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anxiety: definition, diagnosis, epidemiology,  
and current treatment status

Anxiety is a commonly occurring negative human emotional state and is character-
ized by subjective feelings of worry and fear. By definition, worry or apprehension 
refers to thoughts and expectations about future events while fear is an acute 
reaction to perceived imminent danger. Subjective phenomena are usually accom-
panied by physical symptoms such as increased heart rate, shakiness, fatigue, and 
muscle tension, as well as cognitive, and behavioral manifestations. Anxiety can be 
adaptive that occurs in response to a threat and prepares to cope with the environ-
ment. However, anxiety becomes pathological when it causes significant personal 
distress and impairs everyday functioning. In order to be diagnosed with an anxiety 
disorder, individuals have to experience a certain number of symptoms that are 
disproportionate to either actual or imagined environmental threat for at least six 
months [1,2]. 

Anxiety disorders are chronic, disabling conditions that impose enormous costs 
both on individuals and on society [3-6]. These disorders are prevalent in Western 
countries. According to a recent 3-year multi-method study covering 30 European 
countries, 14% of the total population (i.e., 514 million people) were suffering from 
anxiety disorders [4]. In the Diagnostic and Statistical Manual of Mental Disorders, 
Fifth Edition (dsm 5) [1], seven anxiety syndromes are classified, including panic 
disorder, agoraphobia, social anxiety disorder (sad), generalized anxiety disorder 
(gad), specific phobias, separation anxiety disorder and selective mutism. The eti-
ology of anxiety disorders is multifactorial and includes genetic liability to a certain 
extent for some syndromes. In addition, drug withdrawal, substance/medication 
(e.g. alcohol, caffeine, and benzodiazepines) abuse and dependence, occupation-
al exposure to organic solvents, and life stresses have been related to the etiology 
of anxiety disordersm while psychiatric complications of endocrine disorders like 
pheochromocytoma and hyperthyroidism have been demonstrated to mimic 
anxiety disorders. Taken together, the phenomenologically-based diagnostic clas-
sification and the multifactorial nature of anxiety disorders are expected to affected 
efficacy of anxiolytic cns active drugs that have been discovered in the past decades.  

Current treatment modalities for anxiety disorders can be categorized into psy-
chological treatments (e.g., exposure therapy, cognitive therapy and cognitive 
behavioral therapy) and pharmacological interventions [2]. The pharmacological 
interventions can be further divided to chronic or maintenance treatments and 
short-term treatments inducing acute anxiolysis. Monoamine modulating drugs 
such as the selective serotonin reuptake inhibitors (ssris) and serotonin-noradren-
aline reuptake inhibitors (snris) are considered the first-line drugs for anxiety 
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disorders. This is mainly due to their ‘broad spectrum’ anxiolytic efficacy in both 
short-term and long-term therapy and the relatively good tolerability in terms of 
side effects and treatment adherence [2]. However, since it is not unusual for treat-
ment response to be reached only after 12 weeks of treatment at a therapeutic dose, 
the delayed onset of action of ssris and snris remains a major disadvantage. In 
addition, when patients do not respond to or are intolerant of ssri/snri treatment, 
alternative classes of psychotropic drugs, such as other antidepressant drugs (e.g., 
tricyclic antidepressants [tcas], irreversible monoamine oxidase inhibitor [maoi] 
phenelzine), anticonvulsant drug pregabalin, antipsychotic drugs (e.g., queti-
apine), and anti-histamine drug hydroxyzine, are considered. Nonetheless, even 
after treatment with multiple anxiolytic drugs, up to 40% of patients with anxiety 
disorders do not respond to such drugs at all or only respond partially [7]. Given the 
rapid-onset effectiveness of benzodiazepines (bzds) in many patients with anxi-
ety disorders, especially in panic disorder, gad and sad patients, these drugs are 
generally reserved for the treatment of patients who have failed to respond to at 
least three previous treatments (such as after non-response to an ssri, an snri and 
a psychological intervention). The use of bzds should however be minimalized and 
preferably be reserved for short-term treatments to mitigate the risks of trouble-
some sedation, cognitive impairment and discontinuation symptoms after abrupt 
withdrawal [8] in both short-term and long-term treatment, and to avoid develop-
ment of tolerance and dependence with prolonged use. Taken together, an obvious 
unmet clinical need in the pharmacological treatment of anxiety disorders opens 
an opportunity for novel pharmacological approaches that demonstrate rapid anx-
iolytic efficacy that is superior to existing treatments and lacks tolerance induction, 
abuse liability and withdrawal symptoms. 

the brain circuitry involved in anxiety and the role  
of gamma-aminobutyric acid a (gaba) in the amygdala 

On a neurobiological level, anxiety disorders arise from disruption of the highly 
interconnected circuits normally serving to process the stream of potentially threat-
ening stimuli detected by the human brain from the outside world. Perturbations 
anywhere in these circuits cause imbalance in the entire system, resulting in a 
fundamental misinterpretation of neural sensory information as threatening and 
leading to the inappropriate emotional- and thereby behavioral-responses seen in 
anxiety disorders [9].

Briefly speaking, anxiety is linked to compromised interactions between the amyg-
dala and the dorsal and ventral medial prefrontal cortex (mpfc). Tract-tracing 
studies in rats show that axons originating in the infra-limbic cortex of the mpfc 
terminate most densely in the ventromedial lateral nucleus, the rostral part of the 
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accessory basal amygdala, lateral capsular subdivision of the central nucleus and 
the superficial nuclei (lateral olfactory tract, periamygdaloid cortex and cortical 
nuclei) [10-12]. Neurons in the more caudal areas of the infra-limbic sub-region also 
project to the medial and intermediate subdivisions of the central nucleus [11,13]. 
The pre-limbic cortex of the mpfc is located dorsally adjacent to the infra-limbic 
sub-region and it has a different pattern of connectivity with the amygdala. Pre-
limbic cortex neurons target the basal nucleus of the amygdala (ba), primarily 
the dorso-medial part [11,14], while caudal pre-limbic cortex neurons concentrate 
inputs in the medial parvicellular basal nucleus [15]. 

Fear extinction is defined as a decline in conditioned fear responses following 
repeated exposure to a feared conditioned stimulus (e.g., a tone in both animals 
and humans) in the absence of the unconditioned stimulus (usually a footshock in 
animals) with which it was previously paired [16]. Extincted fear can be recovered 
with time or change of the experimental context, suggesting that fear extinction 
reflects a learning process. The fear reduction is associated with inhibition rather 
than erasure of the original fear memory. Given that fear extinction has a close 
therapeutic analogue in the form of exposure therapy for patients with anxiety dis-
orders, it has been implicated in many preclinical studies to investigate drugs acting 
as adjuncts to strengthen extinction and reduce intrusive fear memories in ptsd 
and specific phobias [17]. The acquisition, consolidation and retrieval of extinction 
therefore are separable processes that are controlled by different brain regions and 
neural systems [18]. 

In both experimental animal and human functional imaging studies, the amygdala 
and the mpfc has been demonstrated to be associated with the regulation of neg-
ative emotion, such as anxiety or worry and apprehension. Neuroimaging studies 
consistently show that higher levels of anxiety are associated with both attenuated 
ventral medial prefrontal cortex (vmpfc) activity and exaggerated dorsal medial 
prefrontal cortex (dmpfc) activity [19,20] in the presence of threatening stimuli. 
In the absence of threatening stimuli (i.e., at rest) Kim and colleagues [21] report-
ed that the negative connectivity normally seen between the amygdala and the 
dmpfc at rest was attenuated in high anxious subjects, whereas the positive con-
nectivity normally observed between the amygdala and vmpfc at rest, manifested 
as negative connectivity in high anxious subjects. Interestingly, the mpfc-amyg-
dala coupling is inversely correlated with self-reported measures of anxiety or 
anxious temperament, indicating that the mpfc functions to actively regulate the 
amygdala and impaired connection between the two neural structures may lead 
to inadequate response to threatening stimuli. On the other hand, the amygdala 
– nuclei situated in the median temporal lobes – appears to play a crucial role in 
the regulation of negative affect and therefore anxiety-related symptomatology. 
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Emerging evidence from functional magnetic resonance imaging supports that 
amygdala is the key brain region of activity in response to negative emotional stim-
uli in healthy volunteers [22-24]. Besides, patients with anxiety disorders are prone 
to amygdala activation in response to a given threatening stimulus more than the 
non-anxious controls [25]. Moreover, successful treatment of anxiety disorders 
with cognitive behavioral therapy leads to extinction of this hyperactivation in the 
amygdala [26]. Taken together, mpfc functions to regulate amygdala function by 
actively suppressing activity, and so deficiency in the top-down regulation of mpfc 
and hyperactivation of the amegdela have been implicated in the pathophysiology 
of anxiety-related disorders.

In the amygdela, two groups of nuclei should be noted, namely the basolateral 
amygdala complex (bla) and the centromedial amygdala complex, in particular 
the central nucleus (cea) [27,28]. The bla receives afferent information on poten-
tially negative emotional signals from the thalamus and the sensory association 
cortex. The bla activates the cea either directly through an excitatory glutamater-
gic pathway or indirectly by activating a relay of inhibitory gabaergic interneurons 
that lie between the bla and the cea and exert an inhibitory influence upon the lat-
ter [29,30]. The cea is the principal efferent pathway from the amygdala. Inhibitory 
gabaergic neurons project from the cea to the hypothalamus and brainstem; the 
activation of these neurons leads to the somatic manifestations of anxiety [31]. 
Projections to other basal forebrain nuclei such as the ventrotegmental area and 
the locus ceruleus may be involved in the subjective effects that are related to anx-
iety, such as apprehension and dysphoria [32]. In addition, neurons from the bla 
also activate cells in the adjacent bed nucleus of the stria terminalis, which project 
to the same areas as the cea and apparently play a similar role [28,32]. 

The knowledge about the neurobiology underlining anxiety disorders serves as the 
basis for the search of novel anxiolytic agents. Compounds that manipulate this 
potential pathway may provide new options for the treatment of anxiety disorders. 
Moreover, neuroimaging and neurophysiological measurements that address the 
corresponding processes may be used to assess human responses to drug-mediat-
ed target modulation. 

the involvement of gaba system in the pathophysiology 
ofanxiety and anxiety disorders

Mounting evidence has suggested the pathogenesis of human anxiety disorders is 
related to a dysfunction of central top-down inhibitory mechanisms. By providing 
the major source of inhibitory neurotransmission in the mpfc and amygdala, gaba 
exerts a powerful influence on a range of fear- and anxiety-related behaviours, 
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including fear extinction [33-37]. Temporary inactivation induced by gaba(a) 
receptor agonists has been implicated to establish necessary contribution of the 
infralimbic subregion or basolateral amygdala (bla) (but not prelimbic cortex) to 
fear extinction [38,39]. Infusions of gaba or gaba receptor agonists into the amyg-
dala were found reducing measures of fear and anxiety (possibly related to effects 
on memory reconsolidation) in several animal species [40,41]. On the other hand, 
infusion of the gaba antagonist bicuculline was found to block chlordiazepoxide-in-
duced anxiolytic-like activity in rats, whereas injecting bicuculline methiodide to 
the anterior basolateral amygdala of rats elicited anxiogenic-like effects in both 
the social interaction paradigm and the conflict paradigm. Microinjection of bicu-
culline methiodide into the central nucleus of the amygdala elicited no change in 
experimental anxiety [42].

In humans, administration of benzodiazepines is translated to anxiolytic effect by 
attenuating amygdala activation in response to negative emotional stimuli [43,44]. 
To the contrary, Nutt et al. [45] performed an interesting study, in which they 
injected the benzodiazepine-antagonist flumazenil to 10 patients with panic disor-
der and 10 control subjects. Subjective anxiety responses after flumazenil infusion 
were significantly higher in patients with panic disorder than in the controls, and 
panic attacks were successfully induced in eight patients with panic disorder but 
no panic attack occurred in the controls.   Although such findings have not been 
replicated [46], they are regarded as a potential signal for the possible shift of 
the ‘‘receptor set-point’’ [45]. Nikolaus et al reviewed 14 nuclear neuroimaging 
(Positron emission tomography [pet] and Single-Photon Emission Computed 
Tomography [spect]) studies conducted in patients with anxiety disorders (160 
patients [mostly gad patients] vs. 172 healthy controls). They identified a wide-
spread decline of gaba(a)  receptor  binding sites and reduced binding extent in 
the whole mesolimbocortical system in patients suffering from anxiety disorders, 
suggesting attenuation of physiological central depression. The disturbances of the 
downstream dopaminergic and serotonergic neurotransmission are thought to, at 
least partly, result from the diminished tone of gabaergic neurotransmission [47]. 
A decrease of cortical gaba neurons and reduction of gaba levels were reported in 
patients with major depressive disorder (mdd) using proton magnetic resonance 
spectroscopy [48]. Considering the frequent comorbidity of mdd with anxiety 
states, a shared underlying pathology that emphasizes the causal contribution of 
gabaergic deficit is proposed for both anxiety disorders and depression [49-51]. 
Similar gaba(a) receptors reduction is also seen in patients with panic anxiety 
or post-trauma stress disorder (ptsd). Noteworthy, the extent of gaba(a) recep-
tor deficit is significantly correlated to the clinical severity of these two disorders 
[52-56], suggesting an ‘exposure’-response relationship and hence reinforcing the 
contribution of gabaergic deficit to anxiety status.
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In summary, all aforementioned research findings suggest gabaergic neurotrans-
mission in the mpfc-amygdala coupling is a promising target for modulation of 
anxiety-related responses. 

gaba(a) receptor structure, function, and its implication  
in the pharmacotherapy of anxiety disorders 

The discovery of the gaba(a) receptor in the 1970s, originally called benzodiazepine 
receptor, was essential for elaborating the mechanism of action of benzodiazepines, 
it was the recognition of benzodiazepine-sensitive gaba(a) receptor subtypes that 
opened up a new gaba pharmacology [57]. 

gaba(a) receptors belong to the class of ligand-gated ion channels [58]. The gab-
a(a) receptors are hetero-pentamers traversing the neuronal membrane. To date, a 
large number of gaba(a) receptor subtypes have been identified: α 1-6, ß 1-3, γ 1-3,  
∆, δ 1-3, θ, π [59]. The majority of gaba(a) receptors in the brain are comprised of two 
α subunits, two ß subunits, and a γ sub-unit. These subunits construct a cylinder. 
Activation of the receptor by gaba leads to a conformational change in the protein 
subunits and results in transient opening of a pore along the axis of the cylinder, 
allowing the flow of chloride ions from one side of the membrane to another [60]. 
The pharmacological interaction between benzodiazepines and gaba(a) receptors 
occurs at a different site independent from the gaba binding site on the gaba(a) 
receptor. gaba binds within the two interfaces between the α and ß subunits on 
the gaba(a) receptor. Benzodiazepines bind within the interface between the α 
and γ sub-units, thereby potentiating gaba-related activation of the chloride con-
ductance through allosteric modulation [61]. Nevertheless, such benzodiazepine 
recognition site does not exist in all α and γ2 subunit combinations. Therefore, 
although gaba(a) receptors containing ß, γ2 plus either α1, α2, α3, or α5 subunits pos-
sess a binding site for classical benzodiazepines, analogous receptors containing α4 
or α6 subunits do not. The research by Seeburg et al has attributed the benzodiaze-
pine-sensitivity of α1, α2, α3, and α5 subunits to the histidine residue in a homologous 
position in their N-terminal extracellular region, which switches to an arginine res-
idue in the benzodiazepine-insensitive α4 and α6 subunits [62].
Given the evolutional preservation of the gaba(a)/Gly receptor-like (grl) gene 
sequences in the vertebrates [63], the function of each gaba(a) receptor subunit 
was initially investigated through a gene knock-out approach. Thanks to the gained 
experience in gene targeting techniques that enables introduction of specific point 
mutations, and the recognition that a single amino acid residue in the α subunit 
determines the sensitivity of a gaba(a) receptor to diazepam, point mutation 
of the histidine to an arginine in the α1, α2, α3, and α5 subunits was employed in in 
vivo animal studies to convey the interaction between benzodiazepines and the 
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α1,2,3,5-containing gaba(a) receptors from agonism to inverse agonism [64]. This 
knock-in approach was used to investigate the underlying pharmacological action 
of the manipulated receptor subunit. 

Based on various experimental knock-in and knock-out mice models, α1-containing 
gaba(a) receptors are linked to sedative effect [65-68], while spinal α2/α3 gaba(a) 
receptors are found to mediate analgesia [69-71] and α5-containing gaba(a) recep-
tors, which relatively specifically express in the hippocampus (the central domain 
for learning and memory), are associated with cognition [72-77]. The gaba(a) sub-
type responsible for the anxiolytic effects of benzodiazepines are less clear. The 
involvement of α2 gaba(a) receptors in anxiolysis is anticipated given their high 
expression in human amygdala-prefrontal circuitry [78,79]. Most studies suggest 
that the α2 rather than the α3 subtype is related to the benzodiazepines-induced 
anxiolysis [80,81], while pharmacological studies using either an α3-selective 
inverse agonist [82] or an α3-selective agonist [83] implicates the α3 subtype. Despite 
of the controversies, the affinity and efficacy of current investigational compounds 
acting at the α2 and α3 subtypes are mostly similar at the α2- and α3- subunits con-
taining gaba(a) receptors [84].

novel α2,3-subtype selective compounds for anxiolysis

In contrast to other areas of pharmacology, in the field of gabaergic receptor 
modulator, it has been particularly difficult for medicinal chemists to develop sub-
type-selective ligands [85], mainly because the high flexibility of gaba(a) receptors 
and the existence of multiple drug-binding sites. In addition, the distinct subunit 
composition among the gaba(a)  receptor subtypes, the contribution of distinct 
subunit sequences to binding sites of different receptor subtypes, as well as the 
fact that even subunits not directly connected to a binding site are able to influ-
ence affinity and efficacy of drugs, contribute to a unique pharmacology of each  
gaba(a) receptor subtype [86].

The binding and efficacy profiles of candidate α2,3 subtype-selective drugs can 
be classified to either binding-selectivity or efficacy-selectivity. A compound 
with binding-selectivity is expected to have higher affinity for α2 and/or α3 sub-
types in vitro and hence specific receptor occupancy and cns distribution in vivo. 
Even though the compound may have comparable efficacy at the four benzodi-
azepine-sensitive gaba(a) receptor subtypes, its pharmacological selectivity is 
determined in vivo by preferential occupancy. As for efficacy-selectivity, an ideal 
compound should have opposite pharmacological interactions at different sub-
types. In other words, it should exert agonism at the α2,3 subtypes whereas present 
antagonism or inverse agonsim at the α1 and α5 subtypes. Between these two 
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extreme conditions, there could be multiple permutations, including a compound 
behaves as a full agonist or a relatively high partial agonist at α2 and/or α3 subtypes 
but has weak or none activity at the α1 and α5 subtypes. 

Based on these principles, a number of conceptually gaba(a) α2,3 subtype-selec-
tive compounds have been identified through in vitro studies using recombinant 
human gaba(a) receptors and carried forward into clinical development. Because 
of their pharmacological selectivity, these compounds are expected to have favor-
able therapeutic effect with less sedating or cognition impairing effect. Table 1 
listed the in vitro pharmacological properties of these novel gabaergic compounds.

Table 1 • In vitro pharmacological properties of the gabaergic compounds

α1 α2 α3 α5

Compound Ki1 
(nM)

Efficacy2 
(%)

Ki 
(nM)

Efficacy 
(%)

Ki 
(nM)

Efficacy 
(%)

Ki 
(nM)

Efficacy 
(%)

tpa0233 0.27 0# 0.31 11 0.19 21 0.41 5 

mk-03433 0.22 18 0.40 23 0.21 45 0.23 18 

sl65.14984 17 45 73 115 80 83 215 48 

Zolpidem 20 755 400 (d) 785 400 (d) 805 5000(d) 95 

azd73256 0.5 0 0.3 18 1.3 15 230 8

azd62807 0.5 0 21 32 31 34 1680 7

ns118218 1.6 4 9.7 17 3.8 40 2.5 41 
1. Ki = constant of receptor-subtype binding / 2. Relative efficacy is defined as the extent of the potentiation of 

gaba(a) ec20-equivalent current produced by the compound compared to that produced by a nonselective 
full agonist (chlordiazepoxide/diazepam) / 3. Mean values of 3 experiments in Xenopus oocytes with human 

recombinant αß3γ2 receptors; efficacy relative to chlordiazepoxide [86,89] / 4. Mean values of 3 experiments in 
hek293 cells with recombinant rat receptors αß2γ2; efficacy relative to chlordiazepoxide [97] / 5. Mean values 

of 3 experiments in Xenopus oocytes with human recombinant αß2γ2 receptor; efficacy relative to diazepam 
[98,99] / 6. Data adapted from [100] / 7. Data adapted from [101] / 8. Data adapted from [102].

evaluation of human pharmacology

bzds exert their cns actions in a concentration-dependent manner [87]. The 
anxiolytic, hypnotic, muscle relaxant, and amnesic effects of benzodiazepines 
generally appear concomitantly, and the onset and duration of action correlate 
closely with the pharmacokinetic profiles of these compounds. Based on non-
clinical investigations using in vitro assays and animal models of anxiety, the 
human pharmacology of novel gabaergic agents is approached through clinical 
pharmacology studies investigating pharmacokinetics, receptor occupancy, and 
pharmacodynamics (pd) in healthy volunteers. Direct links have been proposed 
between plasma drug concentration and gaba receptor occupancy [84], as well as 
between plasma drug concentration and the pharmacodynamic measurements 
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[88-91]. Such pharmacokinetic/pharmacodynamic (pk/pd) relationships warrant 
the use of surrogate biomarkers in healthy volunteers treated with single-dose 
administration of selective novel gabaergic compound(s).

More than 170 pharmacodynamic tests or test variants have been developed to 
assess the cns effects of benzodiazepines. De Visser et al. [87] analyzed the inter-
study consistency, sensitivity, and pharmacological specificity of the frequently 
used biomarkers. Saccadic peak velocity (spv) and visual analogue scale of alertness 
(vasalertness) were identified as the most sensitive parameters for benzodiazepines. 
Both measurements showed consistently dose-dependent responses to a variety 
of benzodiazepines. Based on these finding, the Centre for Human Drug Research 
(chdr) has established a selection of computerized cns-pharmacodynamic tests 
called the Neurocart battery [92]. The components of this battery target a variety of 
neurophysiological and/or neuropsychological domains (Table 2). 

Table 2 • Component tests of the Neurocart battery and the related cns domains

Neurocart test Targeted function Related cns domains
Saccadic eye movement Neurophysiologic function Superior colliculus, substantia nigra, amygdala

Smooth pursuit Neurophysiologic function Midbrain

Adaptive tracking Visuo-motor coordination Neocortex, basal nuclei, brain stem, cerebellum

Body sway Balance Cerebellum, brain stem

Visual verbal learning test (vvlt) Memory Hippocampus

vas Bond and Lader Alertness, mood, calmness Cortex, prefrontal cortex

vas Bowdle Feeling high, internal and 
external perception

Cortex, prefrontal cortex, amygdala

Of this battery, adaptive tracking, saccadic eye movements, and body sway were 
proven sensitive to the sedating effects of sleep deprivation [93], as well as to the 
effects of benzodiazepines and other gabaergic hypnotic drugs [89,91]. In the 
recent years, the Neurocart battery was used in a series of phase I studies to assess 
cns pharmacodynamics of partial α2,3 subtype selective gaba(a) agonists. Both 
nonselective and/or selective gaba(a) agonists were administered as single oral 
dose to healthy volunteers. Clear distinctions were observed between the effect 
profile of non-subtype-selective full gaba(a) agonist and that of selective partial 
gaba(a) agonist in these trials [88-90], probably because the subtype specificity 
of the pharmacodynamic measurements for the pharmacological modulation of  
gaba(a)-ergic compounds. Unfortunately, none of the novel receptor subtype-se-
lective compounds have reached the market: the development of gaba(a) receptor 
α2 and α3 subunit agonist sl65.1498 [90], was discontinued owing to unexpect-
ed amnestic effects, while the phase 2 studies of another compound of this drug 
class, tpa023, were terminated prematurally due to preclinical toxicity (cataract 
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formation) in long-term dosing studies [94], despite exhibiting anxioselective 
activity in gad; mk-0343 also displayed an anxioselective profile in animal models 
but produced sedation in humans at low levels of receptor occupancy (<10%) [95]. 

In summary, these reports indicate that the human pharmacodynamic approach 
with sensitive and cns-domain specific neuropsychological and neurophysiologi-
cal measures is useful in predicting the drug’s clinical effect on the central nervous 
system. Inter-species difference is also noted between human and rodents or pri-
mates: although a low in vitro efficacy at the α1-containing gaba(a) receptors may 
not lead to an overtly sedative effect in the experimental animals, it apparently 
causes sedation in humans at comparable exposure levels. The following questions 
remain to be answered: 1) is reduction of saccadic peak velocity a promising surro-
gate marker for clinical anxiolysis? 2) can we also differentiate partial agonism from 
the full agonism of benzodiazepines via this pharmacodynamic package? 3) is such 
selective cns-pharmacodynamic effect profile characteristic for the family of gab-
a(a) α2,3-subtype receptor agonists? 

conclusion and aim of thesis 

Anxiety disorders are highly prevalent psychiatric disorders and have high personal 
and societal costs. The transition from ‘‘normal’’ negative affect or anxiety to an anx-
iety disorder is implemented by the interplay between psychosocial stressors and 
a wide array of neurobiological alterations which lead to subjective suffering and 
functional impairment. Monoamine modulating treatments are widely applied to 
treat anxiety disorders but are not effective in a large proportion of patients. As the 
predominant inhibitory neurotransmitter system in the human brain, the gabaer-
gic system in general and its α2,3 subunit-containing gaba(a) receptor subtypes in 
particular, have been implicated in the pathophysiology of anxiety disorders. Novel 
pharmacological treatments selectively targeting the anxiolysis-mediating gab-
a(a) receptor subtypes are currently emerging. These range from affinity-selective 
agents to efficacy-selective agents and represent potentially useful future pharma-
cological treatments for anxiety disorders [95]. 

In this thesis, we report several human pharmacology studies that were performed 
to identify the pharmacologically active doses/exposure levels of several novel 
compounds with potential anxiolytic effects (Chapter 2, 3, 4). Because of their 
pharmacological selectivity at the α2,3 gaba(a) receptor subtypes, the novel drugs 
were expected to elicit clinical anxiolysis and less sedating effects. An overview of 
the performance of the selected and validated pharmacodynamic measurements 
is composed to summarize the utility of these neurophysiological and neuropsy-
chological biomarkers in early clinical development of novel anxiolytic drugs 
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(Chapter 5). However, the difficulty of evaluating therapeutic anxiolytic drug 
effects in healthy volunteers has led to further explorations on the neuroendocrine  
biomarkers (Chapter 6) and the integration of a stress-challenging procedure into 
the evaluations (Chapter 7).
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