may occur if the communication compo-

nent within the MPSoC platform is an arbitrated structure. In this work, we
consider two types of non-contention-free communication components – a
crossbar switch (CB) and a shared bus (ShB), where the CB and ShB intercon-
nections have a round-robin arbitration policy.

The procedure to derive T
rij
stall and T1j

stall for each read channel ri j in G
for CB communication component is given in Algorithm 10. Inputs of the
algorithm are the contention matrix R defined in Section 6.4.3, the number
m of processing tiles in the platform, the size srij of a data token transmitted
through a channel rij and latencies of the interconnect read and write arbiters
aR, hR, raR, aW , hW , raW . During one read and write access through the CB
before the transferring of data the corresponding arbiters first arbitrate the
requests for access, with associated arbitration latency aR and aW , and then
ensure the communication link, with associated handshaking latency hR and
hW . Additional latency raR and raW may occur on a master-slave link if there is
a re-arbitration, which happens when the requested slave unit is different from
the last granted slave unit. The parameter srij is obtained from the PPN model
of an application, while arbiters’ latencies aR, hR, raR, aW , hR, raW are obtained
from measurements or data-sheets. The contention on a CB component may
occur when at least two processes from at least two different tiles perform
read operation to the same communication memory at the same time.

Algorithm 10 gives the procedure to derive T
rij
stall and T1j

stall for the CB and

6.5. Energy Model 125

Algorithm 10: Procedure to derive T
rij
stall and T1j

stall for CB.
Input: Contention matrix R, number of tiles m, read channels rij of processes in G, size

of data tokens srij for each read channel rij, latencies of the communication
infrastructure aR, hR, raR, aW , hR, raW .

Output: Arrays 𝒯stall and 𝒯 1
stall of time parameters T

rij

stall and T1j
stall .

1 for 1 ≤ i ≤ m do
2 cj = 0;
3 for 1 ≤ j ≤ m do
4 cj = cj + Rij;

5 if cj > 1 then
6 cj = 1;

7 else
8 cj = 1;

9 for 1 ≤ j ≤ m do
10 qj = 0;
11 for 1 ≤ i ≤ m do
12 qj = qj + Rij;

13 if qj > 1 then
14 qj = 1;

15 else
16 qj = 0;

17 for 1 ≤ j ≤ m do
18 l = 0;

19 T1j
stall = 0;

20 for 1 ≤ i ≤ m do
21 if Rij = 1 then
22 L1bc

rij
= hR;

23 for rij such that πi → πj do
24 Lbc

rij
= (2 + srij) · hR + qj · 0.5 · raR + hW + qj · 0.5 · rW ;

25 Lwc
rij

= Lbc
rij
+ ci

n

∑
o=1,o ̸=j

Rio((2 + srij)(hR + aR) + qo · 0.5 · raR + hW +

aW + qo · 0.5 · rW);
26 T

rij

stall = (Lbc
rij
+ Lwc

rij
)/2;

27 L1wc
rij

= L1bc
rij

+ ci ·
n

∑
k=1,k ̸=j

Rik(hR + aR);

28 T1j
stall = T1j

stall + (L1bc
rij

+ L1wc
rij

)/2;
29 l = l + 1;

30 T1j
stall = T1j

stall/l;

31 return 𝒯stall , 𝒯 1
stall ;

126 Chapter 6. An Accurate Energy Modeling of Streaming Systems

it consists of three parts: 1) for each communication memory it is determined
whether contention may occur – lines 1 to 8; 2) for each processing tile it is
determined whether re-arbitration may occur – lines 9 to 16 in the algorithm;
and 3) the estimation of T

rij
stall and T1j

stall is performed at lines 17 to 31. Since the
circular round-robin arbitration pointer is statistically located in the middle of
the search space, we estimate T

rij
stall at line 26 in Algorithm 10 as the average

value of the best case stall time Lbc
rij

, line 24, and the worst case stall time Lwc
rij

,
line 25. The best case stall time is when only one tile wants to read from a
communication memory (so there is no arbitration latency aR, aW). The worst
case stall times are calculated by analyzing if contention may happen, and
if it may happen, then latencies hR, hW , aR, aW , raR, raW for all the tiles that
compete for the same communication memory are summed up and added to
the best case stall time. Recall that our platforms with shared communication
infrastructures use SW read/write primitives – see Section 6.4.2. During one
read SW primitive on a channel rij, srij + 2 reads and one write are performed
– see lines 1, 3, 6 and 8 in Figure 6.1(a), where srij corresponds to size_d in
Figure 6.1(a). Here, re-arbitration may happen only on the first read (out of
srij + 2 reads) and on a write. The frequency of the re-arbitration depends
on both the application structure and mapping. Here, if the re-arbitration
may happen we assume that the re-arbitration on a read access to the channel
happens every second time on the first read and every second time on a write,
that is, we multiply rR and rW by 0.5 in lines 24 and 25 in Algorithm 10. In the
case of data checking, there is no possibility for re-arbitration because waiting
for data represents the reading of the write counter (second read within the
SW read primitive). Since from the SystemC timing simulation we obtain
information about the blocking time on a tile basis, for estimation of T1j

stall , at
line 30, we sum up the average values L1

rij
of each channel that a tile accesses

for reading and divide the result by the number of the accessed channels for
reading by that tile.

Let us now analyze the ShB case. The contention may happen when at
least two processes from at least two different tiles perform read operation at
the same time to any of the communication memories in the platform. The
procedure to derive T

rij
stall and T1j

stall for ShB is given in Algorithm 11. The input
parameters are similar to the CB case with the difference that here we have
only one arbiter. First, we determine the number of tiles n_r that do not read
from any communication memory, lines 1 to 7 in Algorithm 11. Then in the
following lines, we estimate T

rij
stall and T1j

stall , line 14, 17, as the average of the
best case stall time Lbc

rij
, L1bc, line 12, 15, and the worst case stall time Lwc

rij
, L1wc,

6.6. Evaluation of the Energy Model 127

Algorithm 11: Procedure to derive T
rij
stall and T1j

stall for ShB.
Input: Contention matrix R, number of tiles m, read channels rij of processes in G, size

of data tokens srij for each read channel rij, latencies of the communication
infrastructure a, h.

Output: Arrays 𝒯stall and 𝒯 1
stall of time parameters T

rij

stall and T1j
stall .

1 n_r = 0;
2 for 1 ≤ j ≤ m do
3 y_rj = 0;
4 for 1 ≤ i ≤ m do
5 y_rj = y_rj + Rij;

6 if y_rj = 0 then
7 n_r = n_r + 1;

8 for 1 ≤ j ≤ m do
9 for 1 ≤ i ≤ m do

10 if Rij = 1 then
11 for rij such that πi → πj do
12 Lbc

rij
= (3 + srij)h;

13 Lwc
rij

= Lbc
rij
+ (n− n_r− 1)(3 + srij)(h + a);

14 T
rij

stall = (Lbc
rij
+ Lwc

rij
)/2;

15 L1bc = h;
16 L1wc = L1bc + (n− n_r− 1)(h + a);

17 T1j
stall = (L1bc + L1wc)/2;

18 return 𝒯stall , 𝒯 1
stall ;

line 13, 16. In the best case, only one tile wants to read from a communication
memory. By computing how many tiles (n− n_r − 1) read from any of the
communication memories, we determine how long the tile may wait in the
worst case.

6.6 Evaluation of the Energy Model

We evaluate our energy model, proposed in Section 6.5, by showing its ac-
curacy considering various application-to-platform mappings. The obtained
energy estimates by using our energy model are compared to real energy
measurements obtained from real implementations of the considered systems,
that is, applications, platforms and mappings. These real measurements are
100% accurate, thereby can be used as credible reference points. We show
that the proposed energy model is highly accurate for contention-free and

128 Chapter 6. An Accurate Energy Modeling of Streaming Systems

different kinds of non-contention-free communication components, differ-
ent applications and mappings, and different number of processing tiles in a
platform.

The proposed energy model is evaluated on MPSoC systems prototyped
on the Virtex-6 FPGA board ML605. Since the MicroBlaze [Mic] processor
is the only available processor type on Virtex-6, we use MPSoC platforms
with different number of MicroBlaze based tiles and with the AXI-4 [AXI]
interconnect as a non-contention-free communication component, and a P2P
interconnect as a contention-free communication component. We use the AXI
interconnect configured in CB and ShB modes with a round-robin arbitration
policy. The energy model is evaluated for two applications with SW read/write
primitives. The first application is a Sobel edge-detection filter and the second
application is a MJPEG video encoder. The PPN model for the Sobel consists
of 5 lightweight processes in terms of computation and 15 channels, thus
the Sobel application is data communication-dominant which introduces a
lot of contention on the CB and ShB. The MJPEG PPN model consists of 6
processes and 5 channels with much higher computation/communication
ratio, and hence the MJPEG is a computation-dominant application. Since
the maximum number of processes among these two applications is 6, we
performed energy estimates for platforms with 2 to 6 processing tiles in a
platform. The corresponding power consumptions of application-to-platform
mappings are measured by using the ML605 on-board power monitoring
device and an additional MicroBlaze processor which reads the corresponding
power measurements from the monitoring device. Instruction traces for the
applications are obtained by monitoring the Trace interface of a MicroBlaze
processor. All the platforms run at a frequency of 100 MHz.

Applying our model, described in Section 6.5, we estimate the energy
consumption for each application-to-platform mapping, specified in the first
column of Table 6.1, for three types of communication infrastructures – the CB,
ShB and P2P. In the first column, each mapping is denoted as app_ntiles_mmap,
where app is the application, ntiles is the number of tiles in the platform, and
mmap is the index of a mapping (as an application can be mapped onto a
platform in many possible ways). The Em columns contain the reference
values of energy consumption of application-to-platform mappings, obtained
by real measurements. The Ee columns contain the energy estimates of the
same application-to-platform mappings obtained by using our energy model.
The err column for each type of interconnect gives the energy estimation error
calculated as err = (Ee − Em)/Em · 100%. It can be seen from Table 6.1 that our
energy model is highly accurate for all three types of interconnects, with an

6.6. Evaluation of the Energy Model 129

Table 6.1: Accuracy of the energy model for CB, ShB and P2P MPSoC platforms

app→ pla CB ShB P2P
Em Ee err Em Ee err Em Ee err

[mWs] [mWs] [%] [mWs] [mWs] [%] [mWs] [mWs] [%]
Sobel_2_m1 59.9 61.66 +2.94 54.71 58.18 +6.34 53.95 52.34 -2.98
MJPEG_2_m1 48.82 51.96 +6.43 49.56 51.99 +4.9 58.82 56.98 -3.13
Sobel_3_m1 82.12 73.32 -10.72 68.75 73.67 +7.16 74.43 73.51 -1.24
Sobel_3_m2 69.74 66.63 -4.46 60.98 62.13 +1.89 49.62 50.42 +1.61
MJPEG_3_m1 44.1 42.73 -3.1 40.5 42.19 +4.17 43.64 44.39 +1.72
MJPEG_3_m2 76.74 69.95 -8.85 68.84 67.58 -1.83 86.56 79.67 -7.96
Sobel_4_m1 58.32 58.7 +0.66 52.18 56.86 +8.97 68.07 68.06 -0.01
MJPEG_4_m1 96.72 95.05 -1.73 93.8 93.69 -0.12 107.97 103.68 -3.97
Sobel_5_m1 71.5 71.03 -0.65 68.78 77.46 +12.62 79.52 85.87 +7.99
MJPEG_5_m1 125.63 121.65 -3.17 127.75 119.31 -6.61 137.94 126.84 -8.05
MJPEG_6_m1 77.4 77.15 -0.32 74.7 75.27 +0.76 84.42 79.32 -6.04

average energy estimation error of 4.34% and a standard deviation of 3.35%
among all the interconnection types.

In order to analyze the influence of the communication contention on the
energy consumption of an application-to-platform mapping, we perform the
energy estimation for each application-to-platform mapping with CB and ShB
interconnects without considering the contention in the energy model. The
results are given in Table 6.2. By comparing Table 6.1 and Table 6.2, we can
see, first, that if the contention is not considered, the energy of a mapping is
always underestimated, and second that the energy estimates are less accurate
than the estimates when considering the contention in the energy model.
Therefore, in our proposed energy model special attention is paid to modeling
the contention on communication infrastructures.

From the results shown in Table 6.1 it is clear that our energy model is very
accurate. Now, we would like to discuss the efficiency of our model in terms of
the time required to estimate the energy consumption of a single application-
to-platform mapping. For every mapping, listed in the first column of Table 6.1,
we measured the time needed for the energy estimation. The average model
evaluation time for a mapping is 2.5 minutes, where a few milliseconds are
needed for evaluation of the formulas in Section 6.5.1 and derivation of T

rij
stall

and T1j
stall parameters, and the rest of the time is spent on getting the Ttotal

BLKRDj

and Ttotal
BLKWRj

parameters. The derivation of the other model parameters is not
considered in this model evaluation time because they are derived only once
at the beginning when the model is calibrated and they are independent of the
mapping. The time efficiency of the proposed energy model is very good given
its high accuracy. Note that the majority of the evaluation time (99%) is spent

130 Chapter 6. An Accurate Energy Modeling of Streaming Systems

Table 6.2: Accuracy of the energy estimation when contention is not considered in the model

app→ pla CB ShB
Em Ee err Em Ee err

[mWs] [mWs] [%] [mWs] [mWs] [%]
Sobel_2_m1 59.9 47.2 -21.2 54.71 46.76 -14.53
MJPEG_2_m1 48.82 44.54 -8.77 49.56 45.5 -8.19
Sobel_3_m1 82.12 53.64 -34.68 68.75 55.05 -19.93
Sobel_3_m2 69.74 54.78 -21.45 60.98 53.04 -13.02
MJPEG_3_m1 44.1 38.65 -12.36 40.5 38.23 -5.6
MJPEG_3_m2 76.74 57.92 -24.53 68.84 54.82 -20.37
Sobel_4_m1 58.32 46.89 -19.6 52.18 45.56 -12.69
MJPEG_4_m1 96.72 82.27 -14.94 93.8 81.17 -13.46
Sobel_5_m1 71.5 54.86 -23.27 68.78 58.15 -15.46
MJPEG_5_m1 125.63 109.39 -12.93 127.75 106.79 -16.41
MJPEG_6_m1 77.4 71.51 -7.62 74.7 68.24 -8.65

in the SystemC cycle accurate simulation. We run cycle accurate SystemC
simulation for each mapping in order to obtain very accurate Ttotal

BLKRDj
and

Ttotal
BLKWRj

. We need as accurate estimation of these blocking times as possible
in order to have accurate energy estimates because these blocking times are
significant part of the total execution time of an application, and hence the
energy consumed in blocking could be also significant part of the total energy
consumed by a mapping.

6.7 Discussion

We have proposed, in this chapter, an accurate energy model for streaming ap-
plications modeled using the PPN model and mapped onto MPSoC platforms.
Special attention in our model is paid to the contention on non-contention-free
communication infrastructures which is important to estimate accurately the
energy consumption of a mapping. Experimental results on two applications
with very different computation and communication characteristics mapped
onto MPSoC platforms with different communication infrastructures show
that the proposed modeling and estimation methodology is highly accurate for
different kinds of applications, different kinds of communication infrastruc-
tures within MPSoC platforms, and various application-to-platform mappings.
On average, the energy estimation error is 4.34% with a standard deviation of
3.35% in comparison to real energy measurements for all considered commu-
nication infrastructures. The average model evaluation time of 2.5 minutes

6.7. Discussion 131

per single design point is very good given the high accuracy of the proposed
energy model.

132 Chapter 6. An Accurate Energy Modeling of Streaming Systems

Chapter 7

Summary and Conclusions

The continuous increase in user demands and very fast technology improve-
ment have led to more and more complex embedded streaming systems.
Nowadays, many embedded systems are based on Multi-Processor System-
on-Chip (MPSoC) platforms. In modern MPSoCs, it is desirable to execute
multiple applications, a mixture of streaming applications and control (hard)
real-time applications, simultaneously in order to efficiently utilize the re-
sources in an MPSoC. To deliver high-quality output of multiple running
applications, together with the ability to dynamically start/stop applications
without affecting other already running applications, streaming applications
have tight timing requirements that often make it necessary to treat them as
hard real-time applications. Moreover, given that the embedded systems are
very often battery-powered, a very important requirement in the design of
embedded streaming MPSoCs is the energy-efficiency. Designing such an
embedded system imposes several challenges: a streaming application should
be represented in a way that reveals the parallelism of the application, and it
should be mapped and scheduled on a platform such that the timing require-
ments are satisfied and the energy consumption minimized. To exploit the
parallel nature of MPSoC platforms, application behavior is usually specified
using a certain parallel Model of Computation (MoC), in which the application
is represented as parallel executing and communicating tasks. Finding an
efficient tasks-to-platform mapping, that is, spatial scheduling, and execution
order of tasks in time, that is, time scheduling, are the key issues for optimizing
the energy consumption and performance of these systems.

In Chapter 3, we have proposed a conversion approach that converts tasks
in a MoC to real-time tasks to solve the problem of providing timing guar-
antees for embedded streaming systems. In particular, we have devised an

134 Chapter 7. Summary and Conclusions

improved hard real-time scheduling approach to schedule streaming applica-
tions modeled as acyclic CSDF graphs on an MPSoC platform. Our proposed
approach converts each actor in a CSDF graph to a set of real-time periodic
tasks. The conversion enables application of many hard real-time scheduling
algorithms that offer fast calculation of the required number of processors for
scheduling the tasks. In addition, in Chapter 3, we have proposed a method to
reduce the graph latency when the converted tasks are scheduled as real-time
periodic tasks. Our proposed scheduling approach gives tighter guarantee
on the throughput and better processor utilization with acceptable increase
in terms of communication memory requirements when compared with re-
lated scheduling approaches. Although it has been shown in [TA10] that the
majority of streaming applications, around 90%, can be represented as acyclic
SDF graphs, extending the scheduling framework presented in Chapter 3 to
support streaming applications modeled as cyclic (C)SDF graphs deserves
further investigation.

To exploit efficiently the available parallelism in an MPSoC platform to
guarantee performance, energy, and timing constraints, the right amount of
parallelism available in a streaming application should be exposed. Given
that an initial application specification is often not the most suitable one for
the given MPSoC platform, in Chapter 4, we have proposed an unfolding
transformation approach to transform an initial application specification into an
alternative application specification which closely matches the given MPSoC
platform. Our proposed approach transforms an initial SDF graph to an al-
ternative CSDF graph which exploits the proper amount of parallelism in the
given homogeneous MPSoC to maximize the system performance and provide
timing guarantees. The tasks in the transformed graph are scheduled accord-
ing to our scheduling approach presented in Chapter 3. The experiments on a
set of real-life applications showed that our proposed approach delivers, in a
matter of minutes, solutions with smaller code size, smaller buffer sizes, and
shorter application latency while meeting the same performance and timing
requirements as the related approaches.

In Chapter 5, we have investigated and proposed an approach which uti-
lizes our unfolding transformation presented in Chapter 4 and our scheduling
framework given in Chapter 3 to better map the given streaming application to
the given MPSoC platform in terms of energy consumption under throughput
constraints. Our energy-minimization mapping approach applies the unfolding
transformation to an initial SDF graph to the extent that when combined
with Voltage-Frequency Scaling (VFS) techniques on cluster-heterogeneous
MPSoCs leads to an energy-efficient design which also meets throughput con-

135

strains. In particular, our proposed approach is a polynomial-time approach
which first determines a processor type for each task in an SDF graph such
that the throughput constraint is met, and second, determines a replication
factor for each task in an SDF graph to achieve load-balancing on processors of
the same type, which enables processors to run at a lower frequency, thereby
consuming less energy. The experimental evaluation performed on a set of
real-life streaming applications showed that our approach reduces energy
consumption by 66% on average among all the experiments while meeting the
same throughput requirement when compared to related energy minimization
mapping approaches.

Finally, in Chapter 6, we have proposed a novel very accurate energy model
for streaming applications modeled as PPN graphs and mapped onto tile-
based MPSoC platforms with distributed memory. The energy model is based
on the well-defined properties of the PPN application model. To guarantee
the accuracy of the energy model, values of important model parameters were
obtained by real measurements. The proposed energy model is applicable to
different types of processors and communication infrastructures within an
MPSoC platform. The energy model was evaluated on FPGA-based MPSoC
platforms against real measurements of the energy consumption from the
FPGA. The obtained energy consumption estimates are highly accurate with
an average error of 4% and a standard deviation of 3%. The average model
evaluation time per design point takes 2.5 minutes for the considered cases,
which is very good given the high accuracy of the model. The majority of the
evaluation time is spent in SystemC cycle accurate simulations, which are used
for obtaining the time parameters of the energy model. Although they lead to
highly accurate estimates of the energy consumption, these simulations might
lead to significantly high overall design space exploration time. Thus, to main-
tain the high estimation accuracy while providing time-efficient evaluation
of the energy consumption, a future work could combine our energy model
based on SystemC simulations with a model based on less accurate but faster
techniques to estimate the time parameters. The two energy models should
be properly interleaved in the design space exploration process to achieve an
adequate trade-off between the model accuracy and evaluation time. In that
case, our highly accurate energy model would be used to estimate the energy
consumption of a set of design points preselected by using the less energy
accurate model in the process of design space exploration.

136 Chapter 7. Summary and Conclusions

Bibliography

[ABD08] J. H. Anderson, V. Bud, and U. C. Devi. An edf-based
restricted-migration scheduling algorithm for multiprocessor
soft real-time systems. Real-Time Systems, 38(2):85–131, 2 2008.
doi:10.1007/s11241-007-9035-0.

[ABR+93] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority
pre-emptive scheduling. Software Eng. J., 8:284–292(8), 1993.

[ABRW91] N. C. Audsley, A. Burns, M. M. Richardson, and A. J. Wellings.
Hard real-time scheduling: The deadline-monotonic approach.
In Proceedings of 8th IEEE Workshop on Real-Time Operating Sys-
tems and Software, pages 133–137, 1991.

[ARM] ARM. AMBA Specifications. URL: https://www.arm.com/
products/system-ip/amba-specifications.php
[cited June 8, 2016].

[AS04] K. Albers and F. Slomka. An event stream driven approximation
for the analysis of real-time systems. In Proceedings of the 16th
Euromicro Conference on Real-Time Systems, ECRTS ’04, pages
187–195, Washington, DC, USA, 2004. IEEE Computer Soci-
ety. URL: http://dx.doi.org/10.1109/ECRTS.2004.4,
doi:10.1109/ECRTS.2004.4.

[AT06] B. Andersson and E. Tovar. Multiprocessor scheduling with
few preemptions. In Proceedings of the 12th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA ’06, pages 322–334. IEEE, 2006. doi:
10.1109/RTCSA.2006.45.

[AXI] ARM Ltd., AMBA AXI Protocol - Version: 2.0 : Specification,
2010. http://www.arm.com.

http://dx.doi.org/10.1007/s11241-007-9035-0
https://www.arm.com/products/system-ip/amba-specifications.php
https://www.arm.com/products/system-ip/amba-specifications.php
http://dx.doi.org/10.1109/ECRTS.2004.4
http://dx.doi.org/10.1109/ECRTS.2004.4
http://dx.doi.org/10.1109/RTCSA.2006.45
http://dx.doi.org/10.1109/RTCSA.2006.45

138 Bibliography

[AY03] H. Aydin and Q. Yang. Energy-aware partitioning for multi-
processor real-time systems. In Proceedings of the 17th Interna-
tional Symposium on Parallel and Distributed Processing, IPDPS
’03, pages 113.2–, Washington, DC, USA, 2003. IEEE Computer
Society. URL: http://dl.acm.org/citation.cfm?id=
838237.838347.

[Bam12] M. Bamakhrama, 2012. http://daedalus.liacs.nl/darts.

[BB04] D. Bertozzi and L. Benini. Xpipes: a network-on-chip archi-
tecture for gigascale systems-on-chip. Circuits and Systems
Magazine, IEEE, 4(2):18–31, September 2004. URL: http://dx.
doi.org/10.1109/mcas.2004.1330747, doi:10.1109/
mcas.2004.1330747.

[BCPV96] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.
Proportionate progress: A notion of fairness in resource allo-
cation. Algorithmica, 15(6):600–625, 1996. doi:10.1007/
BF01940883.

[BDM02] L. Benini and G. De Micheli. Networks on chips: A
new soc paradigm. Computer, 35(1):70–78, January 2002.
URL: http://dx.doi.org/10.1109/2.976921, doi:10.
1109/2.976921.

[BELP96] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-
static dataflow. IEEE Transactions on Signal Processing, 44(2):397–
408, 1996. doi:10.1109/78.485935.

[BF05] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of sporadic task systems. In Proceedings of the 26th
IEEE International Real-Time Systems Symposium, RTSS ’05, pages
321–329, Washington, DC, USA, 2005. IEEE Computer Soci-
ety. URL: http://dx.doi.org/10.1109/RTSS.2005.40,
doi:10.1109/RTSS.2005.40.

[BL13] D. Bui and E. A. Lee. Streamorph: A case for synthesizing
energy-efficient adaptive programs using high-level abstrac-
tions. In Proceedings of the Eleventh ACM International Conference
on Embedded Software, EMSOFT ’13, pages 20:1–20:10, Piscat-
away, NJ, USA, 2013. IEEE Press. URL: http://dl.acm.
org/citation.cfm?id=2555754.2555774.

http://dl.acm.org/citation.cfm?id=838237.838347
http://dl.acm.org/citation.cfm?id=838237.838347
http://dx.doi.org/10.1109/mcas.2004.1330747
http://dx.doi.org/10.1109/mcas.2004.1330747
http://dx.doi.org/10.1109/mcas.2004.1330747
http://dx.doi.org/10.1109/mcas.2004.1330747
http://dx.doi.org/10.1007/BF01940883
http://dx.doi.org/10.1007/BF01940883
http://dx.doi.org/10.1109/2.976921
http://dx.doi.org/10.1109/2.976921
http://dx.doi.org/10.1109/2.976921
http://dx.doi.org/10.1109/78.485935
http://dx.doi.org/10.1109/RTSS.2005.40
http://dx.doi.org/10.1109/RTSS.2005.40
http://dl.acm.org/citation.cfm?id=2555754.2555774
http://dl.acm.org/citation.cfm?id=2555754.2555774

Bibliography 139

[BMAB16] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo. Energy-
aware scheduling for real-time systems: A survey. ACM
Trans. Embed. Comput. Syst., 15(1):7:1–7:34, January 2016.
URL: http://doi.acm.org/10.1145/2808231, doi:10.
1145/2808231.

[BMKdD13] B. Bodin, A. Munier-Kordon, and B. Dupont de Dinechin. Peri-
odic Schedules for Cyclo-Static Dataflow. In Proceedings of
the 11th IEEE Symposium on Embedded Systems for Real-Time
Multimedia, ESTIMedia 2013, pages 105–114, 2013. doi:
10.1109/ESTIMedia.2013.6704509.

[BMMKM10] M. Benazouz, O. Marchetti, A. Munier Kordon, and T. Michel.
A new method for minimizing buffer sizes for cyclo-static
dataflow graphs. In Proceedings of the 8th IEEE Symposium
on Embedded Systems for Real-Time Multimedia, ESTIMedia 2010,
pages 11–20, 2010.

[BRH90] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and
complexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor. Real-Time Systems, 2:301–324,
1990. doi:10.1007/BF01995675.

[BS11] M. Bamakhrama and T. Stefanov. Hard-real-time scheduling of
data-dependent tasks in embedded streaming applications. In
Proceedings of the ninth ACM International Conference on Embedded
Software, EMSOFT ’11, pages 195–204, New York, NY, USA,
2011. ACM. doi:10.1145/2038642.2038672.

[BS13] M. A. Bamakhrama and T. P. Stefanov. On the hard-real-time
scheduling of embedded streaming applications. Design Au-
tomation for Embedded Systems, 17(2):221–249, 2013. URL: http:
//dx.doi.org/10.1007/s10617-012-9086-x, doi:10.
1007/s10617-012-9086-x.

[BTM00] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. In
Proc. of ISCA, pages 83–94, 2000.

[BTV12] A. Bouakaz, J.-P. Talpin, and J. Vitek. Affine Data-Flow Graphs
for the Synthesis of Hard Real-Time Applications. In Proceedings
of the 12th International Conference on Application of Concurrency

http://doi.acm.org/10.1145/2808231
http://dx.doi.org/10.1145/2808231
http://dx.doi.org/10.1145/2808231
http://dx.doi.org/10.1109/ESTIMedia.2013.6704509
http://dx.doi.org/10.1109/ESTIMedia.2013.6704509
http://dx.doi.org/10.1007/BF01995675
http://dx.doi.org/10.1145/2038642.2038672
http://dx.doi.org/10.1007/s10617-012-9086-x
http://dx.doi.org/10.1007/s10617-012-9086-x
http://dx.doi.org/10.1007/s10617-012-9086-x
http://dx.doi.org/10.1007/s10617-012-9086-x

140 Bibliography

to System Design, ACSD ’12, pages 183–192, Los Alamitos, CA,
USA, 2012. IEEE Computer Society. doi:10.1109/ACSD.
2012.16.

[BVC04] N. Banerjee, P. Vellanki, and K.S. Chatha. A power and per-
formance model for network-on-chip architectures. In Proc. of
DATE - Volume 2, 2004.

[BZNS12] M. A. Bamakhrama, J. Teddy Zhai, H. Nikolov, and T. Ste-
fanov. A methodology for automated design of hard-real-time
embedded streaming systems. In Proceedings of the 15th Design,
Automation Test in Europe Conference and Exhibition, DATE 2012,
pages 941–946, 2012. doi:10.1109/DATE.2012.6176632.

[BZZ04] A. Bona, V. Zaccaria, and R. Zafalon. System level power
modeling and simulation of high-end industrial network-on-
chip. In Proc. of DATE - Volume 3, 2004.

[C+10] X. Chen et al. Performance and power modeling in a multi-
programmed multi-core environment. In Proc. of DAC, pages
813–818, 2010.

[CAC] HP Labs, CACTI. http://www.hpl.hp.com/research/cacti.

[CGJ96] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Ap-
proximation algorithms for bin packing: A survey. In Dorit S.
Hochbaum, editor, Approximation algorithms for NP-hard prob-
lems, pages 46–93. PWS Publishing Co., Boston, MA, USA,
1996.

[CKR14] A. Colin, A. Kandhalu, and R. Rajkumar. Energy-efficient allo-
cation of real-time applications onto heterogeneous processors.
In RTSCA, 2014.

[CRJ06] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-time
scheduling algorithm for multiprocessors. In Proceedings of the
27th IEEE International Real-Time Systems Symposium, RTSS ’06,
pages 101–110, Washington, DC, USA, 2006. IEEE Computer
Society. URL: http://dx.doi.org/10.1109/RTSS.2006.
10, doi:10.1109/RTSS.2006.10.

[DB11] R. I. Davis and A. Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM Computing Surveys, 43(4):35:1–
35:44, 2011. doi:10.1145/1978802.1978814.

http://dx.doi.org/10.1109/ACSD.2012.16
http://dx.doi.org/10.1109/ACSD.2012.16
http://dx.doi.org/10.1109/DATE.2012.6176632
http://dx.doi.org/10.1109/RTSS.2006.10
http://dx.doi.org/10.1109/RTSS.2006.10
http://dx.doi.org/10.1109/RTSS.2006.10
http://dx.doi.org/10.1145/1978802.1978814

Bibliography 141

[DK89] M. L. Dertouzos and A. Ka-Lau Mok. Multiprocessor on-
line scheduling of hard-real-time tasks. IEEE Transactions on
Software Engineering, 15(12):1497–1506, 1989. doi:10.1109/
32.58762.

[DSB+13] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and
H. Corporaal. Throughput-constrained dvfs for scenario-aware
dataflow graphs. In RTAS, 2013.

[EBSA+11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger. Dark silicon and the end of multicore scal-
ing. In Proceedings of the 38th Annual International Symposium on
Computer Architecture, ISCA ’11, pages 365–376, New York, NY,
USA, 2011. ACM. URL: http://doi.acm.org/10.1145/
2000064.2000108, doi:10.1145/2000064.2000108.

[EJ09] C. Ebert and C. Jones. Embedded Software: Facts, Figures, and
Future. IEEE Computer, 42(4):42–52, 2009. doi:10.1109/MC.
2009.118.

[Fea96a] P. Feautrier. Automatic Parallelization in the Polytope Model.
In Guy-René Perrin and Alain Darte, editors, The Data Parallel
Programming Model: Foundations, HPF Realization, and Scientific
Applications, volume 1132, pages 79–103. Springer Berlin Hei-
delberg, 1996. doi:10.1007/3-540-61736-1_44.

[Fea96b] P. Feautrier. Automatic parallelization in the polytope model.
In The Data Parallel Programming Model. Springer-Verlag, 1996.

[Fis07] N. Fisher. The multiprocessor real-time scheduling of general task
systems. PhD thesis, Department of Computer Science, The
University of North Carolina at Chapel Hill, Chapel Hill, NC.,
2007.

[FKBS11] S. M. Farhad, Y. Ko, B. Burgstaller, and B. Scholz. Orchestration
by approximation: Mapping stream programs onto multicore
architectures. In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, pages 357–368, New York, NY,
USA, 2011. ACM. URL: http://doi.acm.org/10.1145/
1950365.1950406, doi:10.1145/1950365.1950406.

http://dx.doi.org/10.1109/32.58762
http://dx.doi.org/10.1109/32.58762
http://doi.acm.org/10.1145/2000064.2000108
http://doi.acm.org/10.1145/2000064.2000108
http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1109/MC.2009.118
http://dx.doi.org/10.1109/MC.2009.118
http://dx.doi.org/10.1007/3-540-61736-1_44
http://doi.acm.org/10.1145/1950365.1950406
http://doi.acm.org/10.1145/1950365.1950406
http://dx.doi.org/10.1145/1950365.1950406

142 Bibliography

[fSI] International Technology Roadmap for Semiconduc-
tors (ITRS). ITRS Reports. URL: http://www.itrs2.
net/itrs-reports.html [cited June 12, 2016].

[GB14] M. Grant and S. Boyd. CVX: Matlab software for disciplined
convex programming, ver. 2.1, 2014.

[GDR05] K. Goossens, J. Dielissen, and A. Rădulescu. Æthereal Network
on Chip: Concepts, Architectures, and Implementations. IEEE
Design and Test of Computers, 22(5):414–421, 2005. doi:10.
1109/MDT.2005.99.

[GGS+06] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten,
B. D. Theelen, M. R. Mousavi, A. J. M. Moonen, and
M. J. G. Bekooij. Throughput analysis of synchronous data
flow graphs. In Proceedings of the Sixth International Confer-
ence on Application of Concurrency to System Design, ACSD ’06,
pages 25–36, Washington, DC, USA, 2006. IEEE Computer Soci-
ety. URL: http://dx.doi.org/10.1109/ACSD.2006.33,
doi:10.1109/ACSD.2006.33.

[GHP+09] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov,
D. D. Gajski, and J. Teich. Electronic System-Level Synthe-
sis Methodologies. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 28(10):1517–1530, 2009.
doi:10.1109/TCAD.2009.2026356.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. WH Freeman & Co.,
New York, NY, USA, 1979.

[Gre11] P. Greenhalgh. Big.LITTLE processing with ARM Cortex-A15
& Cortex-A7, 2011.

[HA06] P. Holman and J. H. Anderson. Group-based Pfair scheduling.
Real-Time Systems, 32(1–2):125–168, 2006. doi:doi:10.1007/
s11241-006-4687-8.

[HGWB13] J. P. H. M. Hausmans, S. J. Geuns, M. H. Wiggers, and
M. J.G. Bekooij. Two parameter workload characterization
for improved dataflow analysis accuracy. In Proceedings of the
IEEE 19th Real-Time and Embedded Technology and Applications

http://www.itrs2.net/itrs-reports.html
http://www.itrs2.net/itrs-reports.html
http://dx.doi.org/10.1109/MDT.2005.99
http://dx.doi.org/10.1109/MDT.2005.99
http://dx.doi.org/10.1109/ACSD.2006.33
http://dx.doi.org/10.1109/ACSD.2006.33
http://dx.doi.org/10.1109/TCAD.2009.2026356
http://dx.doi.org/doi:10.1007/s11241-006-4687-8
http://dx.doi.org/doi:10.1007/s11241-006-4687-8

Bibliography 143

Symposium, RTAS ’13, pages 117–126, Los Alamitos, CA, USA,
2013. IEEE Computer Society. doi:10.1109/RTAS.2013.
6531085.

[HLF+11] C.-W. Hsu, J.-L. Liao, S.-C. Fang, C.-C. Weng, S.-Y. Huang,
W.-T. Hsieh, and J.-C. Yeh. Powerdepot: Integrating ip-based
power modeling with esl power analysis for multi-core soc
designs. In Proceedings of the 48th Design Automation Con-
ference, DAC ’11, pages 47–52, New York, NY, USA, 2011.
ACM. URL: http://doi.acm.org/10.1145/2024724.
2024736, doi:10.1145/2024724.2024736.

[HM07] S. Herbert and D. Marculescu. Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors. In Proceedings
of the 2007 International Symposium on Low Power Electronics and
Design, ISLPED ’07, pages 38–43, New York, NY, USA, 2007.
ACM. URL: http://doi.acm.org/10.1145/1283780.
1283790, doi:10.1145/1283780.1283790.

[HMGM13] P. Huang, O. Moreira, K. Goossens, and A. Molnos.
Throughput-constrained voltage and frequency scaling for
real-time heterogeneous multiprocessors. In Proceedings
of the 28th Annual ACM Symposium on Applied Computing,
SAC ’13, pages 1517–1524, New York, NY, USA, 2013.
ACM. URL: http://doi.acm.org/10.1145/2480362.
2480645, doi:10.1145/2480362.2480645.

[HNP+15] S. Holmbacka, E. Nogues, M. Pelcat, S. Lafond, D. Menard, and
J. Lilius. Energy-awareness and performance management with
parallel dataflow applications. J. of Signal Processing Systems,
pages 1–16, 2015.

[HP06] J. L. Hennessy and D. A. Patterson. Computer Architecture,
Fourth Edition: A Quantitative Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2006.

[IBM12] IBM ILOG CPLEX Optimization Studio V12.4, 2012.

[Int11] The International Technology Roadmap for Semiconduc-
tors (ITRS), System Drivers, 2011. Available on:
http://www.itrs.net.

http://dx.doi.org/10.1109/RTAS.2013.6531085
http://dx.doi.org/10.1109/RTAS.2013.6531085
http://doi.acm.org/10.1145/2024724.2024736
http://doi.acm.org/10.1145/2024724.2024736
http://dx.doi.org/10.1145/2024724.2024736
http://doi.acm.org/10.1145/1283780.1283790
http://doi.acm.org/10.1145/1283780.1283790
http://dx.doi.org/10.1145/1283780.1283790
http://doi.acm.org/10.1145/2480362.2480645
http://doi.acm.org/10.1145/2480362.2480645
http://dx.doi.org/10.1145/2480362.2480645

144 Bibliography

[Joh74] D. S. Johnson. Fast algorithms for bin packing. Journal
of Computer and System Sciences, 8(3):272–314, 1974. doi:
10.1016/S0022-0000(74)80026-7.

[JTW05] A. Jerraya, H. Tenhunen, and W. Wolf. Multiprocessor Systems-
on-Chips. IEEE Computer, 38(7):36–40, 2005. doi:10.1109/
MC.2005.231.

[Kah13] A. B. Kahng. The itrs design technology and sys-
tem drivers roadmap: Process and status. In Pro-
ceedings of the 50th Annual Design Automation Conference,
DAC ’13, pages 34:1–34:6, New York, NY, USA, 2013.
ACM. URL: http://doi.acm.org/10.1145/2463209.
2488776, doi:10.1145/2463209.2488776.

[KLPS09] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. Orion 2.0: A fast
and accurate noc power and area model for early-stage design
space exploration. In Proc. of DATE, pages 423–428, 2009.

[KM08] M. Kudlur and S. Mahlke. Orchestrating the execution of
stream programs on multicore platforms. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’08, pages 114–124, New York, NY,
USA, 2008. ACM. URL: http://doi.acm.org/10.1145/
1375581.1375596, doi:10.1145/1375581.1375596.

[KMN+00] K.and Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design: orthogonal-
ization of concerns and platform-based design. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
19(12):1523–1543, 2000. doi:10.1109/43.898830.

[KS97] A. Khemka and R.K. Shyamasundar. An optimal multi-
processor real-time scheduling algorithm. J. Parallel Dis-
trib. Comput., 43(1):37–45, May 1997. URL: http://
dx.doi.org/10.1006/jpdc.1997.1327, doi:10.1006/
jpdc.1997.1327.

[KY07] S. Kato and N. Yamasaki. Real-time scheduling with task
splitting on multiprocessors. In Proceedings of the 13th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications, RTCSA ’07, pages 441–450. IEEE, 2007.
doi:10.1109/RTCSA.2007.61.

http://dx.doi.org/10.1016/S0022-0000(74)80026-7
http://dx.doi.org/10.1016/S0022-0000(74)80026-7
http://dx.doi.org/10.1109/MC.2005.231
http://dx.doi.org/10.1109/MC.2005.231
http://doi.acm.org/10.1145/2463209.2488776
http://doi.acm.org/10.1145/2463209.2488776
http://dx.doi.org/10.1145/2463209.2488776
http://doi.acm.org/10.1145/1375581.1375596
http://doi.acm.org/10.1145/1375581.1375596
http://dx.doi.org/10.1145/1375581.1375596
http://dx.doi.org/10.1109/43.898830
http://dx.doi.org/10.1006/jpdc.1997.1327
http://dx.doi.org/10.1006/jpdc.1997.1327
http://dx.doi.org/10.1006/jpdc.1997.1327
http://dx.doi.org/10.1006/jpdc.1997.1327
http://dx.doi.org/10.1109/RTCSA.2007.61

Bibliography 145

[LB03] G. Lipari and E. Bini. Resource partitioning among real-time
applications. In Proceedings of 15th the Euromicro Conference on
Real-Time Systems, ECRTS ’03, pages 151–158, 2003.

[Lee09] W. Y. Lee. Energy-saving dvfs scheduling of multiple pe-
riodic real-time tasks on multi-core processors. In Proceed-
ings of the 2009 13th IEEE/ACM International Symposium on Dis-
tributed Simulation and Real Time Applications, DS-RT ’09, pages
216–223, Washington, DC, USA, 2009. IEEE Computer Soci-
ety. URL: http://dx.doi.org/10.1109/DS-RT.2009.
12, doi:10.1109/DS-RT.2009.12.

[Leu89] J. Y. T. Leung. A new algorithm for scheduling pe-
riodic, real-time tasks. Algorithmica, 4(1):209–219, 1989.
URL: http://dx.doi.org/10.1007/BF01553887, doi:
10.1007/BF01553887.

[LJSM04] J. Laurent, N. Julien, E. Senn, and E. Martin. Functional level
power analysis: An efficient approach for modeling the power
consumption of complex processors. In Proceedings of the Confer-
ence on Design, Automation and Test in Europe - Volume 1, DATE
’04, pages 10666–, Washington, DC, USA, 2004. IEEE Computer
Society. URL: http://dl.acm.org/citation.cfm?id=
968878.968987.

[LL73] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment. Journal of the
ACM, 20(1):46–61, 1973. doi:10.1145/321738.321743.

[LM87] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, 1987. doi:10.1109/
PROC.1987.13876.

[LPB04] M. Loghi, M. Poncino, and L. Benini. Cycle-accurate power
analysis for multiprocessor systems-on-a-chip. In Proc. of ACM
Great Lakes symposium on VLSI, pages 406–410, 2004.

[LSCS15] D. Liu, J. Spasic, G. Chen, and T. Stefanov. Energy-efficient
mapping of real-time streaming applications on cluster hetero-
geneous mpsocs. In ESTIMedia, 2015.

[LSZ+14] D. Liu, J. Spasic, J. T. Zhai, T. Stefanov, and G. Chen. Re-
source optimization for csdf-modeled streaming applications

http://dx.doi.org/10.1109/DS-RT.2009.12
http://dx.doi.org/10.1109/DS-RT.2009.12
http://dx.doi.org/10.1109/DS-RT.2009.12
http://dx.doi.org/10.1007/BF01553887
http://dx.doi.org/10.1007/BF01553887
http://dx.doi.org/10.1007/BF01553887
http://dl.acm.org/citation.cfm?id=968878.968987
http://dl.acm.org/citation.cfm?id=968878.968987
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/PROC.1987.13876

146 Bibliography

with latency constraints. In Proceedings of the Conference on
Design, Automation & Test in Europe, DATE ’14, pages 188:1–
188:6, 3001 Leuven, Belgium, Belgium, 2014. European Design
and Automation Association. URL: http://dl.acm.org/
citation.cfm?id=2616606.2616837.

[LW82] J. Y.-T. Leung and J. Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks. Per-
formance Evaluation, 2(4):237–250, 1982. doi:10.1016/
0166-5316(82)90024-4.

[LW13] D. Li and J. Wu. Energy-aware scheduling for acyclic syn-
chronous data flows on multiprocessors. Journal of Interconnec-
tion Networks, 14(4), 2013.

[Mar06] P. Marwedel. Embedded System Design. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[MB07] O. M. Moreira and M. J. G. Bekooij. Self-Timed Schedul-
ing Analysis for Real-Time Applications. EURASIP Journal on
Advances in Signal Processing, 2007(1), 2007. doi:10.1155/
2007/83710.

[Mic] Xilinx Inc., MicroBlaze Soft Processor Core.
http://www.xilinx.com.

[Mit15] T. Mitra. Heterogeneous multi-core architectures. IPSJ
Transactions on System LSI Design Methodology, 8:51–62, 2015.
doi:10.2197/ipsjtsldm.8.51.

[NMM+11] A. Nelson, O. Moreira, A. Molnos, S. Stuijk, B. T. Nguyen,
and K. Goossens. Power minimisation for real-time dataflow
applications. In DSD, 2011.

[NSD08] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and
Automated Multiprocessor System Design, Programming, and
Implementation. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 27(3):542–555, 2008. doi:
10.1109/TCAD.2007.911337.

[NVI15] NVIDIA. NVIDIA Tegra X1: NVIDIA’S New Mobile Superchip,
2015.

http://dl.acm.org/citation.cfm?id=2616606.2616837
http://dl.acm.org/citation.cfm?id=2616606.2616837
http://dx.doi.org/10.1016/0166-5316(82)90024-4
http://dx.doi.org/10.1016/0166-5316(82)90024-4
http://dx.doi.org/10.1155/2007/83710
http://dx.doi.org/10.1155/2007/83710
http://dx.doi.org/10.2197/ipsjtsldm.8.51
http://dx.doi.org/10.1109/TCAD.2007.911337
http://dx.doi.org/10.1109/TCAD.2007.911337

Bibliography 147

[ODR] ODROID. http://www.hardkernel.com.

[OH04] H. Oh and S. Ha. Fractional Rate Dataflow Model for Efficient
Code Synthesis. The Journal of VLSI Signal Processing, 37:41–51,
2004. doi:10.1023/B:VLSI.0000017002.91721.0e.

[PDG06] J. Parkhurst, J. Darringer, and B. Grundmann. From single core
to multi-core: Preparing for a new exponential. In Proceedings
of the 2006 IEEE/ACM International Conference on Computer-aided
Design, ICCAD ’06, pages 67–72, New York, NY, USA, 2006.
ACM. URL: http://doi.acm.org/10.1145/1233501.
1233516, doi:10.1145/1233501.1233516.

[PMN+09] R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun, M. Caccamo,
and L. Sha. Handling mixed-criticality in SoC-based real-time
embedded systems. In Proceedings of the 7th ACM International
Conference on Embedded Software, EMSOFT ’09, pages 235–244,
New York, NY, USA, 2009. ACM. doi:10.1145/1629335.
1629367.

[PP12] R. Piscitelli and A. D. Pimentel. A signature-based power
model for mpsoc on fpga. VLSI Design J., 2012(6), January 2012.

[PPKD10] S. Pasricha, Y.-H. Park, F. J. Kurdahi, and N. Dutt. Capps:
A framework for power-performance tradeoffs in bus-matrix-
based on-chip communication architecture synthesis. IEEE
Trans. on VLSI Systems, 18:209–221, February 2010.

[PZMA04] O. U. Pereira Zapata and P. Mejía Alvarez. EDF and RM mul-
tiprocessor scheduling algorithms: Survey and performance
evaluation. Technical Report CINVESTAV-CS-RTG-02, 2004.

[QKUP00] G. Qu, N. Kawabe, K. Usami, and M. Potkonjak. Function-
level power estimation methodology for microprocessors. In
Proceedings of the 37th Annual Design Automation Conference,
DAC ’00, pages 810–813, New York, NY, USA, 2000. ACM.
URL: http://doi.acm.org/10.1145/337292.337786,
doi:10.1145/337292.337786.

[RAN+11] S.K. Rethinagiri, R.B. Atitallah, S. Niar, E. Senn, and J.-L.
Dekeyser. Hybrid system level power consumption estimation
for fpga-based mpsoc. In Proc. of IEEE ICCD, pages 239–246,
2011.

http://dx.doi.org/10.1023/B:VLSI.0000017002.91721.0e
http://doi.acm.org/10.1145/1233501.1233516
http://doi.acm.org/10.1145/1233501.1233516
http://dx.doi.org/10.1145/1233501.1233516
http://dx.doi.org/10.1145/1629335.1629367
http://dx.doi.org/10.1145/1629335.1629367
http://doi.acm.org/10.1145/337292.337786
http://dx.doi.org/10.1145/337292.337786

148 Bibliography

[Sama] Samsung. Exynos 8 Octa (8890). URL: http:
//www.samsung.com/semiconductor/minisite/
Exynos/w/solution/mod_ap/8890/ [cited June 8, 2016].

[Samb] Samsung. http://www.samsung.com.

[SC01] A. Sinha and A. P. Chandrakasan. Jouletrack - a web based tool
for software energy profiling. In Proc. of DAC, pages 220–225,
2001.

[SDK13] A. K. Singh, A. Das, and A. Kumar. Energy optimization by
exploiting execution slacks in streaming applications on multi-
processor systems. In Proceedings of the 50th Annual Design Au-
tomation Conference, DAC ’13, pages 115:1–115:7, New York, NY,
USA, 2013. ACM. URL: http://doi.acm.org/10.1145/
2463209.2488875, doi:10.1145/2463209.2488875.

[SEL08] I. Shin, A Easwaran, and I. Lee. Hierarchical scheduling frame-
work for virtual clustering of multiprocessors. In Proceedings of
20th the Euromicro Conference on Real-Time Systems, ECRTS ’08,
pages 181–190, 2008. doi:10.1109/ECRTS.2008.28.

[SGB06] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF for free. In Proc.
of ACSD, pages 276–278, 2006.

[SGB08] S. Stuijk, M. Geilen, and T. Basten. Throughput-buffering
trade-off exploration for cyclo-static and synchronous dataflow
graphs. IEEE Trans. on Computers, 57(10):1331–1345, 2008.

[SGTB11] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic
applications. In International Conference on Embedded Computer
Systems (SAMOS), 2011, pages 404–411, July 2011. doi:10.
1109/SAMOS.2011.6045491.

[SJE11] M. Sackmann, D. Janssens, and P. Ebraert. A fast heuristic for
scheduling parallel software with respect to energy and timing
constraints. 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum, 00:1397–1406,
2011. doi:doi.ieeecomputersociety.org/10.1109/
IPDPS.2011.284.

http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mod_ap/8890/
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mod_ap/8890/
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mod_ap/8890/
http://doi.acm.org/10.1145/2463209.2488875
http://doi.acm.org/10.1145/2463209.2488875
http://dx.doi.org/10.1145/2463209.2488875
http://dx.doi.org/10.1109/ECRTS.2008.28
http://dx.doi.org/10.1109/SAMOS.2011.6045491
http://dx.doi.org/10.1109/SAMOS.2011.6045491
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/IPDPS.2011.284
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/IPDPS.2011.284

Bibliography 149

[SLA12] A. Stulova, R. Leupers, and G. Ascheid. Throughput driven
transformations of synchronous data flows for mapping to het-
erogeneous MPSoCs. In ICSAMOS, pages 144–151. IEEE, 2012.

[SLCS15] J. Spasic, D. Liu, E. Cannella, and T. Stefanov. Improved
hard real-time scheduling of csdf-modeled streaming applica-
tions. In Proceedings of the 10th International Conference on Hard-
ware/Software Codesign and System Synthesis, CODES ’15, pages
65–74, Piscataway, NJ, USA, 2015. IEEE Press. URL: http:
//dl.acm.org/citation.cfm?id=2830840.2830848.

[SLCS16] J. Spasic, D. Liu, E. Cannella, and T. Stefanov. On the improved
hard real-time scheduling of cyclo-static dataflow. ACM Trans-
actions on Embedded Computing Systems, 15(4):68:1–68:26, August
2016. URL: http://doi.acm.org/10.1145/2932188,
doi:10.1145/2932188.

[SLS16a] J. Spasic, D. Liu, and T. Stefanov. Energy-efficient mapping
of real-time applications on heterogeneous mpsocs using task
replication. In Proceedings of the 11th International Conference
on Hardware/Software Codesign and System Synthesis, CODES
’16, pages 65–74, Piscataway, NJ, USA, 2016. IEEE Press.
URL: http://dl.acm.org/citation.cfm?id=2830840.
2830848.

[SLS16b] J. Spasic, D. Liu, and T. Stefanov. Exploiting resource-
constrained parallelism in hard real-time streaming applica-
tions. In 2016 Design, Automation & Test in Europe Confer-
ence & Exhibition, DATE 2016, Dresden, Germany, March 14-18,
2016, pages 954–959, 2016. URL: http://ieeexplore.ieee.
org/xpl/freeabs_all.jsp?arnumber=7459445.

[SRH+11] M. Streubuhr, R. Rosales, R. Hasholzner, C. Haubelt, and J. Te-
ich. Esl power and performance estimation for heterogeneous
mpsocs using systemc. In Proc. of the Forum on Specification,
Verification and Design Languages, pages 1–8, 2011.

[SS13] J. Spasic and T. Stefanov. An accurate energy model for
streaming applications mapped on mpsoc platforms. In 2013
International Conference on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, SAMOS 2013, Agios Kon-
stantinos, Samos Island, Greece, July 15-18, 2013, pages 205–212,

http://dl.acm.org/citation.cfm?id=2830840.2830848
http://dl.acm.org/citation.cfm?id=2830840.2830848
http://doi.acm.org/10.1145/2932188
http://dx.doi.org/10.1145/2932188
http://dl.acm.org/citation.cfm?id=2830840.2830848
http://dl.acm.org/citation.cfm?id=2830840.2830848
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7459445
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7459445

150 Bibliography

2013. URL: http://dx.doi.org/10.1109/SAMOS.2013.
6621124, doi:10.1109/SAMOS.2013.6621124.

[TA10] W. Thies and S. Amarasinghe. An empirical characterization of
stream programs and its implications for language and compiler
design. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’10, pages
365–376, New York, NY, USA, 2010. ACM. doi:10.1145/
1854273.1854319.

[TNS+07] M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Er-
bas, S. Polstra, and E. F. Deprettere. A framework for rapid
system-level exploration, synthesis, and programming of mul-
timedia mp-socs. In Proceedings of the 5th IEEE/ACM Interna-
tional Conference on Hardware/Software Codesign and System Syn-
thesis, CODES+ISSS ’07, pages 9–14, New York, NY, USA, 2007.
ACM. URL: http://doi.acm.org/10.1145/1289816.
1289823, doi:10.1145/1289816.1289823.

[vHHK10] S. van Haastregt, E. Halm, and B. Kienhuis. Cost modeling and
cycle-accurate co-simulation of heterogeneous multiprocessor
systems. In Proc.of DATE, pages 1297–1300, 2010.

[VJD+07] A. Varma, B. Jacob, E. Debes, I. Kozintsev, and P. Klein. Accu-
rate and fast system-level power modeling: An xscale-based
case study. ACM Trans. Embed. Comput. Syst., 6(4), Septem-
ber 2007. URL: http://doi.acm.org/10.1145/1274858.
1274864, doi:10.1145/1274858.1274864.

[VNS07] S. Verdoolaege, H. Nikolov, and T. Stefanov. pn: a tool for
improved derivation of process networks. EURASIP Journal on
Embedded Systems, 2007(1):19–19, 2007. doi:10.1155/2007/
75947.

[WBJS07] M. Wiggers, M. Bekooij, P. G. Jansen, and G. J. M. Smit. Effi-
cient computation of buffer capacities for cyclo-static real-time
systems with back-pressure. In IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 281–292. IEEE
Computer Society, 2007.

[WYK+10] Y.-H. Wei, C.-Y. Yang, T.-W. Kuo, S.-H. Hung, and Y.-H. Chu.
Energy-efficient real-time scheduling of multimedia tasks on

http://dx.doi.org/10.1109/SAMOS.2013.6621124
http://dx.doi.org/10.1109/SAMOS.2013.6621124
http://dx.doi.org/10.1109/SAMOS.2013.6621124
http://dx.doi.org/10.1145/1854273.1854319
http://dx.doi.org/10.1145/1854273.1854319
http://doi.acm.org/10.1145/1289816.1289823
http://doi.acm.org/10.1145/1289816.1289823
http://dx.doi.org/10.1145/1289816.1289823
http://doi.acm.org/10.1145/1274858.1274864
http://doi.acm.org/10.1145/1274858.1274864
http://dx.doi.org/10.1145/1274858.1274864
http://dx.doi.org/10.1155/2007/75947
http://dx.doi.org/10.1155/2007/75947

Bibliography 151

multi-core processors. In Proceedings of the 2010 ACM Symposium
on Applied Computing, SAC ’10, pages 258–262, New York, NY,
USA, 2010. ACM. URL: http://doi.acm.org/10.1145/
1774088.1774142, doi:10.1145/1774088.1774142.

[XKD12] H. Xu, F. Kong, and Q. Deng. Energy minimizing for par-
allel real-time tasks based on level-packing. In Proceedings
of the 2012 IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA ’12, pages
98–103, Washington, DC, USA, 2012. IEEE Computer Soci-
ety. URL: http://dx.doi.org/10.1109/RTCSA.2012.
10, doi:10.1109/RTCSA.2012.10.

[Yue91] M. Yue. A simple proof of the inequality FFD (L) ≤
11/9 OPT (L) + 1, ∀L for the FFD bin-packing algorithm. Acta
Mathematicae Applicatae Sinica, 7:321–331, 1991. doi:10.1007/
BF02009683.

[YVKI00] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The
design and use of simplepower: A cycle-accurate energy es-
timation tool. In Proceedings of the 37th Annual Design Au-
tomation Conference, DAC ’00, pages 340–345, New York, NY,
USA, 2000. ACM. URL: http://doi.acm.org/10.1145/
337292.337436, doi:10.1145/337292.337436.

[ZB09] F. Zhang and A. Burns. Schedulability Analysis for Real-Time
Systems with EDF Scheduling. IEEE Transactions on Computers,
58(9):1250–1258, 2009. doi:10.1109/TC.2009.58.

[ZBS13] J. T. Zhai, M. A. Bamakhrama, and T. Stefanov. Exploiting just-
enough parallelism when mapping streaming applications in
hard real-time systems. In Proceedings of the 50th Annual Design
Automation Conference, DAC ’13, pages 170:1–170:8, New York,
NY, USA, 2013. ACM. doi:10.1145/2463209.2488944.

[Zha15] J. T. Zhai. Adaptive Streaming Applications: Analysis and Imple-
mentation Models. PhD thesis, Leiden University, Netherlands,
2015.

[ZK00] C. L. Zitnick and T. Kanade. A cooperative algorithm for
stereo matching and occlusion detection. IEEE Trans. Pattern
Anal. Mach. Intell., 22(7):675–684, July 2000. doi:10.1109/
34.865184.

http://doi.acm.org/10.1145/1774088.1774142
http://doi.acm.org/10.1145/1774088.1774142
http://dx.doi.org/10.1145/1774088.1774142
http://dx.doi.org/10.1109/RTCSA.2012.10
http://dx.doi.org/10.1109/RTCSA.2012.10
http://dx.doi.org/10.1109/RTCSA.2012.10
http://dx.doi.org/10.1007/BF02009683
http://dx.doi.org/10.1007/BF02009683
http://doi.acm.org/10.1145/337292.337436
http://doi.acm.org/10.1145/337292.337436
http://dx.doi.org/10.1145/337292.337436
http://dx.doi.org/10.1109/TC.2009.58
http://dx.doi.org/10.1145/2463209.2488944
http://dx.doi.org/10.1109/34.865184
http://dx.doi.org/10.1109/34.865184

152 Bibliography

[ZSJ08] J. Zhu, I. Sander, and A. Jantsch. Energy efficient streaming
applications with guaranteed throughput on mpsocs. In Pro-
ceedings of the 8th ACM International Conference on Embedded Soft-
ware, EMSOFT ’08, pages 119–128, New York, NY, USA, 2008.
ACM. URL: http://doi.acm.org/10.1145/1450058.
1450075, doi:10.1145/1450058.1450075.

http://doi.acm.org/10.1145/1450058.1450075
http://doi.acm.org/10.1145/1450058.1450075
http://dx.doi.org/10.1145/1450058.1450075

Samenvatting

Dit proefschrift richt zich op het probleem van het ontwerpen van prestatie-
en energie-efficiënte embedded streaming-systemen. Embedded streaming-
systemen verwerken een stroom van inputgegevens vanuit de omgeving
en genereren een stroom van outputgegevens naar de omgeving. Het cor-
rect functioneren van embedded streaming-systemen hangt af van zowel de
juistheid van de outputgegevens als van de tijd waarop de gegevens zijn ge-
produceerd. Daarom zijn embedded streaming-systemen real-time-systemen.
Enkele voorbeelden van real-time embedded streaming-systemen kunnen
gevonden worden in verscheidene autonome mobiele systemen, zoals vliegtu-
igen, zelfrijdende auto’s en drones.

Om de gewenste prestatie en energieconsumptie te bereiken van zulke
real- time embedded streaming-systemen, zijn moderne ingebedde syste-
men uitgerust met hardwareplatformen die meerdere processors bevatten op
een enkele chip waarmee een goede prestatie van het systeem kan worden
bereikt door parallelle uitvoering, terwijl energie-efficiëntie verkregen kan
worden door het operationele voltage en de frequentie te verlagen. Deze
hardwareplatformen worden Multi-Processor Systems-on-Chip (MPSoCs) ge-
noemd. Om de gewenste prestatie en energieconsumptie te leveren, moet de
streaming-applicatie die op een MPSoC-platform zal worden uitgevoerd, wor-
den gespecificeerd als een serie taken die gegevensafhankelijk zijn, maar die
parallel kunnen worden uitgevoerd. Deze taken worden ruimtelijk gepland,
dat wil zeggen, in kaart gebracht op processors, waar ze worden gepland in
de tijd en uitgevoerd. Dit proefschrift stelt methodes en technieken voor het
omzetten van een streaming-applicatie naar een serie van parallelle taken die
sterk overeenkomt met een MPSoC-platform en het plannen van deze paral-
lelle taken zodanig dat de gewenste prestatie en energieconsumptie worden
bereikt.

Het eerste deel van dit proefschrift voert een aanpak van planning aan
om een streaming-applicatie uit te voeren als een serie van real-time peri-
odieke taken. Een normaal gedrag van streaming-applicaties is dat verschil-

lende uitvoeringen van dezelfde applicatietaak verschillen in uitvoeringstijd.
Daarom zet de voorgestelde aanpak iedere taak van een applicatie om in een
serie van real-time periodieke taken door taakparameters periodes, starttijden
en deadlines) af te leiden, rekening houdend met verschillende uitvoeringstij-
den voor verschillende uitvoeringen van iedere applicatietaak. De omzetting
maakt de toepassing mogelijk van vele moeilijke real-time planningsalgo-
ritmes die de snelle berekening bieden van het benodigde aantal processors
voor het plannen van de taken met een gegarandeerde prestatie, dat wil
zeggen, doorvoercapaciteit en latentietijd. Dit proefschrift laat zien dat het
rekening houden met verschillende uitvoeringstijden voor verschillende uitvo-
eringen van appalicatietaken en moeilijke real-time planningstheorie leidt tot
een hogere applicatiedoorvoercapaciteit en een kortere applicatielatentietijd
terwijl het aantal processors, nodig voor het plannen van een gegeven ap-
plicatie, vermindert. Deze prestatievoordelen gaan echter gepaard met een
verhoogde behoefte aan geheugen om de datacommunicatie tussen de taken
te implementeren.

Het tweede deel van dit proefschrift draagt technieken aan voor de trans-
formatie van een initiële representatie van een streaming-applicatie, dat wil
zeggen, een initiële applicatiegrafiek, naar een gelijkwaardige input-output
representatie, op zo’n manier dat de nieuwe representatie meer overeenkomt
met het MPSoC-platform, wat leidt tot een betere prestatie en energieconsump-
tie. In het bijzonder, repliceert de voorgestelde transformatietechniek taken in
een initiële applicatiegrafiek en verdeelt data zorgvuldig over taakreplica’s,
wat meer parallelle uitvoering van taken mogelijk maakt en leidt tot een ko-
rtere applicatielatentietijd en een kleiner communicatiegeheugen vergeleken
met verwante benaderingen. Deze transformatietechniek wordt vervolgens
gebruikt met onze planningsaanpak binnen een nieuw voorgesteld algoritme
om de prestatie van embedded streaming-systemen te maximaliseren. Dit
algoritme past het parallellisme in de applicatiegrafiek aan in overeenstem-
ming met de bronnen in een MPSoC om de maximale prestatie te bereiken.
Daarnaast stelt dit proefschrift een nieuwe benadering voor om real-time
streamingapplicaties efficiënt te mappen op MPSoCs met doorvoerlimieten,
zodat de energieconsumptie verminderd wordt, door onze transformatietech-
niek en onze planningsaanpak te gebruiken met gepaste selectie van het
operationele voltage en de frequentie. De voorgestelde benadering voor mini-
malisering van energie presteert beter dan verwante benaderingen in termen
van energieconsumptie terwijl aan dezelfde doorvoerlimieten wordt voldaan.

De nauwkeurigheid van het modelleren van energie is belangrijk voor
een efficiënt energiebeheer. Daarom stelt het laatste deel van dit proefschrift

een nauwkeurig energiemodel voor, voor embedded streaming-applicaties in
kaart gebracht op MPSoC platformen. Om exactere energieconsumptieschat-
tingen te verkrijgen, moet een energiemodel nauwer verbonden zijn met het
daadwerkelijke draaiende systeem. Tegelijkertijd moet het model efficiënt zijn
wat betreft moeite en tijd besteed aan modelleren en evalueren. Daarom is
het voorgestelde exacte energiemodel gebaseerd op een applicatiemodel dat
een beter inzicht geeft in de uiteindelijke implementatie van applicatietaken
op een platform, en de waardes van belangrijke modelparameters worden
verkregen van echte metingen.

List of Publications

Journal Articles

∙ Jelena Spasic, Di Liu, Emanuele Cannella, Todor Stefanov, “On the
Improved Hard Real-Time Scheduling of Cyclo-Static Dataflow”, ACM
Transactions on Embedded Computing Systems (TECS), vol. 15, Issue 4,
Article 68, August 2016.

Peer-Reviewed Conference Proceedings

∙ Jelena Spasic, Di Liu, Todor Stefanov, “Energy-Efficient Mapping of
Real-Time Applications on Heterogeneous MPSoCs using Task Repli-
cation”, In Proceedings of the IEEE/ACM/IFIP International Conference on
HW/SW Codesign and System Synthesis (CODES+ISSS’16), pp. 28:1–28:10,
Pittsburgh, Pennsylvania, USA, October 2-7, 2016.

∙ Jelena Spasic, Di Liu, Todor Stefanov, “Exploiting Resource-constrained
Parallelism in Hard Real-Time Streaming Applications”, In Proceedings
of the International Conference on Design, Automation and Test in Europe
(DATE’16), pp. 954–959, Dresden, Germany, March 14-18, 2016.

∙ Jelena Spasic, Di Liu, Emanuele Cannella, Todor Stefanov, “Improved
Hard Real-Time Scheduling of CSDF-modeled Streaming Applications”,
In Proceedings of the IEEE/ACM/IFIP International Conference on HW/SW
Codesign and System Synthesis (CODES+ISSS’15), pp. 65–74, Amster-
dam, The Netherlands, October 4-9, 2015. Nominated for the 2015
CODES+ISSS Best Paper Award.

∙ Jelena Spasic and Todor Stefanov, “An Accurate Energy Model for
Streaming Applications Mapped on MPSoC Platforms”, In Proceedings
of the IEEE International Conference on Embedded Computer Systems: Archi-
tectures, MOdeling, and Simulation (IC-SAMOS’13), pp. 205–212, Samos,
Greece, July 15-18, 2013.

∙ Di Liu, Jelena Spasic, Gang Chen, Nan Guan, Songran Liu, Todor Ste-
fanov, Wang Yi, “EDF-VD Scheduling of Mixed-Criticality Systems with
Degraded Quality Guarantees”, In Proceedings of the IEEE International
Real-Time Systems Symposium (RTSS’16), pp. 35–46, Porto, Portugal,
November 29-December 02, 2016.

∙ Di Liu, Jelena Spasic, Peng Wang, Todor Stefanov, “Energy-Efficient
Scheduling of Real-Time Tasks on Heterogeneous Multicores Using
Task Splitting”, In Proceedings of the 22nd IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA’16),
pp. 149–158, Daegu, South Korea, August 17-19, 2016.

∙ Di Liu, Jelena Spasic, Gang Chen, Todor Stefanov, “Energy-Efficient
Mapping of Real-Time Streaming Applications on Cluster Heteroge-
neous MPSoCs”, In Proceedings of the 13th Int. IEEE Symposium on
Embedded Systems for Real-Time Multimedia (ESTIMedia’15), pp. 1–10,
Amsterdam, The Netherlands, October 8-9, 2015.

∙ Di Liu, Jelena Spasic, Jiali Teddy Zhai, Todor Stefanov, Gang Chen, “Re-
source Optimization for CSDF-modeled Streaming Applications with
Latency Constraints”, In Proceedings of the International Conference on De-
sign, Automation and Test in Europe (DATE’14), pp. 188:1–188:6, Dresden,
Germany, March 24-28, 2014.

Curriculum Vitae

Jelena Spasić was born on January 27, 1984 in Trgovište, Serbia. She obtained
her Dipl.Ing. (M.Sc.) degree in Electronics Engineering from University of
Belgrade, Serbia in 2008. Her M.Sc. thesis was in the field of computer systems
in control applications. After obtaining her M.Sc. degree, she worked for
three years as an R&D engineer in embedded systems at the Institute Mihailo
Pupin in Belgrade. There she worked on embedded systems design, design
for electromagnetic compatibility and design of automated test systems. In
August 2011, she joined the Leiden Embedded Research Center, part of the
Leiden Institute of Advanced Computer Science (LIACS) at Leiden University,
as a Ph.D. candidate. Her research work, which resulted in this thesis, was
funded by the NWO project CREED. Besides her work as a researcher, she
was involved as a teaching assistant in the Digital Technique, Computer Archi-
tecture, and Embedded Systems and Software courses. Since September 2016,
she has been working at the European Organization for Nuclear Research
(CERN) as an electronics engineer developing electronics for protection of
magnet circuits in the Large Hadron Collider.

Acknowledgments

The work presented in this thesis would not have been possible without sup-
port and help of many people for whom I would like to express my gratitude.

First, I would like to thank the colleagues I had pleasure to work with at
the Leiden Embedded Research Center (LERC): Hristo Nikolov for helping
me to get familiar with Daedalus and particularly ESPAM tool, Mohammad
Al Hissi for transferring his knowledge on power modeling of embedded
systems, Sven van Haastregt for helping with PNgen and SystemC simulation
tool, Mohamed Bamakhrama for sharing his work on real-time scheduling,
Sobhan Niknam, Peng Wang, Hongchan Shan, and Christian Fuchs, for having
interesting discussions on their research ideas. Thanks to LERC, I met Tsvetan
Shoshkov, whose optimism and kindness I appreciate very much.

I would like to say a big “thank you” to Teddy Zhai for his kind help with
both research and Linux. And maybe more importantly, for organizing our
enjoyable gatherings. I would also like to thank Shanshan Yang, for making
the “computer science/electronics club” even more interesting. A big “thank
you” goes to Emanuele Cannella for sharing and discussing research ideas,
and giving a very appreciated feedback on my work. I enjoyed very much
lunches and dinners we had together. Additionally, I would like to thank
Alina Wang for being a pleasant company. Guys and girls, I hope that we are
going to continue having fun together in future.

I was very lucky to have a fellow Ph.D. student Di Liu from almost the
beginning of my Ph.D. studies to their end. We shared not only an office
during our Ph.D. journey, but all the Ph.D.-related problems, our fears and
finally successes. It was an excellent opportunity that we could embark on
a new research field for us at the same time, discuss our understandings of
the field, findings and our ideas. I am very happy that, despite our numerous
fears that it might not be even possible, we finally made it Di! Moreover, I
am happy that I learned a lot about Chinese culture and cuisine from Di. Our
outside office gatherings with Di’s wife Yan Liu and little daughter Ruolai Liu
were very joyful moments for me. I hope that we are going to maintain our

friendship in the future regardless of our physical distance.
The research work described in this thesis has been funded by the NWO

project CREED, through which I had a chance to work with Roberta Piscitelli
and Simon Polstra from University of Amsterdam. I would like to thank to
Roberta and Simon for their help and support with Sesame tool.

The years of my Ph.D. studies passed much easier due to the support of my
friends from Serbia. I would like to thank Amela Zeković for listening about
my Ph.D research, giving advices, and always having time to meet me when I
come to Belgrade, and moreover, arrange some activities for us. I would like
to thank Zoran Jakšić for much enjoyed discussions we had about research
and life in general. Especially, I appreciate his motivating and encouraging
attitude. A big “thank you” goes to Milana and Miloš Kaljević, for always
having time to meet me in Belgrade, even on a short notice, and visiting me in
The Netherlands. I am very grateful to Milana for being an easy person to talk
to and for always giving sincere feedback. Many thanks to my “cimer” Lejla
Tani-Papić for being always optimistic when it comes to my Ph.D. studies. I
would like to thank Sanja Petrović and Ivan Josifović for a very nice time we
spent together. All our conversations and gatherings are great memories for
me. I would like to thank Ljubica and Dalibor Čvorić for spending a pleasant
time together in The Netherlands.

A big “thank you” is for my sister Borislava Vujanović for constantly
supporting me and being the best big-sister who always takes the best care
of her little-sister. Many thanks to my brother-in-law Milenko Vujanović for
being a great host in Belgrade. A special “thank you” is for my little nephew
Andrej for the best joyful moments I had in the past year. I would like to
express my greatest gratitude to my parents Snežana and Stojadin Spasić for
their unconditional love, care and support. Thank you mum for always being
optimistic and a patient listener, and thank you dad for strongly encouraging
me throughout my education. I am thankful to Miloš’s family – Stojanka,
Vojislav, Marko and Biljana, for much enjoyed moments I spent with them in
Kula. Thank you for your kindness and support!

Finally, I would like to give a very special “thank you” to a very special
person, Miloš Ačanski. Miloš, I am afraid that I cannot find proper words
to express how happy and lucky I am for having you beside me. You were
always extremely patient to listen to my research ideas and solutions, being
always honest and strict, and providing valuable advices. I learned from
you to always strive for simplicity, clarity, and high-quality in doing research
and engineering. Without your love, encouragement, and support, this thesis
would not have been possible.

	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Trends in the Design of Embedded Streaming Systems
	Platform Trend: Multi-Processor System-on-Chip (MPSoC)
	Design Trend: Model-based Design Methodology

	Design Requirements and Basic Approaches to Meet the Requirements
	Timing Requirements
	Energy Requirements

	Problem Statement
	Problem 1
	Problem 2
	Problem 3
	Problem 4

	Research Contributions
	Thesis Outline

	Background
	Dataflow Models-of-Computations (MoCs)
	Cyclo-Static Dataflow (CSDF)
	Polyhedral Process Network (PPN)

	Real-Time Scheduling Theory
	Task Model
	System Model
	Real-Time Scheduling Algorithms
	Uniprocessor Schedulability Analysis
	Multiprocessor Schedulability Analysis

	Hard Real-Time Scheduling Framework
	Problem Statement
	Contributions
	Related Work
	Motivational Example
	Improved Hard Real-Time Scheduling of CSDF
	Deriving Periods of Tasks
	Deriving the Earliest Start Time of Actor's First Phase
	Deriving Channel Buffer Sizes
	Hard Real-Time Schedulability
	Performance Analysis
	Deriving the Number of Processors

	Evaluation
	Performance of the ISPS Approach
	Time Complexity of the ISPS Approach
	Reducing Latency under ISPS

	Discussion

	Exploiting Parallelism in Hard Real-Time Systems to Maximize Performance
	Problem Statement
	Contributions
	Related Work
	Motivational Example
	New Unfolding Transformation for SDF Graphs
	The Algorithm for Finding Proper Unfolding Factors
	Evaluation
	Efficiency of the Proposed Unfolding Transformation
	Performance of Algorithm 4
	Time Complexity of Algorithm 4

	Discussion

	Exploiting Parallelism in Hard Real-Time Systems to Minimize Energy
	Problem Statement
	Contributions
	Related Work
	Motivational Example
	System Model
	Energy Model
	The Proposed Energy Minimization Approach
	The Data-Parallel Energy Minimization Algorithm
	Task Classification for Energy Minimization
	Task Mapping for Energy Minimization

	Evaluation
	Comparison with Colin:2014:RTCSA, Liu:2015:ESTIMedia, Singh:2013:DAC on Heterogeneous MPSoCs
	Comparison with Lee:2009:DS-RT on Heterogeneous MPSoCs
	Comparison on Homogeneous MPSoC
	Overhead and Time Complexity Analysis

	Discussion

	An Accurate Energy Modeling of Streaming Systems
	Problem Statement
	Contributions
	Related Work
	System Model
	Application Model
	Platform Model
	Application-to-Platform Mapping

	Energy Model
	Model Formulation
	Derivation of Model Parameters

	Evaluation of the Energy Model
	Discussion

	Summary and Conclusions
	Bibliography
	Samenvatting
	List of Publications
	Curriculum Vitae
	Acknowledgments

