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7
C O N C L U S I O N S

In this chapter we start by answering the three research questions in sec. 7.1. Using
these answers, we address the problem statement in 7.2. Finally, we provide an
outlook in sec. 7.3.

7.1 answers to the research questions

RQ1: To what extent can the number of arithmetic operations of large multivari-
ate polynomials be reduced?

In chapter 2 we consider various algorithms to improve expression simplification. We
find that the state space of Horner schemes is flat, which makes it a good candidate
for Stochastic Hill Climbing [11]. We show that for relevant polynomials derived
from scattering experiments there is a speed gain of about a factor ten compared
to MCTS methods to find a near-optimal solution. Since evaluations are slow, this
means less time has to be spent in creating an expression suitable for Monte Carlo
integration. The quality of the solution is often more than an order of magnitude
better than the input.

RQ2: How can we construct a program that can compute four-loop massless
propagator integrals more efficiently?

In chapter 3 we constructed the Forcer program, which uses parametric integration-
by-parts (IBP) reductions to reduce four-loop massless propagator integrals. We
have demonstrated that Forcer is much faster than its competitors, and is able
to compute the four-loop beta function in only 3 minutes [1, 9]. In chapter 4 we
have computed physically relevant processes at four loops using Forcer [5, 8, 115].
The three most important calculations are (1) the finite pieces of the propagators
and three-vertices with one vanishing momentum [2], (2) the computation of the
non-singlet splitting function to N = 16 [115], and (3) the reconstruction of the
large-nc leading to a new term in the cusp anomalous dimension [115, 116].

RQ3: To what extent can we compute the poles of five-loop diagrams using only
four-loop diagrams more efficiently?

In chapter 5 we have generalised the R∗-operation to be applicable to Feynman
diagrams with arbitrary numerator structure [3]. This allows for the computation
of the poles of a much broader class of integrals. The R∗-method will generate
many counterterms, but we describe how to exploit symmetries between them to
reduce their number. After more optimisations described in 6, we have computed
the five-loop beta function for Yang-Mills theory with fermions [4]. This confirms
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the QCD result from [40] and is an important ingredient for future calculations. Our
calculation took six days on one 32-core machine. The computation in [40] took 1.5
years on 20 machines with 8 cores.

7.2 answer to the problem statement

Now that we have addressed the research questions, we are able to answer the
problem statement.

Problem statement: In what way can we improve the performance of QFT
calculations with respect to obtaining more precise predictions?

In answering RQ1, we have sped up Monte Carlo integration by improving the
input expressions. Since more samples can be made, the precision of the result is in-
creased. Our code is used in pySecDec [222], and by the GRACE collaboration [223].

In answering RQ2, and RQ3 we have developed methods to drastically improve
calculations of physical observables at four and five loops. Especially the com-
putation of splitting functions and the five-loop beta function, are valuable basic
ingredients in many other calculations.

Based on our findings, we may conclude that we have improved the performance
of QFT calculations in three different regions. Since all our methods can be applied
in practice to compare theory to experiment in colliders, we may conclude that we
have improved the precision of predictions.

7.3 future research

Below we provide four areas for future research, viz. (A) expression simplification, (B)
IBP reductions, (C) Mellin moment computations, and (D) Higgs decay calculations.

(a) expression simplification We have shown that applying Horner’s rule
and removal of common subexpressions leads to much smaller polynomials. Poly-
nomials could be simplified even further if algebraic structures are recognised. An
example is identifying squares:

2ab + b2 + 2ac + 2bc + c2 → (a + b + c)2 − a2 . (306)

Recognising which terms to combine into a square in order to maximally reduce the
expression is difficult (especially if numerical stability has to be taken into account
as well). A first option is to see if Monte Carlo Tree Search [67] can be applied to
find the best way to complete the squares. The action in each state could be the
selection of a monomial that should be included in the square. A challenge is to find
heuristics to guide the random playout, such that fewer samples are required.

A second option is to train a neural network to identify which monomials should
be used to complete a square. The input of the network could be the exponent array
of the polynomial. The output layer could yield a binary value for each monomial
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that determines whether it is included in the square or not. One of the challenges of
a neural network is to keep the number of weights down, so that the network can be
trained faster. For images, convolutional neural networks are successful, since they
exploit the idea that parts of images can form a pattern by themselves [224, 225].
Presumably, something similar can be realised for expressions, but it is not obvious
which monomials of the expression form a substructure that is analogous to a
subrectangle in an image.

(b) ibp reductions We have shown that parametric integration-by-parts reduc-
tion rules can provide faster reductions than Laporta methods. At the moment the
reduction rules require some manual intervention. If an algorithm could be devised
that automatically finds high-quality reduction rules, it would mean a revolution in
the field.

Currently, we are working on studying and implementing some ideas from Boolean
Satisfiability problems, by defining constraints on terms that should be removed
from the system. Our latest effort can reduce some hard systems, but it may require
more than 500 gigabytes of disk space before a solution is found.

Additionally, it is worthwhile to study which IBP equations actually contribute to
the final reduction rule. Since most equations drop out in our experience, skipping
these equations from the start may save a large amount of time.

(c) mellin moments We have computed four-loop Mellin moments of splitting
functions. A major challenge is that the complexity of the integrals scales linearly
with the Mellin moment N. This makes it very time consuming to compute higher
Mellin moments. The OPE method yields better scaling and may allow us to compute
more Mellin moments. The hard part is that operators have to be constructed, which
is especially difficult for the gluon. We expect new results soon [115].

Using the R∗-operation, splitting functions may be computed at five loops as well.
One difficult point for the optical theorem method is that the harmonic projection
creates many terms. If this operation could be postponed until after expensive
operations in the R∗-routines, similar to the delayed Feynman rules, the computation
could be performed much faster.

(d) higgs decay Using the R∗-operation and Forcer, we may be able to com-
pute the Higgs decay to gluons, H → gg, to five loops. The challenge is that the
process consists of quartically divergent diagrams. As a result, the diagrams have to
be Taylor expanded to the fourth order, which creates many terms and high-tensor
subgraphs. One way to speed up the program is to choose a convenient infrared
rearrangement (IRR) that places the line with the worst IR-divergence between the
external lines. As a result, fewer subdiagrams will be created. Alternatively, we
could add a mass to that line, which reduces the number of counterterms even
further. Since the mass is only on one line, the massive part can be factorised out as
a one-loop bubble.

We hope the computation will be completed within a few months of this writing.
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