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Chapter 3
Identification of cell-surface markers for 

detecting breast cancer cells in ovarian tissue
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Abstract

Background

The safety of ovarian tissue autotransplantation in oncology patients cannot be ensured, 

as current tumor-detection methods compromise the ovarian tissue viability. Although non-

destructive methods (for instance near-infrared fluorescence imaging) can discriminate malignant 

from healthy tissues while leaving the examined tissues unaffected, they require specific cell-

surface tumor markers. We determined which tumor markers are suitable targets for tumor-

specific imaging to exclude the presence of breast cancer cells in ovarian tissue.

Methods 

Immunohistochemistry was performed on formalin-fixed paraffin-embedded specimens of ten 

ovaries from premenopausal patients. Additionally, we screened a tissue microarray containing 

tumor tissue cores from 24 breast cancer patients being eligible for ovarian tissue cryopreservation. 

The following cell-surface tumor markers were tested: E-cadherin, EMA (epithelial membrane 

antigen), Her2/neu (human epidermal growth factor receptor type 2), αvβ6 integrin, EpCAM 

(epithelial cell adhesion molecule), CEA (carcinoembryonic antigen), FR-α (folate receptor-alpha), 

and uPAR (urokinase-type plasminogen activator receptor). For each tumor, the percentage of 

positive breast tumor cells was measured.

Results 

None of the ten ovaries were positive for any of the markers tested. However, all markers (except 

CEA and uPAR) were present on epithelial cells of inclusion cysts. E-cadherin was present in the 

majority of breast tumors: ≥90% of tumor cells were positive for E-cadherin in 17 out of 24 

tumors, and 100% of tumor cells were positive in 5 out of 24 tumors.

Conclusion 

Of the markers tested, E-cadherin is the most suitable marker for a tumor-specific probe in ovarian 

tissue. Methods are required to distinguish inclusion cysts from breast tumor cells. 
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Introduction

Premature ovarian failure is the most common long-term major adverse effect in premenopausal 

women following chemotherapy.1 Because loss of fertility can significantly decrease quality of 

life,2 considerable effort has been devoted to offering these patients options for preserving their 

fertility. These options currently include cryopreservation of embryos and/or oocytes. Besides, 

autotransplantation of pretreatment cryopreserved ovarian tissue is becoming more prevalent 

and is considered predominantly feasible for both prepubescent girls and women who cannot 

postpone adjuvant therapy.3-5 

Although autotransplantation of frozen-thawed ovarian tissue has improved greatly in recent 

years,6-7 its safety is questionable for certain types of cancer at risk of ovarian involvement, as 

it remains uncertain whether the transplanted cortical ovarian strips contain metastatic cells. 

This uncertainty arises from the highly damaging effects of currently available tumor-detection 

methods (e.g., PCR, immunohistochemistry) on tissue viability.8-9 Therefore, traditional screening 

is performed using a limited number of ovarian strips that are ultimately not transplanted. As a 

consequence of this approach, autotransplanting ovarian tissue involves the risk of reimplanting 

diseased cells that can lead to cancer relapse in some patients. 

To safeguard the transfer of cortical ovarian tissue to the patient, methods must be 

developed in which tumor cells can be detected in ovarian autografts while preserving the tissue’s 

reproductive function. Near-infrared fluorescence (NIRF) imaging might be a suitable approach, 

as this technique can safely distinguish malignant tissues from non-malignant tissues in real time 

while leaving the tissues viable.10 A NIRF probe consists of a fluorophore that emits light in the 

near-infrared spectrum (λ = 700-900 nm) conjugated to an antibody or peptide with high affinity 

for a protein marker expressed selectively at the cell surface of tumor cells.11-12 

The first step towards developing tumor-specific imaging is the identification of protein 

markers that are present selectively at the cell surface of tumor cells, but absent on cells within the 

normal ovarian cortex. Because breast cancer is one of the primary indications for cryopreservation 

of ovarian tissue13-16 and breast cancer metastases in the ovaries have been reported with a 

prevalence ranging from 13 to 47%,8,17 we examined a panel of cell-surface markers known to 

be expressed by breast cancer cells. This panel included human epidermal growth factor receptor 

type 2 (Her2/neu),18-19 E-cadherin,20 and carcinoembryonic antigen (CEA).21 In addition, we tested 

several markers involved in tumor invasion and migration, including epithelial cell adhesion 

molecule (EpCAM),22-23 αvβ6 integrin,24 urokinase-type plasminogen activator receptor (uPAR),25-

26 and epithelial membrane antigen (EMA, also known as MUC1).27-28 Lastly, we included folate 

receptor alpha (FR-α), which is expressed in several tumor types but not in normal ovarian tissue.29 

We excluded cytokeratin CAM 5.2, gross cystic disease fluid protein-15 (GCDFP15), Wilms’ tumor 

antigen-1 (WT1), mammaglobin 1, and cytokeratin 7 (CK-7), which were used previously by 

Sánchez-Serrano et al.30 and Rosendahl et al.,31 as these proteins are not expressed at the cell 

surface and therefore not suitable as a target for tumor-specific imaging. 
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In this study, we measured the expression levels of the above-mentioned markers in breast 

cancer cells obtained from patients who were potentially eligible for cryopreservation of ovarian 

tissue. In addition, we compared these expression levels to expression in normal ovarian tissues.

Material and methods

Control ovaries

Formalin-fixed, paraffin-embedded (FFPE) specimens of control ovaries obtained from 

premenopausal patients who underwent a unilateral or bilateral oophorectomy in 2001-2012 

were selected from the archives of the Department of Pathology at the Leiden University 

Medical Center (LUMC). The clinical data were extracted from the patients’ medical records. 

Indications for surgery included suspected malignancy in the contralateral ovary, early-stage 

uterine sarcoma, endometrial carcinoma, squamous cell carcinoma of the cervix, or enlarged 

ovary during pregnancy. BRCA mutation carriers and women with unknown BRCA mutation 

status were excluded. Patients who used a gonadotropin-releasing hormone (GnRH) agonist or 

oral contraceptives prior to oophorectomy were excluded to ensure that only functionally active 

ovaries were studied. A pathologist specialized in gynecology confirmed the absence of overt 

abnormalities in the ovaries by reviewing hematoxylin-and-eosin-stained sections. A total of ten 

control ovaries from ten different patients were included. 

Breast cancer tissue

Breast tumor samples were collected from 24 patients who were potentially eligible for 

cryopreservation of their ovarian tissue based on the inclusion criteria established by the Dutch 

Network of Fertility Preservation.32 All women were ≤35 years of age and were diagnosed with 

invasive breast carcinoma for which they were treated surgically at the LUMC in 1997-2009. The 

following data were obtained from the medical records: age at the time the tissue was obtained, 

TNM (tumor/node/metastasis) stage, histological subtype, Scarff-Bloom-Richardson (SBR) grade, 

and expression of the estrogen and progesterone receptors. All patients were eligible for adjuvant 

chemotherapy based on the current protocols, and none was diagnosed with distant metastases. 

Immunohistochemistry

Immunohistochemistry was performed on 4-μm thick FFPE sections of control ovaries and 

4-μm thick slices of a tissue microarray (TMA) containing invasive breast tumor cores. To 

generate the TMA, tissue biopsies measuring 1.0 mm in diameter were taken in triplicate from 

representative regions of the FFPE tumor samples and arrayed into a new recipient paraffin block 

using TMA Master (3DHistech, Hungary). The tissue sections were deparaffinized in xylene, 

rehydrated in a stepwise series of graded alcohol solutions, and rinsed in distilled water. After 
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blocking endogenous peroxidase activity with 0.3% hydrogen peroxide for 20 minutes, heat-

induced antigen retrieval was performed by placing the slides in EnVision Flex Target Retrieval 

Solution high pH/low pH in PT Link (Dako, Denmark). EpCAM and αvβ6 integrin epitopes were 

unmasked by 30-minute incubation with 0.125% trypsin and 0.4% pepsin, respectively, at 

37° C. The sections were incubated overnight in a humidified chamber at room temperature 

with primary antibodies against Her2/neu (ERBB2, rabbit polyclonal, Dako), E-cadherin (NCH38, 

mouse monoclonal, Dako), EpCAM (323/A3, mouse monoclonal, provided by the Department 

of Pathology, LUMC, the Netherlands), CEA (A0115, rabbit polyclonal, Dako), αvβ6 integrin 

(6.2A1, mouse monoclonal, Cell Essentials), uPAR (ATN615, mouse monoclonal, kindly provided 

by Prof. A.P. Mazar, Northwestern University, Evanston, IL), or EMA (E29, mouse monoclonal, 

Dako); all primary antibodies were used at their predetermined optimal dilution. Some sections 

were incubated in an antibody against FR-α (26B3.F2, mouse monoclonal, Biocare Medical) 

for 60 minutes in accordance with the manufacturer’s instructions. After incubation with the 

primary antibody, the sections were rinsed with PBS, incubated with secondary antibody (anti-

mouse or anti-rabbit EnVision; Dako) for 30 minutes, and visualized using liquid DAB+ substrate 

buffer (Dako). The sections were counterstained with Mayer’s hematoxylin solution, dehydrated, 

and permanently mounted with Pertex (Leica Microsystems, Germany). For each immunostain, 

a positive control expressing the antigen of interest was included. The primary antibody was 

omitted as a negative control. 

Image capture and quantification of immunoreactivity

The immunostained slides were scanned using a Pannoramic MIDI digital slide scanner (3DHistech, 

Hungary). Immunohistochemical staining of the ovary sections was evaluated by the primary 

researcher (I.P.) and an experienced pathologist specialized in gynecology (V.S.). In each breast 

tumor tissue core sample, the percentage of breast tumor cells and the percentage of positively 

stained membranes among the malignant cells were scored by two independent observers (I.P. 

and R.V.). In the event of a major discrepancy, the observers reached consensus regarding a final 

score. The tumor cell membranes were considered positive if they showed immunoreactivity of 

any intensity. A weighted scoring method based on the size of the tumor area in each tumor core 

was used to calculate the percentage of positive membrane-stained tumor cells in each sample. 

Statistical analysis

Statistical analysis was performed using SPSS version 20.0 (IBM, Armonk, NY). Inter-observer 

agreement was calculated using the Pearson correlation coefficient. The suitability threshold for 

the putative NIRF probe targets was set at 80, 90, or 100% of tumor cells expressing the antigens. 
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Results

Control ovaries

A histological analysis showed that all ovaries contained follicles. The cortex of each ovary was 

negative for immunohistochemical staining by all markers tested. In contrast, all markers (except 

CEA and uPAR) were detected at the plasma membrane of epithelial cells in inclusion cysts (Figures 

1a and 1b). These inclusion cysts were present in five of the ten ovaries. In addition, E-cadherin 

was expressed at moderate levels in the granulosa cells of primary follicles (Figure 2). 

   

Figure 1. Immunohistochemical expression of the investigated markers in ovarian cortices and 
inclusion cysts
a. Immunohistochemical expression of E-cadherin, EMA, Her2/neu and αvβ6 integrin. Stromal cells stained 
negative, but E-cadherin, EMA, Her2/neu and αvβ6 integrin showed expression at the epithelial cells of 
inclusion cysts. 
b. Immunohistochemical expression of EpCAM, CEA, FR-α and uPAR. Stromal cells stained negative, but 
EpCAM and FR-α showed expression at the epithelial cells of inclusion cysts. Scale bar in the upper panel 
represents 100 μm and scale bar in the lower panel represents 200 μm.

a

b
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Figure 2. Immunohistochemical expression of E-cadherin in the granulosa cells of primary follicles 
in the ovarian cortex
Moderate expression of E-cadherin in the granulosa cells of primary follicles in the ovarian cortex is indicated 
by arrows. Scale bar represents 200 μm. 

Breast cancer tissue

The median age at the time of diagnosis was 32 years (range 21-35 years) for the 24 patients 

included in the TMA analysis. Twenty-three patients were diagnosed with ductal breast cancer, 

and the remaining patient was diagnosed with lobular breast carcinoma. The characteristics of 

these 24 patients and their tumors are summarized in Table 1.

Table 1. Clinicopathologic characteristics of premenopausal patients with primary invasive breast cancer

Characteristic N = 24

Age at diagnosis, years - median (range) 32.0 (21 - 35) 
Tumor size, mm - median (range) 20.5 (10 - 45) 
Tumor stage - no. (%)
     pT1 11 (45.8)
     pT2 12 (50.0)
     pT3 1 (4.2)
     pT4 0 (0.0)
Lymph node involvement - no. (%)
     pN0 13 (54.2)
     pN1 11 (45.8)
Scarff-Bloom-Richardson grade - no. (%)
     I 2 (8.3)
     II  9 (37.5)
     III 13 (54.2)
Histological subtype - no. (%)
     Ductal 23 (95.8)
     Lobular 1 (4.2)
Estrogen receptor - no. (%)
     Negative 12 (50.0)
     Positive 9 (37.5)
     Unknown 3 (12.5)
Progesterone receptor - no. (%)
     Negative 15 (62.5)
     Positive 6 (25.0)
     Unknown 3 (12.5)
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Expression of investigated markers

Microscopic quantification of marker levels was possible in all breast tumor samples. Strong 

correlation was obtained between the scoring results obtained by the two observers; the median 

R2 was 0.746 (range 0.626-0.818). E-cadherin, EMA, Her2/neu, CEA, and uPAR staining was 

positive in both the plasma membrane and cytoplasm of the breast cancer cells, whereas αvβ6 

integrin, EpCAM, and FR-α staining was confined to the membrane. In addition, uPAR staining 

was observed in stromal cells surrounding the tumor cells (Figure 3). 

The median (range) percentage of positive tumor cells was 94% (5-100) for E-cadherin, 78% 

(13-100) for EMA, 61% (11-100) for Her2/neu, 56% (2-100) for αvβ6 integrin, 54% (0-100) for 

EpCAM, 23% (0-100) for CEA, and 3% (0-100) for FR-α. uPAR was expressed in extremely few 

tumor and stromal cells, 0% (0-11) and 0% (0-14), respectively (Table 2). 

Figure 3. Immunohistochemical expression of E-cadherin, EMA, Her2/neu, αvβ6 integrin, EpCAM, 
CEA, FR-α and uPAR in invasive breast cancer
uPAR was barely expressed in stromal cells surrounding the tumor (arrows). Scale bars represent 100 μm. 

Potential targets for imaging

Given that breast cancer is relatively heterogeneous and that the expression of antigens varied 

among the tumors examined (Table 2), targeting one membrane protein would likely be insufficient 

for detecting all possible tumor cells in each patient. Therefore, to facilitate the selection of 

possible targets, we used suitability thresholds set at 80, 90, and 100%, corresponding to the 

percentage of tumor cells that expressed the various antigens.  

Figure 4 summarizes the suitability of each tumor marker for detecting invasive tumor cells in 

the 24 patients who were diagnosed with breast cancer. Based on this analysis, E-cadherin was 
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identified as the most suitable marker for detecting breast cancer cells; specifically, E-cadherin 

was present in 100% of cells in five tumors, and this marker was present in ≥90% of cells in 17 

tumors. The seven tumors with <90% positivity for E-cadherin were positive for the markers EMA 

(1 tumor; 100% of cells detected), αvβ6 integrin (3 tumors; 78-93% of cells detected), EpCAM 

(1 tumor; 81% of cells detected), E-cadherin (1 tumor; 80% of cells detected), and Her2neu (1 

tumor; 76% of cells detected). Two tumors had <80% positivity for all of the markers tested 

(Table 2). In these two tumors, 76% and 78% of the tumor cells were detected by the markers, 

corresponding to a maximum of 24% and 22% of undetected malignant cells, respectively.

Figure 4. Suitability of tumor markers to use as a target for the detection of tumor cells in 24 
premenopausal women with invasive breast cancer
Columns represent the number of tumors in which at least 80%, at least 90% or 100% of the tumor cells 
showed expression of the tumor markers. For uPAR, stromal cell expression is also shown. 

Discussion

Here, we identified several proteins that could potentially serve as a suitable target for detecting 

breast cancer cells within ovarian autografts. One clear application for these markers is the use 

of NIRF imaging, a technique that can differentiate malignant tissues from non-malignant tissues 

without reducing the tissue’s viability.10,33-35 Designing a NIRF probe directed against E-cadherin 

shows particular promise, as E-cadherin was expressed by the majority (94%) of invasive breast 

tumor cells and was absent on the surface of normal ovarian cells. However, a combination of 

tumor-selective probes will likely be needed to detect all tumor cells. Based on our results, a 

combination of probes against E-cadherin, EMA and Her2/neu seems suitable. 
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Metastatic spread requires the local invasion of the surrounding host tissue by cells that 

originated from the primary tumor, followed by intravasation in blood and lymphatic vessels, 

ultimately leading to the dissemination of tumor cells.36 E-cadherin and EpCAM mediate cell-cell 

adhesion, and the downregulation or loss-of-function of these proteins enables cells to escape 

from solid tumors.19 E-cadherin and/or EpCAM are not necessarily expressed in all tumor cells; 

therefore, metastatic tumor cells might not be detected in some tissues. Furthermore, the majority 

of metastatic lobular breast cancer cells, which lack E-cadherin expression, will not be detected 

using a specific anti-E-cadherin probe, even though lobular breast cancer cells are more likely to 

invade ovarian tissue compared to cells derived from ductal carcinomas.37-38 

As mentioned above, we considered tumor cell membranes positive if they showed 

immunoreactivity of any intensity. As a result, some tumor cells might be more positive than 

others for the investigated markers. Yet, for NIRF imaging, the staining intensity is less important 

as long as a significant tumor-to-background-ratio can be achieved.

None of the premenopausal ovaries in our cohort had positive staining in either the stromal cells 

or the ovarian surface epithelium. However, all markers (except CEA and uPAR) were expressed 

on epithelial cells in inclusion cysts. Consequently, conjugating antibodies against these markers 

to a NIR fluorophore will illuminate invasive breast cancer cells in the ovary, as well as inclusion 

cysts. Because inclusion cysts might differ from metastatic breast cancer cells with respect to their 

fluorescent configuration, it might be possible to distinguish between these structures. The same 

strategy might be used to distinguish granulosa cells from primary follicles that express E-cadherin. 

In addition, full-field optical coherence tomography (FF-OCT), a non-invasive imaging technique 

that mimics conventional histopathology, might be very useful. In the field of dermatological 

oncology, FF-OCT has already been proven capable of visualizing sebaceous glands and adipose 

tissue surrounding hair follicles as well as small malignant skin tumors.39 On high magnification, 

fine architectural details on the subcellular level can be recognized. Therefore, it is expected that 

FF-OCT will also be able to distinguish inclusion cysts from metastatic tumor cells in ovarian tissue. 

One strength of our study is that we examined the expression of tumor markers in tumor 

tissues obtained from young breast cancer patients who met the criteria for ovarian tissue 

cryopreservation. Moreover, only biologically active ovaries were analyzed, giving the results 

clinical relevance, as ovarian tissue is generally cryopreserved before ovarian failure has occurred. 

On the other hand, this study has some limitations that merit discussion. First, a relatively 

small sample size was examined. However, normal ovarian tissue from premenopausal patients is 

not readily available. We excluded ovaries that were removed due to the presence of a BRCA gene 

mutation, as such samples could contain primary ovarian tumor cells,40 that express the markers 

investigated in this study. To be certain, we also excluded ovaries from breast cancer patients 

with unknown mutation status. At the LUMC, normal ovarian tissue from premenopausal breast 

cancer patients was exclusively available from BRCA mutation carriers or women with unknown 

mutation status. As a consequence, ovaries from breast cancer patients were not included in 



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

58  |  Chapter 3

this study. Malignant cells may also be present in ovaries that were removed due to endometrial 

carcinoma, uterine sarcoma, cervical squamous cell carcinoma, or contralateral ovarian carcinoma; 

however, the risk of false-positive results was relatively low in our cohort, as all primary tumors 

were diagnosed at an early stage and the lymph nodes in these patients were clear. Second, the 

expression of the markers was evaluated on primary invasive breast tumors, since a substantial 

cohort consisting of ovarian tissues containing breast cancer metastases is scarce. Finally, we 

examined the expression of tumor markers in relatively small tumor cores using a TMA approach. 

However, the TMA technique is considered an accurate method for examining protein expression 

in breast cancer tissues.41 

Recently, the intraoperative use of tumor-targeted fluorescent imaging yielded a high tumor 

identification rate and enabled the surgeon to detect metastases that could not be detected 

by visual observation.42 For our purpose, tumor-specific NIRF probes could be administered 

intravenously prior to oophorectomy, after which the removed ovary is dissected into cortical 

ovarian strips. Detailed fluorescent images could then be obtained using multiphoton microscopy, 

which provides an inherent submicron spatial resolution that allows revelation of subcellular details 

with reduced phototoxicity and photobleaching.43-44 Because the NIRF signal lies beyond the red 

end of the visible spectrum, the signal has enhanced tissue penetration, enabling the identification 

of fluorescently labeled tumor cells that are located deep within the tissue. Moreover, the low 

autofluorescence of the tissue at the emission wavelength of the probe provides a high tumor-to-

background ratio.45 Because of these features and the fact that cortical ovarian fragments can be 

imaged from both the upper and lower side, thereby increasing the imaging depth even further, 

NIRF imaging is a promising technique for detecting tumor cells in cortical ovarian strips up to 2 

mm in thickness. 

In conclusion, we report the identification of tumor markers that may serve as a target for 

detecting breast cancer cells in ovarian tissue using robust imaging techniques such as NIRF 

imaging. Based on our analysis, E-cadherin is likely the most suitable target for designing a tumor-

specific probe. Further research will focus on examining the expression of these markers on breast 

cancer metastases in ovaries, refining methods to distinguish breast cancer cells from ovarian 

inclusion cysts, and examining the clinical feasibility of applying NIRF imaging to the field of 

fertility preservation. 
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