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6T H E F I V E - L O O P B E TA F U N C T I O N

In this chapter we report on the first computation of the five loop beta function
for a general Yang-Mills theory with one set of fermions. This is only possible
by combining the results of RQ2, the Forcer program for four-loop calculations
described in chapter 3, and RQ3, the R∗-operation described in chapter 5.

The beta function governs how the strength of the strong interaction scales with
the energy. The determination of the (sign of the) leading one-loop coefficient β0
[23, 24], soon followed by the calculation of the two-loop correction β1 [119, 210]
shows that the strong interaction vanishes at large energies (or very short distances).
This asymptotic freedom means that QCD is a viable theory for the strong interaction.
The discovery of asymptotic freedom was awarded the Nobel Prize for Physics in
2004.

The scale dependence (‘running’) of the renormalised coupling constant αi can be
written in perturbation theory as

da
d ln µ2 = β(a) = −

∞

∑
n=0

βn an+2 , a =
αi(µ)

4π
(240)

where µ is the renormalisation scale.
The renormalisation-scheme dependent three-loop (next-to-next-to-leading order,

N2LO) and four-loop (next-to-next-to-next-to-leading order, N3LO) coefficients β2
and β3 were computed in refs. [122, 211] and [113, 114] in minimal subtraction
schemes [130, 131] of dimensional regularisation [179, 180].

Precise determination of the beta function is important for all renormalisation
group improved perturbation theory calculations. Below we mention two important
use-cases. First, in the past years, N2LO accuracy has been reached for many
processes at high-energy colliders. N3LO corrections have been determined for
structure functions in inclusive deep-inelastic scattering (DIS) [98, 212] and for the
total cross section for Higgs-boson production at hadron colliders [82, 155]. Second,
we have computed moments of coefficient functions for DIS at N4LO [8]. Obtaining
full results at this order would virtually remove the uncertainty due to the truncation
of the series of massless perturbative QCD in determinations of the strong coupling
constant αs from the scaling violations of structure functions in DIS.

The corresponding five-loop contributions to the beta functions of QCD, with all
colour factors ‘hard-wired’, and QED have already been computed in refs. [40, 213].
Their leading large-nf contributions have long been known [214], and the sub-leading
large-nf terms have been checked and generalized to a general simple gauge group
in ref. [128]. The real tour de force of ref. [40] though, are the parts proportional
to n 0

f , n 1
f and n 2

f which together required more than a year of computations on 20

multi-core workstations in a highly non-trivial theoretical framework. These critical
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parts have neither been extended to a general gauge group nor validated by a second
independent calculation.

In the following chapter we address this issue and present the five-loop beta
function for a general simple compact gauge group. Unlike the calculations in
refs. [23, 24, 113, 114, 119, 120, 122, 210, 211], we have employed the background
field method (see section 6.2), and the R∗ method (see chapter 5).

Finally, we transform the five-loop Yang-Mills beta function from MS to the
MiniMOM scheme [153]. The MiniMOM scheme is more convenient than MS for
analysis in the non-perturbative regime of QCD.

The remainder of this chapter is structured as follows. We first explore five
optimisations in section 6.1, after which we define the background field in section 6.2.
Next, we present the computation of the five-loop beta function for Yang-Mills theory
with fermions in section 6.3. We discuss the results in section 6.4. In section 6.5, we
transform the five-loop beta function from MS to the MiniMOM scheme. Finally, we
present the chapter conclusions in section 6.6.

6.1 optimisations

Performing computations at five loops introduces at least five new bottlenecks
compared to four loops. (1) The number of diagrams and their complexity grow
exponentially. (2) The substitution of the Feynman rules is slow and creates millions
of term. (3) The Taylor expansion to make the diagrams logarithmic creates many
terms. (4) The number of counterterms grows exponentially. (5) Tensors of rank 10

have to be reduced, which involves solving large systems.

In this section we address these issues by presenting five optimisations, namely
improved treatment of propagator insertions in section 6.1.1, delayed Feynman
rule substitution in section 6.1.2, improved rules to make diagrams logarithmic in
section 6.1.3, a canonical form algorithm for Feynman diagrams in section 6.1.4, and
an efficient tensor reduction algorithm in section 6.1.5.

6.1.1 Treatment of propagator insertions

Many of the higher-loop corrections are self-energies of propagators in the diagram.
Due to the local nature of the Feynman rules, these self-energies only depend on
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their external momentum (there are no contractions with other parts of the larger
diagram), so they can be ‘factorised’ out (see also 3.10):

+ + =

 + +

× =

Σ1PR
2 ,

(241)

where the L-loop self-energy is replaced by (p2)−εL in the larger diagram (marked
by L crosses). In a sense, the subdiagram is integrated out. The resulting simpler
topology is multiplied by the one-particle-reducible L-loop self-energy. Since the
L-loop subdiagram is of lower order, these quantities have already been computed
and can easily be tabulated to prevent recomputations. For example, a five-loop
diagram may contain the expensive 4-loop gluon propagator as a subdiagram.

For the R∗-operation, this representation has an issue: the non-integer power
hides UV-divergent subdiagrams, which should be subtracted. However, since the
exact contents of the (p2)−εL is factorised out, we may replace it with any L-loop
subdiagram. Therefore we choose the simplest configuration: L scalar one-loop
bubbles side by side.

Thus, for the R∗-operation we can remove propagator insertions by using the
following relation:

L

=

L




L ×

1 L

. (242)
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6.1.2 Delayed Feynman rule substitution

Substituting the Feynman rules creates many terms. For example, the following fully
gluonic five-loop graph creates 12 029 521 scalar integrals in the Feynman gauge:

. (243)

The source of the blow-up is the Feynman rule for the triple gluon vertex, which can
be written in the following way:

v3g(pµ,a
1 , pν,b

2 , pρ,c
3 ) = −i f abc [(p1 − p2)

ρgµν + (2p2 + p1)
µgνρ + (−2p1 − p2)

νgµρ

]
.

(244)
Thus, for every vertex, six terms are created, of which some will evaluate to the
same expression due to symmetries. For all these terms, expensive operations such
as Taylor expansions and divergent subgraph recognitions have to be performed.
However, these operations only depend on the momentum powers and are invariant
under the way the momenta contract. So, we rewrite the triple gluon vertex in a way
that exposes the momenta, but keeps all the contractions unsubstituted:

v3g(pµ,a
1 , pν,b

2 , pρ,c
3 ) = −i f abc pσ

1 t3(σ, ν, ρ, µ) + i f abc pσ
2 t3(σ, µ, ρ, ν) , (245)

where
t3(µ, ν, ρ, σ) = gµρgνσ + gµσgνρ − 2gµνgρσ . (246)

After rewriting v3g in terms of t3, there are only 210 = 1024 terms for the Feynman
diagram in eq. (243). We can keep our input in this compactified notation for as long
as the actual contractions are not important, which is right until the tensor reduction.

We define the operation ◦ that applies the remaining Feynman rules to all com-
ponents of the R∗-operation. For example:

t3(µ, ν, ρ, σ) ◦ ∆
(

µν

)
ρ

σ
= 2∆

(
µν

)
µ

ν
− 2∆

( )
ρ

ρ
.

(247)

We stress that for this particular case contraction is necessary.
Similar rules can be devised for the other vertices and for the trace of gamma

matrices. At five loops, the substitution of t3 and similar structures is an expensive
part of the calculation, since the number of generated terms is high.

6.1.3 Rules to make Feynman diagrams logarithmic

Since we compute
K(G) = −KδR∗G , (248)
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we can make G logarithmic, by d’Alembertian-like derivatives inside K(G). The
advantage over just Taylor expanding ∆(G), is that we are allowed to contract inside
K(G). We first consider the following linear integral F:

F = QµFµ, Fµ = Qµ(Q2)−εL f (ε) . (249)

We take the following derivative and solve the new equation for F:

∂µFµ = (1− 2εL)(Q2)−εL f (ε)

f (ε) =
1

1− 2εL
(Q2)εL∂µFµ

F =
Q2

1− 2εL
∂µFµ .

(250)

Thus, we have re-expressed F into a logarithmic integral with a new dot product
that is internal to the graph. For the R∗-operation, this is generally better than a dot
product with Q, since a dot product with the external momentum always requires a
projection whereas internal momenta may be in the same divergent subdiagram.

For quadratic integrals F, we can apply the d’Alembertian to achieve the same
effect:

F = (Q2)1−εL f (ε)

2F = 4(εL− 1)(ε(L + 1)− 2)(Q2)1−εL f (ε)

F =
Q2

4(εL− 1)(ε(L + 1)− 2)
2F .

(251)

For quadratic integrals of the form QµQνFµν, we can derive a special rule as well:

F =
∂µ∂νFµν(2− 2εL) + ∂α∂αFµµ

−8(−1 + εL)(−3 + ε + εL)(−2 + ε + εL)
(252)

For integrals with more Qs, or higher than quadratic ones, there are not sufficient
ways available to contract existing vectors to solve the system. To make these
integrals logarithmic, one could use Euler’s homogeneous function theorem:

Qα∂αF = nF , (253)

where n is the order in Q. For a Feynman integral of degree S we have n = S− 2εL.
Thus we formulate:

F =

(
1

S− 2εL
Qα∂α

)S
F (254)

Every time a derivative is taken, another Q-path can be chosen through the diagram,
to limit the growth of the number of terms. However, since the shape of eq. (254) is
similar to a Taylor expansion, it is faster to only perform the Taylor expansion on
∆(G).

It is important to construct the counterterms of the rearranged G′ at the same
time as the subdivergences of G. Since many counterterms of G are also in G′, the
number of relevant counterterms is reduced. This saves a factor three at four loops.
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6.1.4 Canonical forms for Feynman diagrams

The R∗-operation applied to five-loop diagrams will create many counterterms. In
order to reduce computation time, it is important to compute the counterterms of
a specific graph only once. In turn, this requires an efficient way to detect if two
graphs are equal. One straightforward option is to keep a list of all the graphs that
have already been processed and test for isomorphisms on every element of the list
until one is found. If no match is found, the current graph can be added to the list.
The two downsides of this method are that (1) an isomorphism test can be rather
slow at five loops and (2) that the list of topologies grows rapidly.

A better alternative is to construct a canonical form of a graph. A canonical form is
an isomorphism of the graph that is designated as the smallest by some yet to be
defined measure. To test for equality, one can simply compare the canonical forms.
Since isomorphy is first and foremost a property of the vertices, we give each vertex
a label from 1 to n. For simplicity, let us consider a graph that has no dot products
and only has edges with power 1.

We convert our graph to an edge representation:

1 3

2

0 4

= e(0, 1)e(1, 2)e(2, 3)e(2, 3)e(1, 3)e(3, 4) . (255)

Here, e(n1, n2) is the edge function, in which we place the smallest vertex index as
the first argument. The edge list is a lexicographically sorted list of edge functions, as
is shown in eq. (255). Now we define the smallest isomorphism of a graph as the
vertex labelling for which the edge list is lexicographically smallest.1

We can easily extend the graph notation to a graph where propagators can have
different powers, by introducing a third argument to the edge function e:

1 3

2

0 4

= e(0, 1, 1)e(1, 2, 2)e(2, 3, 1)e(2, 3, 2)e(1, 3, 1)e(3, 4, 1) , (256)

where we again make sure that the first two arguments of e(n1, n2, . . .) are sorted. To
add support for dot products and tensors, we extend the edge function even further:

µ

µ

1 3

2
0 4 = e(0, 1, 1, µ)e(1, 2, 2)e(2, 3, 1)e(2, 3, 2, µ)e(1, 3, 1)e(3, 4, 1) . (257)

1 In our program, we use the internal (deterministic) sorting order of Form to determine the smallest
isomorphism instead.
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We define the canonical signs of the momenta such that they always flow from the
smallest vertex label to the highest. If a transformation changes the order, we flip
the sign if the number of vectors in the momentum is odd:

e(2, 1, n, µ1, . . . , µk) = (−1)ke(1, 2, n, µ1, . . . , µk) . (258)

Finally, the momentum label pi of each edge is uniquely defined by the position i of
the edge in the edge list.

Now that most properties of the Feynman integral are captured in the extended
edge list and we have defined which edge list is smallest, we use McKay’s canon-
icalisation algorithm [215] to efficiently rewrite the complete Feynman integral to
canonical form. A simplified version of this algorithm is implemented in Form code.

6.1.5 Efficient tensor reduction

It can be shown that the tensor reduction of ultraviolet and infrared subtraction
terms, required for the R∗-operation, is equivalent to the tensor reduction of tensor
vacuum bubble integrals. In general tensor vacuum integrals can be reduced to linear
combinations of products of metric tensors gµν whose coefficients are scalar vacuum
integrals. Specifically a rank r tensor, Tµ1 ... µr , is written as a linear combination of
n = r!/2(r/2)/(r/2)! combinations of (r/2) metric tensors with coefficients cσ, i.e.,

Tµ1 ... µr = ∑
σ∈ 2Sr

cσ Tµ1 ...µr
σ , Tµ1 ... µr

σ = gµσ(1)µσ(2) . . . gµσ(r−1)µσ(r) . (259)

Here we define 2Sr as the group of permutations which do not leave the tensor
Tµ1 ... µr

σ invariant. The coefficients cσ can be obtained by acting onto the tensor
Tµ1 ... µr with certain projectors Pµ1 ...µr

σ , such that

cσ = Pµ1 ... µr
σ Tµ1 ... µr . (260)

From this it follows that the orthogonality relation,

Pµ1 ... µr
σ Tτ, µ1 ... µr = δστ , (261)

must hold, where δ is the Kronecker-delta. Since the projector Pµ1 ... µr
σ of each tensor

can also be written in terms of a linear combination of products of metric tensors,
inverting an n × n matrix determines all the projectors. However, there are two
issues. The first is that the size of the matrix grows rather rapidly as r increases.
Instead of solving an n× n linear system, the symmetry group of the metric tensors
can be utilised to reduce the size of the system. From eq. (261) it follows that the
projector Pσ is in the same symmetry group (the group of permutations which leave
it invariant) as Tσ. For example, given a permutation σ1 = (123...(r− 1)r),

Tµ1 ... µr
σ1 = gµ1µ2 gµ3µ4 . . . gµr−1µr . (262)

The corresponding projector Pµ1 ... µr
σ1 must be symmetric under interchanges of indices

such as µ1 ↔ µ2, (µ1, µ2)↔ (µ3, µ4) and so on. Grouping the metric tensors by the
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symmetry leads to the fact that Pσ is actually written in a linear combination of a
small number of m tensors instead of n (m ≤ n),

Pµ1 ... µr
σ =

m

∑
k=1

bk ∑
τ∈Aσ

m

Tµ1 ... µr
τ . (263)

The set of groups {Aσ
k |k = 1..m} must therefore each be closed under the permuta-

tions which leaves Tσ invariant and at the same time their union must cover once
the group 2Sn. Contracting Pσ with a representative in each group gives an m×m
matrix which can be inverted to yield the coefficients bk. The number of unknowns
m is m = 5 for r = 8 and m = 22 for r = 16, whereas we have n = 105 for r = 8
and n = 2027025 for r = 16. The comparison of these numbers illustrates that the
exploitation of the symmetry of the projectors makes it possible to find the tensor
reduction even for very large values of r, which could never have been obtained by
solving the n× n matrix.

The second issue with tensors of high rank is the large number of intermediate
terms that are created. Even though the system for the projector can be solved
efficiently, O(n2) terms will be created, of which some will merge due to symmetry.
Let us consider rank 6, with 15 terms:

c1gµ1µ2 gµ3µ4 gµ5µ6 + c2gµ1µ3 gµ2µ4 gµ5µ6 + . . . . (264)

In most practical situations there is symmetry, both on the inside of the object that
will be projected as on the outside. For example

A(pµ1
1 pµ2

1 pµ3
1 pµ4

1 pµ5
2 pµ6

2 )pµ1
3 pµ2

3 pµ3
4 pµ4

4 pµ5
4 pµ6

4 (265)

is symmetric in exchanges of µ1, . . . , µ4 and µ5, µ6 inside A, and is symmetric in
µ1, µ2 and µ3, . . . , µ6 outside A. The symmetry inside the object A will enforce that
coefficient c1 and c2 (and others) will actually be the same. The symmetry on the
outside will cause terms to merge. In the end, we could have used the symmetrised
variant of eq. (264) instead:

c1 · (gµ1µ2 gµ3µ4 gµ5µ6 + 2gµ1µ3 gµ2µ4 gµ5µ6) + c3(2gµ1µ2 gµ3µ5 gµ4µ6 + 10gµ1µ5 gµ2µ6 gµ3µ4).
(266)

We see that only two coefficients have to be computed instead of 15 and that there
are only 4 terms in the output instead of 15. The challenge is to prevent these
terms from being created in the first place by exploiting symmetry, instead of
starting from eq. (264). We make use of the optimised Form command dd , which
creates the tensor structure Tµ1,...,µr without generating duplicates. If we evaluate
dd (p1,p1,p1,p1,p2,p2) and strip the coefficient we get p1.p1^2*p2.p2+p1.p1*p1.
p2^2. These two terms represent the structure outside of c1 and c3 in (266). For
each of these two terms, we solve for the coefficient. Next, we recreate the metric
structures that would give this specific contraction.

A term generated by dd consists of two different factors: (p · p)a and (p1 · p2)
a.

For (p · p)a, we collect all possible indices involved with p. For eq. (265), this would
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be µ1, . . . , µ4. Then we select all possible ways to get 2a elements from that list with
distrib . Next, we use dd on those indices. Thus, for p1 · p1 in the example we
would get gµ1µ2 + gµ1µ3 + gµ2µ3 . For cases such as (p1 · p2)

a, we select a from the list
of indices associated to p1 and a from the list of p2. Then we permute over the list of
p2. Using this algorithm, one can generate all possible contractions from the result
without generating duplicates. To apply the outside symmetry, one can easily fill
in the outside momenta associated to the indices instead of the indices themselves.
distrib and dd will take the symmetry into account automatically.

6.2 the background field

A convenient and efficient method to extract the Yang-Mills beta function is to make
use of the background field. We will briefly review this formalism. We start with
the Lagrangian of Yang-Mills theory coupled to fermions in a non-trivial (often
the fundamental) representation of the gauge group, the theory for which we will
present the five-loop beta-function in section 6.3.

The Lagrangian of this theory can be decomposed as

LYM+FER = LCYM + LGF + LFPG + LFER . (267)

Here the classical Yang-Mills Lagrangian (CYM), a gauge-fixing term (GF), the
Faddeev-Popov ghost term (FPG) and the fermion term (FER) are given by

LCYM = −1
4

Fa
µν(A)Fµν

a (A) ,

LGF = − 1
2ξ

(Ga)2 ,

LFPG = −η†
a ∂µDab

µ (A) ηb ,

LFER = ∑
i,j, f

ψ̄i f (i /Dij(A)−mf δij)ψj f . (268)

In the fermion term the sum goes over colours i, j, and n f flavours f , and we use the
standard Feynman-slash notation. The field strength is given by

Fa
µν(A) = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν (269)

and the covariant derivatives are defined as

Dab
µ (A) = δab∂µ − g f abc Ac

µ ,

Dµ
ij(A) = δij∂

µ − ig Ta
ij A

µ
a . (270)

The conventions associated to the generators Ta and structure constants f abc of the
gauge group will be explained in section 4.1. The gauge-fixing term depends on
making a suitable choice for Ga, which is usually taken as Ga = ∂µ Aa

µ.
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The background-field Lagrangian is derived by decomposing the gauge field as

Aa
µ(x) = Ba

µ(x) + Âa
µ(x) , (271)

where Ba
µ(x) is the classical background field while Âa

µ(x) contains the quantum
degrees of freedom of the gauge field Aa

µ(x). The background-field Lagrangian is
then written as

LBYM+FER = LBCYM + LBGF + LBFPG + LBFER . (272)

LBCYM and LBFER are derived simply by substituting eq. (271) into the corresponding
terms in the Yang-Mills Lagrangian. However a clever choice exists [117, 118] for
the ghost and gauge fixing terms, which allows this Lagrangian to maintain explicit
gauge invariance for the background field Ba

µ(x), while fixing only the gauge freedom
of the quantum field Âa

µ(x). The gauge fixing then uses instead

Ga = Dab
µ (B)Âµ

b , (273)

while the ghost term is given by

LBFPG = −η†
a Dab;µ(B) Dbc

µ (B + Â) ηc . (274)

The Lagrangian LBYM+FER then gives rise to additional interactions which are dif-
ferent from the normal QCD interactions of the quantum field Âa

µ(x) also contain
interactions of Ba

µ(x) with all other fields.
A remarkable fact is found when considering the renormalisation of this Lag-

rangian. Indeed it turns out, see e.g., [117, 118], that the coupling renormalisation,
g→ Zg g, which determines the beta function, is directly related to the renormalisa-
tion of the background field, B→ BZB, via the identity:

Zg
√

ZB = 1 . (275)

When working in the Landau gauge, the only anomalous dimension needed in
the background field gauge formalism is then the beta function. However in the
Feynman gauge the gauge parameter ξ requires the renormalisation constant Zξ –
which equals the gluon field renormalisation constant – but only to one loop lower.
In turn this allows one to extract the beta function from the single equation

ZB(1 + ΠB(Q2; Zξ ξ, Zgg)) = finite, (276)

with
Πµν

B (Q; Zξξ, Zgg) = (Q2gµν −QµQν) ΠB(Q2; Zξ ξ, Zgg) , (277)

where Πµν
B (Q2; ξ, g) is the bare self energy of the background field. This self-energy

is computed by keeping the fields B external while the only propagating fields are
Â, η and ψ.
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Obtaining the beta function through the background field gauge is faster and
simpler than the traditional method of computing the gluon propagator, ghost
propagator and ghost-ghost-gluon vertex due to a lower total number of diagrams
and the above reduction to a scalar renormalisation. The number of diagrams for the
background field propagator at four loops is 7435, whereas the smallest combination
needed for the beta function (gluon and ghost propagator + ghost-ghost-gluon vertex)
requires 5245 + 1507 + 18034 = 24786 diagrams. This speed-up is also evident from
figure 24, which shows that calculating the background field propagator takes about
as much time as computing the gluon propagator.

The additional Feynman rules required for the background field propagator are
displayed in table 5. The vertices with two background fields attached to it yield 0,
since these are tadpoles.

Now that we have discussed several optimisations and defined the background
field propagator, we can focus on the computation of the five-loop beta function.

6.3 diagram computations and analysis

As outlined in 6.2, it is possible to extract the five-loop beta function from the poles
(in the dimensional regulator ε) of the bare background field self-energy ΠB(Q).
It is beyond current computational capabilities to calculate the required five-loop
propagator integrals directly. The main obstacle preventing such an attempt is the
difficulty of performing the required IBP reductions (see section 3.5).

However, the problem can be simplified via the use of the R∗-operation. This
allows us to decompose the five-loop integral into a five-loop counterterm and
counterterms of lower loops. We infrared-rearrange (IRR) the five-loop counter term
to a carpet integral. For example:

→ . (278)

These carpet integrals can always be reduced to four loops (see section 3.3). If the
counterterm is not logarithmic, we first apply the rules provided in section 6.1.3.
After we use the Forcer program to compute the four-loop integrals.

The Feynman diagrams for the background propagator up to five loops have
been generated using Qgraf [111]. They have then been heavily manipulated by
a Form [101, 102, 216] program that determines the topology and calculates the
colour factor using the program of ref. [112]. Additionally, it merges diagrams of
the same topology, colour factor, and maximal power of nf into meta diagrams for
computational efficiency. Integrals containing massless tadpoles or symmetric colour
tensors with an odd number of indices have been filtered out from the beginning.
Lower-order self-energy insertions have been ‘factorised’ out. In this manner we
arrive at 2 one-loop, 9 two-loop, 55 three-loop, 572 four-loop and 9414 five-loop meta
diagrams. We refer the reader to section 3.10 for a more detailed description.

The diagrams up to four loops have been computed earlier to all powers of the
gauge parameter using the Forcer program [1, 7, 9]. For the time being, our five-loop
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p
q

r
a, µ

b, ν

c, λ

g fabc

[
gµλ

(
p− r− q

ξ

)
ν

+ gνλ (r− q)µ + gµν

(
q− p +

r
ξ

)
λ

]

a, µ b, ν

c, λd, ρ

−ig2
[

fabx fxcd
(

gµ,λgν,ρ − gµ,ρgν,λ
)

+ fadx fxbc
(

gµ,νgλ,ρ − gµ,λgν,ρ
)

+ facx fxbd
(

gµ,νgλ,ρ − gµ,ρgν,λ
)]

a, µ b, ν

cd

−ig2 fcax fxbdgµν

q

r
a, µ

b, ν

c, λ

−g fbac(r + q)µ

p

a, µ

b

c

−igγµ(ta)b
c

Table 5: Additional Feynman rules for the background field. Note the dependence
on 1/ξ in the background-gluon-gluon vertex.
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computation has been restricted to the Feynman gauge, ξF = 1− ξ = 0. An extension
to the first power in ξF would be considerably slower; the five-loop computation
for a general ξ would be impossible without substantial further optimisations of
our code. Instead of varying ξ, we have checked our computations by verifying the
relation QµQν Πµν

B = 0 required by eq. (277). This check took considerably more
time than the actual determination of β4 due to the increase in tensor rank.

The five-loop diagrams have been calculated on computers with a combined total
of more than 500 cores, 80% of which are older and slower by a factor of almost three
than the latest Intel Xeon 2.6 GHz workstations. One core of the latter performs
a ‘raw-speed’ Form benchmark, a four-dimensional trace of 14 Dirac matrices, in
about 0.02 seconds which corresponds to 50 ‘form units’ (fu) per hour. The total
CPU time for the five-loop diagrams was 3.8 · 107 seconds which corresponds to
about 2.6 · 105 fu on the computers used. The TForm parallelisation efficiency for
single meta diagrams run with 8 or 16 cores was roughly 0.5; the whole calculation
of β4, distributed ‘by hand’ over the available machines, finished in three days.

For comparison, the corresponding R∗ computation for ξF = 0 at four loops
required about 103 fu, which is roughly the same as for the first computation of the
four-loop beta function to order ξ 1

F by a totally different method given in ref. [113].
The computation with the Forcer program at four and fewer loops is much faster,
as demonstrated in section 3.11.

The determination of ZB from the unrenormalised background propagator is
performed by imposing, order by order, the finiteness of its renormalised counterpart.
The beta function can simply be read off from the 1/ε coefficients of ZB. If the
calculation is performed in the Landau gauge, the gauge parameter does not have to
be renormalised. In a k-th order expansion about the Feynman gauge at five loops,
the L< 5 loop contributions are needed up to ξ 5−L

F . The four-loop renormalisation
constant for the gauge parameter is not determined in the background field and has
to be ‘imported’. In the present k = 0 case, the terms already specified in ref. [114]
would have been sufficient had we not performed the four-loop calculation to all
powers of ξF anyway.

6.4 results and discussion

Before we present our new results, it may be convenient to recall the beta function
(240) up to four loops [23, 24, 113, 114, 119, 120, 122, 210, 211] in terms of the colour
factors defined in section 4.1,

β0 =
11
3

CA −
4
3

TF nf , (279)

β1 =
34
3

C 2
A −

20
3

CA TF nf − 4 CF TF nf , (280)

β2 =
2857

54
C 3

A −
1415
27

C 2
A TF nf −

205
9

CF CA TF nf + 2 C 2
F TF nf
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+
44
9

CF T 2
F n 2

f +
158
27

CA T 2
F n 2

f , (281)

β3 = C 4
A

(
150653

486
− 44

9
ζ3

)
+

d abcd
A d abcd

A
NA

(
−80

9
+

704
3

ζ3

)
+ C 3

A TF nf

(
−39143

81
+

136
3

ζ3

)
+ C 2

A CF TF nf

(
7073
243
− 656

9
ζ3

)

+ CA C 2
F TF nf

(
−4204

27
+

352
9

ζ3

)
+

d abcd
F d abcd

A
NA

nf

(
512

9
− 1664

3
ζ3

)
+ 46 C 3

F TF nf + C 2
A T 2

F n 2
f

(
7930

81
+

224
9

ζ3

)
+ C 2

F T 2
F n 2

f

(
1352

27
− 704

9
ζ3

)

+ CA CF T 2
F n 2

f

(
17152

243
+

448
9

ζ3

)
+

d abcd
F d abcd

F
NA

n 2
f

(
−704

9
+

512
3

ζ3

)
+

424
243

CA T 3
F n 3

f +
1232
243

CF T 3
F n 3

f , (282)

where n f is the number of fermion (in QCD, quark) flavours. βn are the same in all
MS-like schemes [130, 131], i.e. within the class of renormalisation schemes which
differ only by a shift of the scale µ.

Below we will present the results (A) for a generic Yang-Mills theory, (B) for QCD,
and (C) for QED.

(a) yang-mills In the same notation and scheme, the five-loop contribution reads

β4 = C 5
A

(
8296235

3888
− 1630

81
ζ3 +

121
6

ζ4 −
1045

9
ζ5

)

+
d abcd

A d abcd
A

NA
CA

(
−514

3
+

18716
3

ζ3 − 968 ζ4 −
15400

3
ζ5

)
+ C 4

A TF nf

(
−5048959

972
+

10505
81

ζ3 −
583

3
ζ4 + 1230 ζ5

)
+ C 3

A CF TF nf

(
8141995

1944
+ 146 ζ3 +

902
3

ζ4 −
8720

3
ζ5

)
+ C 2

A C 2
F TF nf

(
−548732

81
− 50581

27
ζ3 −

484
3

ζ4 +
12820

3
ζ5

)
+ CA C 3

F TF nf

(
3717 +

5696
3

ζ3 −
7480

3
ζ5

)
− C 4

F TF nf

(
4157

6
+ 128 ζ3

)

+
d abcd

A d abcd
A

NA
TF nf

(
904

9
− 20752

9
ζ3 + 352 ζ4 +

4000
9

ζ5

)

+
d abcd

F d abcd
A

NA
CA nf

(
11312

9
− 127736

9
ζ3 + 2288 ζ4 +

67520
9

ζ5

)
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+
d abcd

F d abcd
A

NA
CF nf

(
−320 +

1280
3

ζ3 +
6400

3
ζ5

)
+ C 3

A T 2
F n 2

f

(
843067

486
+

18446
27

ζ3 −
104

3
ζ4 −

2200
3

ζ5

)
+ C 2

A CF T 2
F n 2

f

(
5701
162

+
26452

27
ζ3 −

944
3

ζ4 +
1600

3
ζ5

)
+ C 2

F CA T 2
F n 2

f

(
31583

18
− 28628

27
ζ3 +

1144
3

ζ4 −
4400

3
ζ5

)
+ C 3

F T 2
F n 2

f

(
−5018

9
− 2144

3
ζ3 +

4640
3

ζ5

)

+
d abcd

F d abcd
A

NA
TF n 2

f

(
−3680

9
+

40160
9

ζ3 − 832 ζ4 −
1280

9
ζ5

)

+
d abcd

F d abcd
F

NA
CA n 2

f

(
−7184

3
+

40336
9

ζ3 − 704 ζ4 +
2240

9
ζ5

)

+
d abcd

F d abcd
F

NA
CF n 2

f

(
4160

3
+

5120
3

ζ3 −
12800

3
ζ5

)
+ C 2

A T 3
F n 3

f

(
−2077

27
− 9736

81
ζ3 +

112
3

ζ4 +
320

9
ζ5

)
+ CA CF T 3

F n 3
f

(
−736

81
− 5680

27
ζ3 +

224
3

ζ4

)
+ C 2

F T 3
F n 3

f

(
−9922

81
+

7616
27

ζ3 −
352

3
ζ4

)

+
d abcd

F d abcd
F

NA
TF n 3

f

(
3520

9
− 2624

3
ζ3 + 256 ζ4 +

1280
3

ζ5

)
+ CA T 4

F n 4
f

(
916
243
− 640

81
ζ3

)
− CF T 4

F n 4
f

(
856
243

+
128
27

ζ3

)
. (283)

ζ denotes the Riemann zeta function with ζ3 ∼= 1.202056903, ζ4 = π4/90 ∼=
1.08232323 and ζ5 ∼= 1.036927755. As expected from the lower-order and QED
results, higher values of the zeta function do not occur despite their occurrence in
the results for individual diagrams; for further discussions see ref. [105, 204, 213].

(b) qcd Inserting the group factors of SU(3) as given in eq. (62) leads to the QCD
results

β0 = 11 − 2
3

nf , β1 = 102 − 38
3

nf ,

β2 =
2857

2
− 5033

18
nf +

325
54

n 2
f ,

151



6

β3 =
149753

6
+ 3564 ζ3 + nf

(
−1078361

162
− 6508

27
ζ3

)
+ n 2

f

(
50065

162
+

6472
81

ζ3

)
+

1093
729

n 3
f (284)

and

β4 =
8157455

16
+

621885
2

ζ3 −
88209

2
ζ4 − 288090 ζ5

+ nf

(
−336460813

1944
− 4811164

81
ζ3 +

33935
6

ζ4 +
1358995

27
ζ5

)
+ n 2

f

(
25960913

1944
+

698531
81

ζ3 −
10526

9
ζ4 −

381760
81

ζ5

)
+ n 3

f

(
−630559

5832
− 48722

243
ζ3 +

1618
27

ζ4 +
460
9

ζ5

)
+ n 4

f

(
1205
2916

− 152
81

ζ3

)
.(285)

In truncated numerical form β3 and β4 are given by

β3 ∼= 29242.964− 6946.2896 nf + 405.08904 n 2
f + 1.499314 n 3

f , (286)

β4
∼= 537147.67− 186161.95 nf + 17567.758 n 2

f − 231.2777 n 3
f − 1.842474 n 4

f .(287)

In contrast to β0, β1, and β2, which change sign at about nf = 16.5, 8.05, and 5.84

respectively, β3 and β4 are positive (except at very large nf for β4), but have a (local)
minimum at nf ' 8.20 and nf ' 6.07.

(c) qed The corresponding analytical result for QED, in the same renormalisation
scheme(s) but defined without the overall minus sign in eq. (240) is given by

β0 =
4
3

nf , β1 = 4 nf , β2 = − 2 nf −
44
9

n 2
f ,

β3 = − 46 nf + n 2
f

(
760
27
− 832

9
ζ3

)
− 1232

243
n 3

f (288)

and

β4 = nf

(
4157

6
+ 128 ζ3

)
+ n 2

f

(
−7462

9
− 992 ζ3 + 2720 ζ5

)
+ n 3

f

(
−21758

81
+

16000
27

ζ3 −
416

3
ζ4 −

1280
3

ζ5

)
+ n 4

f

(
856
243

+
128
27

ζ3

)
.(289)

The (corresponding parts of the) results (283), (285) and (289) are in complete
agreement with the findings of refs. [40, 128, 213, 214]. Consequently, eq. (289) also
agrees with the result for QED at nf = 1, which was obtained in ref. [44] somewhat
earlier than the general result [213].
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In the following sections we will analyse three properties of the beta function. First,
we study the n f -dependence in section 6.4.1. Then, we analyse the N-dependence
in section 6.4.2. Finally, we study the cumulative effects of the QCD beta function
corrections in section 6.4.3

6.4.1 Analysis of nf -dependence in QCD

As already noted in ref. [40], the five-loop QCD coefficient of the beta function is
rather small [recall that we use a convenient but very small expansion parameter in
eq. (240)]. Indeed, for the physically relevant values of nf the expansion in powers
of αs reads

β̃(αs, nf =3) = 1 + 0.565884 αs + 0.453014 α 2
s + 0.676967 α 3

s + 0.580928 α 4
s ,

β̃(αs, nf =4) = 1 + 0.490197 αs + 0.308790 α 2
s + 0.485901 α 3

s + 0.280601 α 4
s ,

β̃(αs, nf =5) = 1 + 0.401347 αs + 0.149427 α 2
s + 0.317223 α 3

s + 0.080921 α 4
s ,

β̃(αs, nf =6) = 1 + 0.295573 αs − 0.029401 α 2
s + 0.177980 α 3

s + 0.001555 α 4
s ,(290)

where β̃ ≡ −β(as)/(a 2
s β0) has been re-expanded in powers of αs = 4π as. Clearly

there is no sign so far of a possible divergence of the perturbation series for this
quantity.

In order to further illustrate the nf -dependent convergence (or the lack thereof) of
the beta function of QCD, we introduce the quantity

α̂
(n)
s (nf ) = 4π

∣∣∣∣∣ βn−1(nf )

4 βn(nf )

∣∣∣∣∣ . (291)

Recalling the normalisation (240) of our expansion parameter, α̂
(n)
s (nf ) represents

the value of αs for which the n-th order correction is 1/4 of that of the previous
order. Therefore, αs <∼ α̂

(n)
s (nf ) defines (somewhat arbitrarily due to the choice of

a factor of 1/4) a region of fast convergence of β(αs, nf ). Obviously, the absolute

size of the n-th and (n−1)-th order effects are equal for αs = 4 α̂ (n)(nf ). Thus the
quantity (291) also indicates where the expansion appears not to be reliable anymore,
αs >∼ 4 α̂

(n)
s (nf ), for a given value of nf that is not too close to zeros or minima of the

coefficients βn−1 and βn.
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6.4.2 Analysis of N-dependence in SU(N)

It is interesting to briefly study the N-dependence of the convergence behaviour for
the case of SU(N) gauge theories. For our brief illustration we confine ourselves to
pure Yang-Mills theory, nf = 0, and consider

α̂
(n)
YM(N) = 4π N

∣∣∣∣ βn−1(N)

4 βn(N)

∣∣∣∣ , (292)

where the factor N compensates the leading large-N dependence Nn+1 of βn, i.e.,
the parameter that needs to be small in SU(N) Yang-Mills theory is not αYM but
NαYM .

The quantities (291) and (292) are displayed in the left and right panel of figure 33,
respectively. The behaviour of α̂

(n)
s at the upper end of the nf range shown in the

figure is affected by the zeros and minima of the coefficients βn > 0 mentioned below
eq. (287). The N-dependence of α̂YM for pure Yang-Mills theory, where only terms
with Nn+1 and Nn−1 enter βn (the latter only at n ≥ 4 via d abcd

A d abcd
A /NA, cf. eq. (62)

above), is rather weak. With only the curves up to four loops, one might be tempted
to draw conclusions from the shrinking of the ‘stable’ αs region from NLO to N2LO
and from N2LO to N3LO that are not supported by the N4LO (five-loop) results of
ref. [40] and the present section.

6.4.3 Cumulative effects of the QCD beta function corrections

Finally, we briefly illustrate the cumulative effect of the orders up to N4LO on the
beta function of QCD and the scale dependence of the strong coupling constant αs
in figure 34. For this illustration we set nf = 4 and choose, in order to only show
the differences caused by the running of the coupling, an order-independent value
of αs = 0.2 at µ2 = 40 GeV2. A realistic order dependence of αs at this scale, as
determined from the scaling violations in DIS, would be 0.208, 0.201, 0.200, and 0.200

at NLO, N2LO, N3LO, and N4LO, respectively [98].
Adding the N4LO contributions changes the beta function by less than 1% at

αs = 0.47 for nf = 4 and at αs = 0.39 for nf = 3; the corresponding values at

N3LO are 0.29 and 0.26. The N4LO effect on the values of αs as shown in figure 34

are as small as 0.08% (0.4%) at µ2 = 3 GeV2 (1 GeV2); the corresponding N3LO
corrections are 0.5% (2%). Of course, these results do not preclude sizeable purely
non-perturbative corrections, but it appears that the perturbative running of αs is
now fully under control for all practical purposes.

6.5 qcd beta function in the minimom scheme

Unlike the MS scheme, momentum subtraction schemes are defined in a regularisation-
independent way. In these schemes, the field renormalisations are performed such
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Figure 33: The values (291) and (292) of the coupling constants of QCD (left) and pure SU(N)
Yang-Mills theory (right) for which the absolute size of the NnLO contribution to
the beta function is a quarter of that of the Nn−1LO term for n = 1, 2, 3 (dashed
curves) and 4 (solid curves).

that finite radiative corrections on propagators are absorbed as well as divergences
and hence they coincide with their tree-level values at the renormalisation point.
Then one of (or an arbitrary linear combination of) the vertex functions is normalised
to its tree-level value and the other vertices are fixed via the Slavnov-Taylor identit-
ies. Common choices for the subtraction point of the vertex are a symmetric point
(referred as MOM schemes) and an asymmetric point where one of the momenta is
nullified, sometimes referred as M̃OM schemes. The latter choice corresponds to our
result for the vertex functions, given in section 4.2. Indeed, ref. [139] derived four-
loop beta functions in four particular M̃OM schemes from that in the MS scheme by
computing conversion factors via finite parts of two- and three-point functions in
the MS scheme.

As an example application, we provide the five-loop beta function in the minimal
momentum subtraction (MiniMOM) scheme introduced in ref. [153], thus extending
previous results [153, 217] by one order in the coupling constant. This scheme, see
the preceding references for a detailed discussion, is more convenient than MS for
extending analyses of the strong coupling constant and its scale dependence into
the non-perturbative regime, e.g., via lattice QCD; for a recent analysis see ref. [218].
In the perturbative regime the MiniMOM scheme provides an alternative to MS for
studying the behaviour and truncation uncertainty of the perturbation series for
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Figure 34: Left panel: The total N2LO, N3LO and N4LO results for the beta function of
QCD for four flavours, normalised to the NLO approximation. Right panel: The
resulting scale dependence of αs for a value of 0.2 at 40 GeV2, also normalised to
the NLO result in order to show the small higher-order effects more clearly, for
the scale range 1 GeV2 ≤ µ2 ≤ 10 4 GeV2.

benchmark quantities such as the R-ratio in e+e− annihilation and the Higgs-boson
decay to gluons, see refs. [219, 220].

In the MiniMOM scheme [153], the self-energies are completely absorbed into the
field renormalisation constants at the subtraction point q2 = −µ2:

1 + ΠMM(−µ2) = ZMM
3

[
1 + ΠB(−µ2)

]
= 1, (293)

1 + Π̃MM(−µ2) = Z̃MM
3

[
1 + Π̃B(−µ2)

]
= 1, (294)

1 + ΣMM
V (−µ2) = ZMM

2

[
1 + ΣB

V(−µ2)
]
= 1. (295)

Here the superscript “MM” indicates a quantity in the MiniMOM scheme. In
addition, motivated by the non-renormalisation of the ghost-gluon vertex in the
Landau gauge [221], the vertex renormalisation constant for this vertex is chosen the
same as that in MS,

Z̃MM
1 = Z̃MS

1 , (296)

which is equal to one in the Landau gauge.
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The above renormalisation conditions lead to the following relations for the
coupling constant and gauge parameter in the two schemes:

aMM(µ2) = aMS(µ2)
1[

1 + ΠMS(−µ2)
][

1 + Π̃MS(−µ2)
]2 , (297)

ξMS(µ2) = ξMM(µ2)
1

1 + ΠMS(−µ2)
. (298)

eq. (297) allows one to convert a value of αMS
s to αMM

s . For example, αMS
s (M2

Z) = 0.118
leads to αMM

s (M2
Z) = 1.096 αMS

s (M2
Z) for QCD in the Landau gauge with n f = 5

quark flavours. The general expansion of eq. (297) is given in [2].
The scale dependence of the coupling constant in eq. (297) in this scheme is given

by

βMM = µ2 daMM

dµ2 =
∂aMM

∂aMS
βMS +

∂aMM

∂ξMS
γMS

3 ξMS, (299)

where we have used the beta function and gluon field anomalous dimension in MS,

βMS = µ2 daMS

dµ2 , (300)

γMS
3 ξMS = µ2 dξMS

dµ2 . (301)

Note that the right-hand side of eq. (297), and hence that of eq. (299), is naturally
given in terms of aMS and ξMS. One has to convert them into aMM and ξMM by
inverting the series of eq. (297) and by using eq. (298).2

Having results for the four-loop self-energies in the MS scheme at hand (see
section 4.2), one can obtain the five-loop beta function in the MiniMOM scheme
from the five-loop beta function [4, 40] and the four-loop gluon field anomalous
dimension in the MS scheme. The result for SU(3) in the Landau gauge (ξMM = 0)
reads

β MM = −
4

∑
l=0

(
aMM)l+2

β MM
l + O

((
aMM)7

)
, (302)

with

β MM
0 = 11− 2

3
nf ,

β MM
1 = 102− 38

3
nf ,

2 In ref. [153], the results are presented in ξMS instead of ξMM. In contrast, in ref. [217] the conversion from
ξMS to ξMM was performed. The results become the same in the Landau gauge ξMS = ξMM = 0. The
same is true for the “M̃OMh” scheme of ref. [139].
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β MM
2 =

(
28965

8
− 3861

8
ζ3

)
+ nf

(
−7715

12
+

175
12

ζ3

)
+ nf

2
(

989
54

+
8
9

ζ3

)
,

β MM
3 =

(
1380469

8
− 625317

16
ζ3 −

772695
32

ζ5

)
+ nf

(
−970819

24
+

516881
72

ζ3

+
1027375

144
ζ5

)
+ nf

2
(

736541
324

− 6547
27

ζ3 −
9280

27
ζ5

)
+ nf

3
(
−800

27
+

16
9

ζ3

)
,

β MM
4 =

(
3248220045

256
− 1064190195

512
ζ3 −

4922799165
512

ζ5 −
7696161

64
ζ3

2

+
21619456551

4096
ζ7

)
+ nf

(
−115659378547

31104
+

10327103555
20736

ζ3 +
18219328375

6912
ζ5

+
82869

32
ζ3

2 − 24870449471
18432

ζ7

)
+ nf

2
(

833934985
2592

− 13019053
1296

ζ3 −
65264845

324
ζ5

+
59531

36
ζ3

2 +
26952037

432
ζ7

)
+ nf

3
(
−3249767

324
− 129869

162
ζ3 +

299875
54

ζ5

− 2240
27

ζ3
2
)
+ nf

4
(

2617
27

+
304
27

ζ3 −
1760

27
ζ5

)
. (303)

Due to its length, we do not show the result with a generic group and arbitrary
covariant linear gauge here. Instead, we refer the readers to ref. [2]. Our result
agrees with the result given in ref. [217] up to four loops. As is well known, the
first coefficient β MM

0 is scheme independent. The next coefficient β MM
1 has a gauge

dependence and the universal value is obtained only in the Landau gauge. The last
coefficient β MM

4 is the new result. In the MS scheme, some of higher values of the
zeta function (e.g., ζ2

3, ζ6 and ζ7 at five loops) do not occur, for a discussion of this
issue see refs. [105, 203, 204]. In contrast, one cannot expect their absence in the
MiniMOM scheme. Indeed eq. (303) includes terms with ζ2

3 and ζ7, and for ξMM 6= 0
also ζ6 occurs.

The numerical values of the above beta function for three to five quark flavours
are

β̃MM(n f = 3) = 1 + 0.5658842421αMM
s + 0.9419859046(αMM

s )2

+ 2.304494526(αMM
s )3 + 6.647485913(αMM

s )4,

β̃MM(n f = 4) = 1 + 0.4901972247αMM
s + 0.6452147391(αMM

s )2

+ 1.638457168(αMM
s )3 + 3.466865543(αMM

s )4,

β̃MM(n f = 5) = 1 + 0.4013472477αMM
s + 0.3288519562(αMM

s )2

+ 1.026892491(αMM
s )3 + 0.8417657296(αMM

s )4,

(304)
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where β̃ ≡ β(a)/(−β0a2) has been re-expanded in powers of αs = 4πa. These values
may be compared with those in the MS scheme [4, 40] reading

β̃MS(n f = 3) = 1 + 0.5658842421αMS
s + 0.4530135791(αMS

s )2

+ 0.6769674420(αMS
s )3 + 0.5809276379(αMS

s )4,

β̃MS(n f = 4) = 1 + 0.4901972247αMS
s + 0.3087903795(αMS

s )2

+ 0.4859007965(αMS
s )3 + 0.2806008338(αMS

s )4,

β̃MS(n f = 5) = 1 + 0.4013472477αMS
s + 0.1494273313(αMS

s )2

+ 0.3172233974(αMS
s )3 + 0.08092104151(αMS

s )4.

(305)

Obviously, the MiniMOM coefficients in eqs. (304) are (much) larger than their MS
counterparts in eqs. (305) starting from the second order; moreover, they exhibit a
definite growth with the order that is absent in the MS case. One may expect that
this behaviour, and the larger value of α MM

s , is more than compensated by smaller
expansion coefficients for observables, leading to a better overall convergence in
MOM-like schemes. However, this issue has been studied up to four loops in some
detail for the R-ratio in electron-positron annihilation, without arriving at such a
clear-cut conclusion [219].

6.6 chapter conclusions

We have presented five methods to improve the performance of the R∗-operation
when applied to five-loop diagrams: (1) extraction of propagator insertions, (2)
delayed Feynman rule substitution, (3) efficient rules to make diagrams logarithmic,
(4) a canonical form algorithm suitable for Feynman diagrams, and (5) an efficient
tensor reduction routine.

Next, we have defined the background field, which makes it convenient to extract
the five-loop beta function. Using the background field propagator, we have com-
puted the five-loop (next-to-next-to-next-to-next-to-leading order, N4LO) coefficient
β4 of the renormalisation-group beta function in MS-like schemes for Yang-Mills
theory with a simple compact Lie group and one set of nf spin-1/2 fermions. This
computation confirms and extends the QCD and QED results first obtained, re-
spectively, in ref. [40] – where also some direct phenomenological applications to αs
determinations and Higgs-boson decay have already been discussed – and ref. [213].
It also agrees with the high-nf partial results of refs. [128, 214]. We have verified
our result and method by confirming the transversality of the background field
propagator.

We have illustrated the size of the resulting N4LO corrections to the scale depend-
ence of the coupling constant for αs-values relevant to MS, the default scheme for
higher-order calculations and analyses in perturbative QCD. For physical values
of nf , the N4LO corrections to the beta function are much smaller than the N3LO
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contributions and amount to 1% or less, even for αs-values as large as 0.4. More
generally, there is no evidence of any increase of the coefficients indicative of a
non-convergent perturbative expansion for the beta functions of QCD and SU(N)
gauge theories.

The computations make extensive use of Forcer, as described in chapter 3, and
the R∗-operation described in chapter 5.

Using the four-loop propagators and vertices computed in chapter 4, we have
determined the five-loop beta function in the MiniMOM scheme of ref. [153], i.e., we
have extended the result of refs. [153, 217] by one order in the coupling constant αs.

A Form file with our result for the coefficient β4 and its lower-order counterparts
can be obtained from the preprint server arXiv in the source of [4]. The beta function
in the MiniMOM scheme with full gauge dependence and for generic colour group
is provided as an ancillary file on arXiv of [2].

6.6.1 Findings and main conclusion

The main contribution of this chapter is the computation of the five-loop beta
function for Yang-Mills theory with fermions. For this computation both the Forcer

program (the answer to RQ2) and the new generalised R∗ method with its computer
code (the answer to RQ3) were critical. Our computation took six days on a 32-core
machine. The QCD result we verified from [40] took 1.5 years on 20 workstations
with 8 cores.

Our main conclusion therefore reads as follows: we have succeeded to compute the
five-loop beta function in six days, verifying the existing QCD result and extending
it to a generic Yang-Mills theory with fermions.

6.6.2 Future work

As of this moment we envisage two future projects. First, we have seen that the beta
function in the MiniMOM scheme appears to have a higher-order structure which is
quite different from that in the MS scheme, thus inviting further studies especially
for the physical case of QCD in four dimensions.

Second, the beta function could be extended to six loops. However, this will be a
tremendous challenge for at least three reasons: (1) a five-loop Forcer equivalent
has to be built, (2) substituting the Feynman rules will create billions of terms, and
(3) the number of counterterms will become enormous.
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