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4
R E S U LT S F O R F O U R - L O O P C O M P U TAT I O N S

In this chapter we use the Forcer program, constructed in chapter 3 as part of
the answer to RQ2, to compute two classes of four-loop objects. Class 1 concerns
propagators and vertices of QCD, and Class 2 concerns Mellin moments of splitting
functions and coefficient functions.

class 1 The first class of objects that we are going to compute are the finite
pieces of propagators and vertices to any power in ε = (D− 4)/2, where D is the
space-time dimension. Up until this point, only the poles and the ε0 coefficients
are known, since they have been used in computations of the basic renormalisation
group functions of QCD [23, 24, 113, 114, 119–126] which have recently reached
five-loop accuracy [4, 40, 41, 127–129]. In the modified minimal subtraction (MS)
scheme [130, 131], defined by subtracting the poles in ε together with a fixed term
that occurs in dimensional regularisation , these functions are obtained by computing
single poles in corresponding Green’s functions. Since only the poles are required,
the above four- and five-loop results were first obtained using the method of infrared
rearrangement [4, 124, 132–138] which simplifies computations without changing
the ultraviolet singular structure, but modifies the finite parts. Therefore, it is not
possible to compute the complete finite piece using these standard methods.

Our aim is to provide the self-energies and a set of vertices with one vanishing
external momentum for massless QCD at four-loop accuracy. The unrenormalised
results are exact in terms of ε, and four-loop master integrals [105, 106]. The
computation has been performed for a general gauge group and in an arbitrary
covariant linear gauge, by using the Forcer program [1, 7, 9] for massless four-loop
propagator-type integrals. For the vertices, setting one of the momenta to zero
effectively reduces vertex integrals to propagator-type integrals. In QCD this does
not create Infrared (IR) divergences, which means the poles do not change. At
the three-loop level, similar computations were performed in ref. [139], but with
an expansion in ε. In addition, studies of QCD vertices in perturbation theory for
various configurations include refs. [140–152].

We compute all QCD vertices in a general linear covariant gauge, with the excep-
tion of the four-gluon vertex for which there are at least three difficulties: first, two
momenta have to be nullified before the diagrams become propagator-like. Second,
the number of diagrams is large at four loops. Third, the colour structure for a
generic group is no longer an overall factor, but will be term dependent.

A direct application of our results is to compute conversion factors for renormal-
isation group functions from the MS scheme to momentum subtraction schemes, see,
e.g., refs. [140, 143]. In a later chapter (6.5), we will use the results presented here to
convert the five loop beta function to the MiniMOM scheme [153]. The MiniMOM
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scheme is a momentum subtraction scheme that is more convenient than MS for
comparing QCD in the perturbative and non-perturbative regime.

class 2 The second class of objects we are going to compute are Mellin moments
of four-loop splitting functions and coefficient functions. Even though for most cases
three-loop accuracy is adequate, there are at least two cases where the next order is
of interest due to (1) very high requirements on the theoretical accuracy, such as in
the determination of the strong coupling constant αs from deep-inelastic scattering
(DIS), see, e.g., [154], or (2) a slow convergence of the perturbation series, such as for
Higgs production in proton-proton collisions, see, e.g., [82, 155].

At present, a direct computation of the four-loop splitting functions appears to
be too difficult. Work on low-integer Mellin moments of these functions started
ten years ago [156]; until recently only the N = 2 and N = 4 moments had been
obtained of the quark+antiquark non-singlet splitting function P(3)+

ns together with
the N = 3 result for its quark–antiquark counterpart P(3)−

ns [157–159].
The goal in this chapter is to employ the Forcer program to extend the Mincer-

based fixed Mellin-N calculations of refs. [84–86] to four-loop accuracy. We will
use the optical theorem method [83–86] to compute low-N splitting functions and
coefficient functions. Next, we will use the operator product expansion method [158,
160] to compute higher moments of splitting functions.

We now provide the layout of this chapter. In section 4.1, we define the group
notations. In section 4.2, we compute Yang-Mills propagators and vertices with a
vanishing momentum (objects of Class 1). Next, we compute Mellin moments of
splitting functions and coefficient functions (objects of Class 2) in section 4.3. Finally,
we provide the chapter conclusion in section 4.4.

4.1 group notations

In this section we will introduce our notations for the group invariants appearing
in the remainder of this thesis. Ta are the generators of the representation of the
fermions, and f abc are the structure constants of the Lie algebra of a compact simple
Lie group,

TaTb − TbTa = i f abc Tc . (60)

The quadratic Casimir operators CF and CA of the N-dimensional fermion and
the NA-dimensional adjoint representation are given by [TaTa]ik = CFδik and
f acd f bcd = CAδ ab, respectively. The trace normalisation of the fermion repres-
entation is Tr(TaTb) = TFδ ab. At L ≥ 3 loops also quartic group invariants enter
the results. These can be expressed in terms of contractions of the totally symmetric
tensors

d abcd
F =

1
6

Tr(Ta Tb Tc Td + five bcd permutations ) ,

d abcd
A =

1
6

Tr(CaCbCcCd + five bcd permutations ) . (61)
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Here the matrices [Ca ]bc = −i f abc are the generators of the adjoint representation.
It should be noted that in QCD-like theories without particles that are colour neutral,
Furry’s theorem [161] prevents the occurrence of symmetric tensors with an odd
number of indices.

For fermions transforming according to the fundamental representation and the
standard normalisation of the SU(N) generators, these ‘colour factors’ have the
values

TF =
1
2

, CA = N , CF =
NA
2N

=
N2 − 1

2N
,

d abcd
A d abcd

A
NA

=
N2(N2 + 36)

24
,

d abcd
F d abcd

A
NA

=
N(N2 + 6)

48
,

d abcd
F d abcd

F
NA

=
N4 − 6N2 + 18

96 N2 . (62)

The results for QED (i.e., the group U(1)) are obtained for CA = 0, d abcd
A = 0, CF = 1,

TF = 1, dabcd
F = 1, and NA = 1. For a discussion of other gauge groups the reader is

referred to ref. [113].

4.2 propagators and vertices

In this section we will present the computation of four-loop QCD propagators and
vertices with a vanishing momentum.

First, we summarise the notations for self-energies and vertex functions with one
vanishing momentum presented in section 4.2.1 to section 4.2.4. In most cases we
follow the conventions in ref. [139].1 Next, we describe our renormalisation method
in section 4.2.5 and how to compute anomalous dimensions in section 4.2.6. Finally,
we present the results of our computation in section 4.2.7.

4.2.1 Self energies

The gluon, ghost and quark self-energies (figure 25) are of the form

Πab
µν(q) = −δab(q2gµν − qµqν)Π(q2), (63)

Π̃ab(q) = δabq2Π̃(q2), (64)

Σij(q) = δij
/qΣV(q2). (65)

The colour indices are understood such that a and b are for the adjoint representation
of the gauge group, i and j for the representation to which the quarks transform. In
eq. (63) we have used the fact that the Ward identities render the gluon propagator
transversal. The ‘form factors’ Π(q2), Π̃(q2) and ΣV(q2) can easily be extracted from
contributions of the corresponding one-particle irreducible diagrams by applying

1 We note that these conventions may be different from the ones commonly used in the literature. In fact,
the Feynman rules in Forcer are different as well, and hence we occasionally had to convert intermediate
results from one convention to the other and back.
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q
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q

a b

q

i j

(a) (b) (c)

Figure 25: The gluon, ghost and quark self-energies Πab
µν(q) (a), Π̃ab(q) (b) and

Σij(q) (c).

projection operators [139] (the same holds for the vertex functions discussed below).
They are related to the full gluon, ghost and quark propagators as follows:

Dab
µν(q) =

δab

−q2

[(
−gµν +

qµqν

q2

) 1
1 + Π(q2)

− ξ
qµqν

q2

]
, (66)

∆ab(q) =
δab

−q2
1

1 + Π̃(q2)
, (67)

Sij(q) =
δij

−q2
/q

1 + ΣV(q2)
. (68)

Here the Landau gauge corresponds to ξ = 0, and the Feynman gauge to ξ = 1.
We note that this convention differs from that in the widely used Form version
[33] of the Mincer program [32] for three-loop self-energies, where the symbol xi
represents 1− ξ.

4.2.2 Triple-gluon vertex

Without loss of generality, one can set the momentum of the third gluon to zero, as
depicted in figure 26. Then the triple-gluon vertex can be written in the following
form:

Γabc
µνρ(q,−q, 0) = −ig f abc

[
(2gµνqρ− gµρqν− gρνqµ) T1(q2)−

(
gµν−

qµqν

q2

)
qρT2(q2)

]
,

(69)

q

−q

0

a, µ

b, ν c, ρ

Figure 26: The triple-gluon vertex with one vanishing momentum, Γabc
µνρ(q,−q, 0).
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q

−q 0

c, µ

a b

0

−q q

c, µ

a b
(a) (b)

Figure 27: The ghost-gluon vertex: (a) Γ̃abc
µ (−q, 0; q) has a vanishing incoming ghost

momentum and (b) Γ̃abc
µ (−q, q; 0) a vanishing gluon momentum.

where g is the coupling constant and f abc are the structure constants of the gauge
group in eq. 60. The first term in the square bracket corresponds to the tree-level
vertex while the second term arises from radiative corrections, i.e., at the tree-level
the form factors T1,2(q2) read

T1(q2)
∣∣
tree = 1, T2(q2)

∣∣
tree = 0. (70)

Because of Furry’s theorem [161] and the fact that we have no colour-neutral
particles, symmetric invariants with an odd number of indices cannot occur for
internal fermion lines. Neither can such invariants occur for the adjoint represent-
ation. Hence, if we project out a dabc structure, we would get a scalar invariant
with an odd number of f tensors, and such a combination must be zero. This has
been checked explicitly to the equivalent of six-loop vertices in ref [112]. Due to
the bosonic property of gluons, the totally antisymmetric colour factor f abc leads to
antisymmetric Lorentz structure as in eq. (69). One could consider another Lorentz
structure,

−ig f abcqµqνqρT3(q2). (71)

However, a Slavnov-Taylor identity requires T3(q2) to vanish [139].

4.2.3 Ghost-gluon vertex

Since the tree-level vertex is proportional to the outgoing ghost momentum in our
convention, nullifying this momentum gives identically zero in perturbation theory.
Therefore, we only have two possibilities to set one of the external momenta to
zero. One is the incoming ghost momentum and the other is the gluon momentum
(figure 27):

Γ̃abc
µ (−q, 0; q) = −ig f abcqµΓ̃h(q2), (72)

Γ̃abc
µ (−q, q; 0) = −ig f abcqµΓ̃g(q2). (73)
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The subscript h of Γ̃h(q2) indicates the function with vanishing incoming ghost
momentum, whereas g of Γ̃g(q2) denotes the vanishing gluon momentum. These
functions are equal to one at the tree-level,

Γ̃h(q2)
∣∣
tree = Γ̃g(q2)

∣∣
tree = 1. (74)

4.2.4 Quark-gluon vertex

q

−q 0

a, µ

a b

0

−q q

a, µ

i j

(a) (b)

Figure 28: The quark-gluon vertex: (a) Λa
µ,ij(−q, 0; q) has a vanishing incoming quark

momentum and (b) Λa
µ,ij(−q, q; 0) a vanishing gluon momentum.

We consider the case of a vanishing incoming quark momentum and the case of a
vanishing gluon momentum (figure 28). Nullifying the outgoing quark momentum
gives the same result as nullifying the incoming quark momentum. Then the vertex
can be written as

Λa
µ,ij(−q, 0; q) = gTa

ij

[
γµΛq(q2) + γν

(
gµν −

qµqν

q2

)
ΛT

q (q
2)
]
, (75)

Λa
µ,ij(−q, q; 0) = gTa

ij

[
γµΛg(q2) + γν

(
gµν −

qµqν

q2

)
ΛT

g (q
2)
]
. (76)

Ta
ij are the generators of the representation for the quarks. The subscript q indicates

the functions with vanishing incoming quark momentum and g indicates those with
vanishing gluon momentum. At the tree-level we have

Λq(q2)
∣∣
tree= Λg(q2)

∣∣
tree = 1, (77)

ΛT
q (q

2)
∣∣
tree= ΛT

g (q
2)
∣∣
tree = 0. (78)

4.2.5 Renormalisation

All the quantities we compute contain divergences. The theory of renormalisation
states that for QCD these can be absorbed into redefinitions of the interaction
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strength, mass parameter, and field definitions. This implies that the observables
such as the mass of a particle, and the strength of the strong coupling constant
depend on the energy scale at which one measures. In this section we will define
renormalisation constants which make the observable quantities finite.

In a generic renormalisation scheme R, the respective renormalisations of the
gluon, ghost and quark fields can be written as

(AB)a
µ =

√
ZR

3 (AR)a
µ, (79)

(ηB)a =
√

Z̃R
3 (ηR)a, (80)

ψB
i f =

√
ZR

2 ψR
i f . (81)

The superscript “B” indicates a bare (divergent) quantity and “R” a renormalised
(finite) one. For the coupling constant, we define a = αs/(4π) = g2/(16π2). Then
a and the gauge parameter ξ are renormalised in dimensional regularisation (D =
4− 2ε) as follows:

aB = µ2εZR
a aR, (82)

ξB = ZR
3 ξR. (83)

Here µ is the ’t Hooft mass scale, which is added to make the coupling constant
dimensionless. We have used the fact that the gauge parameter is also renormalised
by the gluon field renormalisation constant, ZR

ξ = ZR
3 . The renormalisation of the

self-energies and vertex functions is performed as

1 + ΠR = ZR
3 (1 + ΠB), (84)

1 + Π̃R = Z̃R
3 (1 + Π̃B), (85)

1 + ΣR
V = ZR

2 (1 + ΣB
V), (86)

and

TR
i = ZR

1 TB
i , i = 1, 2, (87)

Γ̃R
i = Z̃R

1 Γ̃B
i , i = h, g, (88)

ΛR
i = Z̄R

1 ΛB
i , ΛT,R

i = Z̄R
1 ΛT,B

i , i = q, g, (89)

where the vertex renormalisation constants are related to the field and coupling
renormalisation constants via the Slavnov-Taylor identities by√

ZR
a ZR

3 =
ZR

1
ZR

3
=

Z̃R
1

Z̃R
3

=
Z̄R

1
ZR

2
. (90)

In MS-like schemes, the renormalisation constants contain only pole terms with
respect to ε and thus take the form

ZMS
i = 1 +

∞

∑
l=1

alZMS,(l)
i = 1 +

∞

∑
l=1

al
l

∑
n=1

ZMS,(l,n)
i

εn . (91)
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The coefficients ZMS,(l,n)
i are determined order by order in such a way that any

renormalised Green’s function becomes finite. Below we give an example for the
three-loop background field propagator G. In the background field the field strength
renormalisation is simply Z−1/2

a (see section 6.2). We assume we are in the Landau
gauge (ξ = 0), so that we need not worry about renormalising ξ:

GB = 1 + aBG1 + a2
BG2 + a3

BG3 + . . . ,

GR = Z−1
a (1 + aZaG1 + a2Z2

a G2 + a3Z3
a G3 + . . .)

= 1 + a(G1 − ZMS,(1)) + a2(G2 + ZMS,(1)2
− ZMS,(2))

+ a3(G3 + G2ZMS,(1) − ZMS,(1)3
+ 2ZMS,(1)ZMS,(2) − ZMS,(3)) + . . . . (92)

If we introduce the pole operator K(∑∞
i=−∞

xi
εi ) = ∑−1

i=−∞
xi
εi ), which takes the pole

part of a Laurent series in ε, we can write:

ZMS,(1) = K(G1) ,

ZMS,(2) = K(G2) + K(G1)
2 ,

ZMS,(3) = K(G3) + K (G2K(G1))− K(G1)
3 + 2K(G1)

(
K(G2) + K(G1)

2
)

.

(93)

In the case of computing other self-energies, the field strength renormalisation will
not be Z−1/2

a , but will have its own Z. This means a system of equations has to be
solved. For perturbatively renormalisable theories, such a system can always be
solved order by order.

4.2.6 Anomalous dimensions

Renormalisation introduces an arbitrary scale µ on which the bare quantities do
not depend. Let us take for example the gluon propagator with zero quark masses
R(Q, a, ξ, µ) = Z3RB(Q, ZaaB, Z3ξB), where we suppress the MS label and we have
used the fact that gauge invariance ensures that the gauge parameter is renormalised
with Z3. If we enforce that dRB

dµ = 0 we obtain the following Callan-Symanzik
renormalisation group equation [162, 163]:

µ2 d
dµ2 R(Q, a) =

[
µ2 ∂

∂µ2 + µ2 da
dµ2

∂

∂a
+ µ2ξ

d ln ξ

dµ2
∂

∂ξ
− µ2 d ln Z3

dµ2

]
R(Q, a)

≡
[

µ2 ∂

∂µ2 + β̃
∂

∂a
+ ξγ3

∂

dξ
− γ3

]
R(Q, a) = 0 , (94)

where the quantity γ3 is the anomalous dimension of the external gluon field and
β̃ is the D-dimensional beta function. The anomalous dimension γ3 describes how
the field evolves with the energy scale, and β̃ describes how the strong coupling
constant evolves with the energy scale.
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We rewrite:

β̃ ≡ µ2 da
dµ2 = µ2 dZ−1

a aB

dµ2

= µ2Z−1
a

daB

dµ2 + µ2aB
dZ−1

a
dµ2

= −εa + µ2aZ−1
a

dZa

da
da

dµ2

= −εa + a
d ln Z

da
β̃

≡ −εa + β ,

(95)

where β is the beta function in four dimensions and we used that the beta function
is gauge independent in MS-like schemes.

For both the beta function and anomalous dimension, the following reasoning
holds (where γ is the anomalous dimension associated with Z):

Zγ = Zµ2 d ln Z
dµ2 = µ2 ∂Z

∂a
da

dµ2 + µ2 ∂Z
∂ξ

dξ

dµ2

=
∂Z
∂a

(−εa + β) +
∂Z
∂ξ

γ3, (96)

This equation holds for any power of ε, so we compare the ε0 part (for which β and
γ3 drop out):

γ = −
∞

∑
n=1

nanZMS,(n,1), β = −
∞

∑
n=1

nanZMS,(n,1)
a . (97)

Even though the anomalous dimensions are thus only comprised of the simple poles
of Z in MS-like renormalisation schemes, there is no loss of information: the entire
Z can be reconstructed from (96). This also means that the higher-order poles of
Z are completely determined by lower-order renormalisation group contributions.
Consequently, the higher-order poles serve as a check for higher-order results.

4.2.7 Computations and checks

The results in this section are obtained by direct computation using the Forcer

package, as described in chapter 3. The topologies are mapped to a built-in Forcer

topology, after nullifying a leg for the vertices. To extract the form factors defined
above, a generalisation of the projection operators in ref. [139] to a generic gauge
group is used. Then the Feynman rules are applied. The remaining Lorentz-scalar
integrals (which include loop-momenta numerators) are computed by the Forcer

program.
The computation time varied between an hour and a week, on a single computer.

The easy cases, such as the ghost propagator and quark propagator took an hour.
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The gluon propagators and ghost-gluon-gluon vertex and quark-gluon-gluon vertex
took about eight hours per configuration. The triple gluon vertex was the hardest
case and took a week per configuration on a single machine with 24 cores. Had we
chosen to compute with an expansion in ε, the computations would have been much
faster.

We have checked our setup and results in various ways.

• The longitudinal component of the gluon self-energy δabqµqνΠL(q2), see eq. (63),
was shown to be zero by an explicit calculation at the four-loop level.

• The form factor T3(q2) of the triple-gluon vertex in eq. (71) was computed and
indeed vanished at the four-loop level.

• All the self-energies and vertex functions computed in this work were compared
up to three loops with those in ref. [139]. Note that the finite parts of the vertex-
function results in ref. [139] are only correct for SU(N) gauge groups, since
the presence of quartic Casimir operators was not taken into account in the
reconstruction of the general case. This fact was also noted in ref. [129].

• The four-loop renormalisation constants and anomalous dimensions for the
case of SU(N) and a general linear covariant gauge were provided in ancillary
files of ref. [126]. Directly after Forcer was completed, we established agree-
ment with those results. For a generic group our results are in agreement with
ancillary files of ref. [129].

• We remark that the ghost-gluon vertex is unrenormalised Z̃MS
1 = Z̃MS

3

√
ZMS

a ZMS
3

= 1 in the Landau gauge. Moreover, our results confirm that the vertex has
no radiative corrections when the incoming ghost momentum is nullified (i.e.,
Γ̃MS

h = 1) in the Landau gauge up to four loops.

Since the results are rather lengthy, we will not include them in this thesis. All
result can be obtained in a digital form as ancillary files to the article [2]. The files
contain the bare results for the self-energies and vertices in terms of master integrals
with coefficients that are exact in for any dimension D, as well as the results in the
MS scheme for D = 4.

4.3 splitting functions and coefficient functions

In order to describe collisions involving protons in colliders, one effectively describes
the interactions between a particle from a proton, called a parton, and a probe. The
probe could be a parton or any of the force carriers. The interaction depends on the
relative momenta of the particles, their energy, and their type (up quark, down quark,
gluon, etc). Consequently, an accurate model of the proton structure is required. A
critical ingredient is the parton density function (pdf), which captures the probability
that a certain particle with a certain (collinear) momentum fraction is inside the
proton. A pdf has to be experimentally determined, since it involves low-energy
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QCD which is outside the regime of perturbation theory. It also depends on the
renormalisation scale, and this dependence can be determined by making precise
computations in perturbative QCD.

Since QFT predicts that particles can briefly split up into others (for example
a quark splitting into a quark with smaller momentum and a gluon), quantum
corrections will influence the pdfs. How sensitive the system is to these virtual
particles depends on the energy at which we are measuring. Below we show the
DGLAP equation [164–166], which describes the dependence of a pdf fi for a parton
i (could be all light quarks, light antiquarks and the gluon), depending on an energy
scale µ2 (we set the factorisation scale to the renormalisation scale without loss of
generality):

∂ fi(x, µ2)

∂µ2 =
αs(µ2)

2π

∫ 1

x

dz
z

[
∑

j
f j(z, µ2)Pij

( x
z

, αs(µ
2)
)]

(98)

where x is the fraction of the proton momentum, j sums over all possible partons, the
integral is over all possible momentum fractions, and Pij are the splitting functions: a
quantity related to the probability that parton j will split up into i and other particles.
What this equation in essence describes is that the probability of finding a parton i
with momentum fraction x is changed by the event where a parton with a higher
energy splits up into a parton of type i with exactly momentum fraction x.

Equation (98) is a complicated integro-differential equation. To solve it, we first
turn the convolution of the splitting function and the pdf in eq. (98) into an ordinary
product using a Mellin transform:

fi(N, µ2) =
∫ 1

0
dx xN−1 fi(x, µ2) . (99)

The Mellin moments of splitting functions can be decoupled into a 2n f − 1 scalar
equations and a 2x2 flavour-singlet system, see, e.g., [5, 8]. The non-singlet split-
ting functions P±ns are the two combinations of quark–quark and quark–anti-quark
splitting functions relevant to the 2nf − 2 flavour differences

q±ns,ik = qi ± q̄i − (qk ± q̄k) (100)

of quark distributions that evolve as scalars [167].
Since even or odd Mellin moments of splitting functions are anomalous dimen-

sions, they are often expressed as such. We are going to calculate them up to fourth
order in the reduced coupling constant a = as/4π:

γ±ns(N) = −P±ns(N) = −aP±(0)ns (N)− a2P±(1)ns (N)− a3P±(2)ns (N)− a4P±(3)ns (N) .
(101)

We will discuss two different methods to compute Mellin moments of splitting
functions. The first is the optical theorem method described in section 4.3.1, and the
second is the operator method described in section 4.3.2. Finally, we compute the
axial vector current in 4.3.3.
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4.3.1 Optical theorem method

The higher Mellin moments N can be obtained for the splitting functions Pij(N),
the better an approximation can be made for the splitting functions in x-space. We
use exactly the same method as described in [83–86], only we use Forcer instead
of Mincer. In summary, using the optical theorem and a dispersion relation, the
bare structure functions can be expressed as forward amplitudes. After applying
a harmonic projection to isolate the desired coefficient, the Mellin moment of the
structure function is expressed in terms of a propagator integral. These integrals
are then computed with Forcer. The 1/ε poles provide the splitting functions. The
finite piece after renormalisation yields the coefficient function.

Using this procedure, we have computed up to N = 6 for the non-singlet splitting
functions and coefficient functions [8]. In figure 29 we show the results for the first
Mellin moments. The dashed and dotted lines are the Padé approximations from the
three-loop results of ref. [34]. For the singlet case, we have computed up to N = 4.

Figure 29: The lowest three even-N and odd-N values, respectively, of the anomalous
dimensions γ

(3)+
NS and γ

(3)−
NS , compared to Padé estimates derived from

the NNLO results of ref. [34].

We have computed significantly more moments for specific colour factors. For
diagrams with a high number of (light) fermion loops, indicated by powers of n f ,
the complexity of the diagrams is simplified: for Pqq there are no four-loop diagrams
without insertions that have a fermion loop. In figure 30 we show all three-loop
graphs with two fermion loops, where a single fermion insertion on one of the
gluon lines is understood. These graphs have been evaluated to the 40th Mellin
moment, leading to more than complexity 80 integrals (as defined in section 3.5).
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This provided enough information to reconstruct the analytic form in N using the
LLL-algorithm [88, 168]. With this method, we have computed the n2

f contribution for

the four-loop non-singlet splitting function and the n3
f contribution to the four-loop

singlet splitting function [5].

Figure 30: All three-loop diagrams with n2
f for Pqq, where a single fermion insertion

on one of the gluon propagators is understood. There are no four-loop
diagrams of this kind.

4.3.2 Operator method

Another way to compute moments of splitting functions is the light-cone operator
product expansion (OPE) method [158, 160]. Although there are some challenges in
constructing the operators, the advantage is that the complexity of the integrals scales
like N, whereas for the optical theorem method it scales like 2N. The coefficient
functions are not addressed in this approach.

We have computed the non-singlet splitting function up to N = 16 moments [115].
In the large-nc limit, up to N = 19 has been computed. Eighteen moment were
used for a full reconstruction of the N dependence, and the nineteenth was used
to confirm the result. Since in the large-nc limit, γ−NS = γ+

NS, both even and odd
moments could be used in the reconstruction.

In figure 31 we show how the large-nc limit matches up with the first 16 moments
of the non-singlet splitting function, when studying the n0

f and n1
f coefficient. We

expect an error of about 10% percent ( nc
n3

c
) for QCD that will decrease at large N.

We see that even for low N, the error is less than 10% and that the (relative) error
decreases fast with high N.

In figure 32 we show how moments of the non-singlet splitting function compare to
the large-nc result, for physical values of n f . For n f = 3, n f = 4, and n f = 6, we see
that the error is small, even for low values of N. For the physically important n f = 5,
sizeable cancellations between non-n f and n f pieces result in a loss of accuracy for
the large-nc limit. To improve the large-nc approximation, some (approximations of)
non-leading large-nc contributions have to be computed as well.

Since we have reconstructed the non-singlet splitting function for all N, we can
study the large-N behaviour. It has the following form in MS [169–171]:

γ = A ln N + B + C
1
N

ln N + D
1
N

+ . . . (102)
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Figure 31: The large nc limit versus the first Mellin moments of the non-singlet
splitting function. The error is small, even for low N.

where A is a quantity known as the cusp anomalous dimension. This quantity is
relevant beyond pdf evolution and is for example used in soft-gluon exponentiation
and soft-collinear effective theories (SCET).

Taking the limit of N → ∞ on our result yields a new n3
c CF term for the four-loop

cusp anomalous dimension:

γ
(3)
cusp =+ n3

c CF

(
+

84278
81
− 88832

81
ζ2 +

20992
27

ζ3 + 1804ζ4 −
352
3

ζ3ζ2

− 352ζ5 − 32ζ2
3 − 876ζ6

)
+ . . . .

The n3
c CF term was soon afterwards confirmed via a calculation of the γqq form

factor in the large-nc limit [172].

4.3.3 Axial vector current

In order to compute the vector-axial interference structure function F3, it is necessary
to know the anomalous dimension of the axial vector current γµγ5 to correct the
treatment of γ5. This can be retrieved from the ratio of the vector current (quark-
quark-photon vertex) and axial vector current (quark-quark-Z vertex). The quark-
quark-Z current contains a γ5, which in its standard description as iγ0γ1γ2γ3 is
strictly 4-dimensional instead of D-dimensional. To work around this issue we use
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Figure 32: Comparison of the large nc limit to Mellin moments of the non-singlet
splitting functions for physical values of n f .

the so-called Larin prescription of [173, 174]: γµγ5 = iεµνρσγνγργσ. As a projector,
we use:

P =
εµνρσγνγργσ

4(D− 1)(D− 2)(D− 3)
, (103)

which makes the tree-level contribution 1.
However, the Larin prescription breaks the axial Ward identity [173, 174]. As a

result, an additional renormalisation for the axial vector current relative to the vector
current is required. We define two quantities: ZA and Z5. ZA is the additional renor-
malisation required for the axial current, and Z5 is an extra finite renormalisation. Z5
is used to map the renormalised axial current onto the renormalised vector current
to ‘fix’ the anomaly. Given the renormalisation of the vector current V and the axial
current A:

VR = ZVCVB , AR = ZAC AB , (104)

where ZVC and ZAC contain the quark field renormalisation Z2, the renormalisation
of the strong coupling Za, and the renormalisation of the gauge parameter Z3.

From these quantities, we can compute ZA and Z5:

ZA =
ZAC
ZVC

, Z5 = lim
ε→0

VR
AR

. (105)

Both ZA and Z5 are gauge invariant. We have checked this by running with all
powers of the gauge parameter.

Calculating the traces is the most expensive part of the computation. Using the
optimisation from [175], we could have made the calculation much faster. The total
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computation takes 107 hours to compute on a single 2.4 GHz core. Below we present
the results.
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ε
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22
3

CACF −
8
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Z(1)
5 = 4CF,

Z(2)
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107
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We have verified the correctness of these two quantities, by verifying fermion
number conservation (γ−NS(N = 1) = 0), and by confirming the a4

s contribution to
the Gross-Llewellyn-Smith (GLS) sum rule with [176].

4.4 chapter conclusion

In this chapter we have computed two classes of four-loop objects.
First, we have computed the finite pieces of all the QCD propagators and vertices

with one vanishing momentum with generic colour group exactly in terms of master
integrals. The results of these calculations can be used to convert quantities such as
the beta function from MS to any momentum subtraction scheme with a nullified
momentum (see section 6.5).

Second, we have computed Mellin moments of four-loop splitting functions and
coefficient functions. These are used as basic ingredients for collision processes, such
as Higgs production [81]. We have computed Mellin moments N = 2, 4, 6 for the
non-singlet case and N = 2, 4 for the singlet case. Additionally, we have calculated
N = 1, 3, 5 of vector-axial interference F3 [8]. By computing to N = 40 and beyond,
we have reconstructed the all-N n2

f contribution to the four-loop non-singlet splitting

function and the n3
f contribution to the four-loop singlet splitting function [5].

Using the OPE method, we have computed up to N = 16 for the non-singlet
splitting function. For the large-nc limit, we have computed up to N = 19 [115]. This
allowed for an all-N reconstruction and yielded a new term to the four-loop planar
cusp anomalous dimension.

4.4.1 Findings and main conclusion

We have computed the complete finite piece of the four-loop propagators and vertices
and four-loop higher Mellin moments, using the Forcer program. So far, other
currently existing programs were unable to calculate these objects. Thus, these results
serve as valuable contributions to the field of high precision calculations. Moreover,
we may also conclude that the effectiveness of Forcer has given an adequate and
sufficient answer to RQ2.
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4.4.2 Future research

A first goal for future research is to compute the finite pieces of propagators and
vertices at five loops. However, this is a formidable challenge. So far, most meth-
ods used for computations at five loops use Infrared Rearrangement (IRR), which
modifies the finite terms. A direct computation would require a five-loop Forcer

equivalent.
A second topic for future research is to compute higher Mellin moments. Cal-

culating Mellin moments using the optical theorem method becomes quite hard
for Pgg after N = 4. Due to its scaling behaviour, the OPE method is promising
to compute more moments of the singlet case. An approximation of the x-space
four-loop splitting functions derived from these future results will improve the
predictions for three-loop Higgs production [81, 82, 155].
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