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PREFACE

This PhD thesis is the result of work I performed as part of the HEPGAME (High
Energy Physics and Games) project. The HEPGAME project is supported by the ERC
Advanced Grant no. 320651 and its primary goal is to apply methods from artificial
intelligence to solve problems in high energy physics. The symbolic manipulation
toolkit ForM plays a key role in the investigation.

During the PhD I worked in three different locations. The first half year I mostly
worked at Tilburg University. The next few years I have worked at Leiden University
and Nikhef. At Leiden University, I taught a course, supervised a student, and
worked on the computer science aspect of this thesis with my close colleagues Jaap
van den Herik, Aske Plaat, and Ali Mirsoleimani. This mainly involved expression
simplification, which turned into chapter 2.

At Nikhef, I focused on physics, and worked on designing computer programs
with my close colleagues Jos Vermaseren and Takahiro Ueda. This resulted in the
FORCER program, described in chapter 3. Later, Andreas Vogt joined to compute
new physical quantities with FORCER. The results formed the basis of chapter 4.

Together with Franz Herzog we decided to aim for something we had not thought
possible: computing the five-loop beta function. After a year of puzzling, we
understood the R*-method which could help us achieve our goal. The method is
explained in chapter 5.

Finally, after combining the FORCER program and the computer code for the R*-
method, we were able to compute the five-loop beta function for Yang-Mills theory
with fermions. This formed the basis for chapter 6.

I have had the pleasure to work with experts in the fields of Artificial Intelligence,
Computer Science, and Theoretical Physics. This enriching experience has helped
shape this thesis, for which I am grateful.
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INTRODUCTION 1

Understanding how Nature works on a fundamental level is one of the key goals of
physics. Consequently, physicists try to identify what the smallest building blocks
of our universe are and how they interact. The ideas about these fundamental
building blocks have undergone many revolutions, each radically changing the way
we describe Nature.

The ancients reasoned that all objects were composed of the elements fire, earth,
water, and air. As technology progressed, scientists discovered cells, molecules, and
atoms. Atoms only have a radius of about 30 trillionths of a meter. For a while it
was believed that the atom was the smallest component (the Greek name means
indivisible). This idea lasted until the early 20th century with the discoveries of the
electron and proton. Six decades later, it turned out that even protons and neutrons
were not fundamental, but consisted of quarks [15, 16].

From the invention of quantum mechanics in the early 1920s, it became clear that
these small particles behave differently from everyday experience: particles could
be in two places at once, act like waves, or spontaneously emerge from the vacuum,
and quickly disappear again [17]. The fact that the fundamental building blocks
had both particle-like and wave-like features was later unified by the framework
of Quantum Field Theory (QFT) [18]. The new quantum field theoretic description
of the electromagnetic interaction, Quantum Electrodynamics (QED), was hugely
successful and is still used to this day.

Below we provide a brief introduction to the world of QFT. We describe the
Standard Model in section 1.1, the aim for precise predictions in section 1.2, computer
methods in section 1.3, and Feynman diagrams in section 1.4. Then we formulate
our Problem Statement (PS) in section 1.5, and the Research Questions (RQs) in
section 1.6. In section 1.7 we list our contributions and in section 1.8 we outline the
structure of the thesis.

1.1 THE STANDARD MODEL

In the early 1960s, the first version of the Standard Model was constructed [19].
The goal was to capture all fundamental particles and interactions in this model.
The first version contained several particles, such as quarks and electrons, and the
electromagnetic and weak forces. The electromagnetic force governs the interactions
of photons (light) with charged particles. The weak forces govern nuclear decay and
are mediated by the W and Z bosons. The Higgs boson, which is responsible for
giving elementary particles mass, was added to the model shortly after, in 1964 [20-
22]. Finally, the strong force, mediated by gluons, was added in 1973 [23, 24]. The
theory for the strong interaction, Quantum Chromodynamics (QCD), explained why
quarks of opposite charge can stay in a stable configuration in the nucleus of an



