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4
An efficient preconditioner for stochastic
gradient descent optimization of image

registration

This chapter was adapted from:

Y. Qiao, B.P.F. Lelieveldt and M. Staring. An efficient preconditioner for stochastic
gradient descent optimization of image registration, submitted
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Abstract

Stochastic gradient descent (SGD) is commonly used to solve (parametric) image
registration problems. In case of ill-conditioned problems, SGD however only
exhibits sublinear convergence properties. In this chapter we propose an efficient
preconditioner estimation method to improve the convergence rate of SGD. Based
on the observed distribution of voxel displacements in the registration, we estimate
the diagonal entries of a preconditioning matrix, thus rescaling the optimization cost
function. The preconditioner is suitable for stochastic and not only deterministic
optimization. It is efficient to compute and employ, and can be used for mono-modal
as well as multi-modal cost functions, in combination with different transformation
models like the rigid, affine and B-spline model. Experiments on different clinical data
sets show that the proposed method indeed improves the convergence rate compared
to SGD with speedups around 5 in all tested settings, while retaining the same level of
registration accuracy.
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4.1 Introduction
Image registration is widely used in medical image analysis and has ample application,
e.g. in radiation therapy and segmentation [19, 2, 3]. This procedure can be used to
align images from different modalities or different time points following a continuous
deformation strategy. The strategy can be formulated as a (parametric) optimization
problem to minimize the dissimilarity between a d-dimensional fixed image IF and
moving image IM :

µ̂= argmin
µ

C (IF , IM ◦Tµ(x)), (4.1)

in which Tµ(x) is a coordinate transformation parameterized by µ. An iterative scheme
is typically used to solve this problem:

µk+1 =µk −γk dk , (4.2)

where k is the iteration number, γk is the step size at iteration k, and dk is a
search direction in the parameter space. Commonly used methods to determine
the search direction dk are of first order (gradient descent) or second order (Newton
or quasi-Newton) descent type. Gradient descent, however, only achieves a sublinear
convergence rate for nonconvex problems or a linear convergence rate for convex
problems [79, 25]. Especially for badly scaled cost functions these methods converge
slowly. Second order derivative methods such as the quasi-Newton method converge
faster, however, the computation of the Hessian matrix update is very time consuming,
especially when the number of image voxels and transformation parameters are large
[80]. To overcome these shortcomings, preconditioning techniques were proposed
to turn a badly scaled cost function into a properly scaled cost function, considering
the curvature of the cost function [79, 81, 82, 83]. The construction of these
preconditioners can however be computationally expensive in themselves, which
can easily mitigate the positive effect of faster convergence.

Two major groups of preconditioning techniques are widely used in iterative
optimization. One, sometimes named variable preconditioning, uses the update rule:

µk+1 =µk −γk Pk gk . (4.3)

The preconditioner Pk is updated at each iteration (or at least regularly) to adapt to the
local shape of the cost function [84, 85, 86, 87, 88, 89, 90]. This group of methods is
typically used in machine learning to solve a linear system [91, 92, 85, 87, 93, 94], but
is also popular in image registration [95, 96, 25, 97]. Popular preconditioners, such as
Newton or quasi-Newton methods [82, 89], indeed exhibit superior convergence rate
compared to the standard gradient descent methods. These improvements, however,
come at a cost of the estimation of the inverse Hessian, which alleviates some of the
advantages and can even lead to a net deceleration. Zikic et al. [89] proposed a
diagonal preconditioner for Demons registration. They applied the preconditioner
before the dense gradient of the energy function using the inverse of the gradient
magnitude. Besides its extra computation efforts at each iteration, its performance
mainly depends on the choice of parameter ρ. This parameter is problem specific
for different dissimilarity measures, different modalities and different transformation
models, which may limit its practicality.

45



Another group of preconditioning techniques, sometimes called traditional pre-
conditioning, use a static P , i.e. the preconditioner P is only calculated once before
the start of the optimization [83, 79, 85]. The Krylov subspace method, sparse
approximate inverse and Jacobi preconditioning techniques are often used [83]. Klein
et al. proposed a preconditioner construction method only suitable for mono-modal
image registration [70], which approximates the Hessian matrix of the cost function
based on an assumption that the intensity difference between moving image and
fixed image is zero after a perfect registration. This method is additionally very time-
consuming when the number of transformation parameters and image size increase:
the required matrix decomposition of the Hessian matrix takes more than 3 hours for
∼105 parameters.

As image registration is time crucial for several clinical applications, for example
online adaptive radiation therapy [98], it is advantageous to find an efficient way
to obtain a search direction dk and its preconditioner P . For registration problems
with large degrees of freedom and of large images, it is not very efficient to calculate
the search direction in a deterministic way [25] (i.e. using all voxels to compute
the gradient). Klein et al. proposed a stochastic gradient descent method for image
registration, which approximates the gradient by only using a random subset of the
image samples [15]. This approximation is much more efficient to compute, thereby
outperforming deterministic gradient descent and even quasi-Newton methods [25].
For ill-conditioned problems, however, SGD does not provide a solution and would
still suffer from a deteriorated convergence rate.

In this chapter, we consider the preconditioned stochastic gradient descent method
(PSGD) that calculates the preconditioner only once. Based on a connection between
the incremental displacement of a voxel and the gradient change between iterations,
we propose an efficient method to construct a diagonal preconditioner for stochastic
gradient descent methods. The chapter is organized as follows. The background
and proposed method are given in Section 4.2 and Section 4.3. The dataset used to
evaluate the proposed method is described in Section 4.4. This is followed by the
experimental setup in Section 4.5 and the results in Section 4.6. The discussion and
conclusion are given in Section 4.7 and Section 4.8.

4.2 Background

4.2.1 Preconditioned stochastic gradient descent

The preconditioned stochastic gradient descent method is established as:

µk+1 =µk −γk P g̃k , (4.4)

where γk is the step size, g̃k is a stochastic gradient evaluated on a random subset
of the image samples Ωs

F and P is a positive definite NP ×NP matrix, with NP the
number of parameters that model the transformation, i.e. |µ|. When P = I , PSGD will
be reduced to the standard SGD method.

The convergence of PSGD is guaranteed when (1) P is positive definite; and (2)
the step size sequence is a non-increasing and non-zero sequence with

∑∞
k=1γk =∞

and
∑∞

k=1γ
2
k <∞ [99, 86, 85]. The step size sequence used here is defined as follows
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[70]:
γk = η

(tk +1)/A+1
,

tk = max(0, tk−1 + sigmoid(−g̃ T
k−1P g̃k−2)),

(4.5)

in which η is a noise compensation factor and A controls the decay speed of the
step size sequence and is typically set to 20. The noise introduced by the stochastic
procedure will influence the convergence rate, so inspired from [70, 100] we use the
following compensation factor:

η= E‖g T P g‖
E‖g̃ T P g̃‖ = E‖g T P g‖

E‖g T P g‖+E‖εT Pε‖ , (4.6)

in which g is the exact gradient evaluated on all voxels in the image, ε the random
noise added to the exact gradient and E‖ ·‖ is the expectation of the norm.

4.2.2 Related work

There are two related methods to estimate a preconditioner:

1. Hessian-type preconditioner (PSGD-H). The theoretical optimal choice for the
preconditioner is the inverse Hessian at the optimal parameter µ̂. However, it is
impossible to obtain the exact inverse Hessian beforehand because µ̂ is unknown
[70]. Based on the assumption that the moving image is the same as the fixed
image after successful registration: F ≈ M(T (x ;µ̂)), and the assumption that the
deformation is small: ∂T /∂µ≈ I , Klein et al. proposed a method to approximate
the Hessian-type preconditioner [70]. This method requires an implementation
to calculate a Hessian matrix and a decomposition to construct the preconditioner.
This method is only suitable for mono-modal image registration. Moreover, the
computation time of this preconditioner is very long when solving large scale
problems, which defeats the improvements in the convergence.

2. Jacobi-type preconditioner (PSGD-J). For rigid and affine registration problems,
Klein et al. [70] assumed that the rotation parameters were scaled by the average
voxel displacement caused by a small perturbation of the rotation angle, and
proposed a method to construct a diagonal Jacobi-type preconditioner for PSGD.
The elements pi of the diagonal preconditioner P are calculated as follows:

pi =
(∫
ΩF

∥∥∥∥ ∂T

∂θi
(x ;µ0)

∥∥∥∥2

dx/
∫
ΩF

dx

)− 1
2

. (4.7)

This method can be used for multi-modal image registration, however, it was
proposed for rigid and affine registration only.

4.3 Method

4.3.1 Preliminaries

The aim of the preconditioner P is to scale the parameter space to make ill-posed
cost functions easier to optimize. The ideal preconditioner should take care of the
relative scaling between the parameters. Construction of a suitable preconditioner is a
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challenge for a given problem. First, different transformation models and different
dissimilarity measures result in different characteristic of the cost function, making the
determination of a preconditioner problem-specific. Second, the computation of the
preconditioner should be efficient performance-wise, otherwise the overhead of the
preconditioner computation will defeat the advantage in runtime reductions obtained
from the improvements of the convergence rate.

To find a suitable approximation of P in a computationally efficient way, and robust
for different cost functions, a diagonal preconditioner P = diag(p), with p = (p1, . . . , pN ),
is preferred. In this chapter, we propose a novel way to construct this diagonal
preconditioner, which is suitable for both stochastic and deterministic optimization
and can be used for mono-modal as well as multi-modal cost functions, in combination
with different transformation models like the rigid, affine and B-spline model.

The intuition of the proposed preconditioner is that a gradient change will result
in incremental voxel displacements, which is inspired by [15, 100]. In the following
we will derive the i -th entry pi of the preconditioner corresponding to the i -th entry
of the transformation parameters µ, such that the displacement induced by a change
in that parameter is equal to a predefined value δ. The incremental displacement of a
voxel x j in the fixed image domain ΩF between iteration k and k +1 for an iterative
optimization scheme is defined as:

dk (x j ) = T
(
x j ,µk+1

)−T
(
x j ,µk

)
, ∀x j ∈ΩF . (4.8)

We approximate the incremental displacement dk using the first-order Taylor expansion
around µk :

dk (x j ) ≈ ∂T

∂µ

(
x j ,µk

) · (µk+1 −µk
)

= J (x j ) · (µk+1 −µk
)

,

(4.9)

in which J (x j ) = ∂T
∂µ

(
x j ,µk

)
is the Jacobian matrix of size d×NP . Using the optimization

scheme (4.4), we obtain µk+1 −µk =−γk P gk , and we can rewrite dk+1 as:

dk (x j ) ≈−γk J (x j )P gk . (4.10)

4.3.2 Diagonal preconditioner estimation

From Equation (4.10), we notice that the preconditioner matrix P can be estimated
prior to registration, i.e. at iteration k = 0. After choosing γ0 = 1, we obtain d1(x j ) ≈
−J (x j )diag(p)g0. In the remainder of the chapter, we use the notation d and g for
simplification.

The Jacobi-type preconditioner from Equation (4.7) can be rewritten to:

pi =
(
E‖J i (x j )‖2

)−1/2
, (4.11)

where J i (x j ) denotes the i -th column of the Jacobian matrix. Inspired by Equation
(4.11) we inspect the displacement ‖d i‖ that is induced by a change 4µi in the i -th
transformation parameter, i.e. the displacement generated by g i only:

‖d i (x j )‖ ≈
∥∥∥−J i (x j )pi g i

∥∥∥= pi

∥∥∥−J i (x j )g i
∥∥∥ , (4.12)
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Algorithm 2 Proposed preconditioner estimation

Require: Ns the number of samples, δ the maximum allowed voxel displacement, τ
the regularization factor, κmax the maximum condition number

1: Compute the gradient g of size NP

2: Randomly take Ns samples {x j } from the fixed image
3: p = I , t = 0, z = 0, y = 0 . initialization
4: for j = 1,2, . . . , Ns do . loop over the samples x j

5: Calculate the Jacobian J (x j )
6: for i = 1,2, . . . , NP do . loop over the parameters
7: si = ‖J i (x j )g i‖
8: Regularize si with τ using Section 4.3.3
9: zi = zi + si . update for the mean

10: yi = yi + s2
i . update for the variance

11: ti = ti +1 . increase counter
12: for i = 1,2, . . . , NP do . loop over the parameters
13: qi = zi /ti +2

√
(yi /ti )− (zi /ti )2

14: pi = δ/qi

15: Constrain the condition number of pi using κmax (see Section 4.3.4)
16: Return p

in which ‖ · ‖ used in this chapter is the `1 norm. In medical image registration,
we expect a continuous and homogenous transformation and moreover assume that
the voxel displacement d i is to be not larger than δ: i.e ‖d i (x j )‖ ≤ δ, ∀x j ∈ΩF .
Based on the distribution of the voxel displacements, there is a weakened form
for this assumption: P (‖d i (x j )‖ > δ) < ρ, where ρ is a small probability value often
0.05. According to the Vysochanskij-Petunin inequality [46], we have the following
expression:

E‖d i (x j )‖+2
√

V ar‖d i (x j )‖ ≤ δ, ∀x j ∈ΩF . (4.13)

Combined with Equation (4.12), we obtain the relationship between the i -th entry pi

of the preconditioner and the maximum voxel displacement as follows:

pi

(
E

∥∥si (x j )
∥∥+2

√
V ar

∥∥si (x j )
∥∥)

≤ δ, (4.14)

where si (x j )=‖− J i (x j )g i‖. The i -th entry of the preconditioner is then defined as:

pi = δ

E
∥∥si (x j )

∥∥+2
√

V ar
∥∥si (x j )

∥∥ . (4.15)

Finally, the full preconditioner P is obtained by repeating the above procedure for
each pi . The procedure is sketched in Algorithm 2.

4.3.3 Regularization

The assumption used to approximate a preconditioner, that all transformation parame-
ters should independently induce a maximum voxel displacement δ, may be too strict
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or too sensitive to noise in the measurements. For the B-spline transformation, fore
example, this assumption forces all regions to have a displacement δ, even regions that
do not require registration. Noise could come from an insufficient number of samples
x j used for the estimation, or from inexact evaluation of the gradient. This could
result in differences in the estimated entries of the preconditioner that are expected
to have similar value. For the B-spline transformation model one would expect that
nearby control points would be scaled similarly, without sudden sharp transitions. For
the affine transformation on the other hand, one would expect that scalings related to
translation parameters are more similar than those related to rotational parameters.

We therefore propose to optionally regularize the procedure from Section 4.3.2,
such that the i -th entry pi of the preconditioner is not treated completely independent,
but also takes into account the estimates of the related parameters. Related parameters
are those jointly affected by a voxel x j (for an affine transformation these are all
parameters; for the B-spline only parameters in the compact support region of x j ),
and secondly by their similarity in Jacobian contribution (for the affine transformation,
intuitively rotations and translations are to be treated separately). The proposed
regularization procedure is as follows:

si (x j ) = τ · si (x j )+ (1−τ) · 1∑
ωm

∑
m 6=i

sm(x j ) ·ωm︸ ︷︷ ︸
regularization term

, (4.16)

where ωm weighs the contributions of similar parameters and τ balances the contribu-
tion of entry i with the contributions of the other parameters. The weights ωm are
calculated using a Gaussian function:

ωm = exp

(
− (‖J i (x j )‖−‖J m(x j )‖)2

2σ2

)
, (4.17)

in which σ is chosen as min(‖J i (x j )‖−‖J m(x j )‖)/max(‖J i (x j )‖−‖J m(x j )‖), ∀m 6= i .
While for the B-spline transformation model such a choice would also be valid,

a simplification is possible. For the B-spline model the displacement of a voxel is
only determined by the control points in its support region. Furthermore, we expect
the influence on the displacement to be almost equal for each control point in the
support region. We therefore assume for the B-spline model that the weights ωm = 1,
simplifying Equation (4.16) to si (x j ) = τ× si (x j )+ (1−τ) · ‖∑

(J i (x j )g i )‖.
4.3.4 Condition number

Even if the resulting preconditioner is symmetric and positive definite, it could be
ill-conditioned, especially for nonrigid image registration problems. The convergence
rate of the algorithm can be measured by the so-called condition number:

κ=λmax/λmin, (4.18)

where λmax and λmin are the largest and smallest eigenvalue of P , respectively. It is
common to constrain the eigenvalues, such that the condition number will be closer
to 1 [70, 88]. We introduce a user-defined maximum condition number κmax for this
purpose.
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Define a diagonal eigenvalue matrix Λ= di ag (λ1, . . . ,λNp ) for the preconditioner
P . In this study, as our preconditioner P is diagonal, the entries of P are equal to
the eigenvalues of Λ: pi = λi ,∀i . To constrain the eigenvalues, we replace small
eigenvalues of P that make κ> κmax using the following equation:

pi =
{
λmax/κmax, if λmax/λi > κmax,

λi , otherwise.
(4.19)

The thus constrained matrix constitutes then the finally proposed static preconditioner.
Combined with Equation (4) this defines the Fast Preconditioned Stochastic Gradient
Descent method (FPSGD).

4.4 Data sets

The proposed FPSGD method is tested on mono-modal as well as multi-modal data.
An overview of the used data sets is presented in Table 4.1.

4.4.1 Mono-modal lung data: SPREAD

3D lung Computed Tomography (CT) images of 19 patients were acquired during the
SPREAD study [77]. A follow-up scan was acquired for each patient after the baseline
scan with image sizes around 450× 300× 150 and voxel sizes around 0.7× 0.7× 2.5
mm. The ground truth consists of 100 anatomical corresponding points, which
were semi-automatically extracted using Murphy’s method [49]. The algorithm first
automatically selects 100 evenly distributed landmarks at characteristic locations in
the baseline image, and then predicts the corresponding points in the follow-up image.
The corresponding points are then inspected and corrected by two experts using a
graphical user interface [50].

4.4.2 Multi-modal brain data: RIRE and BrainWeb

Two multi-modal datasets are used to evaluate the performance of the proposed
method.

4.4.2.1 RIRE brain data

This brain dataset was acquired during the Retrospective Image Registration Evaluation
(RIRE) project. CT scans and Magnetic Resonance Imaging (MRI-T1) are available for
9 patients. The CT images have sizes of 512×512×50 with voxel sizes of 0.45×0.45×3
mm, while the MRI-T1 image is of size 256×256×50 with voxel sizes of 0.85×0.85×3
mm. Fiducial markers were implanted in each patient and served as a ground truth
[47]. These markers were manually erased from the images and replaced with a
simulated background pattern.

4.4.2.2 BrainWeb simulated brain data

T1 and T2 weighted 3D brain MR images were created using the Simulated Brain
Database from BrainWeb [101]. To generate brain image pairs, default settings
provided by BrainWeb were used with 3% noise and 20% intensity non-uniformity.
The brain images are of sizes 181×217×181 and a voxel spacing of 1 mm isotropically.
A mask of the brain was extracted from the T1 image by FSL-BET [102] and the
same mask was used for the T2 image. 100 randomly generated displacement vector
fields (DVFs) serve as the ground truth deformation fields. The DVFs are isotropically
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generated in three dimensions within the brain mask and the maximum magnitude of
DVFs is chosen as 8 and 15 mm. These DVFs are then smoothed by a Gaussian filter
with a standard deviation between 10 and 30 mm.

4.5 Experiments
In this section, experimental settings are given to test the performance of the proposed
method. The proposed FPSGD method is compared with the following methods:

1. Fast adaptive stochastic gradient descent (FASGD) [100], which is a state-of-the-
art first order stochastic optimization method that does not use preconditioning.
For rigid and affine registration, the diagonal of the preconditioner P is chosen
as 1 for the translational parameters and 1/100000 for the others. This reflects
that the parameters µ corresponding to rotation have in general a much smaller
range than parameters corresponding to translation.

2. Jacobi-type preconditioner (PSGD-J) [70], where a diagonal preconditioner is
chosen according to Equation (4.7). This method was only proposed for rigid
and affine registration.

3. Hessian-type preconditioner (PSGD-H) [70], see Section 4.2.2. This precondi-
tioner is only suitable for mono-modal registration, and therefore only imple-
mented for the mean squared intensity difference (MSD) dissimilarity measure.

All these methods, including the proposed method, were implemented in C++ and
are available as open source software via the elastix package [10]. All experiments
were performed on a workstation with an Ubuntu Linux OS, which has 8 cores running
at 2.4 GHz and 24 GB of memory. Detailed settings are presented in Section 4.5.3 and
4.5.4, and an overview of the experimental setup is given in Table 4.1.

4.5.1 Experimental setup

To validate the generality of the proposed preconditioner, the experiments are per-
formed on mono-modal as well as multi-modal image registration. For each group,
different transformation models are used, namely the rigid, affine and B-spline trans-
formation models [10]. For rigid and affine image registration, only one resolution of
500 iterations is used, to be able to more easily compare convergence properties. For
B-spline image registration, a three-level multi-resolution framework is used on the
SPREAD data with a standard deviation of the Gaussian smoothing filter of 2, 1 and
0.5 mm, and 500 iterations for each resolution. For the BrainWeb data, we used only
one resolution of 1000 iterations.

The number of samples used for computing g̃ was the same for all methods and
set to 5000 [100]. Different methods used different number of samples for the
preconditioner estimation. For FPSGD 50000 samples were used at each resolution.
For PSGD-H the number of samples were 100000, 100000 and 500000 for the three
resolutions, respectively. For PSGD-J, 1000 samples were used. To estimate the step
size of FASGD, the number of samples was chosen equal to the number of transfor-
mation parameters ‖µ‖ at each resolution, for instance in the SPREAD experiment
around 4000, 15000 and 90000 samples for the three resolutions, respectively. The
user pre-defined value δ for FASGD and FPSGD is chosen as the mean length of the
voxel size. A = 20 is used for all tested methods.
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In Section 4.3, we introduced two free parameters of the proposed FPSGD method:
the regularization factor τ and the maximum condition number κmax. To assess the
influence of these two parameters on the results, we first vary the regularization
factor τ while using a fixed κmax, and then vice versa. The regularization factor τ was
selected between 0 and 1, using increments of 0.2, so there were 6 variations. For
these tests, κmax = 2 was chosen for the B-spline registration, while for rigid and affine
registration no restriction is needed on the condition number, i.e. κmax =∞. In the
second group of tests, a fixed τ= 0.6 was chosen and κmax ∈ {1,2,4,8,16} were tested
for the B-spline registrations of the SPREAD data and the BrainWeb data. The results
are reported in Section 4.6.1.

4.5.2 Convergence and runtime performance

The performance of the tested methods is first evaluated in terms of the convergence
rate and the resulting speed-up in runtime. To measure the convergence rate, the
dissimilarity measure (MSD or MI) was calculated at each 5th iteration. This calculation
was performed deterministically using all samples from the fixed image. FASGD is
chosen as the baseline method and we compare the exact cost function value of all
other methods against the exact cost function value of FASGD at its final solution
µ̂ref. For each method, we counted the number of iterations I required to obtain a
cost function value that is equal to or smaller than that of the baseline method using
C (µk ) ≤C (µ̂ref) for the first time.

To assess runtime performance, several computations are timed and recorded: the
time test it takes to estimate the preconditioner P and the time titer each iteration takes.
When I equals the number of iterations needed for reaching the same cost function
value as FASGD, then the pure registration time is defined as tpure = titer · I . The total
registration time is then ttotal = test+ tpure. The time test consists of the time to estimate
the preconditioner and/or the step size γ0 for the different methods, i.e. for FASGD
test is the estimation time of the step size, for PSGD-J and PSGD-H both are included
and for FPSGD test is the estimation time of the preconditioner.

4.5.3 Mono-modal image registration: SPREAD

In this experiment we compare the proposed method compared to all three alternative
methods: FASGD, PSGD-H and PSGD-J. The baseline and follow-up image were
treated as fixed image and moving image, respectively. The Euclidean distance of
the 100 corresponding points is computed to evaluate the registration accuracy using
ED = 1

100

∑100
i=1 ‖Tµ̂(p i

F )− p i
M‖, with pF and pM the corresponding points, and T the

transformation at iteration I . A Wilcoxon signed-rank test on the registration accuracy
is used to evaluate statistical differences of these methods compared to FASGD method.

We use the mean squared intensity difference (MSD) as a dissimilarity measure,
and test for affine as well as B-spline transformations.

4.5.4 Multi-modal image registration: RIRE and BrainWeb

For multi-modal image registration, real clinical brain data is used for rigid registration
and simulated brain data is used for nonrigid registration. These datasets are used
to compare the performance of FPSGD with FASGD and PSGD-J, as PSGD-H is not
suitable for multi-modal registration.
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4.5.4.1 RIRE brain data

We registered the MR T1 image (moving image) to the CT image (fixed image) using
the rigid transformation model and mutual information (MI) dissimilarity measure.
The registration accuracy is evaluated using ED = 1

8

∑8
i=1 ‖Tµ̂(p i

F )−p i
M‖, with pF and

pM the corner points defined by RIRE and annotated in the fixed and moving image,
respectively.

4.5.4.2 BrainWeb simulated brain data

Pairwise B-spline registration was performed using these randomly generated DVFs
as the initial transformation Tinit. The registration accuracy is evaluated using the
average residual deformation inside the brain mask ΩF [103]:

Resi dual (Tinit,Tµ̂)= 1

|ΩF |
∑

xi∈ΩF

‖Tµ̂(Tinit(xi )−xi )‖. (4.20)

The statistical differences of FASGD and PSGD-J compared to FASGD method were
evaluated using a Wilcoxon signed-rank test on the registration accuracy.

4.6 Results

4.6.1 Parameter sensitivity analysis

4.6.1.1 Selection of the regularization factor τ

For all datasets we varied the parameter τ. The results can be found in Table 4.2,
Table 4.3, Table 4.4, and Table 4.5. It can be seen that the regularization factor
τ= 1.0 (no regularization) gave the worst performance for rigid and affine registration
on all datasets. For B-spline registration τ= 1.0 did work for the SPREAD data, but
failed again on the BrainWeb data. Setting the regularization factor τ= 0.0 is another
extreme meaning that the regularization term completely determines the estimation of
the preconditioner. From the results in the tables, it can be seen that the convergence
rate is much slower than for other choices of τ, even though the registration accuracy
is almost similar.

The experimental results on the different datasets show that there is no statistical
difference between the different choices of τ (0.0 < τ < 1.0) regarding the accuracy.
However, the convergence rate is improved when taking a larger value of τ. We
therefore conclude that a regularization factor τ between 0.6 and 0.8 gives the best
results. In the remainder of the chapter we use τ= 0.6.

4.6.1.2 Influence of the condition number κmax

The maximum condition number κmax is especially important for non-rigid registration.
Table 4.6 presents the registration accuracy with respect to κmax for the SPREAD study.
As we can see, different κmax obtained the similar accuracy. However, less iterations
were needed for a larger κmax. From the convergence plot in Figure 4.1, it can be
observed that the optimization converged faster for κmax ≥ 2. However, for κmax ≥ 8,
the plot exhibits more oscillating behavior, suggesting a less stable optimization.

For the BrainWeb data in Table 4.7, we again see that registration accuracy is
similar for different κmax. In Figure 4.2, all choices of κmax converged faster than
FASGD, while for κmax ≥ 2 the convergence rate does not improve further. From Table
4.7 and Figure 4.2, we can see that κmax = 2 or 4 gave the best results, which is
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Table 4.6: The influence of κmax on B-spline registration for the SPREAD study. We
used the MI dissimilarity measure, 3 resolutions, 500 iterations, and τ= 0.6.

Optimizer
Resolution 1 Resolution 2 Resolution 3

p-valueIterations I Iterations I Iterations I ED (mm)
avg ± std avg ± std avg ± std avg ± std

FASGD 496 ± 0 496 ± 0 489 ± 14 1.67 ± 1.68 -
FPSGD κmax = 1 440 ± 72 426 ± 82 481 ± 44 1.71 ± 1.70 0.001
FPSGD κmax = 2 294 ± 85 292 ± 66 378 ± 120 1.66 ± 1.64 0.968
FPSGD κmax = 4 180 ± 87 226 ± 50 241 ± 74 1.58 ± 1.56 0.003
FPSGD κmax = 8 149 ± 86 224 ± 68 202 ± 73 1.52 ± 1.49 0.000
FPSGD κmax = 16 153 ± 89 222 ± 68 200 ± 74 1.51 ± 1.49 0.001
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Figure 4.1: Convergence plots for three different patients in the experiments of
different κmax for the SPREAD dataset, showing the cost function value (MSD) against
the iteration number for different κmax using τ= 0.6.

consistent with the results in [70]. In the remainder of the chapter we set κmax = 4 for
B-spline registration (and κmax =∞ for rigid and affine registration).

4.6.2 Results of mono-modal image registration

4.6.2.1 Affine registration

The overall results of the experiments on affine registration for the SPREAD lung
CT data are given in Table 4.3. It shows that the proposed FPSGD method took less
iterations to obtain the same cost function value C (µ̂ref) than FASGD and PSGD-J. The
speed-up in terms of number of iterations of FPSGD is about 10. The improvements
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Table 4.7: The influence of κmax on B-spline registration for the BrainWeb study. We
used the MI dissimilarity measure, 1 resolution, 500 iterations, and τ= 0.6.

Optimizer
Iterations I Speed-up Residuals

p-value
avg ± std avg ± std avg ± std

FASGD 996 ± 0 1.0 ± 0.0 2.48 ± 1.43 -
FPSGD κmax = 1 333 ± 151 3.5 ± 1.3 2.48 ± 1.43 0.561
FPSGD κmax = 2 230 ± 85 4.8 ± 1.5 2.49 ± 1.42 0.080
FPSGD κmax = 4 211 ± 115 5.4 ± 1.6 2.50 ± 1.39 0.031
FPSGD κmax = 8 208 ± 118 5.6 ± 1.9 2.50 ± 1.37 0.017
FPSGD κmax = 16 220 ± 128 5.3 ± 1.8 2.53 ± 1.37 0.001
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Figure 4.2: Convergence plots for three different patients for the BrainWeb dataset,
showing the cost function value (negative MI dissimilarity measure) against the
iteration number, using τ= 0.6.

of FPSGD compared to FASGD and PSGD-J in the convergence rate are also shown
in Figure 4.5a and Figure 4.5b. These methods have the same runtime per iteration
(∼3.5 ms). PSGD-H required less iterations than the proposed FPSGD method. The
computation of the preconditioner however took somewhat longer, resulting in an
overall decrease in performance. For the affine consistently use transformation
the runtime per iteration is similar for PSGD-H and FPSGD (∼2 ms and ∼1 ms,
respectively). The overall speed-up in terms of runtime is about 5 for FPSGD, compared
to 0.5 for PSGD-H.

It can be seen from Table 4.2 that the Euclidean distance error of all methods is
around 5 mm. The p-value of the Wilcoxon signed-rank test of PSGD-J and PSGD-H
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Figure 4.3: Euclidean distance error in mm for the different methods with the SPREAD
lung CT data. The experiments were performed using MSD dissimilarity measure and
affine transformation model. For FPSGD, τ= 0.6 and κmax =∞ are used.

compared to FASGD is smaller than 0.05, indicating a statistically significant difference.
Although significant, the differences are very small, i.e. less than 0.5 mm. The
Wilcoxon signed-rank tests of FPSGD (all settings of τ) compared to FASGD show
no statistical difference (p > 0.05). A boxplot of the Euclidean distance error of 100
corresponding points is given in Figure 4.3, using τ= 0.6 for FPSGD.

4.6.2.2 B-spline registration

The overall results of the experiments on B-spline registration for the SPREAD lung CT
data are given in Table 4.3. For all three resolutions, the proposed method took less
iterations to obtain the same cost function value as FASGD. Although the proposed
method took somewhat longer to estimate the preconditioner compared to FASGD,
less iterations were required, resulting in an overall improvement of runtime. For
FPSGD (τ= 0.6), the overall speed-up is of a factor of 2. The number of iterations used
for PSGD-H to obtain the same cost function value is less than both FASGD and FPSGD,
which can also be observed from the convergence plots in Figure 4.5c and Figure 4.5d.
However, the overhead of computing the preconditioner increased substantially for
the PSGD-H method: around 104 seconds for ∼105 parameters in resolution 3, while
the FPSGD method required ∼2s.

The ED errors in Table 4.3 are evaluated at the end of resolution 3. All three
methods FASGD, PSGD-H and FPSGD obtained a mean ED error around 1.65 mm,
which is within one voxel. The p-value of the Wilcoxon signed-rank test of PSGD-H and
FPSGD compared to FASGD is 0.445 and 0.968, respectively, indicating no statistical
difference. Figure 4.4 presents the boxplot of the Euclidean distance error for the
different methods, where for FPSGD we used τ= 0.6 and κmax = 4.

4.6.3 Results of multi-modal image registration

4.6.3.1 RIRE brain data

Table 4.4 presents the runtime differences and the mean Euclidean distance error of
the RIRE experiments for all methods. We can observe that much less iterations are
required for PSGD-J and FPSGD compared to FASGD. The speed-up in iterations is
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Figure 4.4: Euclidean distance error in mm for the different methods with the SPREAD
lung CT data. The experiments were performed using MSD dissimilarity measure and
B-spline transformation model. For FPSGD, τ= 0.6 and κmax = 4 are used.
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Figure 4.5: Convergence plots of four cases in the experiments of the SPREAD lung
CT data, showing the cost function value (MSD) against the iteration number. For
B-spline registration of FPSGD, τ= 0.6 and κmax = 4 are used.
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Figure 4.6: Euclidean distance error in mm for different methods with the RIRE brain
data. The experiments were performed using MI dissimilarity measure and rigid
transformation model. For FPSGD, τ= 0.6 and κmax =∞ are used.
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Figure 4.7: Convergence plots of two patients of the RIRE brain dataset, showing
the cost function value (negative mutual information measure) against the iteration
number. For FPSGD, τ= 0.6 and κmax =∞ are used.

a factor of 10. It can also be seen that the speedup in runtime is around 5 for the
FPSGD method. The convergence plots in Figure 4.7 show substantial improvement in
convergence rate for FPSGD.

The boxplots of the Euclidean distance error for the RIRE data are shown in Figure
4.6. The median Euclidean distance of 9 patients before registration is 21.7 mm. As
we can see, the FASGD method that manually chooses a scaling factor is inferior to the
other two methods. From Table 4.4, it can be seen that the Wilcoxon signed-rank tests
between FASGD and FPSGD with different τ show significant statistical differences
(p < 0.05), except for τ= 1.0.

4.6.3.2 BrainWeb simulated brain data

The results of the BrainWeb experiment are shown in Table 4.5, Figure 4.8 and Figure
4.9. The number of iterations for FPSGD (τ= 0.6) to obtain the same cost function
value (MI) as FASGD is around 200, resulting in a runtime speed-up of about a factor
of 5, as can be seen in Table 4.5. These improvements can also be observed from the
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Figure 4.8: Residuals in mm for the different methods with the BrainWeb simulated
brain data. The experiments were performed using MI dissimilarity measure and
B-spline transformation model. The parameter settings of FPSGD are τ = 0.6 and
κmax = 4.

convergence plots in Figure 4.9.
The mean residuals of the different methods show a similar result. The Wilcoxon

signed-rank test between FASGD and FPSGD (τ= 0.6) shows a significant statistical
difference (p = 0.031). However, from Table 4.5, it can be seen that the difference is
very small (around 0.02). Increasing the regularization factors τ can achieve a faster
convergence rate, however, most registrations failed for τ= 1.0. The boxplots of the
residuals of both FASGD and FPSGD (τ= 0.6, κmax = 4) are shown in Figure 4.8.

4.7 Discussion

The experimental results show that the proposed FPSGD method works well in both
mono-modal as well as multi-modal image registration, in combination with different
transformation models and dissimilarity measures, showing that the proposed method
is generic for different registration problems. The proposed FPSGD method can be used
for different transformation models, unlike PSGD-J which was proposed only for rigid
and affine registration problems. Compared to FASGD which is not preconditioned, the
proposed FPSGD method not only obtains the same registration accuracy, moreover
improves the convergence. Without the computational burden of the Hessian matrix
calculation and decomposition, the proposed FPSGD method takes much less time than
PSGD-H to construct a preconditioner. Additionally, the proposed method requires
only a cost function gradient and a set of transformation Jacobians, while PSGD-H
also needs the implementation of the self-Hessian. Most importantly, the proposed
FPSGD method is more generic for different modalities and not limited to mono-modal
problems like PSGD-H.

Compared to FASGD, the main improvement of the proposed FPSGD method is in
the convergence rate, inducing a speedup in runtime of a factor of 2.0-6.0 depending on
the application. Specifically, the proposed FPSGD method used half a second to obtain
the same registration accuracy as FASGD for the affine registration on the SPREAD
lung CT with image sizes of 450×300×130, while FASGD took 2 seconds. The proposed
FPSGD method needs much less computation time for the preconditioner estimation
than PSGD-H: ∼2 seconds vs ∼104 seconds for ∼105 transformation parameters, see
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Figure 4.9: Convergence plots of the experiment of the BrainWeb simulated dataset,
showing the cost function value (negative MI dissimilarity measure) against the
iteration number. For FPSGD, τ= 0.6 and κmax = 4 are used.

Table 4.3. This large difference between different methods in the computation time of
preconditioner estimation can be attributed to the complexity of different methods.
For PSGD-H, the complexity is highly due to the Cholesky decomposition of O (N 3

p ),
i.e. depending on the number of transformation parameters, while for the FPSGD
method the complexity is only linear in the number of samples O (Np ). In addition, the
runtime per iteration for the PSGD-H method increased to ∼5 seconds for NP ≈ 105

transformation parameters, due to the multiplication of a full matrix P instead of only
a diagonal matrix for FPSGD (∼24 ms per iteration for MI dissimilarity measurement).
We therefore conclude that the proposed FPSGD method converges faster than the
FASGD method and is more time-efficient than the PSGD-H method.

There are two parameters that influence the performance of the proposed FPSGD
method: the regularization factor τ and the maximum condition number κmax. We
validated the influence of both parameters experimentally. We showed that the extreme
cases (τ = 0 and τ = 1) yielded suboptimal results, indicating that regularization of
the preconditioner is required. The proposed regularization method performs a
Gaussian smoothing, considering entries with a similar Jacobian response. This choice
reflects the observation that transformation parameters that have a similar effect
on the displacement, require similar preconditioning, and vice versa. For example,
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for the affine transformation rotation and translation require different scaling. The
experiments showed that the choice τ= 0.6 yielded good results for all applications.

For ill-conditioned problems, κmax serves as a safe guard to prevent extreme values
in the preconditioner. In the experiment on the SPREAD data, different κmax obtained
a similar registration accuracy, however, the convergence has some oscillations for
κmax > 4 in the second and third resolution in Figure 4.1. For the BrainWeb data, best
results were acquired with κmax = 4 and the convergence plots are also very stable.
Overall, the best choice of κmax is between 2 and 4 for nonrigid registration, while
κmax =∞ can be used for rigid and affine registration.

To further improve the proposed FPSGD method the following may be considered.
Firstly, the proposed preconditioning scheme detailed in Algorithm 2 is very suitable
for further acceleration on a Graphics Processing Unit (GPU). It could be easily applied
for the parallel computing of the gradient and the preconditioner [22], therefore
this will be beneficial when going to variable preconditioning. Secondly, our method
can be combined with the variable preconditioning techniques for difficult problems
where the curvature of the cost function changes iteratively. Instead of estimating the
preconditioner once at the beginning of each resolution, we may regularly update
it. A GPU implementation is then warranted to keep the runtime per iteration low.
Furthermore, a stopping condition other than the number of iterations will be required
to practically take advantage of the convergence improvements. An interesting option
suitable in a stochastic setting is a moving average of the noisy gradients over a few
iterations.

4.8 Conclusion
In this chapter, we proposed a generic preconditioner estimation method for the
stochastic gradient descent optimizers used in medical image registration. Based
on the observed distribution of the voxel displacements, this method automatically
constructs a diagonal preconditioner, avoiding the computationally complex calculation
of the Hessian matrix. All tested methods obtained a similar final registration accuracy
in all tested datasets. The proposed FPSGD optimizer, however, outperforms FASGD
and PSGD-J in terms of convergence rate, while yielding a similar computational
overhead. While a previous method (PSGD-H) even further reduces the required num-
ber of iterations, it comes at a substantial overhead in computing the preconditioner,
especially for high dimensional transformations. Additionally, PSGD-H can only be
used in mono-modal problems and requires the implementation of a Hessian matrix
computation.

We conclude that the proposed method can act as a generic preconditioner for
optimization in registration methods, yielding similar accuracy as gradient descent
routines while substantially improving the convergence rate.
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