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PRIMORDIAL GERM CELLS AND GAMETOGENESIS IN HUMANS AND MICE 
The immortal life cycle of mammalian germ cells

In mammals, germ cells are immortal and highly specialized for transmitting genetic 
information through generations [1, 2]. Following the segregation of the germline from the 
somatic lineage early in embryogenesis [3], primordial germ cells (PGCs), the progenitors of 
haploid gametes, originate outside the early post-implantation embryo at the border with the 
extraembryonic part of the embryo. The PGCs then migrate across the embryo to reach the 
developing gonad [4, 5]. Through spermatogenesis or oogenesis in the gonads, PGCs differentiate 
into sperms or oocytes via meiosis (Figure 1) [3]. Following the fusion of sperm with an mature 
oocyte, the haploid genomes of each parent are unified, resulting in a totipotent one-cell zygote 
[6]. The zygote, which represents the earliest developmental stage of embryogenesis, will develop 
into an embryo and eventually a complete organism together with all of its extraembryonic 
structures [7]. These extraembryonic structures mediate implantation in the uterine wall and 
the following gas exchange and nutrient supply. From the post-implantation epiblast, PGCs are 
specified [8-10].

Origin and migration of human and mouse PGCs
Due to the limited access to very early human embryos and more importantly restrictions 

to the allowed time in culture (14 days), little is known about PGCs formation in humans 
[10]. During weeks 5-6 of gestation (W5-W6, or weeks 3-4 post conception), PGCs are 
observed in human embryos in the yolk sac wall close to the allantois [11]. Subsequently, they 
migrate through the dorsal hind gut mesentery to the gonadal primordia [12] and arrive at the 
prospective ovary or testis around W7 [13]. By contrast, mouse PGC precursors are known to 
be induced in epiblast-derived embryonic ectoderm at embryonic day (E)6.25, located between 
extraembryonic and embryonic ectoderm [14]. At E7.25, PGCs are present at the base of the 
mesodermal allantois [10, 15]. From there they migrate through the developing hindgut, along 
the midline of the embryo, and reach the genital ridges at around E10.5 [4, 16]. However, some 
PGCs may stop migrating on their way to the gonads or become lodged in extragonadal organs 
such as adrenal glands [17, 18]. Ectopic PGCs are often associated with extragonadal germ cell 
tumors in humans [19]. Therefore, the development of human extragonadal PGCs and their fate 
deserve further investigation. 

Gametogenesis in humans and mice
Following gonadal colonization, both human and mouse PGCs differentiate into oogonia 

in females and spermatogonia in males upon sex determination [10, 20]. In the female ovaries, 
after mitotic arrest, oogonia enter meiotic prophase as primary oocytes and after birth arrest 
at the diplotene stage of meiosis [21]. After puberty, hormonal stimulation during ovulation 
of each menstrual cycle causes maturation and release of the dominant oocyte. After the first 
meiotic division is completed, the mature oocyte arrests at metaphase II stage, ready to be 
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fertilized [22, 23]. In the male testes, spermatogonia proliferate and then arrest in the G0/G1 
phase of the mitotic division [24]. In contrast to females, male germ cells do not enter meiosis 
before birth [25]. After birth, the germ cells resume mitotic proliferation. Until puberty, some 
of spermatogonia in the seminiferous tubules enter meiosis I and differentiate into primary 
spermatocytes. Secondary spermatocytes are produced after meiosis I and then after the second 
meiotic division, haploid spermatids are formed. These spermatids subsequently differentiate 
morphologically into sperms through changes in cellular organization and shape [26]. 

PRE-IMPLANTATION DEVELOPMENT AND IMPLANTATION IN HUMANS AND 
MICE

 The pre-implantation development period, which includes fertilization, cell cleavage, 
morula and blastocyst formation, comprises the initial stages of mammalian development. It takes 
place before the embryo implants into the mother’s uterus (Figure 2) [27]. Fertilization represents 
one of the most important and fascinating processes in biology, because the union of sperm 
and mature oocyte at fertilization triggers the recombination of paternal and maternal genetic 
information to form the diploid genome of a new and unique individual [7]. Understanding the 
stages of pre-implantation development and the underlying regulatory cellular and molecular 
mechanisms offers essential implications for assisted reproductive technology (ART).

In preparation for implantation and pregnancy, uterine endometrium transforms into a 
differentiated maternal tissue “decidua” through a remarkable event known as decidualization 
[28, 29] in response to estrogen and progesterone. The decidua is characterized by vascular 
remodelling, differentiation of stromal cells into large rounded decidual cells, angiogenesis and 
secretory transformation of uterine glands [28, 30].

Figure 1. The immortal life cycle of mammalian germ cells. 
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Human pre-implantation development
Pre-implantation embryos are morphologically similar in humans and mice, although the 

timing is quite different from each other (Figure 2) [31]. 

In humans, simultaneously with sperm-oocyte fusion, the second meiotic division 
of the oocyte is complete and the second polar body is extruded [26]. In the one-cell zygote, 
paternal and maternal haploid pronuclei move towards each other and they both undergo DNA 
replication before entering the first mitotic division [32] to produce a 2-cell embryo within one 
day after fertilization. Afterwards, the embryo undergoes a series of mitotic cell divisions (known 
as cleavage divisions) and produces sequentially smaller embryonic cells (called blastomeres). 

As cleavage divisions continue, the embryo “compacts” to form a solid ball of cells 
(morula) by day 4 of development (Figure 2). Products of several genes are involved in this 
compaction and the following cavitation process, including the sodium-potassium ATPase 
transport system and tight junction proteins [33]. The sodium/potassium ATPases on the cell 
membrane transport sodium from outside environment into the morula, followed by water flow 
into the embryo and formation of blastocoelic fluid. When a large cavity (blastocoel) is formed, 
the embryonic cells form a compact mass (called the inner cell mass or ICM) at one side of this 
cavity and a thin outer shell of epithelium (called trophectoderm or TE) [34]. Now the embryo 
is referred to as a blastocyst. In the blastocyst, TE cells adjacent to the ICM are polar TE, whereas 
the cells surrounding the blastocoel are mural TE [35]. 

By day 6 in humans, the developing blastocyst “hatches” from the protective zona 
pellucida [36], an acellular membrane that has protected the embryo as it has moved from the 

in humans and mice. 
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oviduct where cleavage takes place, into the uterus. The blastocyst is then ready to attach to the 
endometrial lining of the uterus. At around 6.5 days, the polar TE cells undergo syncytial fusion 
of mononucleated cells and produce the first syncytiotrophoblast, which is able to invade the 
uterine lining [37]. Implantation is only facilitated during a limited reception-ready phase (the 

“implantation window”), on days 7-10 of development in humans [38]. This restricted period 
is regulated by appropriate levels of ovarian estrogen and progesterone, which synchronize the 
timing of embryo development with uterine receptivity [39]. The complex but highly organized 
implantation process can be classified into three phases [40]: (1) apposition - close apposition of 
the blastocyst to the uterine lining; (2) adhesion - attachment of the blastocyst to endometrial 
surface epithelium; and (3) penetration - invasion of the embryo through the epithelial surface 
and into the endometrial stroma. Successful implantation, a crucial step in the establishment and 
development of normal pregnancy, depends on the interaction between receptive decidua and a 
good-quality blastocyst at the right time [41]. 

Mouse pre-implantation development
While this pre-implantation period lasts approximately one week in humans, mouse 

embryos undergo the same events in 4.5 days (Figure 2) [31]. Embryonic cells start to compact 
and differentiate at the morula stage around E2.5. By E3.5, with lineage segregation and the 
formation of cavitation, a blastocyst is formed. Between E3.5 and E4.5, the ICM further 
differentiates and segregates into primitive endoderm (PE) and the pluripotent epiblast (EPI). 
These pre-implantation cell fate decisions are concisely regulated by cell signaling and subsequent 
lineage-specific transcription factors [42, 43]. At E4.5, the blastocyst with three segregated cell 
lineages (TE, EPI and PE) hatches out of the zona pellucida and initiates implantation [42]. 

POST-IMPLANTATION DEVELOPMENT IN HUMANS AND MICE

Human post-implantation development
Following human implantation at day 7, the invasive syncytiotrophoblast, derived 

from polar TE, penetrates the uterine surface epithelium and thus draws the blastocyst deeper 
into the uterine wall [44]. The bilaminar embryonic disc comprises the EPI and the PE layers, 
both derived from ICM (Figure 2). By day 8, the amniotic cavity has appeared separating EPI 
from amnion while the syncytiotrophoblast grows and expands continuously. By day 9, the 
embryo becomes fully embedded within the uterine lining. The amniotic cavity expands, and 
trophoblastic lacunae appear in the syncytiotrophoblast which covers the embryo completely. 
On days 10-11, PE-derived primary yolk sac appears [45]. On days 11-13, the PE cells 
proliferate to produce the definitive (secondary) yolk sac whereas the primary yolk sac breaks 
up. An extraembryonic space, the chorionic cavity, is established. Its outer boundary, referred to 
as the chorion, is composed of trophoblasts and the underlying extraembryonic mesoderm [46]. 
During gastrulation on days 14-16, ingressing EPI cells converge at the midline and ingress at 
the primitive streak, replacing primitive endoderm to produce definitive endoderm [47]. Some 
EPI cells differentiate into embryonic mesoderm lying between the EPI layer and the definitive 
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endoderm layer. Cell movements in gastrulation transform the human embryo into a multi-
layered organism with three primary germ layers (ectoderm, definitive endoderm and embryonic 
mesoderm) (Figure 2) [48].

Mouse post-implantation development
Being quite distinct from human post-implantation embryo structures (Figure 2) [48], 

cells of the mouse blastocyst proliferate rapidly and transform the embryo into an egg cylinder 
within 24 hours after implantation [42]. Mural TE differentiates into primary trophoblastic 
giant cells [49], whereas polar TE subsequently differentiates into the ectoplacental cone (EPC) 
and the extraembryonic ectoderm (ExE) [50]. As the egg cylinder elongates, a luminal space is 
established within the EPI through polarization and hollowing, thereby transforming the EPI 
into a cup-shaped polarized epithelium [51]. The same process of polarization and hollowing 
also occurs in the ExE, the lumen eventually fusing to form the pro-amniotic cavity during 
E5.5–E5.75. The PE differentiates into parietal endoderm covering inner surface of mural 
trophectoderm and visceral endoderm cells covering the elongating egg cylinder (Figure 2) [42]. 
In the E6.5 mouse embryo, the primitive streak is formed in the posterior region of the EPI, 
which indicates the initiation of gastrulation [52]. Epiblast cells proliferate to cells that pass 
through the primitive streak, thereby giving rise to the mesoderm and the definitive endoderm 
which replaces the visceral endoderm [53]. Those EPI cells not moving through the primitive 
streak become the ectoderm. Together, these are the three primary germ layers (embryonic 
ectoderm, embryonic mesoderm and definitive endoderm) of the mouse embryo (Figure 2) [54]. 
A set of signaling pathways, including the WNT, BMP, Nodal and FGF pathways have been 
shown to be involved in this gastrulation process largely through gene deletion studies [55, 56]. 
At E7.25, PGCs arise from the epiblast, at the base of the mesodermal allantois [10]. 

EARLY PLACENTATION IN HUMANS AND MICE

During human and mouse implantation, decidua has three portions renamed by 
their relationship to the implantation site [28, 57]: (1) Decidua basalis, which underlies 
the implantation site; (2) Decidua capsularis, which lies between the uterine lumen and the 
implantation site; (3) Decidua parietalis, which is the rest decidua. The decidua basalis forms the 
basal plate which is the maternal part of the placenta.

Human early placentation
In the first week of development, the human embryo obtains nutrients by simple 

diffusion [58]. As the blastocyst attaches to the uterine epithelium, the formation of the placenta 
begins [59]. From day 8, TE-derived invasive trophoblasts penetrate the decidual stroma and the 
trophoblastic lacunae within the syncytiotrophoblast start to contact with maternal capillaries 
[31, 37]. During days 11-13, the cytotrophoblasts, acting as stem cells, proliferate and bud 
into the overlying syncytiotrophoblasts. The cytotrophoblast cells, together with an outer layer 
of syncytiotrophoblasts, grow out into the lacunae, thus forming primary villi [60]. Thereafter, 
the extraembryonic mesoderm cells proliferate and penetrate into the primary villi, forming 
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secondary villi. By week 3, within the villous mesoderm core, hematopoietic progenitor cells 
develop and give rise to placental blood cells [61]. The villi containing the first placental blood 
vessels are referred to as tertiary villi [62]. 

Due to the rapid placental growth during early pregnancy as well as apoptosis in the 
syncytiotrophoblast layer [63], the villous cytotrophoblast cells continuously proliferate, 
differentiate and fuse into the outer syncytiotrophoblasts [64]. This differentiation and fusion 
process involves syncytin genes encoding proteins which can induce cell-cell fusion [65, 66]. 
In the distal part of the anchoring villi, cytotrophoblasts proliferate and differentiate into cell 
columns, where trophoblast cells acquire an invasive phenotype during differentiation. These 
invading trophoblasts, known as extravillous trophoblasts (EVTs), detach from the cell columns 
and start to migrate into the decidua and even the myometrium [67, 68]. This trophoblast 
differentiation process is tightly regulated by oxygen tension and proper interplay of transcription 
factors, hormones, growth factors and other signaling molecules [69]. Four subsets of EVTs have 
been identified: (1) Interstitial EVTs, which invade the decidual stroma and even into the inner 
third of the myometrium; (2) Endovascular EVTs, which can migrate into maternal remodelled 
spiral arteries in a retrograde fashion [70] and into maternal uterine veins [71]; (3) Intramural 
EVTs, which are present in vascular wall of the remodeled spiral arteries [72]; (4) “Epithelial” 
EVTs, which line the basal plate together with maternal endothelial cells [73].

EVTs are observed to “block” or “plug” the opening of spiral arteries into the intervillous 
space at W8-W12 [74]. Because of these “blocks” or “plugs”, the maternal circulation to the 
placenta is restricted, thereby creating an hypoxic placental environment which is vital for 
regulating trophoblast cells differentiation during early pregnancy [75]. In addition, EVTs have 
been shown to be involved in the process of arterial remodelling together with macrophages 
and uterine natural killer (uNK) cells [76]. Initially, unremodelled decidual arteries consist of 
an intact endothelium and several well-organized smooth muscle cell (SMC) layers. Before 
EVT invasion of the spiral arteries, leukocytes infiltrate the vascular wall, synchronized with 
disorganization of the SMC layers and loss of endothelial cells. Under subsequent remodelling by 
interstitial and endovascular EVTs, decidual arteries lose endothelium and SMC layers entirely 
[77]. Remodelled decidual arteries lack maternal vasomotor control [78] and therefore become 
low-resistance, heavily dilated vessels that provide increased blood flow towards the placenta 
to meet the requirements of the growing fetus. At about W12, the open connection between 
maternal circulation and intervillous space is completely established [78, 79]. In this process, 
proper EVT invasion in decidual vasculature regulates oxygen tension for placental development 
[75] which is vital for successful pregnancy [80, 81]. On the contrary, insufficient EVTs invasion 
in maternal decidua is reported to result in inadequate blood perfusion of the placenta and 
subsequent pregnancy complications including preeclampsia and intrauterine growth restriction 
[82, 83]. Thus, characterizing the invasion of fetal EVTs in maternal decidua basalis in early 
pregnancy will help to identify the underlying mechanism and reveal potential therapeutic 
strategies for some pregnancy complications. 
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Mouse early placentation
In mice, the mesoderm-derived allantois contacts with chorion at E8.5 [84]. This 

event, called “chorioallantoic fusion”, starts the formation of early placenta. Thereafter, fetal 
components of the placental vascular network undergo extensive branching and grow into the 
folds of the chorion [84]. At the same time, chorionic trophoblast cells, in direct apposition with 
endothelium of the fetal vessels, differentiate into multiple layers of trophoblast cells: two layers 
of syncytiotrophoblast cells and another layer of mononuclear trophoblast cells [85]. Maternal 
blood flows through the small spaces among trophoblast cells at around E10.5, resulting in a 
functional placenta exchanging maternal and fetal blood [86]. By E14.5, the placenta finally 
develops into the definitive placenta [87].  

Mouse placentation shows many differences from humans [88]. Crucially, in contrast 
to human extensive trophoblast invasion into decidua and decidual vessels, mouse trophoblast 
invasion is very shallow [89]. Therefore, transformation of mouse uterine arteries is dependent 
on maternal (uNK) cells rather than fetal trophoblasts [90].

LATE PLACENTATION IN HUMANS AND MICE

The placenta is the first fully-formed organ in mammals. It supports the directional 
and selective transport of nutrients, gases and waste between maternal and fetal circulations 
during intrauterine development [91]. It maintains pregnancy and supports fetal development 
and growth. Therefore, placental dysfunction may lead to pregnancy complications causing risk 
to mother and fetus [92]. Mouse and human placentae are haemochorial, meaning that the 
maternal blood directly contacts fetal trophoblast cells [93, 94]. The other two types of placenta, 
epitheliochorial placenta (as observed in horse, cow and pig) and endotheliochorial placenta (as 
described in cat and dog) have a barrier between fetal villi and maternal blood [94, 95]. 

Human late placentation
In humans, the chorionic surface is entirely covered by chorionic villi during the first 

8 weeks. As the gestational sac enlarges, chorionic villi on the decidua capsularis undergoes 
progressive regression into a smooth surface called “chorion laeve” [96, 97]. The chorion laeve 
fuses with decidua parietalis by the end of the third month. Chorionic villi on the decidua basalis 
become larger and more extensively branched.

By the end of the fourth month of pregnancy, the human placenta has attained its 
definitive structure and function (referred to as “definitive placenta”), consisting of fetal terminal 
chorionic villi and maternal decidua (Figure 3A) [98, 99]. The villi are composed of an inner 
EPI-derived mesenchymal core and two layers of TE-derived trophoblast epithelium (a layer 
of mononuclear cytotrophoblast cells and a layer of multinucleated syncytiotrophoblast cells) 
[37]. The chorionic villi either attach to the decidua basalis as anchoring villi or float within the 
intervillous space as floating villi [69]. 

The high-flow low-resistance maternal remodelled arteries accommodate massively 
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increased maternal blood perfusion into the intervillous space [78]. The relatively high 
arterial pressure allows exchange between maternal and fetal blood to take place. This must 
cross four layers of tissue (the placental barrier): two villous trophoblast layers (one layer of 
syncytiotrophoblasts and one layer of cytotrophoblasts), the connective tissue (extraembryonic 
mesoderm) in the core of villi and the fetal capillary endothelium [100]. After exchange of fetal 
and maternal blood at the external microvillous surface of chorionic villi, the single umbilical 
vein carries oxygenated blood and nutrient to the fetus. Then the two umbilical arteries transport 
deoxygenated fetal blood and waste product back to the placenta [101]. In-flowing maternal 
arterial blood pushes venous blood back to decidual veins through venous orifices in the basal 
plate. Thus, the maternal blood traverses the intervillous space of the placenta freely without 
preformed channels. 

Mouse late placentation
Since E11.5, mouse definitive chorioallantoic placenta is established, composed of 

distinct structural layers [102]: maternal decidua with spiral arteries perfusion, an outer layer of 
trophoblast giant cells (TGCs) interfacing with the maternal decidua, followed by the junctional 
zone [glycogen cells (GCs) and spongiotrophoblasts], the labyrinth (trophoblast cells and 
extraembryonic mesoderm endothelial cells) and finally the chorionic plate facing the embryo 
[84, 103, 104] (Figure 3B). The GCs, which have high glycogen content and are sensitive to 
glucagon signaling, may be serving as a potential source of energy [105].

Maternal spiral arteries traverse the decidua basalis and converge to form centrally located 
arterial “canals” which carry maternal blood to the base of labyrinth [89] (Figure 3B). In the 
labyrinth, fetal and maternal blood exchanges, with the well-organized cell layers (a layer of 
mononuclear trophoblasts, a bilayer of syncytiotrophoblasts and an endothelial cell layer of 
the fetal vasculature) serving as the barrier between maternal-fetal exchange [101]. Afterwards, 
venous deoxygenated blood drains from the labyrinth through venous channels in the junctional 
zone into venous sinuses in the decidua basalis [89]. 
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EPIGENETIC REGULATION IN GERM CELLS, PERI-IMPLANTATION AND 
PLACENTAL DEVELOPMENT

Epigenetic regulation is crucial for various biological processes. Two epigenetic regulation 
processes established in early development [106], X chromosome inactivation (XCI) and genomic 
imprinting, are essential for dosage control of X-linked genes and parent-of-origin-specific genes 
in certain cells at certain stages.

X chromosome inactivation
In mammals, XCI is the mechanism to achieve dosage compensation of X-genes between 

females and males, in which one of the two X chromosomes becomes inactivated (Xi) in female 
somatic cells [106, 107]. XCI is regulated by X inactivation centre (Xic) [108, 109], which 
includes the non-coding locus XIST and its antisense transcript TSIX as a repressor [110]. 
XIST RNA coats the future inactive X chromosome, thus trigging the silencing of the whole X 
chromosome. This is followed by DNA methylation at CpG-rich promoters, histone H3 lysine 
27 trimethylation (H3K27me3) and H4 hypoacetylation [106, 111]. Individuals, even with 
abnormal numbers of X chromosomes, silence all but one of the X chromosomes [112]. For 
example, Turner syndrome patients (45,XO) harboring a single X chromosome [113] show no 
inactivation of this unique X chromosome. Klinefelter syndrome patients (47, XXY) display one 
active and one inactive X chromosomes [114]. Additionally, a fraction of X-genes are revealed 
to escape X inactivation on the Xi and are known as “escapees”. A higher percentage of escapees 
along chromosome X are reported in humans (around 15%) than in mice (about 3%) [115, 116]. 
Many of the escapees are located in the pseudoautosomal regions [117], where genes are present 
on both X and Y chromosomes.

XCI has been investigated by several approaches including XIST RNA-FISH [118], 
H3K27 trimethylation [119], human androgen receptor gene assay (HUMARA) [120], retinitis 
pigmentosa 2 (RP2)-based assay [121] and allele-specific expression analysis of the informative 
single-nucleotide polymorphisms (SNPs) enabling parental origin to be assigned [122-124]. 

The dynamic XCI status during early development has been more extensively studied 
in mice than in humans, because of the availability of genetic substrains of mice [125-127]. 
After fertilization, X inactivation is initiated during pre-implantation development of mouse 
female embryos, closely related to the early lineage segregation [125]. The first XCI wave occurs 
at the two- to four-cell stage and results in the imprinted inactivation of Xp in all cells of the 
embryo (Figure 2). At the blastocyst stage, the Xp remains silent in the TE and PE [103, 126, 
127] while the Xp becomes reactivated in the EPI at E3.5. Shortly thereafter, during the second 
XCI wave, either the Xm or the Xp is silenced in a random fashion, resulting in random XCI 
in epiblast cells (Figure 2) [128]. This is followed by reactivation of the silent X, in preparation 
for the equal segregation during meiosis, in female PGCs between E8.5 and E12.5, but not 
in the female somatic cells [119]. During placentation, mouse TE-derived cells maintain 
imprinted XCI. Therefore, TE-derived cells in the placenta contain an obligatorily silenced 
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Xp in females, including the TGCs, the spongiotrophoblasts and GCs in the outer zone and 
the syncytiotrophoblasts, mononuclear trophoblasts in the labyrinth zone [102]. By contrast, 
EPI-derived cells in the placenta, including the chorionic plate of the placenta and the fetal 
endothelial cells in the labyrinth zone, show random XCI. 

The process of XCI in humans is less well-known than in mice. The inactivated X 
chromosomes in human PGCs are already reactivated at W4 [122]. During pre-implantation 
development at E3-E7, X-linked genes are thought to maintain biallelic expression in all lineages 
[118, 129]. Previous research regarding XCI in human placenta has resulted in conflicting views, 
supporting random [124, 130-133], non-random [134] and preferential paternal XCI [135-
139]. These conflicting results may be due to high heterogeneity, clonal growth and a mixture of 
TE-derived and EPI-derived cells in placenta.  

Genomic imprinting
In mammals, normally both maternal and paternal alleles of genes are expressed. However, 

genomic imprinting affects a subset of genes (known as imprinted genes) in both male and 
female offsprings, resulting in monoallelic expression of either maternal or paternal allele [106]. 
Most imprinted genes are located in clusters [140] that are regulated by transcription of a non-
coding RNA. Imprinted genes play an essential role in embryonic and extraembryonic growth 
and development in mammals [141, 142].

IGF2/H19 locus, which is located on human chromosome 11 and on mouse chromosome 
7, is one well-studied imprinted gene cluster [143, 144]. The location of its imprinting control 
region (ICR) is between protein-coding IGF2 gene and noncoding H19 gene [145]. The 
ICR on the maternal chromosome is bound by the insulator protein CTCF, and therefore is 
unmethylated. This allows activation of the H19 promoter and inactivates of the IGF2 promoter. 
As a result, the maternal chromosome has transcription of H19 but not IGF2. In contrast, the 
ICR is methylated on the paternal chromosome and IGF2 is transcribed [144].

A couple of techniques have been used to detect imprinting patterns [146], including 
DNA methylation at ICRs and allele-specific expression analysis of informative SNPs. Sperms 
and mature oocytes carry imprinted chromosomes. After fertilization, the imprint is maintained 
in each cell division during peri-implantation and placental development [147]. Genome-wide 
epigenetic reprogramming in human and mouse PGCs results in erasure of parental imprints 
before sex determination [147]. Upon sex determination, male and female germ cells acquire 
paternal and maternal imprints respectively on the chromosomes. 
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AIMS AND OUTLINE OF THIS THESIS

Pre-implantation and placental development in humans and mice has been investigated 
over several centuries. Although much is known about early development in mice, how 
differentiation and implantation are regulated at the molecular level in humans is limited. Since 
incorrect development and implantation is thought to be a cause of pregnancy failure and risk, 
the work in this thesis aimed to fill some of these gaps and specifically address the following 
aspects related to pre-implantation and placental development in humans and mice. 

The main question of Chapter 2 is what is the development of human (extra)gonadal 
germ cells between first and second trimesters regarding expression of germ cell markers and 
meiosis markers. Are there ectopic germ cells and do they enter meiosis in synchrony with the 
gonadal germ cells? 

The main aim of Chapter 3 is to investigate the status of XCI in human pre-implantation 
embryos. Do TE-derived cells show different XCI pattern from ICM-derived cells at E5-E7? If 
there is X inactivation, whether the XCI pattern is imprinted or random?

The focus of Chapter 4 is on the invasion of decidual vasculature by human extravillous 
trophoblast cells from W5.5 till the end of first trimester. Do the EVTs invade arteries, veins and 
lymphatics? When does the invasion occur? 

In Chapter 5, the investigation is extended towards the spatial pattern of methylation of 
the IGF2/H19 imprinting control region in multiple sites of collection in human first-trimester 
placental villi. Do the multiple sites of placental villi show the same imprinting pattern? Is 
the imprinting pattern of IGF2/H19 in human first-trimester placental villi the same as in the 
embryo?

The aim of Chapter 6 is to compare the consequences of Turner syndrome harboring 
either a single paternally inherited (Xp) or maternally inherited (Xm) chromosome in mouse 
E18.5 placenta, in order to study whether the transcriptional level of Xp is equal to Xm.

Finally in Chapter 7, we combine and further discuss the findings obtained in chapters 
2-6. Future perspectives are also proposed.
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