
Advances in computational methods for Quantum Field Theory
calculations
Ruijl, B.J.G.

Citation
Ruijl, B. J. G. (2017, November 2). Advances in computational methods for Quantum Field
Theory calculations. Retrieved from https://hdl.handle.net/1887/59455
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/59455
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/59455


 
Cover Page 

 
 

 
 
 

 
 
 

The following handle holds various files of this Leiden University dissertation: 
http://hdl.handle.net/1887/59455 
 
 
Author: Ruijl, B.J.G. 
Title: Advances in computational methods for Quantum Field Theory calculations 
Issue Date: 2017-11-02 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/59455
https://openaccess.leidenuniv.nl/handle/1887/1�


A

AC U T V E RT E X R U L E F O R S C A L A R D I A G R A M S

The cutvertex rule states that

∆(γ1γ2) = ∆(γ1)∆(γ2) . (307)

This statement can be proven by induction. We start by proving that the statement
holds true for the trivial case, where both γ1 and γ2 contain no subdivergences. This
can be proven as follows:

∆(γ1γ2) = −KR̄(γ1γ2)

= −K
(
γ1γ2 + ∆(γ1)γ2 + ∆(γ2)γ1

)
= −K

(
(γ1 + ∆(γ1))(γ2 + ∆(γ2))− ∆(γ1)∆(γ2)

)
= −K

(
R(γ1)R(γ2)− ∆(γ1)∆(γ2)

)
= K

(
∆(γ1)∆(γ2)

)
= ∆(γ1)∆(γ2) .

(308)

Now we can prove inductively that the same holds for the general case, where we
assume that both γ1 and γ2 have subdivergences. That is, we show that

∆(G1G2) = ∆(G1)∆(G2) (309)

holds, assuming the induction hypothesis ∆(γ1γ2) = ∆(γ1)∆(γ2) where γ1 and γ2
are subgraphs of G1 and G2 respectively. Let us start with the definition:

∆(G1G2) = −KR̄(G1G2)

= −K ∑
S∈W̄(G1G2)

∆(S) ∗ G1G2/S . (310)

We will now use the fact that we can write

W̄(G1G2) = W(G1)×W(G2) \ {{G1}, {G2}} (311)

with × denoting the Cartesian product of two sets. This in turn implies

∆(G1G2) = −K
[

∑
S1∈W(G1)

∑
S2∈W(G2)

∆(S1S2) ∗ G1G2/S1/S2 − ∆(G1)∆(G2)

]
(312)

Assuming the induction hypothesis ∆(S1S2) = ∆(S1)∆(S2) we then get

∆(G1G2) = −K
[

R(G1)R(G2)− ∆(G1)∆(G2)

]
= ∆(G1)∆(G2) . (313)
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BC U T V E RT E X R U L E F O R T E N S O R D I A G R A M S

If weakly non-overlapping (no common edges) subgraphs γ1 and γ2 contain contrac-
ted Lorentz indices, one has in general

K
(
∆(γ1)∆(γ2)

)
6= ∆(γ1)∆(γ2) . (314)

This means that the proof for the factorisation of the counterterm operation ∆ given
in appendix A breaks down. As a result, it is rather difficult to derive a corresponding
generalised “cut-vertex rule” for the case of contracted tensor subgraphs that does
not result in a change of renormalisation scheme. However, when one is interested
only in computing the poles of a factorised Feynman graph G1G2 via the use of the
identity

KG = −K δRG , (315)

we will show that the following cutvertex rule still holds:

∆(G1G2)→ ∆(G1)∆(G2) . (316)

We can actually prove this statement rather easily by noting that the R-operation
computed with eq. (316) results in the following replacement:

R(G1G2)→ R(G1)R(G2) . (317)

We can now write

δR(G1G2) = R(G1G2)− G1G2 = R(G1)R(G2)− G1G2 + ξ , (318)

where ξ denotes the “error” one makes by computing with eq. (316). From this it
follows that

ξ = R(G1G2)− R(G1)R(G2) . (319)

Given that ξ is manifestly finite, we obtain:

Kξ = 0⇒ KδR(G1G2) = KR(G1)R(G2)− KG1G2 . (320)

This completes the proof that the poles of a factorised graph can be computed by
consistently applying eq. (316), even though the UV counterterm is in a different
renormalisation scheme.
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CI R S U B G R A P H S E A R C H

One question that remains is how to find all IR subgraphs. Since the IR graphs could
be disconnected, it is not as straightforward as for the UV. Below we describe a
method to find the complete IR spinney at once.

In section 5.1 the contracted IR subgraph γ̃ was defined by contracting the remain-
ing graph (or quotient) graph γ̄ = G \ γ′ to a point in G, i.e.,

γ̃ = G/γ̄ . (321)

In fact this observation generalizes further to the case of IR spinneys S′:

S̃ = G/S̄, S̄ = G \ S′, S̃ = ∏
i

γ̃i . (322)

The different γ̃i are then only connected through cut-vertices in S̃. This dual
description of contracted IR spinneys offers the possibility for an alternative IR search
procedure by searching instead for valid remaining graphs. An easy identification of
valid remaining graphs can be obtained from the contracted massless vacuum graph
Gc of the graph G itself, which is defined by contracting in G all the external lines in
a single vertex and contracting all massive lines into points.

All valid remaining graphs can then be identified with all spinneys of Gc, which
include the formerly external lines. More precisely, we have the relation:

W ′(G) = {S̃} = {Gc/S|S ∈W(Gc) , lE(G) ⊂ S , ω̃(Gc/S) ≥ 0 } , (323)

where lE(G) is the set of external lines of G. This allows one to construct a simple
algorithm to find all IR spinneys by finding and combining 1PI subgraphs, similar
to the construction of the UV spinney. A further advantage of this method is
that disconnected IR subgraphs, such as the example we gave in eq.(124), are
automatically included in this alternative search method.

It is instructive to see how this works in an example. Consider the following graph
and its associated contracted vacuum graph:

G = ⇒ Gc = . (324)
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Here we have indicated the contracted external lines in Gc with a thicker line. An
example for a UV spinney in Gc and its associated IR spinney (in this case consisting
of a single IR subgraph) is given by

S = ⇒ S̃ = Gc/S = . (325)

Here we used dashed lines to indicate those lines not contained in the spinney
S. These dashed lines become the IR spinney after shrinking the disconnected
components of S to points in Gc.
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