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A B S T R AC T

Loss of insulin-secreting -cell mass and function is central in the pathophysiology of type 
2 diabetes (T2DM). We previously reported that mature human -cells can lose identity and 
spontaneously convert into -cells following islet cell dispersion and reaggregation ex vivo 
and that this conversion may be involved in -cell failure in T2DM. Activation of the GLP-1 
receptor is involved in -cell differentiation and can prevent apoptosis. Therefore, we 
investigated whether activation of the GLP-1 receptor plays a role in maintenance of 
a -cell phenotype. Using -cell specific lineage tracing, we show that GLP-1 receptor 
agonists can prevent loss of human -cell identity, as characterized by a higher percentage 
of insulin+GFP+ out of GFP+ cells after 7 days of reaggregation. Incretin treatment was 
accompanied by an induction of endogenous Pax4 gene expression. The protective 
effects of GLP-1 signaling on human -cells were mimicked by overexpression of hPax4 in 
human islet cell aggregates. Our results indicate a novel potential role for incretin-based 
therapies, targeting the maintenance of mature -cells, possibly through induction of Pax4 
gene expression.
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I N T R O D U C T I O N

Dysfunction of insulin-secreting -cells and loss of pancreatic -cell mass are central in 
the development of type 2 diabetes (T2DM) (1). Reduced -cell mass may result from 
increased loss via apoptosis or reduced cell renewal via proliferation or neogenesis (2). 
But -cell loss could also arise due to dedifferentiation as recent data shows that adult 
murine -cells depleted of FoxO1 lose their identity and even convert into -cells under 
conditions of metabolic stress (3). Moreover, oxidative stress, associated with -cell failure 
in T2DM, lowers the expression of transcription factors such as MafA and Nkx6.1 that 
promote insulin gene transcription (4). We previously used a lineage tracing approach to 
show that human -cells can spontaneously convert into -cells following human islet cell 
dispersion and reaggregation ex vivo (5). The - to -cell transition was marked by -cell 
degranulation and glucagon-positive cells expressing -cell transcription factors (Nkx6.1 or 
Pdx1), a similar phenotype as observed in the islets of the genetically manipulated FoxO1 
model (3;5). In addition, we and others found that cells with such a mixed phenotype 
(glucagon+/insulin+ bihormonal cells or glucagon+-cells co-expressing -cell transcription 
factors) are more prevalent in donor pancreas from subjects with T2DM, indicating that 

-cells may lose their identity during the progression of diabetes (6-9). Therefore, ways 
to prevent or reverse loss of -cell identity may provide novel therapeutic opportunities  
in T2DM.

During embryologic development, endocrine cell types are formed from a common 
Neurogenin3-expressing progenitor (10-12). The subsequent segregation of the - and 

-cell lineages depends on the expression of specific transcription factors with Arx and 
Pax4 playing a central diverging role. Arx null mutant mice do not contain -cells, while 
mice that lack Pax4 show large numbers of -cells at the expense of - and -cells (13). We 
have previously shown that knockdown of Arx can prevent loss of human -cell identity ex 
vivo (5). In line with these observations, overexpression of Pax4 in vivo can protect mouse 

-cells against streptozotocin induced hyperglycemia (14). The role of Pax4 in human 
-cell (de)differentiation is unclear.

The incretin hormone glucagon-like peptide-1 (GLP-1) is a gut-derived peptide that 
enhances glucose-induced insulin secretion, and GLP-1 receptor agonists (GLP-1RAs) are 
currently used in clinical care. Moreover, GLP-1RAs were used in differentiation protocols 
for culture of stem and progenitor cells to obtain insulin-producing cells  (15;16). It is known 
that GLP-1 can also reduce glucagon secretion and prevent -cell apoptosis (17), and that 
GLP-1 induces Pax4 expression in human isolated islets (18). In this study, we investigated 
the effects of GLP-1RAs and Pax4 on the maintenance of human -cell identity.

M AT E R I A L S  &  M E T H O D S

Human islet isolation and cell culture

Human islet isolations were performed in the Good Manufacturing Practice facility of 
our institute according to a modified protocol originally described by Ricordi et al. (19). 
Pancreatic tissue was used in our study if the pancreas could not be used for clinical 
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pancreas or islet transplantation, according to national laws, and if research consent 
was present. Islet cells were dispersed and left to reaggregate in microwell plates after 
lentiviral transduction (5). In short, islets were dispersed into single cells by adding 0.025% 
trypsin solution containing 10 mg/mL DNase (Pulmozyme, Genentech) at 37°C while 
pipetting up and down for 6–7 min. The islet cell suspension was plated onto 3% agarose 
microwell chips containing 2,865 microwells/chip with a diameter of 200 μm/microwell 
(20). Seeding  of ~3*106 cells per chip resulted in spontaneous reaggregation of ~1,000 
islet cells/ microwell. Islet cell aggregates and intact human islets (control) were cultured 
in CMRL 1066 medium (5.5 mmol/L glucose) containing 10% FCS, 20 mg/mL ciprofloxacin, 
50 mg/mL gentamycin, 2 mmol/L L-glutamin, 0.25 mg/mL fungizone, 10 mmol/L HEPES, 
and 1.2 mg/mL nicotinamide, in the presence or absence of 10 nM exendin-4 (Sigma) 
while medium was refreshed every 24-48 hours.

Lentivirus vectors

pTrip-RIP405Cre-ERT2-DeltaU3 (RIP-CreERT2) and pTrip–CMV-loxP-Neo-STOP-loxP-
eGFP-DeltaU3 (CMVstopGFP) were kindly provided by P. Ravassard (21). pTrip vectors 
were produced as third-generation lentivirus vectors by adding a Tat-expressing vector (gift 
from B. Berkhout, Amsterdam) to the regular helper plasmids and produced as previously 
described (22). Vector pcDNA3.1:pcDNAPax4 encoding human Pax4 (hPax4) was kindly 
provided by K. Nanjo (23). Human Pax4 cDNA was subcloned in a pRRL lentivirus vector 
(CMV-hPax4) (22). For lineage tracing, transduction was performed overnight as previously 
described and exendin-4 was added following overnight lentivirus incubation (5). In case 
of hPax4, a second round of transduction was performed for 8 hours during the following 
day. 4-hydroxy-tamoxifen (Sigma-Aldrich, St. Louis, MO) was added to a final concentration 
of 1 mmol/L in the evening. After overnight incubation, the medium was refreshed 
and cells were seeded on the microwell. The start of reaggregation represents day 0  
in our experiments.

RNA isolation and quantitative PCR

Total RNA was extracted using RNeasy kit (Qiagen) according to the manufacturer’s 
protocol. RNA was reverse transcribed using M-MLV reverse transcriptase (Invitrogen). 
Quantitative PCR was performed on a Light Cycler 480-II Real-time PCR system (Roche). 
Fold induction was calculated using delta CT method with human -actin as housekeeping 
gene. Taqman probes were used for glucagon (Hs00174967_m1), insulin (Hs00355773_
m1), Arx (Hs00292465_m1) and Pax4 (Hs00173014_m1).

Immunofluorescence staining

Formalin-fixed islet cell aggregates were washed in PBS and spun down at high speed 
in fluid agar. Agar-containing cell pellets were embedded in paraffin. Blocks were cut 
into 4-μm sections. Primary antibodies against insulin (1:200; Linco), glucagon (1:200; 
Vector and Invitrogen), Ki67 (1:200; BD Pharmingen), and green fluorescent protein 
(GFP) (1:500; Roche and Molecular Probes) were used. DAPI (Vector) was used as nuclear 
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counterstaining. Secondary antibodies were TRITC–anti–guinea pig (1:400; Jackson) and 
Alexa Fluor 488-, 568-, and 647 anti-mouse or anti-rabbit when appropriate (1:1,000). 
Apoptosis was assessed by TUNEL assay (Roche). Sections were examined using confocal 
microscopy. Staining was quantified as percentage of positive cells per total cell number, 
counting at least 750 cells per donor for each condition.

Statistical analysis

Data are expressed as mean ± SEM unless stated otherwise. Statistical significance of 
differences between two groups were determined by an unpaired Student’s t test. One-way 
ANOVA followed by Bonferroni multiple comparisons test was used if more groups were 
compared. P < 0.05 was considered statistically significant.

R E S U LT S

GLP-1RA treatment prevents -cell dedifferentiation in human islet cell aggregates

Treatment with the GLP-1RA exendin-4 showed a significantly higher proportion of GFP+ 
cells expressing insulin after 1 week compared to aggregation without exendin-4 treatment 
(25.3 ± 4.3% vs. 39.8 ± 4.8%, untreated versus GLP-1RA treated, P < 0.05, Fig. 1A,B). As 
the lineage tracing system was induced by a tamoxifen pulse, this indicates that loss of 

-cell identity was prevented rather than new -cells generated. Immunolabeling showed 
that the overall number of proliferating (Ki67) and apoptotic (TUNEL) cells was low (<1% 
and <2%, respectively), and did not differ between both groups (Fig. 2). The proportion 
of glucagon+GFP+ out of GFP+ cells was not significantly lower in the exendin-4 treated 
aggregates (Fig 3A,B).

Pax4 overexpression prevents -cell dedifferentiation in human islet cell aggregates

Exendin-4 treatment induced a 2-fold higher Pax4 gene expression in aggregates after 
7 days of culture compared to intact cultured islets or aggregates without exendin-4 
treatment (Fig. 4A). Since endogenous Pax4 gene expression is normally low or even absent 
in mature -cells (24), we hypothesized that increased Pax4 expression following exendin-4 
treatment induced protection against loss of -cell identity. To test whether the protective 
effect of GLP-1 could be mimicked by human Pax4 protein overexpression (hPax4OE), 
we transduced islet cells using the lentiviral vector CMV-hPax4. Pax4 overexpression 
resulted in a 50% increase in insulin gene expression after 7 days of reaggregation  
(Fig. 4B). Gene expression of the -cell transcription factor Arx and hormone Glucagon was 
significantly lower following hPax4OE (Fig. 3C). Using -cell lineage tracing, a significantly 
higher proportion of GFP+ cells expressing insulin was observed in hPax4OE aggregates  
(Fig. 4C). Glucagon+GFP+ cells were observed in both groups, and 2 out of 3 donors 
showed a distinct decrease in the percentage of double positive cells (Fig. 3D).
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Figure 1. GLP-1RA administration yields a higher percentage of insulin+GFP+ cells. A: Representative 
immunostaining for insulin (red) and GFP (green) of a human aggregate after 7 days treatment with 
10 nM GLP-1RA exendin-4. The right panel highlights the presence of Insulin+GFP+ cells (arrows). B: 
Quantification of the percentage of insulin+GFP+ out of all GFP+ cells in 6 donors. Data derived from 
the same donors (with or without exendin-4 treatment) are indicated by connecting lines. * P < 0.05, 
scale bar: 50 μm.

Figure 2. No difference in the proportion of proliferating (Ki67+) or apoptotic (TUNEL+) cells 
following treatment with exendin-4. A: Representative image of a human aggregate after 7 days 
reaggregation, immunostained for insulin (red) and Ki67 (green), inset shows two Ki67+ cells. B: 
Quantification of the percentage of Ki67+ cells out of all cells with or without GLP1-RA treatment. C:  
Representative image of TUNEL labelling (green). D Quantification of the percentage of TUNEL+ cells 
out of all cells (n = 2, mean ± SD). Scale bars: 50 μm.
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Figure 3. Human Pax4 overexpression lowers expression of -cell genes ARX and glucagon but 
GLP1-RA or hPax4OE do not affect the proportion of glucagon+GFP+ cells. A: Immunostaining 
for glucagon (red) and GFP (green). B: Percentage of glucagon+GFP+ cells out of GFP+ cells following 
exendin-4 treatment (n = 5, data from the same donors are indicated by connecting lines). C: hPax4OE 
in human islet cell aggregates results in a lower gene expression of the -cell genes ARX and 
glucagon compared to controls. * P < 0.05, *** P <0.001 (n = 6, mean ± SEM). D: Quantification of 
glucagon+GFP+ cells out of GFP+ cells following hPax4OE (n = 3, data from the same donors are indicated  
by connecting lines).

D I S C U S S I O N

We recently showed that loss of -cell identity can occur in subjects with T2DM in vivo 

(7) and also in human pancreatic islets ex vivo following dispersion and reaggregation (5). 

Using our ex vivo culture system as a model for loss of human -cell identity, we now add 

that both activation of the GLP-1 receptor as well as genetic overexpression of human 

Pax4 can promote the maintenance of -cell identity.

GLP-1RAs are used in the clinic to improve glycemic control in patients with type 2 

diabetes, mainly by stimulating glucose-dependent insulin secretion (25). Here, we show 

that activation of the GLP-1 receptor by exendin-4 can prevent loss of -cell identity 

(characterized by a higher proportion of insulin+GFP+ out of GFP+ cells after reaggregation) 

in human islet cell aggregates under normal glucose culture conditions. It has previously 

been shown that GLP-1 receptor signaling under normoglycemic conditions can increase 

insulin sensitivity and -cell function (26) and can improve -cell protection under lipid 

stress (27). The observation that approximately 50% of GFP+ cells were insulin negative is 

in agreement with our previous finding that a large proportion of the cells is degranulated 

(5). Furthermore, -cell conversion into -cells still occurred since the proportion of 
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glucagon+GFP+ cells was not significantly changed. This lack of significance may be due to 
the small number of experiments, or it may indicate that GLP-1 receptor activation lowers 
the number of ‘empty’ GFP+ cells (neither expressing glucagon nor insulin) by stimulating 
hormone expression. Altogether, our data suggest a novel benefit of GLP-1 receptor 
activation by providing maintenance of a -cell phenotype.

GLP-1RA treatment in our study resulted in elevated Pax4 gene expression levels. It 
was previously shown that inhibition of phosphatidylinositol-3 kinase (PI3-kinase) blunted 
this GLP-1 mediated effect on Pax4 (18). This suggests that the effect of GLP-1 on Pax4 is 
mediated by signaling via the epidermal growth factor receptor that activates PI3-kinase 
and AKT downstream (28). Whereas GLP-1RA treatment did not significantly affect -cell 
markers (data not shown), Pax4 overexpression strongly diminished Arx and Glucagon gene 
expression. Furthermore, while GLP-1RA treatment had little effect on the proportion of 
glucagon+GFP+ cells, Pax4 overexpression showed a protective effect in 2 out of 3 donors. 
This difference may be explained by the higher levels of Pax4 expression that result from 
overexpression compared to the modest increase after GLP-1RA treatment. 

Pax4 plays a pivotal role in the restriction of endocrine progenitors towards a -cell 
fate in mice (29). In adult human -cells, overexpression of mouse Pax4 has been shown 
to stimulate -cell expansion and survival (30), while -cell specific overexpression of 
wild-type Pax4, but not of mutated inactive Pax4, protected against streptozotocin-induced 

Figure 4. hPax4OE mimicks the effect of exendin-4 on human islet cell aggregates. A: Administration 
of 10 nM exendin-4 showing higher PAX4  gene expression compared to aggregates or intact islets that 
were cultured for 7 days in the absence of exendin-4 (crude Ct-values ranging from 30-35 cycles). B: 
Lentivirus-mediated overexpression of human Pax4 (hPax4OE) in human islet cell aggregates results in 
higher PAX4 and insulin gene expression after 7 days reaggregation (n = 6, mean ± SEM). C: hPax4OE 
shows a higher proportion of insulin+GFP+ out of GFP+ cells as analysed by immunostaining (n = 3, data 
from the same donors are indicated by connecting lines). * P < 0.05, ** P <0.01, *** P <0.001.
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apoptosis (14). Moreover, genetic polymorphisms in the human Pax4 gene have been 
associated with type 2 diabetes (23;31). We now add that hPax4 prevents loss of human 

-cell identity, using a combination of hPax4 overexpression and -cell lineage tracing. 
These data together suggest that Pax4 not only plays a crucial role in development, but 
is also involved in the protective response of -cells against environmental (metabolic 
or inflammatory) stress (32). Interestingly, Pax4 gene expression is low or even absent in 
mature human islets (24), but is upregulated in a subset of subjects with T2DM (18). In light 
of our study, this could reflect activated protection against -cell dedifferentiation.

Thus, we show that overexpression of Pax4 and GLP-1 receptor activation can prevent 
loss of human -cell identity in an in vitro model of human islet cell reaggregation. We 
thereby identify a previously unknown function of these molecules, targeting maintenance 
of mature -cells. Future research should investigate further by which mechanisms GLP-1 
maintains -cell identity. 
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