
Advances in computational methods for Quantum Field Theory
calculations
Ruijl, B.J.G.

Citation
Ruijl, B. J. G. (2017, November 2). Advances in computational methods for Quantum Field
Theory calculations. Retrieved from https://hdl.handle.net/1887/59455

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/59455

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/59455

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/59455

Author: Ruijl, B.J.G.
Title: Advances in computational methods for Quantum Field Theory calculations
Issue Date: 2017-11-02

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/59455
https://openaccess.leidenuniv.nl/handle/1887/1�

2

2E X P R E S S I O N S I M P L I F I C AT I O N

Monte Carlo integration is the preferred way to compute complicated cross sections
of scattering processes [46–49]. The disadvantage of this method is that it converges
slowly and thus requires a large number of samples. Sampling large multivariate
polynomials is very time consuming, which makes Monte Carlo methods slow. In
this chapter we investigate these challenges by answering

RQ1: To what extent can the number of arithmetic operations of large multivari-
ate polynomials be reduced?

The expressions that arise from Quantum Chromodynamics (QCD) are polynomi-
als in many variables. The number of variables could range from a few to several
hundreds. Analogously, the number of terms range from ten thousand terms to
millions of terms [50]. In some extreme cases, the executable code that performs the
evaluation of the expression could take up a few gigabytes. If we are able to reduce
the number of operations required to evaluate these expressions, sampling becomes
faster. As a result, Monte Carlo integrators can obtain precise results much faster.

We describe two methods to reduce the number of operations. The first is Horner’s
rule for multivariate polynomials, which is extracting variables outside brackets
[51] (sec. 2.1.1). For multivariate expressions the order of these variables is called a
Horner scheme. The second is called Common Subexpression Elimination (CSEE) [52],
which is performed after the Horner scheme has been applied (sec. 2.1.2). We will
investigate four methods (named H1 to H4) of finding a Horner scheme that yields
a near-minimal number of operations after (1) the Horner scheme and (2) CSEE have
been applied. The first three are based on tree search algorithms, and the fourth is
based on local search algorithms.

H1. Following recent successes in expression simplification, we investigate tree
search methods such as Monte Carlo Tree Search (MCTS), using Upper Con-
fidence bounds applied to Trees (UCT) as best-child criterion [53] (sec. 2.3).
However, UCT is not straightforward, as (1) it introduces an exploration-
exploitation constant Cp that must be tuned, and (2) it does little exploration
at the bottom of the tree.

H2. The second method is Nested Monte Carlo Search (NMCS) [54], described in
sec. 2.3.2. NMCS does not not have the two issues of MCTS+UCT. However,
since our evaluation function is quite expensive (3 seconds for one of our
benchmark polynomials), NMCS performs (too) many evaluations to find a
path in the tree, rendering it unsuitable for our simplification task.

H3. We make a modification to UCT (sec. 2.3.3), which we call Simulated Annealing
- UCT (SA-UCT). SA-UCT introduces a dynamic exploration-exploitation para-
meter T(i) that decreases linearly with the iteration number i. SA-UCT causes

11

2

a gradual shift from exploration at the start of the simulation to exploitation at
the end. As a consequence, the final iterations will be used for exploitation,
improving their solution quality. Additionally, more branches reach the final
states, resulting in more exploration at the bottom of the tree. Moreover, we
show that the tuning of Cp has become easier, since the region with appropriate
values for Cp has increased by at least a tenfold [14]. The main contribution of
SA-UCT is that this simplification of tuning allows for the results of our MCTS
approach to be obtained much faster.

H4. We study local search methods (sec. 2.4). We find that the state space of Horner
schemes is ideally suited for local search methods, since it is relatively flat and
contains few local minima. This allows us to simplify expressions without
expensive tuning of parameters. Our final algorithm is a variant of Stochastic
Hill Climbing, which requires about ten times fewer samples than SA-UCT for
similar results.

Our final Stochastic Hill Climbing algorithm is able to reduce the computation
time of numerical integration from weeks to days or even hours. The methods have
been implemented in Form and are used by at least one other research group.

The remainder of this chapter is structured as follows. First, we discuss methods
for expression simplification in section 2.1. In section 2.2 we discuss the experimental
setup. Next, we discuss tree search methods (method H1, H2, H3) in section 2.3. In
section 2.4 we examine local search methods (method H4). We discuss performance
and results in section 2.5. Finally, we present the chapter conclusion in section 2.6.

2.1 horner schemes and common subexpression elimination

Expression simplification is a widely studied problem. Some examples are Horner
schemes [52], common subexpression elimination (CSEE) [55], partial syntactic
factorisation [56] and Breuer’s growth algorithm [57]. Much research is put into sim-
plifications using more algebraic properties, such as factorisation, especially because
of its interest for cryptographic research [58, 59]. Simplification methods that depend
on factorisation have the major problem of being notoriously slow. Horner schemes
and CSEE do not require sophisticated mathematics: only the commutative and
associative properties of the operators are used. The expressions we are considering
often have more than twenty variables and more than a hundred thousand terms [50].
In this regime, computationally expensive methods are infeasible. Therefore, we
consider using basic methods such as Horner schemes and CSEE.

2.1.1 Horner Schemes

Horner’s rule reduces the number of multiplications in an expression by lifting
variables outside brackets [51, 52, 60]. For multivariate expressions Horner’s rule

12

2

can be applied sequentially, once for each variable. The order of this sequence is
called the Horner scheme. Take for example:

x2z + x3y + x3yz→ x2(z + x(y(1 + z)) . (4)

Here, first the variable x is extracted (i.e., x2 and x) and second, y. The number
of multiplications is now reduced from 8 to 4. However, the order x, y is chosen
arbitrarily. One could also try the order y, x:

x2z + x3y + x3yz→ x2z + y(x3(1 + z)) , (5)

for which the number of multiplications is 6. Evidently, this is a sub-optimal Horner
scheme. There are n! orders of extracting variables, where n is the number of
variables, and it turns out that the problem of selecting an optimal ordering is
NP-hard [60].

A heuristic that works reasonably well is selecting variables according to how
frequently a term with such a variable occurs (“occurrence order”) [53]. A counter-
example that shows that occurrence order is not always optimal is

x50y + x40 + y + yz , (6)

where extracting the most occurring variable y first causes the x50 and x40 to end up
in different subparts of the polynomial, preventing their common terms from being
extracted. We note that ordering the variables according to its highest power or to
the sum of its powers in all the terms leads to other counter-examples.

2.1.2 Common subexpression elimination

The number of operations can be reduced further by applying common subexpres-
sion elimination (CSEE). This method is well known from the fields of compiler
construction [55] and computer chess [61], where it is applied to much smaller ex-
pressions or subtrees than what we are considering here. Figure 2 shows an example
of a common subexpression in a tree representation of an expression. The shaded
expression b(a + e) appears twice, and its removal means removing one superfluous
addition and one multiplication.

CSEE is able to reduce both the number of multiplications and the number
of additions, whereas Horner schemes are only able to reduce the number of
multiplications.

2.1.3 The evaluation function

Writing an efficient evaluation function is important, since this function gets called
many times. It consists of two parts: (1) applying the Horner scheme to an expres-
sion, and (2) removing common subexpressions. The Horner scheme is applied
to the expression in Form’s internal format, which is a linear representation of a
polynomial.

13

2

+

×

b +

a e

×

b c +

a e

Figure 2: A common subexpression (shaded) in an associative and commutative tree
representation.

In order to compute subexpressions efficiently, we transform the expression from
a linear internal format to a tree. While building the expression tree (similar to
figure 2), we store a hash of the branch that starts at the current node. Since the tree
is built from the bottom up, we combine the hashes of the two subnodes. When
the tree is completely built, we try to find common subexpressions. We keep track
of each subtree we have come across in a hashtable. If a node is found, we skip
exploring the subnodes, since it is a common subexpression. If we have not found
the node before, we add the appropriate number of operations, add the node to
the hashtable (the hash for the entire subtree is easily and quickly retrieved from
the node itself), and continue to its children. A top-down approach has the benefit
that entire subtrees can be easily identified as common subexpressions and double
searches can be prevented. This process outweighs the time it takes to build the
tree1.

We apply two improvements to increase the number of common subexpressions:
(1) when we extract the Horner scheme variable, we also extract a greatest common
divisor (gcd). From our measurements, we have seen that this exposes more common
subexpressions. (2) We store common subexpressions for exponentiations as well:

x20 = (x10)2 = ((x5)2)2 = x(((x2)2)2)2 . (7)

2.1.4 Interplay

We note that there is an interplay between Horner schemes and CSEE: a certain
“optimal” Horner scheme may reduce the number of multiplications the most, but
may expose fewer common subexpressions than a “mediocre” Horner scheme. Thus,
we need to find a way to obtain a Horner scheme that reduces the number of
operations the most after both Horner and CSEE have been applied.

Finding appropriate Horner schemes is not a trivial task, for at least three reasons.
First, there are no known local heuristics. For the Travelling Salesman Problem (TSP),
the distance between two cities can be used as a heuristic [62], and more specialised

1 The tree can be allocated at once, since a close upper bound to the number of nodes is known.

14

2

variables terms operations eval. time (s)
res(7,4) 13 2561 29 163 0.001

res(7,5) 14 11 379 142 711 0.03

res(7,6) 15 43 165 587 880 0.13

res(9,8) 19 4 793 296 83 778 591 25.0
HEP(σ) 15 5716 47 424 0.008

HEP(F13) 24 105 058 1 068 153 0.4
HEP(F24) 31 836 009 7 722 027 3.0
HEP(b) 107 193 767 1 817 520 2.0

Table 1: The number of variables, terms, operations, and the evaluation time of
applying a single Horner scheme and CSEE in seconds, for our eight (unop-
timised) benchmark expressions. The time measurement is performed on a
2.4 GHz Xeon computer. All expressions fit in memory (192 GB).

heuristics are able to solve symmetric TSP instances with thousands of cities (a
historic example is a TSP with 7397 cities [63, 64]). Second, the Horner scheme is
applied to an expression. This means that the scheme has a particular context: the
nth entry applies to the subexpressions that are created after the first n− 1 entries in
the Horner scheme have been applied to the expression. Third, the evaluation of a
Horner scheme and CSEE is slow: for some benchmark expressions the evaluation
took multiple seconds on a 2.4 GHz computer (see table 1). Since the evaluation is
so slow, we have to find an optimisation algorithm that performs well with only a
limited number of samples. Our attempted parallelisation of the evaluation function
was unsuccessful, since the Horner scheme evaluation function is too fine-grained.

The time it takes to apply a Horner scheme is directly related to the number of
variables and the number of terms in the expression. The common subexpression
elimination time scales linearly with the number of operations. The difficulty of
finding a good Horner scheme is related to (1) the size of the permutation space, i.e.,
related to the number of variables, but also to (2) the distribution of the variables in
the terms. The composition of the variables affects the flatness of the state space and
the occurrence of saddle points and local minima, as we shall see in section 2.4.3.

2.2 experimental setup

We use eight large benchmark expressions, four from mathematics and four from
real-world High Energy Physics (HEP) calculations. In table 1 statistics for the
expressions are displayed. We show the number of variables, terms, operations, and
the evaluation time of applying a Horner scheme and CSEE.

The expressions called res(7,4), res(7,5), res(7,6), and res(9,8) are resolvents and are
defined by res(m, n) = resx(∑m

i=0 aixi, ∑n
i=0 bixi), as described in [56]. The number

of variables is m + n + 2. The polynomial res(9,8) is the largest polynomial we have
tested and has been included to test the boundaries of our hardware.

15

2

The High Energy Physics expressions represent scattering processes for the future
International Linear Collider, a likely successor to the Large Hadron Collider [50].
A standard method of calculating the probability of certain collision events is by
using perturbation theory. As a result, for each order of perturbations, additional
expressions are calculated as corrections to previous orders of precision. The HEP
polynomials of table 1 are second-order corrections to various processes.

HEP(σ) describes parts of the process e+e− → µ+µ−γ, namely the collision of an
electron and positron that creates a muon, an anti-muon, and a photon.

HEP(F13), HEP(F24), and HEP(b) are obtained from the process e+e− → µ+µ−uū,
namely the collision of an electron and positron that creates a muon, anti-muon, an
up-quark, and an up-antiquark. The results can be used to obtain next-generation
precision measurements for electron-positron scattering [50].

These four HEP polynomials represent classes of polynomials with approximately
the same behaviour.

2.3 tree search methods

In this section we investigate three tree search methods. First, we review MCTS
combined with UCT and discuss some issues in section 2.3.1. Second, we consider
Nested Monte Carlo Search (NMCS) in section 2.3.2. Third, we construct a new
best-child criterion called SA-UCT in section 2.3.3.

2.3.1 Monte Carlo Tree Search

Recently, Monte Carlo Tree Search has been shown to yield good quality Horner
schemes [53]. We will describe its characteristics, so that we can see if we can
improve its performance.

Monte Carlo Tree Search (MCTS) is a tree search method that has been successful
in games such as Go, Hex, and other applications with a large state space [65, 66]. It
works by selectively building a tree, expanding only branches it deems worthwhile
to explore. MCTS consists of four steps, which are displayed in figure 3. The first
step (3a) is the selection step, where a leaf or a not fully expanded node is selected
according to some criterion (see below). Our choice is node z. In the expansion step
(3b), a random unexplored child of the selected node is added to the tree (node y).
In the simulation step (3(c)), the rest of the path to a final node is completed using
random child selection. Finally a score ∆ is obtained that signifies the score of the
chosen path through the state space. In the backpropagation step (3d), this value
is propagated back through the tree, which affects the average score (winrate) of a
node (see below). The tree is built iteratively by repeating the four steps.

In the game of Go, each node represents a player move and in the expansion
phase the game is played out, in basic implementations, by random moves. In the
best performing implementations heuristics and pattern knowledge are used to

16

2

complement a random playout [65]. The final score is 1 if the game is won, and 0 if
the game is lost. The entire tree is built, ultimately, to select the best first move.

For our purposes, we need to build a complete Horner scheme, variable by variable.
As such, each node will represent a variable and the depth of a node in the tree
represents the position in the Horner scheme. Thus, in figure 3(c) the partial Horner
scheme is x,z,y and the rest of the scheme is filled in randomly with unused variables.
The score of a path in our case, is the improvement of the path on the number of
operations: the original number of operations divided by the number of operations
after the Horner scheme and CSEE have been applied. We note that for our purposes
the entire Horner scheme is important and not just the first variable.

x

z

w

a.

x

z

w y

b.

x

z

w y

c.

Random scheme

∆

∆

∆

∆

∆

d.

Figure 3: An overview of the four phases of MCTS: selection (a), expansion (b),
simulation (c), and backpropagation (d). The selection of a not fully
expanded node is done using the best child criterion (in our case UCT). ∆
is the number of operations left in the final expression, after the Horner
scheme and CSEE have been applied. See also [67].

In many MCTS implementations UCT (formula 8) is chosen as the selection
criterion [67, 68]: 2

argmax
children c of s

x̄(c) + 2Cp

√
2 ln n(s)

n(c)
, (8)

where c is a child node of node s, x̄(c) the average score of node c, n(c) the number
of times the node c has been visited, Cp the exploration-exploitation constant, and
argmax the function that selects the child with the maximum value. This formula
balances exploitation, i.e., picking terms with a high average score, and exploration,
i.e., selecting nodes where the child has not been visited often compared to the
parent. The Cp constant determines how strong the exploration term is: for high Cp
the focus will be on exploration, and for low Cp the focus will be on exploitation.

There are two issues with the current form of the MCTS algorithm. The first
was already mentioned and involves the tuning of the Cp parameter. Sometimes

2 The factor two outside and inside the square root of the UCT formula are a convention.

17

2

the region of Cp that yields good values is small, thus it may be computationally
expensive to find an appropriate Cp. We return to this issue in section 2.3.3. Now
we focus on the second issue: due to the natural asymmetry of trees, there is more
exploration at nodes close to the root compared to the nodes deeper in the tree.
Moreover, only a few branches are fully expanded to the bottom. Consequently, the
final variables in the scheme will be filled out with the variables of a random playout.
No optimisation is done at the end of these branches. As a result, if a very specific
order of moves at the end of the tree gives a better outcome, this solution will not
be found by MCTS. The issue can be partially reduced by adding a new parameter
that specifies whether the Horner scheme should be constructed in reverse, so that
the variables selected near the root of the tree are actually the last to be extracted
[14, 53].

0.01 0.1 1 10
13

14

15

16

17

18

19

20

21

22 1e3

0.01 0.1 1 10

Forward Backward

Cp

Nu
m

be
r o

f o
pe

ra
tio

ns

Figure 4: res(7,5): differences between forward (left) and backward (right) Horner
schemes, at N = 1000 tree updates with SA-UCT. Forward Horner schemes
generate a region of Cp where the number of operations is near the global
minimum, whereas backward schemes have multiple high-density local
minima and a diffuse region.

In figure 4 the difference between a forward and a backward MCTS search with
1000 updates is shown for the polynomial res(7,5) in scatter plot. For the forward
construction, we see that there is a region in Cp where the results are good: the
lowest measured value is found often. However, the backward scheme does not have
a similar range. For other polynomials, it may be better to use the backward scheme,
as is the case for HEP(σ) and HEP(F13). Currently, there is no known way to predict
whether forward or backward construction should be used. Thus, this introduces an
extra parameter to our algorithm.

Even though the scheme direction parameter reduces the problem somewhat, the
underlying problem that there is little exploration at the end of the tree still remains.

18

2

To overcome the issues of tuning Cp and the lack of exploration, we study a related
tree search method called Nested Monte Carlo Search in the next section.

2.3.2 Nested Monte Carlo Search

Nested Monte Carlo Search (NMCS) addresses the issue of the exploration bias
towards the top of the tree by sampling all children at every level of the tree [54]. In
its simplest form, called a level-1 search, a random playout is performed for each
child of a node. Next, the child with the best score is selected, and the process is
repeated until one of the end states is reached. This method can be generalized to a
level k search, where the above process is nested: a level k search chooses the best
node from a level k− 1 search performed on its children. Thus, if the NMCS level is
increased, the top of the tree is optimised with greater detail. Even though NMCS
makes use of random playouts, it does so at every depth of the tree as the search
progresses. Consequently, there is always exploration near the end of the tree.

In figure ?? the results for level 2 NMCS are shown for HEP(σ). The average
number of operations is 4189± 43 (a standard deviation of 43). To compare the
performance of NMCS to that of MCTS, we study the run-time. Since more than 90%
of the run-time is spent on the evaluation function, we may compare the number of
evaluations instead. A level-2 search for HEP(σ) takes 8500 evaluations. In order to
be on a par with MCTS, the score should have been between MCTS 1000 and MCTS
10 000 iterations. However, we see that the score is higher than MCTS with 1000
iterations and thus we may conclude that the performance of NMCS is inferior to
MCTS for HEP(σ).

We have performed similar experiments with NMCS on other polynomials, but
the resulting average number of operations were always greater than MCTS’s. The
reason is likely because we select a low level k: a level-1 search selects the best
child using one sample per child, a process which is highly influenced by chance.
However, there are some performance issues with using a higher k. To analyse these,
we investigate the number of evaluations that a level n search requires.

The form of our tree is known, since every variable should appear only once. This
means that there are n children at the root, n− 1 children of children, and n− d
children at depth d. Thus a level-1 search takes n + (n− 1) + (n− 2) + . . . + 1 =
n(n + 1)/2 evaluations. It can be shown that a level k search takes Sk+n

n , where S
is the Stirling Number of the First Kind. This number grows rapidly: if k = 1 and
n = 15, the number of evaluations is 120, and for level k = 2, it takes 8500 evaluations.
For an expression with 100 variables, a level-1 search takes 5050 evaluations, and a
level-2 search takes 13 092 125 evaluations.

The evaluation function is expensive for our polynomials: HEP(F13) takes about
0.4 second per evaluation and HEP(F24) takes 3.0 seconds. We have experimented
with paralellising the evaluation function, but due to the fine-grained nature of the
evaluation function, this was unsuccessful. For HEP(F24) a million iterations will be
slow, hence for practical reasons we have only experimented with a level-1 search.

19

2

4050 4100 4150 4200 4250 4300
Number of operations

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fr
e
q
u
e
n
cy

Figure 5: NMCS level 2 for HEP(σ), taking 8500 evaluations. This is comparable in
CPU time to MCTS with 8500 runs. The number of operations is 4189± 43,
averaged over 292 samples.

The domains in which NMCS performed well, such as Morpion Solitaire and
SameGame, have a cheap evaluation function relative to the tree construction [54]. If
the evaluation function is expensive, even the level-1 search takes a long time.

Based on the remarks above, we may conclude that for polynomials with a large
number of variables, NMCS becomes infeasible.

2.3.3 SA-UCT

Since NMCS is unsuitable for simplifying large expressions, we return our focus to
MCTS, but this time on the UCT best child criterion. We now consider the role of
the exploration-exploitation constant Cp. We notice that in the first iterations of the
simulation there is as much exploration as there is in the final iterations, since Cp
remains constant throughout the search. For example, the final 100 iterations of a
1000 iterations MCTS run are used to explore new branches even though we know in
advance that there is likely not enough time to reach the final nodes. Thus we would
like to modify the Cp to change during the simulation to emphasise exploration early
in the search and emphasise exploitation towards the end.

We introduce a new, dynamic exploration-exploitation parameter T that decreases
linearly with the iteration number:

T(i) = Cp
N − i

N
, (9)

20

2

where i is the current iteration number, N the preset maximum number of iterations,
and Cp the initial exploration-exploitation constant at i = 0.

We modify the UCT formula to become:

argmax
children c of s

x̄(c) + 2T(i)

√
2 ln n(s)

n(c)
, (10)

where c is a child of node s, x̄(c) is the average score of child c, n(c) the number of
visits at node c, and T(i) the dynamic exploration-exploitation parameter of formula
(9).

The role of T is similar to the role of the temperature in Simulated Annealing [69]:
in the beginning of the simulation there is much emphasis on exploration, the
analogue of allowing transitions to energetically unfavourable states. During the
simulation the focus gradually shifts to exploitation, analogous to annealing. Hence,
we call our new UCT formula “Simulated Annealing UCT (SA-UCT)”.

In the past related changes have been proposed. For example, Discounted UCB
[70] and Accelerated UCT [71] both modify the average score of a node to discount
old wins over new ones. The difference between our method and past work is that
the previous modifications alter the importance of exploring based on the history
and do not guarantee that the focus shifts from exploration to exploitation. In
contrast, this work focuses on the exploration-exploitation constant Cp and on the
role of exploration during the simulation.

We implemented four improvements over UCT. (1) The final iterations are used
effectively. (2) There is more exploration in the middle and at the bottom of the tree.
This is due to more nodes being expanded at lower levels, because the T is lowered.
As a consequence, we see that (3) more branches reach the end states. As a result, (4)
there is exploration near the bottom, where there was none for the random playouts.

In order to analyse the effect of SA-UCT on the fine-tuning of Cp (the initial
temperature), we perform a sensitivity analysis on Cp and N [14]. In figure 6 the
results for the res(7,5) polynomial with 14 variables are displayed. Horizontally, we
have Cp, and vertically we have the number of operations (where less is better). A
total of 4000 MCTS runs (dots) are performed for a Cp between 0.001 and 10. On the
left we show the results for UCT and on the right for SA-UCT. We identify a region
with local minima for low Cp, a diffuse region for high Cp and an intermediate
region in Cp where good results are obtained. This region becomes wider if the
number of iterations N increases, for both SA-UCT and UCT.

However, we notice that the intermediate region is wider for SA-UCT, compared
to UCT. For N = 1000, the region is [0.1, 1.0] for SA-UCT, whereas it is [0.07, 0.15] for
UCT. Thus, SA-UCT makes the region of interest about 11 times larger for res(7,5).
This stretching is not just an overall rescaling of Cp: the uninteresting region of low
Cp did not grow significantly. For N = 3000, the difference in width of the region of
interest is even larger.

In figure 7, we show a similar sensitivity analysis for HEP(σ) with 15 variables.
We identify the same three regions and see that the region of interest is [0.5, 0.7] for

21

2

UCT and [0.8, 5.0] for SA-UCT at N = 1000. This means that the region is about 20
times larger relative to the uninteresting region of low Cp, which grew from 0.5 to
0.8. We have performed experiments on six other expressions, and we obtain similar
results [14].

On the basis that SA-UCT compared to UCT (1) decreases the sensitivity to Cp by
an order of magnitude, and (2) produces Horner schemes of the same quality, we
may conclude that SA-UCT reduces the fine-tuning problem without overhead.

2.4 stochastic local search

In the preceding sections we have concluded that MCTS with SA-UCT is able to find
Horner schemes that yield a smaller number of operations than the naive occurrence
order schemes. For some polynomials, MCTS yields reductions of more than a factor
24. However, in section 2.3.1 we have seen that there are some intrinsic shortcomings
to using a tree representation, especially if the depth of the search tree becomes
(too) large. We noticed that many branches do not reach the bottom when there are
more than 20 variables (we remind the reader that the problem depth is equivalent
to the number of variables) as is the case with many of our expressions. MCTS
determines the scores of a branch by performing a random play-out. If the branch is
not constructed all the way to the bottom, the final nodes are therefore random (no
optimisation). For Horner schemes, the entire scheme is important, so sub-optimal
selection of variables at the end of the scheme can have a significant impact.

The issue of poor optimisation at the bottom of the tree motivated us to look for a
method that is symmetric in its optimisation: both the beginning and the end should
be optimised equally well. In this section we (re)consider which class of algorithms
is best suited for the Horner scheme problem. The Horner scheme problem belongs
to the class of permutation problems. Many algorithms for optimising permutation
problems have been suggested in the literature, such as Stochastic Hill Climbing
(SHC) [72], Simulated Annealing (SA) [69], Tabu Search [62], Ant Colony Optimisa-
tion [73], and Evolutionary Algorithms [74]. Since measurements take weeks per
algorithm, we limit ourselves to two. In [11] we provide qualitative motivations for
focusing on SHC and SA. In summary, the absence of heuristics and the high cost of
sampling to tune parameters make the other options less interesting.

The structure of section 2.4 is as follows. In section 2.4.1 we consider the differ-
ences between SHC and SA, in section 2.4.2 we find an appropriate neighbourhood
structure, and in 2.4.3 we study the state space properties for given neighbourhood
structures.

2.4.1 SHC versus SA

A Stochastic Hill Climbing procedure, also known as iterative improvement local
search, has two parameters: (1) the number of iterations N, and (2) the neigh-
bourhood structure, which defines the transition function [75]. We consider the

22

2

res(7,5) with 14 variables

13

14

15

16

17

18

19

20

21

22 1e3

13

14

15

16

17

18

19

20

21

22 1e3

0.01 0.1 1 10
13

14

15

16

17

18

19

20

21

22 1e3

0.01 0.1 1 10

N=300 UCT N=300 SA-UCT

N=1000 UCT N=1000 SA-UCT

N=3000 UCT N=3000 SA-UCT

Cp

Nu
m

be
r o

f o
pe

ra
tio

ns

Figure 6: res(7,5) polynomial with 14 variables: on the x-axis we show Cp and on the
y-axis the number of operations. A lower number of operations is better.
On the left, we show UCT with constant Cp and on the right we show
SA-UCT where Cp is the starting value of T. Vertically, we increase the tree
updates N from 300, to 1000, to 3000. As indicated by the dashed lines,
an area with an operation count close to the global minimum appears, as
soon as there are sufficient tree updates N. This area is wider for SA-UCT
than for UCT.

23

2

HEP(σ) with 15 variables

4.0

4.5

5.0

5.5

6.0 1e3

4.0

4.5

5.0

5.5

6.0 1e3

0.01 0.1 1 10
4.0

4.5

5.0

5.5

6.0 1e3

0.01 0.1 1 10

N=300 UCT N=300 SA-UCT

N=1000 UCT N=1000 SA-UCT

N=3000 UCT N=3000 SA-UCT

Cp

Nu
m

be
r o

f o
pe

ra
tio

ns

Figure 7: HEP(σ) with 15 variables: on the x-axis we show Cp and on the y-axis the
number of operations. A lower number of operations is better. On the left,
we show UCT with constant Cp and on the right we show SA-UCT where
Cp is the starting value of T. Vertically, we increase the tree updates N
from 300, to 1000, to 3000. As indicated by the dashed lines, an area with
an operation count close to the global minimum appears, as soon as there
are sufficient tree updates N. This area is wider for SA-UCT than for UCT.

24

2

neighbourhood structure the most important parameter, since it is tunable. A
Stochastic Hill Climbing procedure only moves to a neighbour if the evaluation score
(number of operations) is improved. As a consequence, SHC could get stuck in local
minima. Therefore, we consider to use Simulated Annealing instead of SHC, since
SA has the ability to escape from local minima.

Simulated Annealing (SA) is a popular generalisation of SHC. It has four additional
parameters with respect to SHC, namely (3) the initial temperature Ti, (4) the final
temperature Tf , (5) the acceptance scheme, and (6) the cooling scheme [69]. The
temperature governs the probability of accepting transitions with an energy higher
than the energy of the current state. The cooling scheme governs how fast and in
what way the temperature is decreased during the simulation (linearly, exponentially,
etc.). Exponential cooling is frequently used. The acceptance scheme is most often
the Boltzmann probability exp(∆E/T), that defines the probability of selecting a
transition to an inferior state, given the difference in evaluation score ∆E. The
number of iterations (1) of SA is not independent of the other parameters, as it can
be computed from the initial temperature, final temperature, and cooling scheme.
Most often, the search is started from a random position in the state space. In
our application, we start from a random permutation of the variables. A basic SA
algorithm is displayed in Algorithm 1.

s← random state, best← s, T ← Ti;
while T > Tf do

s′ ← random neighbour(s);

if e(Es−Es′)/T > rand(0, 1) then
s← s′; /* Accept new state */

if Es < Ebest then
best← s;

end
end
T ← αT; /* Annealing */

end
return best;

Algorithm 1: A basic SA implementation, with a neighbourhood function (2),
initial temperature Ti (3), final temperature Tf (4), a Boltzmann acceptance
scheme (5), and exponential cooling with cooling parameter α (6). The number
of iterations (1) is logα(Tf /Ti).

For SA we consider the following. If the initial temperature is high, then transitions
to inferior states are permitted, allowing an escape from local minima. In order to
determine the effect of the initial temperature Ti on the results, we will perform
a sensitivity analysis. We use Boltzmann probability as the acceptance scheme,
exponential cooling, a final temperature of 0.01, N = 1000 iterations, and a swap
neighbourhood structure (for a visualisation, see figure 9).

25

2
0 5000 10000 15000 20000

Initial temperature

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

R
e
la

ti
v
e
 i
m

p
ro

v
e
m

e
n
t

HEP(σ)

HEP(F13)

res(7,5)
HEP(b)

Figure 8: The relative improvement (lower is better) of the number of operations
for a given initial temperature Ti, compared to Ti = 0. Each data point is
the average of more than 100 SA runs with 1000 iterations, and a swap
neighbourhood structure. We show the expressions HEP(σ), HEP(F13),
res(7,5), and HEP(b). The number of operations is only slightly influenced
by the initial temperature, since the best improvement over Ti = 0 is smaller
than 5%.

In figure 8 we show the relative improvement (lower is better) of the number of
iterations for a given initial temperature Ti compared to Ti = 0 for the expressions
HEP(σ), HEP(F13), res(7,5), and HEP(b). Naturally, for Ti = 0, the relative improve-
ment to itself is 1. For all expressions except HEP(b), we see a region where the
improvement is largest: for HEP(σ) it is approximately [1000, 7000], for HEP(F13) it
is [12 000, 17 000] and for res(7,5) it is [5000, 20 000]. This improvement is less than
5%. For higher T, too many transitions to inferior states are accepted to obtain good
results. HEP(b) seems to be independent of the initial temperature. The fluctuations
of 1% are statistical fluctuations.

The difference between the best results for all the expressions in figure 8 and
the result at T = 0 is less than 5%. Since a Ti = 0 SA search is effectively an SHC
search, this means that an almost parameterless Stochastic Hill Climbing (SHC) is
able to obtain results that are only slightly inferior. This is surprising, since the way
SHC traverses the state space is different from the way by SA. We here reiterate
once more, SHC can get stuck in local minima, whereas SA has the possibility to
escape. Furthermore, if a saddle point is reached, SA is able to climb over the hill,
whereas SHC has to walk around the hill in order to escape. In subsection 2.4.3
we will show that local minima are uncommon, and that most of them are actually
saddle points (i.e., local “minima” with a way to escape). Consequently, SA performs
slightly better not because it can escape from local minima, but because, for some

26

2

polynomials, walking over a saddle point (SA) is slightly faster to find better states
than trying to circumvent the saddle point (SHC).

The reason why we prefer SHC over SA is that (1) the fundamental algorithmic
improvement of SA – the ability to escape from local minima – is not used in practice,
as we will see in subsection 2.4.3, and (2) tuning the SA parameters is expensive.
Several methods have been suggested to tune the initial temperature, such as [76]
and [77], but they often take several hundred iterations to obtain reliable values
(which is quite expensive in our case). The small benefit of SA can be obtained by
three other ways. First, by performing SHC runs in parallel (see section 2.4.2), second,
by increasing the number of iterations, and third by selecting an initial temperature
based on previous information such as figure 8. Using these three optimisations, a
small improvement is obtained without increasing the run time.

2.4.2 Neighbourhood structure

The main parameter of SHC is the neighbourhood structure. Choosing an appropriate
neighbourhood structure is crucial, since it determines the shape of the search
space and thus influences the search performance. In [78] it is observed that the
neighbourhood structure can have a significant impact on the quality of the solutions
for the Travelling Salesman Problem, the Quadratic Assignment Problem, and the
Flow-shop Scheduling Problem.

There are many neighbourhood structures for permutation problems such as
Horner schemes. For example, a transition could swap two variables in the Horner
scheme or move a variable in the scheme. However, there are also neighbourhood
structures that involve changing larger structures. Figure 9 gives an overview of four
basic transitions from which others can be constructed. From top to bottom, it shows
(a) a single swap of two variables in the scheme, (b) a shift of a variable, (c) a shift
of a sublist, and (d) a mirroring of a sublist. At each iteration of SHC, a transition
to a randomly chosen neighbour is proposed. For the single swap transition, this
involves the selection of two random variables in the scheme.

To examine which neighbourhood structure performs best for Horner schemes,
we investigate seven (combinations of) neighbourhood structures, viz. (1) a single
swap, (2) two consecutive swaps, (3) three consecutive swaps, (4) a shift of a single
variable, (5) mirroring of a sublist, (6) a sublist shift (which we call ‘many shift’),
and (7) mirroring and/or shifting with an equal probability (which we call ‘mirror
shift’). Swapping multiple times in succession allows for faster traversal of the
state space, but also runs the risk to miss states. Moreover, we have tested hybrid
transitions. For instance, we performed two consecutive swaps in the first half of the
simulation and resorted to single swaps for the latter half. However, we found that
these combinations did not perform better. In order to present clear plots, we have
omitted the plots resulting from these combinations.

Below we discuss (A) the measuring quality, (B) detailed results for res(7,6) and
HEP(σ), (C) detailed results for HEP(F13) and HEP(b), and (D) combined results.

27

2

(a) a b c d c b a d

(b) a b c d b a c d

(c) a b c d c a b d

(d) a b c d c b a d

Figure 9: The elementary neighbourhood structures we use. From top to bottom: (a)
a single swap, (b) a single shift, (c) shift of a sublist, and (d) mirroring of a
sublist.

(A) Measuring quality

We now start investigating two methods of measuring the quality of a neighbour-
hood structure by: (A1) the average number of operations obtained by using a
neighbourhood structure, and (A2) the lowest number of operations after performing
several runs.

a1 Figure 10 shows the distribution of the number of operations of the expression
HEP(F13) after 10 000 SHC runs with the neighbourhood structure that exchanges
two random variables. The average of this distribution is somewhere in the middle,
but the actual values that one will measure will be either near 51 000 or near 62 000.
Thus, the average is not an appropriate measure.

a2 So, we decided to measure the lowest score of several runs (A2), because in
practice SHC is run in parallel, and so the results are more in line with those from
practical applications. Thus, we are interested in the neighbourhood structure that
has the lowest expected value of the minimum of k measurements. Here, we can use
the expected value E [min (X0, . . . , Xk−1)]:

V0 +
L−2

∑
t=0

(Vt+1 −Vt) (1− cdf(D, t))k (11)

where k is the number of measurements, Xn is the score of the nth measurement,
t is an index in the discrete distribution, Vt is the number of operations at t, Dt
is the probability of outcome Vt, L is the number of possible outcomes, and cdf
the cumulative distribution function. We shall denote the expected value of the
minimum of k runs by Emin,k.

Because the number of measurements k is in the exponent in eq. (11), Emin,k
decreases exponentially with k and finally converges to V0. As a consequence,

28

2
50000 52000 54000 56000 58000 60000 62000 64000 66000 68000

Number of operations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

Figure 10: HEP(F13) expression with 10 000 runs and 1 swap as a neighbourhood
structure. Typical for our domain is that there are often two or more
spikes. If the simulation is run multiple times, the probability of finding a
value close to the minimum is high.

neighbourhood structures with a high standard deviation are more likely to achieve
better results, since at high k the probability of finding a low value at least once is
high. We found that four parallel runs (k = 4) yielded good results.

The results for res(7,4), res(7,5), and HEP(F24) are similar, and are omitted for
brevity (see [11]). Polynomial res(9,8) is too time consuming for such a detailed
analysis (it would take around 35 days to collect all data).

(B) Results for res(7,6) and HEP(σ)

In figure 11a the performance of the neighbourhood structures for the expression
res(7,6) is shown. We see that shifting a single variable (‘1 shift’) has the best
performance at a low number of iterations N, followed by 2 consecutive swaps (‘2
swap’). At around N = 900 all neighbourhood structures have converged. Thus,
from N = 900 onward it does not matter which structure is chosen.

In figure 11b we show the performance of the neighbourhood structures for
HEP(σ). We see that ‘1 shift’ has the best performance at low N. At N = 600, all the
neighbourhood structures have converged. The characteristics of this plot are similar
to those of res(7,6).

We suspect that for a small state space, i.e., a small number of variables, there is
not much difference between the neighbourhood structures, since the convergence
occurs quite early (below N = 1000). Therefore, we look at two expressions with
more variables: HEP(F13) with 24 variables, and HEP(b) with 107 variables.

29

2

100 200 300 400 500 600 700 800 900 1000
N

45000

46000

47000

48000

49000

50000

51000

E
(m

in
,
4
)

1 swap
2 swap
3 swap
mirror
1 shift
many shift
mirror shift

(a) res(7,6)

100 200 300 400 500 600 700 800 900 1000
N

4000

4100

4200

4300

4400

4500

4600

E
(m

in
,
4
)

1 swap
2 swap
3 swap
mirror
1 shift
many shift
mirror shift

(b) HEP(σ)

Figure 11: The expected number of operations of the minimum of four SHC runs with
N iterations for res(7,6) (left), and HEP(σ) (right). For res(7,6) the 1 shift
performs best for low N, followed by the 2 swap. All the neighbourhood
structures converge at N = 900. For HEP(σ), we see that 1 shift has the
best performance at low N. At N = 600, all the neighbourhood structures
have converged. The characteristics of the two plots are similar.

(C) Results for HEP(F13) and HEP(b)

In figure 12a we show the results for HEP(F13). We see that all the neighbourhood
structures that involve small changes (‘1 swap’, ‘2 swap’, ‘3 swap’, and ‘1 shift’) are
outperformed by the neighbourhood structures that have larger structural changes
(‘mirror’, ‘many shift’, and ‘mirror shift’). The difference is approximately 8%. Both
groups seem to have converged independently to different values. However, for
larger N, we expect all neighbourhood structures to converge to the same value. The
point of convergence has shifted to higher N compared to res(7,6), and HEP(σ), since
the state space has increased in size from 15! to 24!. From this plot, we may conclude
that the state space of HEP(F13) is more suited to be traversed with larger changes.

In figure 12b the performance of the neighbourhood structures for HEP(b) is
shown. We see that two consecutive swaps perform best at low N and that ‘1 swap’,
‘2 swap’, ‘3 swap’, and ‘1 shift’ converge at N = 1000. The neighbourhood structures
that involve larger structural changes (‘mirror’, ‘many shift’, ‘mirror shift’) perform
worse. These results are different from those of HEP(F13): for HEP(b), with an
even larger state space than HEP(F13), smaller moves are better suited. This means
that the mere number of variables is not a good indicator for the selection of a
neighbourhood scheme.

30

2

100 200 300 400 500 600 700 800 900 1000
N

50000

52000

54000

56000

58000

60000

62000

64000

E
(m

in
,
4
)

1 swap
2 swap
3 swap
mirror
1 shift
many shift
mirror shift

(a) HEP(F13)

100 200 300 400 500 600 700 800 900 1000
N

140000

150000

160000

170000

180000

190000

E
(m

in
,
4
)

1 swap
2 swap
3 swap
mirror
1 shift
many shift
mirror shift

(b) HEP(b)

Figure 12: The expected number of operations of the minimum of four SHC runs
with N iterations for HEP(F13) (left), and HEP(b) (right). For HEP(F13),
mirror, many shift, and mirror shift converge to a lower value than the
neighbourhood structures 1 swap, 2 swap, 3 swap, and 1 shift. For HEP(b),
the 2 swap performs best for low N. 1 swap, 2 swap, 3 swap, and 1 shift
converge at N = 1000. The other neighbourhood structures perform
worse. Thus, the characteristics of HEP(F13) and HEP(b) are different.

(D) Combined results

For the four benchmark expressions described in (B) and (C), and for the other three
benchmark expressions, we observe that the relative improvement of the choice of
the best neighbourhood structure compared to the worst neighbourhood structure
is never more than 10%. Furthermore, we observe that there are two groups of
neighbourhood structures when the state space is sufficiently large. Group 1 makes
small changes to the state (‘1 swap’, ‘2 swap’, ‘3 swap’, ‘1 shift’). Group 2 makes large
structural changes (‘mirror’, ‘many shift’ ‘mirror shift’). The two groups converge
before N = 1000 for expressions with small state spaces, such as HEP(σ), but are
further apart for expressions with more variables, such as HEP(F13) and HEP(b). The
difference in quality in the group itself is often negligible (less than 3%). Thus, as a
strategy to apply the appropriate neighbourhood structure, we suggest to distribute
the number of parallel runs evenly among the two groups: in the case of four parallel
runs, two of the runs can be performed using one neighbourhood structure from the
group 1 and two from group 2.

2.4.3 Two state space properties

The fact that SHC works so well is surprising. Two well-known obstacles are (1)
a Stochastic Hill Climbing can get stuck in local minima which yields inferior
results [72], and (2) the Horner scheme problem does not have local heuristics, so

31

2

50 52 54 56 58 60 62 64 66 68
1e3

0

0.2

0.4

0.6

0.8

1

50 52 54 56 58 60 62 64 66 68
1e3

50 52 54 56 58 60 62 64 66 68
1e3

N=1000 N=10,000 N=100,000

Number of operations

Fr
e
q
u
e
n
cy

Figure 13: The distribution of the number of operations for the HEP(F13) expression
with 1 swaps for 1000 iterations (left), 10 000 iterations (middle) and
100 000 iterations (right) at T = 0. There appears to be a local minimum
around 62 000. However, as the number of iterations is increased, the
local minimum becomes smaller relative to the global minimum region
(middle) and completely disappears (right). We may conclude that the
apparent local minimum is not a local minimum, but a saddle point, since
SHC is able to escape from the ‘minimum’.

there is no guidance for any best-first search. Remarkably, SHC only needs 1000

iterations for a 107 variable expression (HEP(b)) to obtain good results, whereas a
TSP benchmark problem with a comparable state space size, viz. kroA100 [79] with
100 variables, takes more than a million iterations to converge using a manually
tuned SA search.

A thousand iterations is also a small number compared to the size of the state
space. The average distance between two arbitrary states is 98 swaps. A thousand
iteration SHC search accepts approximately 300 suggested swaps, so at least 33%
of all the accepted moves should move towards the global minimum. This scenario
would be unlikely if the state space is unsuited for SHC, so perhaps the state
space has convenient properties for our purposes. We discuss the following two
properties in the subsections below: (A) local minima, and (B) the region of the
global minimum.

(A) Local minima and saddle points

To obtain an idea on the number of local minima, we measure how often the
simulation gets stuck: if there are many local minima, we expect the simulation to
get stuck often. In figure 13, we show the distribution of HEP(F13) for 1000, 10 000,
and 100 000 SHC runs respectively. For 1000 and 10 000 runs we see two peaks: one
at the global minimum near 51 000 and one at an apparent local minimum near
62 000. As the number of iterations is increased, the weight shifts from the apparent
local minimum to the global minimum: at 1000 iterations, there is a probability of
27.5% of arriving in the region of the global minimum, whereas this is 36.3% at

32

2

10 000 iterations. Apparently the local minimum is ‘leaking’: given sufficient time,
the search is able to escape. The figure on the right with 100 000 iterations confirms
the escaping possibility: the apparent local minimum has completely disappeared.
Thus, the local minimum is in reality a saddle point, since for a true local minimum
there is no path with a lower score leading away from the minimum. Since SHC
requires many iterations to escape from the saddle point, only a few transitions
reduce the number of operations.

We observe that apparent local minima disappear for our other benchmark ex-
pressions as well. SHC runs with 100 000 iterations approach the global minimum
for all of our benchmark expressions. For example, for HEP(F13) mentioned above,
the result is 50636± 57 and for HEP(σ) the result is 4078± 9. The small standard
deviations indicate that no runs get stuck in local minima (at least not in local
minima significantly higher than the standard deviation).

From these results we may conclude that true local minima, from which a
Stochastic Hill Climbing cannot escape, are rare for Horner schemes.

(B) Flatness of the state space

To build an intuition for what the state space looks like, we consider its flatness. We
measure how many of the neighbours have a value (number of operations) that does
not differ by more than 1%: |xn−x|

|x| < 1%, where x is the reference state and xn is a
neighbour of x. For brevity, we shall refer to this as ‘close’.

In figure 14a we show the results for HEP(σ) for the current states during a typical
single SHC run. We see that throughout the simulation the percentage of close
neighbours is approximately 30%. We compare these results to an SA run of the TSP
problem kroA100 (displayed in figure 14b). We see that for a random starting state
the number of close neighbours is 30% as well, but as the simulation approaches
the global minimum (at the right of the graph), the number of close neighbours
decreases to 0.9%. As a result, the global minimum for TSP must be very narrow.

These results are a first hint that the state space of Horner is flat and terrace-like,
whereas the TSP problem is more trough-like, with steep global/local minima. To
investigate the flatness more deeply, we have looked at the distribution of the relative
difference |xn−x|

|x| . For the global minimum of the HEP(b) expression, this is depicted
in figure 15. We see that about 75% of the neighbours are within 1% and 95% within
5%, which is even higher than for HEP(σ). We observed similar features for the other
points in the state space, including hard to escape saddle points.

The property that the state space is flat is not only present in physics expressions,
but is found in our other four benchmark expressions as well. Additionally, we have
generated test expressions that we know to have interesting mathematical structures,
such as powers of expressions. For example, for the expression (4a + 9b + 12c2 +
2d + 4e3 − 2 f + 8g2 − 10h + i − j + 2k2 − 3j4 + l − 15m2)6, 43% of the neighbours,
18% of the second neighbours and 7.3% of the third neighbours are close.

The question arises why the number of close neighbours is so high for the HEP(b)
expression. For most expressions it is around 30%, but for HEP(b) it is 75%. A closer

33

2

0 50 100 150 200 250 300 350 400 450
Iteration number

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Fr
a
ct

io
n
 o

f
cl

o
se

 n
e
ig

h
b
o
u
rs

(a) HEP(σ) with SHC

0 5000 10000 15000 20000 25000 30000 35000
Iteration number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
a
ct

io
n
 o

f
cl

o
se

 n
e
ig

h
b
o
u
rs

(b) kroA100 with SA

Figure 14: The typical number of close neighbours (value difference within 1%) for
the current state for HEP(σ) and SHC on the left, and for SA on the the
TSP benchmark problem kroA100 with 100 cities on the right. HEP(σ)
does not show a decrease in the number of close neighbours, but remains
steady around 30%. This is an indication that the state space is flat.
For kroA100, the early states have many close neighbours, but as the
simulation is converging to a minimum, the number of close neighbours
decreases to about 0.9%. This is an indication that the state space has
steep (local) minima.

inspection revealed that the HEP(b) expression has the special property that 90 of
the 107 variables never appear in the same term: a term that contains variable x does
not contain variable y and vice versa. As a result, the partial Horner schemes x, y
and y, x yield the same expression. The HEP(b) expression is not the only expression
with a high number of close neighbours: it represents a class of problems that often
appears in electron-positron scattering processes.

The fact that some variables do not appear together in the same term is caused
by a symmetry of the expression, since rearranging these variables in the scheme
does nothing if they are direct neighbours in the scheme. The more symmetrical
the expression is, the more likely it is that neighbours have the exact same value
or a close value (within 5%). In the case of a uniformly random expression where
the number of terms is much greater than the number of variables, we expect that
practically all swaps are ineffective. The reason is that there is a high probability
that each variable appears in an equal number of terms and has equal mixing.

Many, if not all, large expressions exhibit the ‘flatness’ property of their state space,
since in most cases the number of terms is much larger than the number of variables.
For the expressions that we have tested, the ratio of the number of terms and the
number of variables is always more than a factor 1000. As a consequence, most

34

2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Relative difference

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

Figure 15: Relative difference of the values of swap neighbours of global minima for
the HEP(b) expression, sampled over 37 states. The mean is 0.015± 0.034.
The region is very flat: we observe that 85% of the neighbours have a
value that is within 1% of the current value.

variables will appear in many terms, which in turn increases uniformity, resulting in
neighbouring states with small differences in value (less than 5%).

2.5 performance of shc vs . mcts

Below, we compare the results of Stochastic Hill Climbing to the previous best results
from MCTS, for our eight benchmark expressions res(7,4), res(7,5), res(7,6), res(9,8),
HEP(σ), HEP(F13), HEP(F24) and HEP(b). The results of all the MCTS runs except for
res(9,8), and HEP(b) are taken from [53].3 The results are displayed in table 2.

The results for MCTS with 1000 and 10 000 iterations are obtained after consid-
erable tuning of Cp and after selecting whether the scheme should be constructed
forward or in reverse (i.e., the scheme is applied backwards [14]).

For smaller problems, we observe that the averages of SHC are on a par with
MCTS. However, we see that the standard deviations of SHC are higher than MCTS.
This is because for MCTS the first nodes are fixed rather fast, which limits the variety.
Consequently, we expect SHC to outperform MCTS if several runs are performed
in parallel. Indeed, this is what we see in the last column of table 2. The standard
deviations of MCTS are often an order of magnitude smaller than those of SHC, so
the benefits of running MCTS in parallel are smaller. We may conclude that SHC
has a better minimal behaviour if run in parallel.

3 We only consider optimisations by Horner schemes and CSEE. Additional optimisations that are men-
tioned in [53], such as ‘greedy’ optimisations, can just as well be applied to the results of SHC.

35

2

vars original MCTS 1k MCTS 10k SHC 1k SHC 10k Emin,4 1k
res(7,4) 13 29 163 (3.86± 0.1) · 103 (3.84± 0.01) · 103 (3.92± 0.28) · 103 3834± 26 3819± 9
res(7,5) 14 142 711 (1.39± 0.01) · 104 13768± 28 13841± 441 13767± 21 13770± 5
res(7,6) 15 587 880 (4.58± 0.05) · 104 (4.54± 0.01) · 104 46642± 3852 (4.61± 0.25) · 104 (4.55± 0.16) · 104

res(9,8) 19 83 778 591 (5.27± 0.25) · 106 (4.33± 0.31) · 106 (4.13± 0.34) · 106 (4.03± 0.17) · 106 (3.97± 0.18) · 106

HEP(σ) 15 47 424 4114± 14 4087± 5 4226± 257 4082± 58 4075± 25
HEP(F13) 24 1 068 153 (6.6± 0.2) · 104 (6.47± 0.08) · 104 (5.99± 0.51) · 104 (5.80± 0.55) · 104 (5.37± 0.40) · 104

HEP(F24) 31 7 722 027 (3.80± 0.06) · 105 (3.19± 0.04) · 105 (3.16± 0.23) · 105 (3.06± 0.23) · 105 (2.98± 0.09) · 105

HEP(b) 107 1 817 520 (1.81± 0.04) · 105 (1.65± 0.08) · 105 (1.50± 0.08) · 105 (1.40± 0.06) · 105 (1.44± 0.04) · 105

Table 2: SHC compared to MCTS. The MCTS results for all expressions except
res(9,8) and HEP(b) are from [53]. All the values are statistical averages over
at least 100 runs. SHC results have a larger standard deviation, and thus the
expected value of the minimum is often lower than these values (see last
column).

For our largest expressions, HEP(F13), HEP(F24) and HEP(b), we observe that
SHC with 1000 iterations yields better results than MCTS with 10 000 iterations.
For HEP(F24), the average of SHC with 1000 iterations is about 20% better than the
average for MCTS with 1000 iterations. In fact, the results are slightly better than
MCTS with 10 000 iterations. If we take the Emin,4 into account, the expected value
for HEP(F24) is an additional 7% less.

The fact that SHC outperforms MCTS when the number of variables is larger than
23, may be due to the fact that there are not sufficient iterations for the branches to
reach the bottom, making the choice of the last variables essentially random (see
section 2.4 and [14]). This may also be the reason why for MCTS it is important
whether the scheme is constructed forward or in reverse: if most of the performance
can be gained by carefully selecting the last variables, building the scheme in reverse
will yield better performance.

SHC is 10 times faster (in clock time) than MCTS, since most of the time is spent
in the evaluation function. It is able to make reductions up to a factor of 26 for our
largest expression.

2.6 chapter conclusion

Monte Carlo Tree Search (MCTS) with UCT has proven to be a good candidate to
simplify large expression [53]. A downside of this method is that the constant Cp
that governs exploration versus exploitation has to be tuned. The quality of the final
scheme largely depends on this constant. We have modified the UCT algorithm
so that Cp decreases linearly with the iteration number [14]. As a result, the final
iterations are spent on optimising the end of the tree, instead of exploring. We show
that using this modified UCT, the sensitivity to Cp is decreased by at least a factor
10 [13, 14]. Thus, the tuning is simplified.

Tree search methods, even with SA-UCT, have the problem that the beginning of
the tree is optimised more than the end. For Horner schemes this does not lead to
optimal solutions. Therefore we considered other algorithms that optimise uniformly.

36

2

Since sampling is slow for our use case, tuning many parameters is infeasible. For
this reason, we preferred straightforward algorithms over sophisticated ones. In
the case of Horner schemes, we have found that one of the most basic algorithms,
Stochastic Hill Climbing, yields the best results.

2.6.1 Findings and conclusions

Stochastic Hill Climbing provides a search method with two parameters: (1) the
number of iterations (computation time) and (2) the neighbourhood structure, which
is a tunable parameter. We found that running half of the simulations with a
neighbourhood structure that makes minor changes to the state (i.e., a single shift of
a variable), and running the other half with a neighbourhood structure that involves
larger changes (i.e., the mirroring of a random sublist) is a good strategy for all of our
benchmark expressions (see subsection 2.4.2). Consequently, only the computation
time remains as an actual parameter. From our experimental results we arrive at
three subconclusions: (1) SHC obtains similar results to MCTS for expressions with
around 15 variables, (2) SHC outperforms MCTS for expressions with 24 or more
variables, and (3) SHC requires ten times fewer samples than MCTS to obtain similar
results. Therefore we may conclude that SHC is more than 10 times faster [11].

The result that a basic algorithm such as SHC performs well is surprising, since
Horner schemes have at least two properties that make the search hard: (1) there
are no known local heuristics, and (2) evaluations could take several seconds. In the
previous sections we have shown that the performance of SHC is so good, because
the state space of Horner schemes is flat and has few local minima.

The number of operations is linearly related to the time it takes to perform
numerical evaluations. The difference between the number of operations for the
unoptimised and the optimised expression is more than a factor 24 compared. As a
consequence, we are able to perform numerical integration (via repeated numerical
evaluations) at least 24 times faster.

For High Energy Physics, the contribution is immediate: numerical integration of
processes that are currently experimentally verified at CERN can be done significantly
faster.

2.6.2 Future research

We see two promising options for future research. First, our algorithms assume that
the expressions are commutative, but our implementation could be expanded to be
applied to generic expressions with non-commuting variables. Especially in physics,
where tensors are common objects, this is useful. Horner’s rule can only be applied
uniquely to commutative variables, but the pulling outside brackets keeps the order
of the non-commuting objects intact. Thus, for Horner’s rule the only required
change is the selection of commutative variables for the scheme. The common
subexpression elimination should honour the ordering of the non-commutative

37

2

objects. For example, in figure 2, the two highlighted parts are not a common
subexpression if the variables are non-commutative (a + e cannot be moved to the
left of c). To enable non-commutative objects, CSEE should only compare connected
subsets.

Second, additional work can be put in finding other methods of reductions. For
example, expressing certain variables as linear combinations of other variables may
reduce the number of operations even further. Many of these patterns cannot
be recognised by common subexpression elimination alone. Determining which
variables should be expressed as linear combinations of other variables to yield
optimal results is an open problem. Perhaps Stochastic Local Search techniques are
applicable to this subject as well.

Our algorithms are implemented in the next release of the open source symbolic
manipulation system Form [80] and are used by multiple research groups.

38

