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Abstract: Current wavefront sensors for high resolution imaging have either a large dynamic
range or a high sensitivity. A new kind of wavefront sensor is developed which can have both:
the Generalised Optical Differentiation wavefront sensor. This new wavefront sensor is based on
the principles of optical differentiation by amplitude filters. We have extended the theory behind
linear optical differentiation and generalised it to nonlinear filters. We used numerical simulations
and laboratory experiments to investigate the properties of the generalised wavefront sensor.
With this we created a new filter that can decouple the dynamic range from the sensitivity. These
properties make it suitable for adaptive optic systems where a large range of phase aberrations
have to measured with high precision.
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1. Introduction

Adaptive optics is used in many fields to correct aberrations created by turbulent media such
as the atmosphere or intracellular fluids [1–3]. We do not have control over these turbulent
processes, and their effects change on very short time scales and create completely different
environments [4]. Because of this it is important to be able to measure the wavefront aberrations
in a large range of conditions. These measurements have to be done with sufficient precision
and accuracy so that the applied correction compensates the aberrated wavefront. These two
requirements of dynamic range and sensitivity are coupled in most of the current wavefront
sensors. If the dynamic range of the wavefront sensor is increased the sensitivity will suffer and
vice versa which is shown in Table 1.

The most commonly used wavefront sensor is the Shack-Hartmann wavefront sensor
[5](SHWFS), which uses a lenslet array to sample the wavefront. From the array of spots
the wavefront gradient can be reconstructed. But the SHWFS is not optimal for high resolution
phase measurements [6] because the number of phase measurements is directly coupled with the
dynamic range and sensitivity.

The pyramid wavefront sensor [7–9] (PWFS) uses a pyramidal prism to split the focal plane
in four quadrants. For the PWFS the number of phase measurements is only dependent on the
amount of pixels that are used to sample each pupil. So the sensitivity and dynamic range are
independent from the number of phase measurements. This is already a clear advantage for the
PWFS. The downside of the PWFS is the limited dynamic range. The dynamic range of the
PWFS can be increased by dynamic modulation [7, 10]. By increasing the modulation radius the
dynamic range becomes larger, but the sensitivity decreases.

The Optical Differentiation wavefront sensor (ODWFS) [11–16] works on the basis of filtering
light with a linear amplitude filter in a focal plane filtering setup. This can be thought of as a
continuous Foucault knife edge test instead of the normal discrete knife edge test. This wavefront
sensor has the opposite characteristics of the PWFS. The dynamic range of the ODWFS is very
high, but the sensitivity is low.

In Table 1 there is an overview of the characteristics of the WFSs that are discussed in this
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Table 1. Overview of different wavefront sensors. The dynamic range is the maximal local tilt
that can be measured and the sensitivity is the variance in the wavefront measurements due
to photon noise. The variables stand for; D the entrance aperture diameter, λ the wavelength,
N is the number of photons per phase measurement, Nsubap is the amount of sub-apertures
of the SHWFS, and Na is the number of Airy rings that fit within the field of view of the
WFS. For the ODWFS the field of view is the size of the filter, for the MPWFS it is the
modulation radius and for the SHWFS it is the lenslet field of view. These relations were
adapted from [6, 7, 14]

Wavefront sensor Dynamic range Sensitivity
SHWSF NaNsubapλ/D NaNsubapλ/

√
2ND

PWFS λ/D λ/
√

2ND
MPWFS Naλ/D Naλ/

√
2ND

ODWFS Naλ/D Naλ/
√

2ND

paper. The expression for the dynamic range of the PWFS, MPWFS and ODWFS are very
similar. This is because their working principle is the same. The PWFS is the same as an ODWFS
but with a very small amplitude filter, and the modulation of the MPWFS acts as creating an
effectively linear amplitude filter. The MPWFS is originally also based on the work by phase
visualization technique of Bortz with amplitude filters [12]. The dynamic ranges of these WFSs
are limited by the edge where the transmission becomes one. For an infinite steep curve such as
the PWFS, the dynamic range is limited by the size of the Airy disk. This is also the case for the
other two, but usually Na is much larger than 1 so the finite size of the spot can be ignored. The
expression for the dynamic range of the SHWFS is different because it’s measurement are done
in the pupil plane instead of the focal plane as the others do. The dynamic range is limited to the
field of view of a single lenslet, which is twice the NA of the lenslet.

What can be read from the sensitivity column is that all of them are proportional to λ/D.
Increasing the size of the optical system thus always leads to a two fold advantage. The size
of the spot becomes smaller and there are more photons. But increasing the aperture diameter
also decreases the dynamic range. As can be seen in this table there is a linear trade off between
dynamic range and sensitivity. If the dynamic range is increased by a factor of two, the sensitivity
will go down by a factor of two. This holds for all the WFS’s that are discussed here. For the
SHWFS this is only true if the number of detector pixels is fixed, which is often a real constrain
in optical design.

The trade off can be partially bypassed by using two wavefront sensors, one for the large low
order modes, and one for the higher order modes. This is not the best solution, because this
will introduce non-common path errors (NCP) between the WFS’s due to misalignment or non
perfect optics. The NCPs can be minimized by placing the WFS’s as close together as possible,
which is used in the Very Linear Wavefront sensor [17]. Next to the NCPs errors that can be
introduced due to technical difficulties, the amount of photons will also be split up. With fewer
photons the measurement noise will increase.

The solution proposed here is the combination of both a PWFS and the ODWFS in a single
wavefront sensor. This is the Generalised Optical Differentiation wavefront sensor (G-ODWFS).
By generalizing optical differentiation to nonlinear filters a new shape for the amplitude filter
could be created, which has both a high sensitivity and a high dynamic range. By combining
them in one WFS the NCP errors are avoided and all the photons are used in one measurement,
and this increases the signal to noise.

In Section 2 the principles of generalised optical differentiation are shown together with the
discussion of a new filter shape. In Section 3 numerical simulations are used to compare the
G-ODWFS to the PWFS and ODWFS. The 4th Section shows the experimental results in the
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lab with a prototype. The 5th Section discussed a possible design for high speed broadband
operation.

2. Principles of generalised optical differentiation

2.1. Focal plane filtering

The complex field of a coherent source at the entrance aperture of an optical system is

Uin = A(~r)exp(iφ(~r)) (1)

where A is the amplitude of incoming light and φ is the phase. For an aberration free point source
both A(~r) and φ(~r) are constant over the entrance aperture. The effects of Fourier filtering of this
complex field can be described by,

UT = F {T ·F {Uin}} (2)

,where UT is the final complex field, Uin is the input field and T is the spatial filter. The effects of
a continuous spatial filter can be easily evaluated analytically by using a Taylor expansion of the
spatial filter,

T (kx,ky) =
∞

∑
n=0

tn

(
kx

km

)n

, (3)

where T is the filter function, tn is the nth order coefficient, kx the spatial frequency in the
x direction and km the maximal spatial frequency which is set by the size of the filter. This
normalization reduces the spatial frequency coordinates to kx/km ∈ [−1,1]. Spatial frequencies
are used here because the filter is in the focal plane. The expansion can be substituted in Eq. (2).

UT = F

{
∞

∑
n=0

tn

(
kx

km

)n

·F {Uin}
}
. (4)

The Fourier transform is linear so the order of the summation and the transform can be exchanged,

UT =
∞

∑
n=0

tnF
{(

kx

km

)n

·F {Uin}
}
. (5)

The intensity of the pupil image consists of two terms; one with the power of the modes
themselves, and one with all the cross terms. With Un = F

{(
kx
km

)n
·F {Uin}

}
, which is the

electric field response due to the nth filter mode, the intensity is then given by

IT =
∞

∑
n=0

t2
n |Un|2 +2 ∑

m6=n
tntmℜ{UnU∗m}. (6)

2.2. Wavefront sensing by spatial filtering

It is possible to retrieve the phase of the incoming field with the results of the previous section.
Two mirrored amplitude filters are used for the retrieval. Mirroring a function has two effects,
the even part of the function stays the same but the odd part switches sign. In the case of a basis
expansion the coefficients of the even modes will stay the same but the coefficients of the odd
modes will switch sign. For the mirrored filters, denoted T and R, this results in

T (kx,ky) = R(−kx,ky), (7)
tn = (−1)nrn, (8)
t2
n = r2

n. (9)
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Here tn and rn are the nth basis coefficients of respectively the T and R filter. Both filters will
make a pupil plane image given by Eq. (6). The difference between the two pupil images is

IR− IT = ∑
m6=n,n+m=odd

4tntmℜ{UnU∗m}. (10)

The sum is over all modes where n and m are different and the sum of the two are odd. The first
such a combination is 0,1. These two modes are used to sense the phase gradient. The zeroth
order mode is a constant, so U0 =Uin. Each higher order Taylor term multiplies the electric field
by a power law and the result of filtering by a power law is

F {kn
x ·F {U(~r)}}= (−i)n ∂ nU(~r)

∂xn . (11)

The wavefront gradient is encoded by the first order terms of the expansion. So the filter
coefficients should have the property tn << t1, t0 for n > 1. If terms higher than the first order
are negligible and if U0 and U1 are substituted, the intensity difference is,

IR− IT = 4
t0t1
km

φxA2. (12)

Here φx is phase derivative in the x direction. This is still proportional to the amplitude of the
incoming electric field. This can be solved by dividing through the sum of the two pupil images
that can be shown to be,

IR + IT = 2
∞

∑
n=0

t2
n |Un|2 +4 ∑

n6=mn+m=even
tntmℜ{UnU∗m}. (13)

Here the sum is over all the power in the modes themselves and over the combinations where m
and n are not equal. This time the sum of the two should be even. The difference in outcome
can be thought of as the equivalent between retrieving the odd and even part of a function. If the
terms to first order are retained the sum of pupil intensities become,

IT + IR = 2t2
0 A2

(
1+
[

t1
kmt0

]2
{(

Ax

A

)2

+φ
2
x

})
. (14)

Here Ax is the derivative of the amplitude in the x direction. In this sum the two terms on the
right can influence the normalisation. The first one is due to amplitude changes. The most
extreme example is the edge of the telescope, where the transmission changes from 1 to 0. When
reconstructing the phase from the pupil images the edges should be treated very carefully. A
solution for this is to ignore the edge pixels [15]. Other amplitude aberrations could come from
the intrinsic amplitude changes in the coherent source. These are no problems as long as the
amplitude changes are small compared to the absolute amplitude. The second normalisation bias
is due to the phase aberration itself. In most cases, and certainly in closed loop AO operation,
(t1/t0φx)

2 is much smaller than 1. So for atmospheric turbulence this can be neglected.
The normalised difference then becomes

IR− IT

IR + IT
≈ 2t1

kmt0
φx. (15)

Conceptually this can be seen as response of the phase derivative to the normalised derivative
of the filter. For an incoherent source each contributing source point can be added in intensity,
which gives the following normalised difference

IR− IT

IR + IT
≈ 2t1

kmt0
∑

Ni
i=0 A2

i φx,i
Ni
∑

i=0
A2

i

=
2t1

kmt0
〈φx〉I . (16)
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So for an incoherent source the intensity-averaged phase gradient is measured. The incoherent
source should be smaller than the whole filter for the previous equation to hold.

For broadband conditions the filter size scales with wavelength, as km is a function of wave-
length. For a broadband source with a bandwidth of ∆λ centred around λ0 the following equation
holds,

IR− IT

IR + IT
≈ 2t1

t0

∫ λ0+∆λ/2
λ0−∆λ/2 A2φxk−1

m dλ∫ λ0+∆λ/2
λ0−∆λ/2 A2dλ

=
2t1
t0
〈φxk−1

m 〉λ . (17)

This is the spectrally weighted response. From this expression it can also be shown that the
wavefront sensor will measure the wavefront gradient achromatically. The product of φx and k−1

m
is,

φxk−1
m = k−1

m k
∂W
∂x

. (18)

Here W is the wavefront to be measured. The wavelength dependency of km and φx cancel each
other in the product, because km is proportional to the wave number k.

Without assuming a certain shape for the filter a few properties of these optical derivative
filters can be determined. First of all if a linear filter is used this formulation is exact, no higher
order terms are measured. This means that when the phase has to be sensed without influences of
higher order derivatives, the filter should be linear. The shape of the linear filter can be seen in
Fig. 1.
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Fig. 1. The three filters used in the simulations: linear, step and sigmoid. The figure on the
right shows the derivative of the filters. The derivative of the step filter is not shown since
that is an infinitely high delta function.

The second property is the sensitivity. The sensitivity is how well a change in phase can be
sensed with a given number of photons. This can also be seen as how efficient a WFS is at
retrieving phase information from a single photon. The sensitivity is inversely proportional to the
slope of the filter,

Var[φx] =

(
kmt0
2t1

)2

Var
[

IR− IT

IR + IT

]
. (19)

The variance of the normalized differences can be estimated using propagation of errors. Because
gradients are measured only half of the available photons can be used per phase gradient
measurement. The final phase measurement noise per sub-aperture with read noise included is
then

Var [φx] ≤
(

kmt0
2t1

)2(
2
N +

8σ2
read

N2

)
. (20)
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Here N is the total amount of photons for both directions and σ2
read is the variance of the read

noise. The variance in the equation above is only an upper limit and changes when the light is
unevenly distributed between two pupils.

The dynamic range is set by the bounds where the filter reaches 0 and 1 in transmission.
A larger dynamic range requires a larger physical filter, but this creates a shallower slope. A
shallower slope results in a lower sensitivity as can be seen from Eq. (20). If the filter becomes
larger then km also becomes larger, and the sensitivity of the phase measurements is proportional
with km. So here we see essentially the same trade-off that the SHWFS and the modulated PWFS
have. There is a linear trade off between the dynamic range and sensitivity. The only method
to go around this trade off is by tweaking the filter profile in such a way that t1 becomes larger
without decreasing the size of the filter. The change in t1 by considering other filter shapes, like a
square root profile, is small and is on the order of unity. This means that global changes to the
filter will not lead to a better trade off. A non linear trade off is possible by making local changes
to the filter shape as will be shown in the next section.

2.3. Design of a novel, hybrid filter

Considering the previous section there are two extreme filter shapes. The first is a linear function,
which has the highest dynamic range for a given filter size. The second is a step filter, which has
the highest sensitivity because of the infinitely steep slope. Both filters can be seen in Fig. 1.
Both filters have been used before in WFS’s. The linear filter is the ODWFS, and the step filter is
a PWFS.

Step filters have the lowest noise propagation, due to the steepness, and are the most sensitive
to phase changes. But the dynamic range is very small, due to the zero width of the step. Another
effect of the step function is the discrete change in amplitude. This creates a lot of higher order
modes in the basis expansion. These higher order effects diffract the light away from the modes
that are used for wavefront sensing.

By combining the two extreme filters, we can trade off the sensitivity and the dynamic range
by tweaking their relative power and create a filter that is optimal made for the problem at
hand. The linear combination of the two extreme filters lead to a linear filter with a step in the
middle. By adding the step the noise propagation will be better, but the step adds a discontinuity.
The discontinuity creates strong diffraction effects by inclusion of higher order modes, which
decrease the sensitivity. To reduce the diffraction the step should be a smooth function for which
the width and height of the step can be easily controlled. This is realised with the following
Fermi function like profile

T (kx,ky) =
(1−β )

2

(
1+

kx

km

)
+

β

1+ exp
(
− kx

σkm

) . (21)

This profile is the sum of a linear function with a sigmoid function. The t0 and t1 parameters are
both 1/2 for a linear filter which is included in the pre factor. The parameter β determines the
relative size of the step and σ the width of the step. An example of this filter is shown in Fig. 1.
To create a linear filter β → 0, and to create a step [β → 1,σ → 0]. With this filter shape it is
possible to interpolate between the two extremes. To determine the useful parameter space of the
filter we consider the case when β is very small and the case where σ is very large. If β is very
small then the filter will still act like the linear filter and nothing is gained over the linear one.
By increasing σ the width of the step is increased, and at a certain point the width of the step is
larger than the filter size. In that case exp(−k/σkm)≈ 1 and the function is well described by

T (kx,ky) =
1−β

2

(
1+

kx

km

)
+

β

2
, (22)
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a linear filter with decreased response.
Therefore if the G-ODWFS wavefront sensor has to be sensitive, the step width should be

small. By making the step small in width, it will at a certain point become smaller than the Airy
pattern of the optical system. This will increase the amount of power that is diffracted away,
like in a PWFS. In the case that the step width becomes much smaller than the airy disk, the
sigmoid profile can be regarded as a step function. In this case the gain can not be calculated by
using Eq. (15). It is also not possible give an explicit expression for the gain for large wavefront
aberrations, due to the step. The proportionality constant has to be calculated numerically. For
small wavefront aberrations the response can be derived analytically. It is the direct sum of a
linear filter and a step filter weighted by their relative importance. So the normalised difference
is,

IR− IT

IR + IT
≈ (1−β )

2t1
kmt0

φ
′+β

D
π

φ
′. (23)

with D the aperture diameter. The response for the step is taken the same as that of a PWFS [18].
The step height is independent from the filter size for this profile, and this decouples the sensitivity
from the dynamic range. Now that the sensitivity no longer is coupled to the dynamic range, it
will be possible to create a filter where the sensitivity and dynamic range can be independently
chosen for the science at hand. There is still a small coupling between the two parameters but
the trade off becomes highly non linear. Only in the extreme case when β approaches 1 will the
coupling increase.

The size of the filter can be expressed in the number of Airy rings it encompasses. The
maximal spatial frequency then becomes km = 2πNA/D, with NA the number of airy rings. The
relative gain in sensitivity of the G-ODWFS compared to that of the pyramid is then

gH

gPWFS
= β +

1−β

2NA
. (24)

Here we can see that the relative gain for small wavefront aberrations is almost independent of
the size of the filter. The relative sensitivity of the wavefront sensor is thus β . If the step size
is 1/3 we expect that the WFS will be 3 less sensitive than the PWFS. If the filter becomes
smaller in size the gain will converge to the gain of a PWFS. So here we see the non-linear trade
off between sensitivity and dynamic range. The dynamic range can be arbitrarily increased by
creating a larger filter. This creates a lower sensitivity for large aberrations but the sensitivity for
small wavefront aberrations will not be influenced.

This is a convenient property for closed loop AO systems. Because as the AO system feedback
loop is closed it will start to correct for wavefront errors, and at the moment the wavefront errors
are small enough the WFS will have an increased sensitivity. The benefit of this over a pure step
filter is that there is still some response for large aberrations. This increases the locking speed of
the AO system, which is help full in dynamic conditions where the wavefront errors can change
rapidly. The benefit of this over a linear filter is the increased sensitivity for small aberrations.

The direct combination of the two profiles has an advantage over the method with two separate
WFSs. Suppose there is a way to split the photons up between the two WFSs with a ratio of
β . Because the photons are split up before detection the photons on one sensor will not help
to reduce the photon noise on the other. While this is the case when you directly combine the
two. If a the step is included in the linear filter then for large aberrations there is already a
larger difference between the pupil images intensities. This increases the SNR of the normalized
differences compared to a standard ODWFS.
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3. Simulations

3.1. Simulation set-up

A simple closed-loop system with a time-variable phase screen is implemented to test the G-
ODWFS. The dynamic phase screens simulate the effects of imaging through the atmosphere
when looking at a point source. The atmospheric turbulence is modelled by using a Fourier series
based expansion [19]. The effects of the complete atmosphere are concentrated in several layers.
The strength and height of each layer is taken from Guyon [6].The temporal evolution of a single
phase screen is assumed to follow Taylor’s Frozen flow [20]. The wind speed is set to 10 m/s
and the direction is randomly chosen. The current implementation uses a modified Von-Karman
power spectrum [21] with a 100 m outer scale [22] and a 1 mm inner scale, with 150 by 150
samples in the Fourier domain and 256 by 256 samples in the real domain.

The deformable mirror is modelled as perfect because only the effects of the wavefront sensor
are of interest. The shape of the deformable mirror is given by a superposition of a modal basis
φ = ∑

N
n=1 anMn, where an is the nth modal coefficient and Mn is the nth mode. The Karhunen-

Loeve basis with a Kolmogorov spectrum is used, because there is no analytical expression for
the covariance function of the modified Von-Karman spectrum. The basis is created by direct
decomposition of the covariance matrix of the power spectrum over the telescope aperture [23].
For all simulations a 100-mode deformable mirror is used.
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Reconstructed
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Fig. 2. In this figure a single measurement loop is shown. The measurements start with a
phase distortion caused by either the atmosphere or a non flat shape of the deformable mirror.
This creates an aberrated psf, which is then split up in four copies. Each copy is filtered
by a differently oriented amplitude filter. The amplitude filter in this example is the hybrid
filter, with β = 1/3. Another propagation creates four pupil images. The pupil images are
then combined to retrieve the wavefront gradients. From the wavefront gradients the input
wavefront is reconstructed with the matrix-vector multiplication method.

The wavefront sensor is simulated as shown in Fig. 2. The input wavefront is Fourier trans-
formed to create the PSF, which is then multiplied by each filter creating four new PSFs. The
total amount of filtered PFSs is four because we need two for each direction. The final PSFs are
then Fourier transformed again to create the pupils. The linear filter is simulated in the same way
as the hybrid, only the filter shape is changed. The pyramid is simulated by multiply the PSF
with a transparent quadrant. Each quadrant generates a different pupil by Fourier transforming
the filtered PSF. The interference effects between different pupils is neglected in these simulates.
This is the same as placing the pupils far away from each other.

The final pupils are all sampled on 32 by 32 pixel grids. This sampled pupil is also used
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for the wavefront reconstruction. The wavefront model coefficients are reconstructed by the
matrix-vector multiplication method [24].

The effects of photon noise and read noise are added to the final pupil images. First the total
intensity of the PSF before the filters is normalized to one and then multiplying by the total
amount of photons. With this the intrinsic loss for each filter is taken into account. For the
ODWFS and the G-ODWFS the effect of splitting the light into two for x and y is taken into
account by dividing the intensity by two. Poisson noise is then generated by using the pixel
value as the expectation value for Poisson random variables. Most wavefront sensors for high
contrast imaging use EM-CCDs with low read noise. The read noise can be much smaller than
1.0 photon-electron per pixel. To include some effects of read noise, it is approximated with a
Poisson distribution with λ = 1.0 photon-electron.

The closed loop simulation begins with the creation of an input wavefront. The phase on
the deformable mirror is then subtracted from the input phase. This creates the residual phase
pattern, which is used to measure the image quality and perform the wavefront sensing. This
is an iterative process the deformable mirror starts with a flat shape. For all simulations a time
step of 1 ms is used, together with a source flux of 1.25 ·108 photons per second. The simulation
uses a 4.2 meter telescope, so the photon flux corresponds to an 8th magnitude star. Each sub-
aperture receives roughly 155 photons per frame. Each normalised difference will have half of
the amount of photons because these have to be split up for the two gradient directions. The
simulations are all monochromatic at 0.5µm, so the wavefront sensing and the imaging is done
at the same wavelength. The performance estimates are done before correcting the current frame.
This introduces a single frame of lag.

3.2. Calibration of the AO system

To calibrate the relation between the wavefront sensor and the deformable mirror the influence
matrix has to be determined. We have,

~s = A~a, (25)

where~s is the measurement vector, A the influence matrix and~a the input signal for the DM. The
columns of the influence matrix are the slopes of the response to the input modes. This model is
linear while the gain of the new G-ODWFS is non-linear. From Eq. (23) it can be seen that there
is still a linear relation for small wavefront aberrations. So this will give the correct relation for
small wavefront errors. For larger wavefront errors the gain is reduced. So the compensation for
small wavefront errors will be correct, while the large wavefront errors are underestimated. This
does not matter in a closed-loop AO system, the large scale aberrations are then corrected in a
few iterations instead of one.

The influence matrix calibrates the gain of the filter. To determine the slope of a single mode,
two measurements have to be done. First the mode is applied to the DM with a positive modal
coefficient and then a second measurement with the same mode but with a negative modal
coefficient. This removes any bias. The two input vectors create two measurement vectors that
are combined as followed,

Ai =
~s+−~s−
a+−a−

, (26)

where Ai is the ith column of the influence matrix,~s± is the measurement corresponding to the a±
applied mode coefficient. There are two constraints when choosing the input mode coefficients for
the calibration. The wavefront sensor will not measure a response if the input coefficient creates
a response that is buried in the noise. Secondly if the input is too large either the wavefront sensor
response will saturate, or the DM will reach its maximum stroke. The input can therefore not
be chosen too small or too large. This is especially relevant for the PWFS, because its dynamic
range is very small. A small input coefficient will also lead to large errors in the influence matrix
due to the division. The influence matrix of the pyramid wavefront sensor will therefore be
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noisier than other wavefront sensors that can be calibrated with larger amplitudes. The difficulty
of calibrating a pyramid wavefront sensor has already been noted several times [25, 26].

The actuation matrix is the matrix that transforms the measurement vector back to mirror
mode coefficients. If the influence matrix is a square matrix, the actuation matrix is the inverse
of the influence matrix. Often the influence matrix is rectangular so an inverse matrix does not
exists. To create the actuation matrix the pseudo inverse of A is calculated by using singular
value decomposition (SVD). With an SVD the number of reconstructed modes can be easily
regulated by setting the unwanted modes’ singular values to zero during the inversion. For all
simulations the full inversion is used, so no singular values are set to zero.

For the simulations the calibration amplitude was set to 0.01 wave as not to saturate the PWFS.
The linear and sigmoid were calibrated with the same amplitude. The calibrations are done
without noise, as AO systems in principle can be calibrated with an internal light source so that
the amount of photons can arbitrarily increased.

3.3. Simulation results

The filters that are used in the simulations are shown in Fig. 1. The sigmoid filter is compared
to the PWFS and the ODWFS which are the extreme filters and also have been simulated and
tested in previous work. The sigmoid filter has a step size β = 1/3 and a width σ = 0.001. The
dynamic range of tip/tilt aberration for the three filters can be seen in Fig. 3. The linear filter has
the largest dynamic range and the pyramid the smallest. The sigmoid filter has the same dynamic
range as the linear filter, because the response increases as the input aberration is increased. The
slope of the response is very shallow for the larger inputs. If the response is needed at those
points, the measurement error should be very small. The pyramid wavefront sensor is limited to
a range of 1.0λ .
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Fig. 3. These two figures show the dynamic range of the filters. The figure on the right is a
zoomed version of the left figure. The input tilt coefficients on the x axis are plotted against
the measured tilt coefficients.

The metric used for comparison between wavefront sensors in the close loop simulations is
the Strehl ratio, S. Two different static cases are looked at. In the first case the phase errors
are created by a random superposition of the deformable mirror modes. All modes that are
in the phase screen can be corrected, so every deviation from perfect is then due to photon
noise. The second case uses a static atmospheric phase screen, which has more modes than the
deformable mirror can correct. This will show the errors due to the influence of uncorrected
modes and reconstruction errors. The results are shown in Fig. 4. In the case of a phase error

                                                                                                Vol. 24, No. 17 | 22 Aug 2016 | OPTICS EXPRESS 18996 



100 101 102

Iteration

10-5

10-4

10-3

10-2

10-1

100

1
 -

 S

linear sigmoid pyramid

100 101 102

Iteration

10-2

10-1

100

1
 -

 S

Fig. 4. In these figures the deviation from unity of the Strehl ratio is plotted against time.
The left figure shows the change in strehl when the phase screen is created by taking a
superposition of deformable mirror modes. The figure on the right shows the increase in
Strehl when a static atmospheric phase screen is used. All wavefront sensors start with the
same phase screen.

caused by the deformable mirror, the pyramid wavefront sensor reaches the highest Strehl ratio.
The sigmoid follows the pyramid very closely. The linear filter has the lowest Strehl ratio as is
expected from Eq. (19). The correction time scales also show the effect of the dynamic range.
If the dynamic range of a WFS is high it will measure large aberrations correctly, and the AO
system will be able to correct the aberration within a single iteration. If the dynamic range is
not high enough the aberration amplitude will be underestimated. Therefore several iterations
are necessary to compensate the full aberration. Thus a higher dynamic range results in a larger
temporal bandwidth, resulting in faster corrections which are important when there are dynamical
changes.

This simulation shows the limiting Strehl that can be achieved by the different wavefront
sensors with the given amount of photons, because all modes can be corrected. If the WFS could
measure the aberrations more precise, the compensation would be better and the Strehl ratio
would be higher. So this simulation effectively shows the sensitivity of the WFS.

In the high Strehl regime the Strehl ratio can be approximated as S = exp
(
−σ2

φ ,rms

)
, and

S = 1−σ2
φ ,rms when the Strehl is very close to unity. The plotted 1−S corresponds in that case to

the square of the wavefront rms in radians. The final wavefront rms’s in units of wavelengths are
0.039±0.007λ , 0.0039±0.0005λ and 0.0015±0.0003λ for the linear filter, the sigmoid filter
and the pyramid respectively. The ratio between the PWFS and the sigmoid filter is 2.6±0.6, and
the relative gain from Eq. (23) is 2.95. This shows that the hybrid gain can predict the sensitivity
of the new WFS. The sigmoid only loses a factor of 2.6 in sensitivity compared to the pyramid
wavefront sensor, while achieving a dynamic range which is 10 times higher.

The right plot of Fig. 4 shows the correction of a simulated static atmospheric phasescreen.
In this case there are many more modes than the deformable mirror can correct. All limiting
Strehl ratios are lower than in the first case due to the increase in uncorrected modes. Especially
the difference between the sigmoid filter and the pyramid sensor is interesting. The 1−S value
of the pyramid is larger than the sigmoid filter, which implies that the sigmoid filter reaches
a higher Strehl ratio. The final wavefront errors are 0.064± 0.010λ , 0.0300± 0.0002λ and
0.0330±0.0002λ respectively for the linear filter, the sigmoid filter and the pyramid. The very
small spread of the final wavefront error for the sigmoid and pyramid imply a high stability.
Multiple static wavefront maps have been tested and in all cases the sigmoid filter performed
slightly better than the PWFS.
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The final wavefront error is determined by two components, the measurement noise and the
reconstruction error. The measurement noise is caused by the propagation of photon noise, as
given by Eq. (20). The pyramid wavefront sensor should be most robust against photon noise,
which is also shown in the left graph of Fig. 4. The second error is due to the phase reconstruction.
The matrix vector multiplication method is a Least Squares fitting procedure. With the SVD
inversion the gradient measurements are fitted to the input mode coefficients. So fitting errors
can decrease the quality of the reconstruction. The singular values of the interaction matrix can
be seen in Fig. 5. We can see that the pyramid is the most sensitive because its singular values
are the highest. And the sigmoid is in between the PWFS and the ODWFS.
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Fig. 5. The singular value is plotted against mode number. The pyramid has the highest
singular values. The sigmoid is in between the pyramid and the linear.

There are four different kind of modes that can influence the performance of an AO system.
The first are modes that can be controlled and sensed, these are the modes that create the control
matrix. The second are modes that cannot be controlled but can be sensed, this happens when
a WFS has more degrees of freedom in the measurements than the number of actuators on a
DM. The third are modes that can be controlled but not sensed, like DM waffle patterns. And
last of all are the modes that can not be controlled and sensed, these are high order modes cause
aliasing in the WFS measurements if the WFS is not spatially filtered [27]

The difference in the second simulation is not due to the first kind of modes because the
first simulation shows that the pyramid performs better. It is also not due to modes like waffle
patterns because these are not included in the simulation. So the only possibility is either
aliasing or additional fitting errors due to the second type of modes. Even though the SVD
creates an orthogonal basis it can still lead to fitting errors for calibrated modes. For the DM
control orthogonal modes usually are used. While these modes can are orthogonal their gradients
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generally are not. This causes fitting errors which can be significant. This can be solved in the
same way as aliasing is treated by adding a spatial filter. The effect of a higher order mode can
be found by using that mode as an input wavefront aberration and use the reconstructor for the
controllable modes. This returns a phase reconstruction in controllable mode space, if this vector
is not zero then there is an effect from the higher order modes on the controllable modes.

The amount of influence a higher order mode has on the controllable modes is defined as the
mean squared amplitude per higher order mode and per controllable mode. The PWFS has a
coupling of 4 percent and is the highest of the tested WFSs. This has also been compared to a
rooftop WFS which had a coupling of 2.2. This leads to the suspicion that it is caused by the
diffraction effects off the edges. The ODWFS has a coupling of 2.3 percent and the G-ODWFS
has a coupling of 2.4 percent. These cross coupling coefficients do not quantitatively explain
the difference in Strehl ratio, because the cross coupling has to be weighed by the atmospheric
power spectrum. The coefficients also depend very strongly on the sampling of the final pupil
images and the sampling of the initial telescope pupil. But in all cases the PWFS has the highest
cross coupling and the ODWFS the lowest, with the G-ODWFS in the middle. This can explain
the difference in the second simulation where there are modes in the atmosphere which the DM
can not correct, but will influence the controllable mode measurements.

Figure 4 shows that all three wavefront sensors are sensitive enough for most adaptive optics
systems. The limiting factor is usually not the wavefront sensor but the deformable mirror. Only
extreme ao systems reach high enough Strehl ratios to reach the limit of wavefront sensing. The
largest gain is shown in dynamical simulations where the atmosphere evolves in time while the
system is operating in closed loop. In Fig. 6 two simulations are shown for different atmospheric
conditions. In the left figure the atmospheric conditions correspond to an input D/r0 = 84, and
for the right figure D/r0 = 21. These two values of r0 are the left and right sided 5 percent
limits taken from the RoboDIMM data of Observatorium Roque de los Muchachos at La Palma.
90 percent of the time the atmospheric conditions will be between these two limits [28]. Each
simulation uses the same phase screens for the wavefront sensors, so that they are correcting the
same atmosphere at each point in time. Ten simulations are performed with the same atmospheric
conditions. The mean of each simulation is plotted together with the standard deviation at every
point in time.

From Fig. 6 it is clear that the sigmoid filter outperforms both wavefront sensors if there is
strong turbulence. For the weaker conditions as in Fig. 6 on the right, the performance is also
better than both. The difference between the sigmoid and the pyramid is very small but on average
it reaches a higher strehl. The effect of the increased dynamic range shows itself in the temporal
bandwidth. Due to the high dynamic range the linear filter is already at its sensitivity limit in ten
iterations. The sigmoid filter needs 20 iterations while the pyramid needs 50 iterations. In Fig. 7
a representative snapshot of the dynamical simulation with the better atmospheric conditions is
shown. The snapshot makes the difference in correction quality even more apparent. The sigmoid
filter is able to correct the PSF up to the 4th Airy ring. The pyramid only reaches the 2nd Airy
ring with visible distortion in the Airy rings. The linear filter can’t even stabilize the first Airy
ring stable. The sigmoid filter is able to reach the static case limiting Strehl ratio, indicating an
excellent temporal correction.

4. Experimental work

4.1. Experimental setup

A prototype of the G-ODWFS sensor was developed in the optical lab. The schematic setup is
shown in Fig. 8. The input source of the setup is a CPS240 diode laser operating at 635 nm. The
laser is focused by a lens with a focal length of 250.0 mm, and a 25.0 mm diameter. At the focal
point the laser is spatially filtered by a 10 µm pinhole. The filtered laser is collimated with a
second lens onto the deformable mirror. The collimation lens has a focal length of 140.0 mm and
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Fig. 6. Two different dynamical closed loop simulations. In the left figure the turbulence
strength is D/r0 = 84, and for the right figure it corresponds to median conditions in the
visible at D/r0 = 21. All wavefront sensors are looking at the same sky so that they correct
the same phase screen at every point in time. For both atmospheric conditions 10 simulations
were done. The mean 1−S of these simulations are plotted with solid lines. The standard
deviation of each wavefront sensor is given by the coloured region. 1−S is plotted for the
different wavefront sensors and the natural effects of the atmosphere. In both cases the
sigmoid filter out-performs both wavefront sensors.
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Fig. 7. Snapshot of a single dynamical simulation with D/r0 = 21. The top row shows
the residual phase distortion due to the atmosphere. Red is a positive π phase difference
and blue is a negative π phase difference. Up to four Airy rings can be clearly seen in the
corrected PSF of the pyramid and the sigmoid. The linear filter cannot compensate enough
to stabilize the first Airy ring. The PSFs are normalised with respect to the maximum of the
diffraction limited PSF.
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a diameter of 25.0 mm. The DM is an Alpao DM 97-15, which is a continuous facesheet DM
with 97 actuators and a clear aperture of 13.5 mm. This DM is used for creating and correcting
pupil plane aberrations. After being reflected from the DM, the laser is reimaged by an identical
lens. The DM is positioned at the focal plane of both lenses. The reimaged laser is focused
through a non-polarising beam splitter and half goes to the focal plane filtering wavefront sensor
and half to a Shack-Hartmann wavefront sensor.

The input to the Shack-Hartmann wavefront sensor is spatially filtered by a square mask, to
eliminate the cross talk between subapertures due to large spot offsets. The output of the spatial
filter is collimated with a 60 mm focal length achromatic lens. The collimated beam is then
sampled by a microlens array. The microlens array has a pitch of 500 µm and a 32.82 mm focal
length. The pupil is sampled by 11 microlenses across its diameter. After passing through the
microlens array the array of spots is reimaged by a pair of lenses onto the wavefront sensor
camera. The lenses are achromatic lenses with respectively a focal length of 60.0 mm and 35.0
mm. The wavefront sensor camera is an Andor iXon3 EM-CCD, with 128 by 128 pixels running
at a speed of 513 Hz with full frame readout. Each subaperture is sampled by 8x8 pixels.

For the focal plane filtering wavefront sensor, different amplitude filter shapes need to be tested.
With a Holoeye LC2002 spatial light modulator placed between two polarisers it can be used as
a programmable amplitude filter. The transmission will depend on the applied pixel signal and
the wavelength, because the phase retardation is wavelength dependent. To exclude chromatic
effects of the spatial light modulator a 635 nm laser is used. The Holoeye SLM consists of 800
by 600 pixels, with a pitch of 32 µm and a 55% fill factor. The filters are cropped to 600 by 600
pixels to make them symmetric. All pixels that are outside this region have the lowest possible
transmission. The linear polarisers used for the filtering are, a LPVISA050 and a LPVISB050
from Thorlabs. The orientation of the polarisers relative to the SLM is chosen such that the
contrast between minimum and maximum throughput is optimized. This contrast was found to
be roughly 1:1000. Since the SLM consists of pixels, it is necessary to have a correct sampling of
the PSF, which corresponds to at least 2 pixels within the first Airy ring. A magnifying telescopic
system enlarges the PSF sampling to 70 µm per λ/D. With this sampling there are 2.2 pixels
per λ/D satisfying the Nyquist sampling requirement. The telescopic system consists of two
achromatic lenses with a focal length of respectively 1000.0 mm and 100.0 mm. The diameter of
both lenses is 50.8 mm. After the second polariser a final lens reimages the pupil on an Allied
Vision Technology Pike-F032B camera, with a resolution of 640 by 480 pixels. The pupil is
sampled by 135 pixels in diameter.

The prototype only measures one pupil at a time. To measure all four pupils the four amplitude
filters have to be applied sequentially to the SLM. An advantage to this set-up is the absence
of relative pupil misalignments and flat field effects because the same pixel is used for all four
phase measurements. The disadvantage is the limiting frequency at which the SLM can run.
The SLM works at 30 Hz, and if four filters have to be applied to the SLM sequentially the
wavefront sensing frequency is at most 7.5 Hz. Another effect is the time delay between sending
and applying the signal on a pixel. This ultimately limits the operation frequency to roughly 1.5
Hz. The experimental setup is calibrated in the same way that the simulations are calibrated. The
DM is operated with Karhunen-Loeve modes with a Kolmogorov power spectrum.

The mode response in Fig. 9 for three different filters corresponds to the quadrofoil aberration.
The filters that were used to create these responses are the same filters that were used in the
simulations in Section 3. From the responses alone it can be seen that the linear filter is the
noisiest. The pyramid wavefront sensor already has saturated responses, while the calibrated
input is very small. The pyramid could also not be calibrated without using another filter first to
flatten the deformable mirror. Because the deformable mirror is not flat when not actuated but in a
slight deformed state. These small deviations from flat are already enough to saturate the pyramid.
The sigmoid filter had no problems with calibration, because it’s dynamic range is extended. This
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Fig. 8. In this figure the schematic lab set-up is drawn. The focal lengths are not to scale. A
laser at 636.3 nm is used as input. The laser is focused at a 10 µm pinhole to simulate a point
source. The point source is collimated on a deformable mirror which is used to create and
correct pupil aberrations. The new pupil is focused through a beam splitter from which one
part goes to the new wavefront sensor and the other to a Shack-Hartmann wavefront sensor.
The beam to the new wavefront sensor is magnified such that the spatial light modulator is
Nyquist sampling the PSF. Amplitude filtering is done by placing the spatial light modulator
between two orthogonal polarisers. The final pupil is then re-imaged onto the camera. The
fold mirrors are excluded from this drawing.

already shows one of the advantages of the sigmoid filter, the alignment of the optical system
can be relaxed. The sigmoid filter also shows a much sharper response measurement. In the
lab measurements the sigmoid filter had the lowest condition number, followed by the linear
filter and the pyramid filter had the highest condition number. The calibration amplitudes of the
different WFS were; 0.1 λ for the pyramid, 1 λ for the sigmoid, 10 λ for the linear and 8 λ for
the SHWFS. And the DM was operated with 90 out of the 97 modes.

4.2. Experimental results

The dynamic range of the wavefront sensor is measured by applying an increasing tilt on the
deformable mirror and measuring the response. The dynamic range per mode is different, because
these WFS’s measure slopes and higher order modes have steeper slopes. So the response will
saturate at lower input for higher order modes. But the relative dynamic range between the
WFS’s sensor for a single mode should be the same.

The results for the different filters can be seen in Fig. 10. The linear filter has the largest
dynamic range, as was expected from the simulations. The pyramid wavefront sensor has the
lowest dynamic range saturating at 1.5 λ . The dynamic range of our Shack-Hartmann sensor was
also measured. The Shack-Hartmann reaches the maximum dynamic range when the spots reach
the limit of their sub-aperture. If the size of the aberration increases beyond this dynamic range
some of the spots will be lost. The response of the Shack-Hartmann then slowly falls off to zero
when all spots are lost. The sigmoid filter is in between the linear filter and the pyramid in terms
of dynamic range. The dynamic range is increased by a factor of 10 compared to the pyramid.

Every point in the dynamic range curve is the average of 10 measurements.The previously
chosen sigmoid filter had filter parameters β = 1/3 and σ = 0.05. To see the influence of the
parameters three different step sizes have been used, β = 0.05, β = 1/3 and β = 0.8. All filters
had the same width σ = 0.001. The dynamic range can be seen in Fig. 11. The dynamic range is
a strong function of the step size. For β = 0.8 the filter responds nearly the same as the pyramid
with a limiting dynamic range of 1.5λ . The β = 1/3 sigmoid dynamic range is limited to 25λ

and for the β = 0.05 filter only a lower bound of 125 waves could be measured. This shows that
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Fig. 9. In these figures the response due to a quadrofoil aberration is shown for different
filters. The left side corresponds to measured responses from the lab setup. The responses
on the right side are simulated responses for each filter. For each measurement the same
exposure time is used. The first and third column are the x gradients and the second and
fourth columns are the y gradients. Blue corresponds to a saturated negative measurement
and red to a saturated positive response. White is a response of zero. The top figure is the
measurement from a linear filter. The middle is from the G-ODWFS sigmoid filter. And the
bottom figures are the responses from the pyramid.
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Fig. 10. The responses curves for the tilt mode are shown. On the left the whole range of
input tilt is plotted against the response for the SHWFS and the ODWFS. The figure on the
right shows the same thing but for the G-ODWFS and the PWFS.
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the dynamic range changes non-linear with a change in step size.
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Fig. 11. The response curves for the different step size filters. On the x-axis are the input
tilt coefficients and on the y-axis the responses. The figure on the left shows the response for
small steps, and the right figure shows the response for large steps.

An estimate for the sensitivity is the Cramer-Rao lower bound [29]. This sets a lower bound
on the standard deviance due to photon noise, and so also on the sensitivity. The lower it is the
more sensitive a wavefront sensor is. The result for the pyramid, linear and sigmoid filters can be
seen in Fig. 12. The pyramid is the most sensitive as was expected. The sigmoid is in between
the linear and the pyramid and the linear is the least sensitive. The average mode sensitivity of
the sigmoid compared to the pyramid is 3.25. This is very close to the expected value of 3, for a
profile with β = 1/3.

5. Implementation concept

The current test setup can be used in AO systems that operate at a single wavelength and where
the operation speed is not important. For many situations the operating frequency is several tens
of Hertz to several thousands of Hertz, and the light source is broadband. A concept is proposed
here for these cases. The concept is not based on a SLM and will use static optics.

In the low light regime, where high speed AO systems usually are, it is crucial to retain as
many photons as possible. Amplitude filters will always block at least 50% of the light and this
makes the amplitude filters not a good choice if we need to retain as many photons as possible.
The concept proposed here is based on the Yet Another Wavefront sensor (YAWFS) [30], which
uses the polarization of light to modulate the amplitude. This makes the WFS more photon
efficient because it only changes the polarization of light, there is no blocking any more as is the
case for amplitude filters.

If a spatially varying polarization rotator is placed between two polarisers it is possible to
make an amplitude modulator by choosing the amount of rotation. By switching the polariser for
a polarising beam splitter, both polarizations can be imaged at the same time. For one polarisation
the amplitude will be proportional to cos(θout) and for the other it will be sin(θout), here θout
is the polarisation angle after rotation. If the angle of the out coming polarization is limited to
0≤ θout ≤ π

2 then the sine and cosine projections will be mirrored versions of each other.
This creates the two mirrored amplitude filters that are necessary for the G-ODWFS. The

hybrid filter that was proposed can not be recreated with this method, because the polarization
projections causes non-linear amplitude filter profiles. What can be done is to create a rotation
profile where the rotation is linearly varied and has a step in the middle. The difference between
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Fig. 12. Here the Cramer-Rao lower bound is shown against the mode index of the de-
formable mirror. The CR bound is shown in units of λ . The pyramid has the lowest bound
and the linear the highest. The sigmoid filter here has a β = 1/3.

this and the previously proposed hybrid filter is in the continuous part of the filter. It is no longer
a linear filter with a step in the middle, but more like a sine filter with a step in the middle. But
as shown before in Section 2, it is not necessary to use a linear amplitude filter to retrieve the
gradients. The use of a non-linear shape comes at the cost of more higher orders which will
increase the diffraction effects.

In the YAWFS the polarization rotator was made with two pieces of quartz crystal with
opposite chirality. Left chiral quartz rotates the polarization counter clockwise and right chiral
quartz rotates clockwise. Two triangular pieces of quartz with angles of 45 degrees and opposite
chirality can create a linearly varying polarization rotator as is shown in the YAWFS. To create
arbitrary patterns in crystals is quite difficult. With recent developments in Liquid Crystal(LC)
technology it is possible to create arbitrary patterned LC [31, 32]. The direct write method [32]
makes it possible to control the shape of the pattern to very high resolution, and can be made
broadband by applying several layers of retarders [31]. A spatially varying polarisation rotator
can be made with the patterned retarder by making a half-wave plate with spatially varying
orientation of the half-wave axis.

The G-ODWFS will need two focal plane filters, one for each direction in which the gradient
is required. And the input beam has to be polarised if the patterned retarders are used. Both can
be easily achieved by using a Wollaston prism. The Wollaston prism splits the light up into two
orthogonal polarised beams, one for each filter. A schematic of the design is shown in Fig. 13.
The beam is focused through the first Wollaston which splits the light into two beams. The two
beams are filtered by separate filters, one for the x direction and one for the y direction. After the
filtering another Wollaston is used to split the two beams in four. These are then collimated on a
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camera with a lens. With this setup all four pupils are measured at the same time, and with a
high photon efficiency. This makes it possible to use this WFS in a high speed setting.

Wollaston Prism 

Wollaston PrismPolarization Rotator

Fig. 13. The optical set-up is fed by an unpolarised focused beam. The first Wollaston prism
splits the light in horizontal and vertical polarisation. Then the beams are filtered by the
varying half wave plates in the focal plane. Another Wollaston prism will then split the two
beams into four. The lens that transforms the focused beams to pupil images is not shown,
but should be behind the second Wollaston prism.

6. Conclusion

The theory of optical differentiation is extended to non-linear filters, by expanding the filter
shape in terms of Taylor polynomials. This shows that a WFS that filters in the focal plane can
only decouple the dynamic range and sensitivity if local changes to the filter shape are applied.
This leads to a hybrid filter design for the G-ODWFS, which combines the high sensitivity of a
pyramid wavefront sensor and the large dynamic range of an optical differentiation wavefront
sensor.

The filter that has been most extensively tested had a step size of β = 1/3. This should have a
sensitivity which would be three times lower than that of a pyramid for small phase aberrations,
which was confirmed through measurements of the Cramer-Rao lower bound. The dynamic
range for the tilt mode was also measured and estimated to be roughly 25 λ/D. So this filter is
three times less sensitive but has a 25 times higher dynamic range. This shows that the trade off
between dynamic range and sensitivity is on a different trade off curve than the typical linear
trade off curve of conventional slope measuring WFS’s. The dynamic range changes non-linearly
with a change in step size. For β = 0.05 only a lower bound of 125 λ/D could be measured,
β = 1/3 has a dynamic range of 25 λ/D and the β = 0.8 has a dynamic range of 1 λ/D which
is comparable to the pyramid.

The dynamical simulations also show that the GDWFS can have a performance comparable or
better than the PWFS. To give an accurate picture of the performance of the new WFS compared
to a PWFS more simulations and tests have to be done in a wider parameter space and under many
different atmospheric conditions. From the current results the generalised optical differentiation
wavefront sensor would be an excellent wavefront sensor for high contrast imaging of point
sources, because it reaches a high Strehl ratio, has a high temporal bandwidth and keeps the
point spread function very stable.

There are also several improvements that could be done. The analysis of the higher order modes
can be extended, and the influence of the higher orders should be investigated. If some higher
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order modes are not important then the design of the filter can be relaxed. For this work a few
filter shapes have been tested, but the filter could be optimised by using numerical optimisation
methods. Because the response for large aberrations becomes non-linear, performance can be
gained if non-linear phase reconstruction is used. This can be done for the G-ODWFS because
the response is monotonically increasing. The non-linear reconstruction can be implemented by
using a dynamic gain, which optimizes itself during closed loop operations, or by calibrating the
interaction with high precision and use a non-linear function to map the measured coefficients to
the input coefficients.
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