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S U M M A RY

One of the primary goals of physics is to understand what the fundamental prop-
erties of Nature are. A highly successful tool to achieve this is Quantum Field
Theory (QFT), which describes the interactions of indivisible particles. Built on the
QFT framework, the Standard Model is the current best theory of the fundamental
structure of Nature. Physics beyond the Standard Model will likely only lead to
small deviations of the outcome of collisions in particle accelerators. Thus, very
accurate predictions have to be made to detect new physics. This thesis will study
the computational problems that arise when trying to improve precision.

In chapter 1 we define the research questions and the problem statement.

Problem statement: In what way can we improve the performance of QFT
calculations with respect to obtaining more precise predictions?

We focus on three computational and combinatorial problems of QFT calculations
that we deemed the most urgent ones: (1) slowness of Monte Carlo integrations,
(2) slowness in the computation of massless propagator integrals, and (3) slowness
when computing the poles of Feynman diagrams.

problem 1 Monte Carlo methods are frequently used in QFT calculations. After
the integrals are rewritten to a suitable polynomial representation, they are sampled
millions of times. Some of these polynomials have more than a hundred thousand
terms, making evaluation very slow. Thus, the first research question is as follows.

Research question 1: To what extent can the number of arithmetic operations
of large multivariate polynomials be reduced?

In chapter 2 we investigate ways to simplify expressions, using Horner schemes
and Common Subexpression Elimination (CSEE). Our approach applies Monte Carlo
Tree Search (MCTS), a search procedure that has been successful in AI. We use it
to find near-optimal Horner schemes. Although MCTS finds good solutions, this
approach gives rise to two further challenges. (1) MCTS (with UCT) introduces a
constant, Cp that governs the balance between exploration and exploitation. This
constant has to be tuned manually. (2) There should be more guided exploration at
the bottom of the tree, since the current approach reduces the quality of the solution
towards the end of the expression. To address both issues, we investigate NMCS
(Nested Monte Carlo Search), but find that NMCS is computationally infeasible
for our problem. Then, we modify the UCT formula by introducing a dynamic
exploration-exploitation parameter T that decreases linearly with the iteration num-
ber. Consequently, we provide a performance analysis. We observe that a variable
Cp solves the two problems: it yields more exploration at the bottom and as a result
the tuning problem has been simplified. The region in Cp for which good values are
found is increased by more than a tenfold.

189



Next, we consider Stochastic Local Search methods, since these methods do not
have the problem of performing little optimisation in the order of the final variables.
We investigate the state space properties of Horner schemes and find that the domain
is relatively flat and contains only a few local minima. As a result, the Horner space
is appropriate to be explored by Stochastic Hill Climbing (SHC), which has only two
parameters: the number of iterations (computation time) and the neighbourhood
structure. We find a suitable neighbourhood structure, leaving only the allowed
computation time as a parameter. We perform a range of experiments. The results
obtained by SHC are similar or better than those obtained by MCTS, which means
that the number of operations is at least an order of magnitude smaller than the
input. Furthermore, we show that SHC obtains the good results at least 10 times
faster. Since the evaluation time of Monte Carlo integrators is proportional to the
number of operations, their performance is improved.

problem 2 Most integrals that can be computed analytically, are calculated by
using Integration by Parts (IBP) identities to express integrals into simpler ones. This
method is generally quite slow and often requires months of computation time on a
cluster. Hence, our second research question reads as follows.

Research question 2: How can we construct a program that can compute
four-loop massless propagator integrals more efficiently?

In chapter 3, we explain the construction of Forcer, a Form program for the
reduction of four-loop massless propagator-type integrals to master integrals. The
resulting program performs parametric IBP reductions similar to the three-loop
Mincer program. We show how one can solve many systems of IBP identities
parametrically in a computer-assisted manner. Next, we discuss the structure of the
Forcer program, which involves recognizing reduction actions for each topology,
applying symmetries, and transitioning between topologies after edges have been
removed. This part is entirely precomputed and automatically generated. We give
examples of recent applications of Forcer, and study the performance of the pro-
gram. We show that the four-loop beta function can be computed in three minutes
on a 32-core machine. Finally, we demonstrate how to use the Forcer package and
sketch how to prepare physical diagrams for evaluation by Forcer.

In chapter 4 we have computed the self-energies and a set of three-particle vertex
functions for massless QCD at the four-loop level in the MS renormalisation scheme,
using the Forcer program. The vertex functions are evaluated at points where one
of the momenta vanishes. Analytical results are obtained for a generic gauge group
and with the full gauge dependence, which was made possible by extensive use of
the Forcer program for massless four-loop propagator integrals. The bare results in
dimensional regularisation are provided in terms of master integrals and rational
coefficients; the latter are exact in any space-time dimension. Our results can be
used for further precision investigations of the perturbative behaviour of the theory
in schemes other than MS.
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Additionally, we compute Mellin moments of four-loop splitting functions and
coefficient functions. These are used as basic ingredients for collision processes, such
as Higgs production. We compute Mellin moments N = 2, 4, 6 for the non-singlet
case and N = 2, 4 for the singlet case. Furthermore, we calculate N = 1, 3, 5 of
vector-axial interference F3. By computing to N = 40 and beyond, we reconstruct
the all-N n2

f contribution to the four-loop non-singlet splitting function and the n3
f

contribution to the four-loop singlet splitting function. Using the OPE method, we
calculate up to N = 16 for the non-singlet splitting function. For the large-nc limit,
we compute up to N = 19. This allows for an all-N reconstruction and yields a new
term to the four-loop planar cusp anomalous dimension.

problem 3 For five-loop calculations in QCD, so far only the poles of integrals
have been computed, as the finite pieces are too difficult. One way to compute the
poles is with the R∗-operation, which is complicated and quite slow. Hence, we
formulate our third research question as follows.

Research question 3: To what extent can we compute the poles of five-loop
diagrams using only four-loop diagrams more efficiently?

In chapter 5 we extend the R∗-operation to Feynman graphs with arbitrary nu-
merators, including tensors. We also provide a novel way of defining infrared
counterterms which closely resembles the definition of its ultraviolet counterpart.
We further express both infrared and ultraviolet counterterms in terms of scaleless
vacuum graphs with a logarithmic degree of divergence. By exploiting symmetries,
integrand and integral relations, which the counterterms of scaleless vacuum graphs
satisfy, we can vastly reduce their number and complexity. A Form implementation
of this method was used to compute the poles in the dimensional regulator of all
top-level propagator graphs at five loops in four dimensional φ3 theory.

In chapter 6 we compute the five-loop corrections to the scale dependence of
the renormalised coupling constant (the beta function) for QCD, its generalisation
to non-Abelian gauge theories with a simple compact Lie group, and for QED. Our
analytical result, obtained using the background field method, infrared rearrange-
ment via the new diagram-by-diagram implementation of the R∗-operation and
the Forcer program for massless four-loop propagators, confirms the QCD and
QED results obtained by only one group before. The numerical size of the five-loop
corrections is briefly discussed in the standard MS scheme for QCD with n f flavours
and for pure SU(N) Yang-Mills theory. Their effect in QCD is much smaller than
the four-loop contributions, even at rather low scales. Additionally, we derive the
five-loop beta function in a relatively common alternative, the minimal momentum
subtraction (MiniMOM) scheme using the propagators and vertices computed in
chapter 4. The computation of the five-loop beta function took six days on a 32-core
machine.
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conclusion Finally, in chapter 7 we again consider the problem statement and
research questions. Based on our findings, we may conclude that we have improved
the performance of QFT calculations in three different regions. Since all our methods
can be applied in practice to compare theory to experiment in colliders, we conclude
that we have improved the precision of predictions.
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