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ABSTRACT
The genus Cheiromycina is one of the few genera of lichenized hyphomycetes for which no sexual
reproductive stages have been observed. The genus includes species from boreal to temperate
regions of the Northern Hemisphere where it is found growing on bark or wood. Congeners in
Cheiromycina are characterized by a noncorticate thallus, nearly immersed in the substrate and
presenting powdery unpigmented sporodochia, and containing chlorococcoid photobionts. The
relationships of members of Cheiromycina with other fungi are not known. Here we inferred the
phylogenetic placement of Cheiromycina using three loci (nuSSU, nuLSU, and mtSSU) representing
C. flabelliformis, the type species for the genus, C. petri, and C. reimeri. Our results revealed that the
genus Cheiromycina is found within the family Malmideaceae (Lecanorales) where members formed a
monophyletic clade sister to the genera Savoronala and Malmidea. This phylogenetic placement and
the relationships of Cheiromycina with other lichenized hyphomycetous taxa are here discussed.
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INTRODUCTION

Hyphomycetes comprises a polyphyletic assemblage gen-
erally recognized bymycologists as one of themajor group
of anamorphic fungi, including the majority of what are
commonly called molds. Fungi generally characterizes as
members of Hyphomycetes include parasitic and sapro-
trophic species growing on diverse natural substrates,
such as wood, plant tissues, insects, and other arthropods,
and other fungi, including lichens (Seifert et al. 2011).
Hyphomycetes represent fungi in asexual stages, and, in
many cases, members have subsequently been recognized
as anamorphs of several ascomycete and basidiomycete
lineages. However, taxa for which no teleomorph has been
identified have been hypothesized to have permanently
lost the ability of developing sexual structures and are
regarded as anamorphic holomorphs (Seifert et al. 2011).

Historically, two successful sorting systems for ana-
morphic fungi were developed: the sporological system
(Saccardo 1886), which focused on conidiomata mor-
phology, and the ontogenetic system (Hughes 1953),
which used the conidium ontogeny as a primary

diagnostic character. Because Saccardo’s sporological sys-
tem based on conidiomata morphology has been recog-
nized as artificial, and the conidium ontogeny still groups
unrelated taxa, Berbee and Taylor (1993) suggested inte-
grating all anamorphic fungi into a unique fungal sys-
tematic scheme, which was further expanded by Reynolds
and Taylor (1993). More recently, anamorphic fungi are
distinguished into three major groups according to the
presence and the structures in which conidiospores are
produced: (i) blastomycetes, such as the asexually repro-
ducing yeasts; (ii) coelomycetes, fungi producing pycnidia
and acervuli; (iii) hyphomycetes, fungi lacking pycnidia
or acervular fruting bodies and with conidia developed
“out in the air” (Seifert et al. 2011).

In spite of these attempts for a natural classification,
the debate for the classification of many anamorphic
genera remains unsolved. Recent application of mole-
cular- and culture-based analyses have helped resolving
many anamorph-teleomorph connections (e.g., Crous
et al. 2001, 2004, 2006; Lizel et al. 2003; Réblová and
Seifert 2004, 2011; Huhndorf and Fernández 2005;
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Shenoy et al. 2007; Ertz et al. 2011, 2013, 2014; Pérez-
Ortega et al. 2011; Muggia et al. 2015).

Lichenicolous hyphomycetes are recognized within
both coelomycetes and hyphomycetes and comprise
multiple genera that are known parasites of lichen
thalli (Diederich 2011). After Hawksworth’s (1979)
initial treatment, ongoing research continues to con-
tribute to understanding diversity of lichenicolous
hyphomycetes (e.g., Hawksworth and Poelt 1986;
Diederich and Scheidegger 1996; Earland-Bennett
and Hawksworth 2005; Heuchert and Braun 2006;
Zhurbenko et al. 2015). This research has included
the description of new species and, to a lesser extent,
discovering anamorph-teleomorph relationships (Ertz
et al. 2013, 2014; Frisch et al. 2014; Muggia et al.
2015).

The diversity of lichenized and algicolous hyphomy-
cetes has received considerably less attention. The degree
to which these anamorphic fungi associate with algae is
still argued to be at the edge of lichenization and is
further blurred by the saprotrophic and parasitic life-
styles that can be observed in congeneric species.

Vobis and Hawksworth (1981) reported about 41
genera of conidial fungi found to form stable associa-
tion with algae from temperate and tropical regions.
Three genera of lichenized, anamorphic coelomycetes,
i.e., Lichingoldia, Woessia, and Hastifera (Hawksworth
and Poelt 1986), were later found representing pycni-
dial stage of species currently placed in Bacidina and
Micarea, respectively (Ekman 1996; Fryday 2001).
Some other anamorphic lichenized species were origin-
ally described as lichenicolous fungi on sterile lichens,
such as Reichlingia leopoldii (Diederich and
Scheidegger 1996), which was later recognized as a
sporodochiate lichen (e.g., Diederich and Coppins
2009). Conversely, other hyphomycetous species
found in loose association with algae are now consid-
ered lichen parasites. For example, Nigropuncta rugu-
losa was originally described as a lichenized
hyphomycete (Hawksworth and Poelt 1986) but subse-
quently considered to be a lichenicolous fungus specia-
lized on Bellemerea cinereorufescens, on which its
infection strongly suppresses the formation of the host
apothecia (Hafellner 2012). Alternatively, species
believed to be saprotrophic on wood are now recog-
nized to be lichenized, such as Dictyocatenulata alba
(Diederich et al. 2008). At the time of its original
description (Morris and Finley 1967), D. alba was
poorly understood due to the unclear illustrations and
was generally considered to be a bark-inhabiting
hyphomycete (Seifert et al. 1987). However, more
recently it has been recognized to be a lichen-forming
species (Lendemer and Harris 2004).

The nutritional status of some sporodochiate fungi is
not easily interpreted, and nutritional modes of various
taxa are interpreted differently depending on the
author, who may categorized them as either a licheni-
colous species or as lichen-forming fungi. Sclerococcum
griseisporodochium was described as a lichenicolous,
parasymbiotic fungus associated with a calcicolous spe-
cies of Opegrapha, but optional lichenization of this
taxon was recognized (Etayo 1995). For this reason,
S. griseisporodochium is sometimes treated as a lichen
(e.g., Smith 2009; Ertz et al. 2013), but it is more
commonly listed among the lichenicolous fungi in fun-
gal surveys. Similarly, Milospium graphideorum is
reported as an example of a facultative, lichenized spor-
odochiate fungus (Diederich and Coppins 2009;
Diederich 2013); however, it is usually recorded as a
lichenicolous fungus of several epiphytic, crustose
lichens associated with trentepohlioid photobionts.

Further, anamorph-teleomorph connections have
been described only for few genera to date, and the
majority of lichenized hyphomycetes are still known as
anamorphic holomorphs. Both Blarneya hibernica
(Hawksworth et al. 1979) and the type species of the
genus Sporodochiolichen, S. lecanorinus (Aptroot and
Sipman 2011), have been recognized as one anamorph
of Tylophoron species (Ertz et al. 2013). Sporodochia of
the taxon Cheiromycina ananas (Aptroot and
Schiefelbein 2003) were reinterpreted as representing
sessile synnemata corresponding to the widely distrib-
uted and polymorphic species Dictyocatenulata alba
and therefore synonymized with it (Diederich et al.
2008). The generic concept of Reichlingia was further
enlarged by Frisch et al. (2014) incorporating three
additional species with ascocarps and with concordant
chemistry (perlatolic acid derivatives).

Lichenized hyphomycetes are still poorly represented
in molecular phylogenies. However, molecular data have
been generated for a limited number of genera. Based on
these data, Tylophoron and Reichlingia have been placed
in the order Arthoniales (Ertz et al. 2011; Ertz and Tehler
2011), and Dictyocatenulata alba was recovered within
Ostropales but leaving the genus as incerta saedis within
this order (An et al. 2012; Lücking et al. 2017). A single
specimen of the sporodochiate lichen Chirleja buckii was
sequenced, and the taxon was suggested to be a member
of Icmadophilaceae (Pertusariales; Lendemer and
Hodkinson 2012). Further DNA evidence even included
Chirleja buckii in the genus Endocena, and the new
combination of Endocena buckii was proposed by
Fryday et al. (2017). Recently, the description of
Savoronala madagascariensis from arid regions in south-
east Madagascar was coupled with phylogenetic data
(Ertz et al. 2013). These latter supported the
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introduction of a new family, Malmideaceae, in which
both S. madagascariensis and Malmidea were placed
within Lecanorales (Ertz et al. 2013). Presently, addi-
tional molecular data are unavailable for other genera
of lichenized hyphomycetes.

The genus Cheiromycina is unique because of its pecu-
liar, cheiroid (finger/hand forming), multiseptate conidia,
which are easily recognizable by microscopy. Cheiroid
conidia are also described for other hyphomycetous taxa
(Sutton 1985), such as the predominantly heterotrophic
genus Psammina, including two lichenized species
(Earland-Bennett and Hawksworth 2005; Cáceres and
Aptroot 2016), and the nonlichenized genera
Cheirospora (Hughes 1958), Cheiromyceopsis (Mercado
Sierra and Mena Portales 1988), Ramoconidiifera
(Sutton et al. 1996), Digitomyces (Mercado Sierra et al.
2003), and Cheirosporium (Cai et al. 2008). In contrast to
Cheiromycina, Psammina palmata presents branched,
nonseptate conidia (Earland-Bennett and Hawksworth
2005), whereas the recently described taxon P. tropica
produces septate, only basally branched conidia, and
further differentiates by associating with a trentepohlioid
photobiont (Cáceres and Aptroot 2016). The other non-
lichenized genera are melanized fungi within the class
Dothideomycetes (Cai et al. 2008).

Cheiromycina is characterized by a thallus nearly
immersed in bark or wood with hemispherical, whitish
to pale gray or brownish, powdery sporodochia. The
conidia are multicellular, hyaline, rarely pale brownish,
smooth, flabelliform to palmate, usually consisting of a
basal, subglobose (strongly inflated) conidiogenous cell
from which distoseptate dichotomous branches derive.
Ecologically, the genus seems to be confined to acidic
substrates in humid forests of the boreal zone. The
genus was described with Cheiromycina flabelliformis B.
Sutton as the type species based on material from Picea
wood from northern Sweden (Sutton and Muhr 1986). It
was initially described as a hyphomycete with eustromatic
sporodochial conidiomata, resembling the genus
Cheiromyces due to the presence of distoseptate conidia.
A stable association with green algae was confirmed by
Hawksworth and Poelt (1986) in the holotype and in
further specimens reported from Austria. Later the same
authors described an additional species from Austria,
Cheiromycina petri (Hawksworth and Poelt 1990).
According to their description, C. petri differs from C.
flabelliformis by the melanized (noneroding) sporodo-
chia, the branching pattern, and the size of the conidia.
Printzen (2007), studying further the type material,
emphasized that an indistinctly enlarged conidiogenous
cell is the main diagnostic character for C. petri. In the
previous decade, three other species of Cheiromycina have
been described: C. globosa from Germany (Aptroot and

Schiefelbein 2003), C. ananas from USA (Aptroot and
Schiefelbein 2003), later synonymized under
Dictyocatenulata alba (Diederich et al. 2008), and C.
reimeri from Turkey and Russian Far East (Printzen
2007). However, the most rarely recorded taxon, C. glo-
bosa, does not fit the description of the genus and most
likely does not belong to Cheiromycina s. str.
Cheiromycina globosa forms single-celled, globose conidia
and differs from other congeners ecologically, being
found in nitrophilous lichen communities.

The phylogenetic placement of the genus Cheiromycina
has not investigated to date, although preliminary sequen-
cing results showed similarity with multiple taxa in
Lecanoromycetes. Therefore, in this study, we aimed to
infer the phylogenetic placement of Cheiromycina within
lichen-forming fungi using nuclear and mitochondrial
ribosomal genetic markers. Below we discuss the relation-
ship of Cheiromycina within Lecanoromycetes and with
other lichenized hyphomycetous taxa.

MATERIALS AND METHODS

Sampling and morphological analyses.—Fresh
samples of Cheiromycina were collected in different
localities in six countries including two U.S. states (Czech
Republic, Norway, Ukraine, Russia, Poland, and USA
[Alaska and Washington]; TABLE 1). Five specimens
representing C. flabelliformis, seven of C. petri, and two of
C. reimeri were included (TABLE 1). Lichen specimens
were sorted under a dissecting microscope, and species
identification was performed by analyzing anatomical and
squash sections of the sporodochia. Identifications
followed Sutton and Muhr (1986), Hawksworth and Poelt
(1990), and Printzen (2007). Sections were prepared in
water and examined with light microscopy. Digital
images of growth habit and anatomical section (FIGS. 1
and 2) were acquired with a ZeissAxioCam MRc5 digital
camera (Goettingen, Germany) fitted to the stereo- and
light microscopes and were digitally optimized using the
image processing software Combine ZM (www.hadleyweb.
pwp.blueyonder.co.uk/CZM/).

DNA extraction, amplification, and sequencing.—
All samples were checked for contamination, and the
sporodochia were carefully dissected under the
stereomicroscope and taken for DNA extraction. The
material was first frozen in liquid nitrogen and then
pulverized with polypropylene pestles. The DNA was
extracted according to the protocol of Cubero et al.
(1999). Molecular sequence data from Cheiromycina
samples were generated for the nuclear large and partial
nuclear small ribosomal subunits (28S and 18S,
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respectively) and for the mitochondrial small ribosomal
subunit (12S). The nuclear 28S locus was amplified using
primers LR3R and LR7 (Vilgalys and Hester 1990); the
nuclear 18S region was amplified using primers NS1
(White et al. 1990) and nuSSU0852 (Gargas and Taylor
1992); and a fragment of the mitochondrial 12S locus was
amplified with primers mtSSU1KL (Zoller et al. 1999) and
MSU7 (Zhou and Stanosz 2001). Polymerase chain
reaction (PCR) amplifications were carried out using
Illustra Ready-To-Go GenomiPhi V3 DNA amplification
kit (GE Healthcare Bio-Sciences, Pittsburgh, Pennsylvania,
USA), and the temperature profile followed the “touch-
down” PCR conditions reported in Muggia et al. (2015).
Complementary strands were sequenced at Microsynth
(Vienna, Austria). The sequences were manually
assembled and edited in BioEdit (Hall 1999).

Phylogenetic analyses.—The identity of the new
generated sequences was checked with sequences
available in the GenBank database using the BLAST
search algorithm (Altschul et al. 1990); the taxa with the
highest sequences similarity, as inferred from the BLAST
search, were selected and included in subsequent
phylogenetic analyses. In addition, an exploratory analysis
was performed, including fungi from a wide phylogenetic
spectrum (not shown), comprising the classes
Dothideomycetes, Eurotiomycetes, Lecanoromycetes,
Leotiomycets, and Sordariomycetes. As the National

Center for Biotechnology Information (NCBI) BLAST
results always output as closest matches representatives of
Lecanoromycetes, and our first single-locus analyses also
placed the sequences within Lecanoromycetes, we reduced
the data set of the final phylogenetic analysis to
Lecanoromycetes only and selected 10 species of
Leotiomycetes as outgroups (TABLE S1). The selection of
the outgroups and of the Lecanoromycetes ingroups was
based on the recent phylogenetic analyses of Ertz et al.
(2013) and Miadlikowska et al. (2014). For a number of
specimens, we were unable to generate sequences for all the
selected loci (18S, 28S, and mitochondrial 12S), and a
complete set of all three sampled loci were not available
in GenBank. The sequence alignments were prepared
manually in BioEdit and individually for the three loci.
Introns and ambiguous single-nucleotide polymorphisms
(SNPs) were removed from the alignments. Alignments are
deposited in TreeBASE under the reference number
TB21301 (http://purl.org/phylo/treebase/phylows/study/
TB2:S21301).

Combined data of different loci, whether fully or
partially congruent, should be considered when inferring
phylogenetic relationships (Dettman et al. 2003), and
here we analyzed both single-locus alignments and a
combined, three-marker data set. We analyzed the sin-
gle-locus data sets within a maximum likelihood (ML)
framework (Mason-Gamer and Kellogg 1996; Reeb et al.
2004) and the combined data set using both ML and
Bayesian approaches. The combined data set was

Table 1. Information about Cheiromycina samples considered in this study.

Geographic origin
Species
(DNA ID) nuLSU nuSSU mtSSU

CZECH REPUBLIC. S BOHEMIA: Šumava Mts, Volary: Mt Plechý, 48°46′38.5″N, 13°51′21.4″E, on mossy
bark of Sorbus aucuparia, 1320 m a.s.l., 2014, Z. Palice 18257 (PRA).

C. flabelliformis
(L2253)

MF431804 MF431795 MF431799

NORWAY. NORD-TRØNDELAG: Snåsa Bergsåsen Nature Reserve, 64°15.264′N, 12°23992′E, on bark, at
base of old Salix caprea in old mixed coniferous forest, on calcareous ground, 2015, F. Jonsson LK46.

C. flabelliformis
(L2325)

— MF431798 —

CZECH REPUBLIC. S BOHEMIA: Šumava Mts, Nová Pec, Mt Hraničník, 48°45′05″N, 13°54′45″E, on bark
of Sorbus aucuparia, 1170 m, 2014, Z. Palice 17855 (PRA).

C. petri (L2222) MF431805 MF431796 MF431800

USA. ALASKA: Katmai National Park, 200–600 m NE of Mirror Lake, 59.24526°N, 154.75221°W, 440 m
a.s.l., corticolous at base of Salix near stream in dwarf shrub tundra, 2013, T. Tønsberg 42848 (BG).

C. petri (L2223) — MF431797 MF431801

POLAND. NORTH PODLASIE DISTRICT: Bielska Plain, Białowieża National Park, 2015, M. Kukwa 17681. C. reimeri
(MK17681)

MF431806 — MF431802

POLAND. NORTH PODLASIE DISTRICT: Bielska Plain, Białowieża National Park, 2015, M. Kukwa 17422. C. reimeri
(MK17422)

MF431807 — MF431803

RUSSIA. CAUCASUS, REPUBLIC OF ADYGEA: S of village Guzeripl, Mt Abago, on wood of snag (Abies
nordmanniana), 1730 m a.s.l., 2016, Z. Palice 21103 (PRA).

C. flabelliformis
(L2344)

— — —

russia. caucasus, republic of adygea: S of village Guzeripl, Mt Abago, on bark of Abies nordmanniana,
1720 m a.s.l., 2016, Z. Palice 21313 (PRA).

C. flabelliformis
(L2347)

— — —

NORWAY. NORDLAND: Grane, Majavatn, Litlfjellet, 65°09.376 N, 13°22.946 E, 565 m a.s.l., corticolous
at base of Salix lapponum, 2013, T. Tønsberg 43128 (BG).

C. petri (L2326) — — —

Russia. caucasus, republic of adygea: SE of village Guzeripl, Mt Abago, on wood of Betula snag, 1900
m a.s.l., 2016, Z. Palice 21311 (PRA).

C. petri (L2345) — — —

russia. caucasus, republic of adygea: SE of village Guzeripl, Mt Abago, on foot of old Fagus orientalis,
1720 m a.s.l., 2016, Z. Palice 21312 (PRA).

C. petri (L2346) — — —

UKRAINE. ZAKARPATSKA OBLAST REGION: Eastern Carpathians, Khust, Velyka Uhol’ka, valley of Velyka
Uhol’ka, 48°14′43″N, 23°41′36″E, on bark of Carpinus, 420 m a.s.l., 2015, Z. Palice 19030 (PRA).

C. petri (L2327) — — —

USA. WASHINGTON: Cowlitz Co., SW of summit of Mount St. Helens, Goat Marsh, 46.16560°N,
122.28073°W, 900–1000 m a.s.l., corticolous on trunk of Alnus rubra at edge of marsh, 2013,
T. Tønsberg 43060 (BG).

C. petri (L2224) — — —

Note. Samples that were successfully sequenced and included in the phylogenetic analysis in FIG. 3 are reported together with the NCBI accession numbers.
The DNA extraction number is reported in parentheses for each sample.
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partitioned by individual locus, nuclear 28S and 18S and
mitochondrial 16S, in both ML and Bayesian analyses.
The program RAxML 7.0.4 (Stamatakis et al. 2005) was
used for ML analyses and estimation of bootstrap sup-
port. As only a single model of molecular evolution can
be used across the partitions, the ML analysis was per-
formed with the GTRMIX model and 1000 bootstrap
replicates were run. The model of molecular evolution
applied to each gene partition in the Bayesian analysis,
GTR+I+G, was estimated in jModeltest 2.1.4 (Darriba
et al. 2012) using the Akaike information criterion
(Posada and Crandall 1998). The Bayesian Markov
chain Monte Carlo (B/MCMC) analyses were run in
MrBayes 3.1.2 (Huelsenbeck and Ronquist 2003;
Ronquist et al. 2005) with six chains simultaneously,

each initiated with a random tree, for 10 million genera-
tions; trees were sampled every 100th generation for a
total sample of 100 000 trees. Log-likelihood scores
against generation time were plotted using Tracer 1.4
(Rambaut and Drummond 2007) to determine when the
stationarity of likelihood values had been reached as a
guide for where to set the burn-in stage (Ronquist et al.
2005). Burn-in was set at 3 million generations (the first
30 000 sampled trees), and a majority rule consensus tree
was calculated from the posterior sample of 70 001 trees.
The convergence of the chains was confirmed by the
convergent diagnostic of the potential scale reduction
factor (PSRF), which approached 1 (Ronquist et al.
2005). The phylogenetic trees were visualized in
TreeView (Page 1996).

Figure 1. Habit of Cheiromycina spp. thalli; samples are reported with their collector and DNA extraction numbers. A, C, D, F. C.
flabelliformis: A. Z. Palice 21313, L2347; C. Z. Palice 18257, L2253; D. F. Jonsson LK46, L2325; F. Z. Palice 21313, L2344. B, E, G, H. C.
petri: B. Z. Palice 17855, L2222; E. Z. Palice 19030, L2327; G, H. T. Tønsberg 42848, L2223 (G is a detail of H). Arrows point to the
sporodochia. Bars: A–F = 0.5 mm; H = 1 mm.
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Figure 2. Conidia and sporodochia sections of Cheiromycina spp.; samples are reported with their collector and DNA extraction
numbers. C, E, F, J, K. Conidia of C. flabelliformis in various developmental stages: C, E, F. Z. Palice 18257, L2253. A, B, D, G. Pale
brown conidia of C. petri: A, B. Z. Palice 17855, L2222; D. Z. Palice 19030, L2327; G. T. Tønsberg 43060, L2224. H, I, L. Squash
preparation of vertical section of sporodochia: H. C. flabelliformis, Z. Palice 18257, L2253; L. C. flabelliformis, Z. Palice 21313, L2344;
and I. C. petri, Z. Palice 19030, L2327. Arrows point to the algal cells scattered among the hyphae in the basal part of the
conidioma. Bars: A–E = 10 μm; F–K = 20 μm; L= 50 μm.
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Figure 3. Multigene phylogenetic hypothesis of Cheiromycina spp. inferred from the combined data set of nucLSU, nucSSU, and
mtSSU markers. Bayesian PP >95% and ML bootstrap support values >70% are reported above branches. Clades are named
according to Miadlikowska et al. (2014) and represent a broad selection of taxa within the Lecanoromycetes. The newly sequenced
samples (as in TABLE 1) are reported in bold.
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RESULTS

We obtained a total of four sequences for C. flabelli-
formis (one nuLSU, two nuSSU, and one mtSSU
sequences), five for C. petri (one nuLSU, two
nuSSU, and two mtSSU sequences), and four for C.
reimeri (two nuSSU and two mtSSU sequences;
TABLE 1). We were unable to generate sequences
for the selected loci for nine specimens. Six samples
in total were included in the final phylogenetic ana-
lysis (TABLE 1). All the retrieved sequences found
their closest matches with representatives of
Lecanoromycetes.

Our phylogenetic inference (FIG. 3) is topologically
congruent with the previous analysis of Miadlikowska
et al. (2014). Although this topology was limited in
terms of taxon sampling relative to previous studies,
the relationships among families and orders within
Lecanoromycetes in our phylogenetic inference were
largely consistent with previous reconstructions and
relationships were generally recovered with high sup-
port. All newly sequenced samples, both in the single-
locus (not shown) and in the multilocus analyses, form
a monophyletic, fully supported clade. This clade was
recovered with high support as the sister group of the
recently described, monophyletic family Malmideaceae
(Ertz et al. 2013), which include “Lecidea” floridensis
(just recently recombined into Malmidea floridensis in
Cáceres et al. [2017]), Malmidea coralliformis, M.
eeuuae, and the hyphomycetous species Savoronala
madagascariensis.

DISCUSSION

This study places the hyphomycetous genus Cheiromycina
in Lecanorales and within the family Malmideaceae (Kalb
et al. 2011). Our phylogeny, inferred from a three-marker
data set, recovered Cheiromycina as sister lineage to
Savoronala, another lichenized hyphomycetous genus
(Ertz et al. 2013). Apart from sharing the anamorphic
state, the two genera occur in different habitats and sig-
nificantly differ in sporodochia and conidia morphology,
as reported in the original description of the two genera by
Sutton and Muhr (1986) and Ertz et al. (2013), respec-
tively. In Savoronala, sporodochia form at the apex of
erected stipes that develop at the center of the thallus
and are not branched. The sporodochia are convex, gray-
ish blue in color, and their surface become uneven when
covered by the conidial agglomerations (Ertz et al. 2013).
In Cheiromycina, sporodochia are alternatively eustro-
matic, usually isolated, white to gray in color, dry, pulveru-
lent, and consist of conidiophores, conidiogenous cells,
and conidia intermixed (Sutton and Muhr 1986).

Furthermore, thalli of Savoronala are well distinguishable,
whereas those of Cheiromycina are hardly detectable on
the substrate surface.

Interestingly, both these hyphomycetous genera are
included in a family of lichen-forming fungi for which
multiple forms of dispersion are known. In fact, only
recently the genera Crustospathula, Kalbionora, and
Sprucidea have been recognized to be part of
Malmideaceae (Cáceres et al. 2017; Sodamuk et al.
2017), in addition to the originally included species of
Malmidea, Savonorala, and two taxa of Lecidea s. lat.
(Kalb et al. 2011; Ertz et al. 2013). In light of these
recent studies, the circumscription of Malmideaceae is
in need of a more comprehensive assessment, both in
terms of taxon sampling and molecular phylogenetic
studies. Future molecular studies in this group of
lichen-forming fungi should also consider including
the genus Xyleborus R.C. Harris & Ladd (Harris and
Ladd 2007; Lendemer and Harris 2015) as a potential
member of the family Malmideaceae. This unique
epixylic genus confined to the Appalachian region of
eastern North America is usually fertile, forming dark
lecideoid apothecia but simultaneously often produces
delimited pale sporodochia with superficial resem-
blance to the sporodochia of Cheiromycina. Harris
and Ladd (2007) attributed Xyleborus to
Stereocaulaceae, which was accepted also in the new
classification of Ascomycetes (Lücking et al. 2017).
However, this assignment should be understood as
tentative due to the lack of molecular data. The poten-
tial placement of Xyleborus in Malmideaceae would
further corroborate the similarity observed with
“Lecidea” plebeja (nowadays known to be a member
of Malmideaceae; Ertz et al. 2013; Cáceres et al. 2017)
and the presence of sporodochia as known for many
members of the family.

Sequence data available for Dictyocatenulata alba
(An et al. 2012) were purposely not included here for
multiple reasons, although Cheiromycina ananas was
synonymized with D. alba (Diederich et al. 2008).
First, D. alba does not produce cheiroid conidia and,
together with C. globosa, have a conidiogenesis very
distinct from that of C. flabelliformis and C. petri.
Dictyocatenulata alba also produces variably tall, long-
stiped to sessile synnemata that were misinterpreted to
be sporodochia due to the extremely low number of
samples bearing sporodochia-like synnemata (which
were compared at the time of its description). D. alba
is a subcosmopolitan lichen reaching also the subtro-
pics and definitely cannot be considered closely related
to Cheiromycina s. str. Second, our new sequences
matched neither with any of the D. alba in the
GenBank BLAST searches nor with any representatives
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of Ostropomycetes, the class in which D. alba was
placed with incertae sedis (An et al. 2012).

Interestingly, An et al. (2012) reported on the rela-
tively fast and successful growth of D. alba in culture,
but our multiple attempts to isolate Cheiromycina spp.
failed and the fungi grown in cultures were identified as
Sordariomycetes. It is well known that lecanoralean
lichen mycobionts grow rather slowly in axenic cul-
tures, whereas Ostropalean fungi, which include also
several nonlichenized and optionally lichenized taxa
(Wedin et al. 2004, 2006), seem to be easier to culture
(Muggia et al. 2011, 2016). This anecdotal observation
further supports the likely different phylogenetic place-
ment for the two fungi.

A green, coccoid alga has been observed to be the
photobiont in Cheiromycina species (Hawksworth and
Poelt 1990). However, the identity Cheiromycina-asso-
ciated photobionts has not been studied yet. In this
case, all attempts to amplify and sequence and/or cul-
ture the algae failed, likely due to the insufficient
amount of photobiont cells in our preparations. In
fact, algae were found localized only at the base of the
sporodochia (FIG. 2H, I, L) and were never observed to
be tightly associated with the conidiogenous hyphae or
conidia. Co-dispersion of the fungus with the algae
might not happen in Cheiromycina, although this strat-
egy has been observed for the sister genus Savoronala,
where the conidia wrap around a single algal cell
already at the early stage of the diaspore formation
and before the fungal cells become melanized (Ertz
et al. 2013).

In general, hyphomycetous lichenicolous and liche-
nized fungi are less frequently collected than other
fungal taxa that develop conspicuous thalli and sexual
reproductive structures (apothecia or perithecia). The
often subtle morphological characters create unique
challenges in effectively circumscribing species bound-
aries using morphological data alone. Further con-
founding our understanding of diversity in this
enigmatic group is the fact that most specimens of
anamorphic fungi usually hold too little material to
allow multiple analyses. For example, in the genus
Cheiromycina, the published descriptions of the three
species—C. ananas, C. globosa, and C. petri—were
based on single collections, which definitely have not
encompassed the range of intraspecific morphological
and anatomical variability that a species comprises
(Muggia et al. 2014). External morphological characters
are also of little help when trying to distinguish
Cheiromycina species, as the habit of the sporodochia
is rather variable and “not eroding” or “eroding white”
sporodochia (Hawksworth and Poelt 1986) are recov-
ered in both species (see also Printzen 2007). More

efficient diagnostic, key characters were suggested to
be represented by the conidiogenous cells, size, and
branching patterns of the conidia (Printzen 2007).
Cheiromycina flabelliformis, C. petri, and C. reimeri
are distinguished by their multicellular, palmately
branched conidia and have been segregated from each
other based on differences in the size of conidiogenous
cells and shape and septation of conidial branches. In
addition, conidia in C. flabelliformis have been reported
as displaying a secondary three-dimensional structure.
We observed, however, that conidia can be three-
dimensional also in specimens otherwise referring to
C. petri (FIG. 2A, B). The enlarged conidiogenous cells
are easily recognized in the majority of the conidia in C.
flabelliformis, but squash preparation may destroy or
break them from the rest of the conidium, thus biasing
the species identification. In light of our results, we
propose that the genus Cheiromycina is in need of
taxonomic revision. The current circumscription of
the genus may in fact not reflect the phylogenetic posi-
tion of the other, here not sequenced taxon C. globosa,
which significantly differs by the lack of cheiroid con-
idia. However, a taxonomic treatment of the genus is
beyond the scope of the present study.

Cheiromycina was described about 30 years ago as
“an unusual deuteromycete with the appearance of a
sorediate endoxylic lichen” (Sutton and Muhr 1986, p.
831), and no teleomorphic state is known for it so far.
In this study, we could detect tiny, pale brown apothe-
cia on the thallus bearing the sporodochia in a single
specimen of C. petri (L2224, Tønsberg 43060)
(SUPPLEMENTARY FIG. 1), although the apothecia
contained immature asci without ascospores.
Unfortunately, PCR amplifications from the apothecia
and those from the sporodochia preparations were
unsuccessful for this sample; thus, comparison with
the other Cheiromycina samples was impossible.
Recovering Cheiromycina and other lichenized hypho-
mycetous genera within Lecanorales further encourages
future investigations of additional anamorphic liche-
nized fungi for which both no sequence data are avail-
able so far and no teleomorphic state is known (Ertz
et al. 2011, 2013; Diederich et al. 2013).

In lichen-forming fungi, sexual reproduction is by
far the most dominant reproductive mode (Seymour
et al. 2005). However, some species-rich genera are
exceptionally represented by only asexual species, such
as Lepraria, which have also evolved strikingly diverse
array of secondary metabolites (Ekman and Tønsberg
2002; Elix and Tønsberg 2004; Kukwa 2006; Nelsen and
Gargas 2008; Flakus et al. 2011; Lendemer 2013).
Whether speciation in Lepraria has occurred in the
absence of recombination is still a debated question
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(Fehrer et al. 2008). Although parasexual processes may
play a crucial role in lineages of lichen-forming fungi, it
is very difficult to demonstrate and it might be specu-
lated that they act in the successful distribution of the
species and their genetic diversity. Due to the limited
number of Cheiromycina samples available, obtaining
detailed, robust insight into intraspecific diversity of
these lichenized hyphomycetes will be challenging into
the foreseeable future.
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