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Recent experiments have shown that liquid drops on highly deformable substrates exhibit mutual
interactions. This is similar to the Cheerios effect, the capillary interaction of solid particles at a
liquid interface, but now the roles of solid and liquid are reversed. Here we present a dynamical
theory for this inverted Cheerios effect, taking into account elasticity, capillarity and the viscoelastic
rheology of the substrate. We compute the velocity at which droplets attract, or repel, as a function
of their separation. The theory is compared to a simplified model in which the viscoelastic dissipation
is treated as a localized force at the contact line. It is found that the two models differ only at small
separation between the droplets, and both of them accurately describe experimental observations.

I. INTRODUCTION

The clustering of floating objects at the liquid inter-
face is popularly known as the Cheerios effect [1]. In
the simplest scenario, the weight of a floating particle
deforms the liquid interface and the liquid-vapor surface
tension prevents it from sinking [2]. A neighboring par-
ticle can reduce its gravitational energy by sliding down
the interface deformed by the first particle, leading to
an attractive interaction. The surface properties of par-
ticles can be tuned to change the nature of interaction,
but two identical spherical particles always attract [3].
Anisotropy in shape of the particles or curvature of the
liquid interface adds further richness to this everyday
phenomenon [4-6]. Self-assembly of elongated mosquito
eggs on the water surface provides an example of this
capillary interaction in nature [7], while scientists have
exploited the effect to control self-assembly and pattern-
ing at the microscale [8-12].

The concept of deformation-mediated interactions can
be extended from liquid interfaces to highly deformable
solid surfaces. Similar to the Cheerios effect, the weight
of solid particles on a soft gel create a depression of the
substrate, leading to an attractive interaction [13-15].
Recently, it was shown that the roles of solid and lig-
uid can even be completely reversed: liquid drops on soft
gels were found to exhibit a long-ranged interaction, a
phenomenon called the inverted Cheerios effect [16]. An
example of such interacting drops is shown in fig. 1(a). In
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this case, the droplets slide downwards along a thin, de-
formable substrate (much thinner as compared to drop
size) under the influence of gravity, but their trajecto-
ries are clearly deflected due to a repulsive interaction
between the drops. Here capillary traction of the liquid
drops instead of their weight deforms the underlying sub-
strate (cf fig. 1(b)). The scale of the deformation is given
by the ratio of liquid surface tension to solid shear modu-
lus (v/G), usually called the elasto-capillary length. Sur-
prisingly, drops on a thick polydimethylsiloxane (PDMS)
substrate (much thicker than the drop sizes) were found
to always attract and coalesce, whereas for a thin sub-
strate (much thinner than the drop sizes) the drop-drop
interaction was found to be repulsive [16]. This inter-
action has been interpreted as resulting from the local
slope of the deformation created at a distance by one
drop, which can indeed be tuned upon varying the sub-
strate thickness.

Here we wish to focus on the dynamical aspects of the
substrate-mediated interaction. Both the Cheerios effect
and the inverted Cheerios effect are commonly quantified
by an effective potential, or equivalently by a relation
between the interaction force and the particle separation
distance [1, 16]. However, the most direct manifestation
of the interaction is the motion of the particles, mov-
ing towards or away from each other. In the example
of fig. 1(a), the dark gray lines represent drop trajec-
tories and the arrows represent their instantaneous ve-
locities. When drops are far away, the motion is purely
vertical due to gravity with a steady velocity 7,. As
the two drops start to interact, a velocity component
along the line joining the drop centers develops (¥; — Vg,
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FIG. 1. Dynamics of the inverted cheerios effect. (a) Ethylene glycol drops of radius R ~ 0.5 — 0.8 mm move down a vertically
placed cross-linked PDMS substrate of thickness ho ~ .04 mm and shear modulus G = 280 Pa under gravity. The arrows

represent instantaneous drop velocity.

Drop trajectories deviate from straight vertical lines due to a repulsive interaction

between them. (b) A sketch of the cross-section of two drops on a thin, soft substrate. The region around two neighboring
contact lines is magnified in fig. 2(a). (c) Relative interaction velocity as a function of the gap d between drops for five pairs
of drops. We use the convention that a positive velocity signifies repulsion and negative velocity signifies attraction. (d) A

theoretical velocity-distance plot for power-law rheology.

i = 1,2) that move the drops either away or towards
each other. In fig. 1(c), we quantify the interaction by
A(T — Uy) = (Ui — U1y) — (Vo — Uag), representing the

relative interaction velocity as a function of inter drop
distance (d) for several interaction events. Even though
the dominant behavior is repulsive, we find an attractive
regime at small distances. Similar to the drag force on
a moving particle at a liquid interface [17], viscoelastic
properties of the solid resist the motion of liquid drops
on it [18]. Experiments performed in the over damped
regime allow one to extract the interaction force from
the trajectories, after proper calibration of the relation
for the drag force as a function of velocity [16].

In this paper, we present a dynamical theory of elasto-
capillary interaction of liquid drops on a soft substrate.
For large drops, the problem is effectively two dimen-
sional (cf. fig. 1(b)) and boils down to an interaction be-
tween two adjacent contact lines. By solving the dynam-
ical deformation of the substrate, we directly compute
the velocity-distance curve based on substrate rheology,
quantifying at the same time the interaction mechanism
and the induced dynamics. In sec. IT we set up the for-
mulation of the problem and propose a framework to in-
troduce the viscoelastic properties of the solid. In sec. ITI
we present our main findings in the form of velocity-
distance plots for the case of very large drops. These
results are compared to the previous theory for force-
distance curves, and we investigate the detailed structure
of the dynamical three phase contact line. Subsequently,
our results are generalised in sec. IV to the case of finite-
sized droplets, and a quantitative comparison with ex-

periments is given.

II. DYNAMICAL ELASTOCAPILLARY
INTERACTION

A. Qualitative description of the interaction
mechanism

Before developing a detailed dynamical theory of the
inverted cheerios effect, we start by a qualitative discus-
sion of the interaction mechanism. The problem of drop-
drop interaction on soft substrates can be characterised
by four length scales: the radius of the drop (R), the
thickness of the substrate (hg), the elastocapillary length
(v/@G), and of course the gap separating the drops (d).
In the case of drop size much larger than all other length
scales: R > max(hg,d,~/G), one can neglect the curva-
ture of the contact line and the wetting ridge becomes
quasi two-dimensional as in fig. 1(b). Furthermore the
drop-drop interaction is limited to an interaction between
the neighboring contact lines. This provides an impor-
tant simplification: the liquid contact angles at the outer
contact lines of each drop are essentially unaffected by
the presence of the second drop, and the slow relaxation
of the viscoelastic solid ensures circular liquid - vapor
interface. As a result, the liquid contact angles at the
interacting contact lines also remain constant to satisfy
the circular cap shape of the liquid-vapor interface. In
the example of fig. 1(b) this liquid contact angle with
respect to horizontal () is m/2 by symmetry, since we
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To understand the interaction mechanism, we mag-
nify the deformation around neighbouring contact lines in
fig. 2(a). It shows a sketch of two repelling contact lines
with velocity v. Our goal is to find the value of v for
a given distance d. Deformation of the substrate at the
three phase contact line is fully defined by the balance of
three respective surface tensions, known as the Neumann
condition [19-21]. The assumption of Vs, = Ys¢ = s
leads to the symmetric wetting ridges of fig. 2(a). As
demonstrated in the next section, in first approximation
the solid profile is obtained by the superposition of the
deformations due to the two moving contact lines shown
in fig. 2b. However, motion on a viscoelastic medium
causes a rotation of the wetting ridge by an angle ¢,
that depends on the velocity: the larger the velocity, the
larger the rotation angle [22]. At the same time, super-
position results in a rotation of a wetting ridge due to the
local slope of the other deformation profile (H” ,(d)) at
that location. Hence, the force balance with the capillary
traction from an unrotated liquid interface can be main-
tained when both rotations exactly cancel each other.
Therefore, by equating H' ,(d) to ¢,, we obtain a rela-
tion between velocity and distance.

B. Formulation

In this section, we calculate the dynamic deformation
of a linear, viscoelastic substrate below a moving contact
line. This step will enable us to quantify the interaction
velocity, according to the procedure described above.

Due to the time-dependent relaxation behaviour of vis-
coelastic materials, the response of the substrate requires
a finite time to adapt to any change in the imposed trac-
tion at the free surface. Under the assumption of linear
response, the stress-strain relation of a viscoelastic solid
is given by [23]

a(m,t):L dt'U(t — te(z,t') — p(x, t)I. (1)

Here o is the stress tensor, € is the strain tensor, W is
the relaxation function, p is the isotropic part of the
stress tensor, I is the identity tensor, and @ = {z,y}.
Throughout we will assume plain strain conditions, for
which all strain components normal to the page vanish.
We are interested in the surface profile of the deformed
substrate, given by the vertical (y)-component of dis-
placement vector w. For small deformations this imply
uy(x, ho,t) = h(z,t). The soft substrate is attached to
a rigid support at its bottom surface and subjected to
traction T'(z,t) on the top surface due to the pulling of
the contact line. In addition, the surface tension of the
solid s provides a solid Laplace pressure that acts as
an additional traction on the substrate. For inertia-free
dynamics, the Cauchy equation along with the boundary
conditions for the plane strain problem are given by
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FIG. 2. Illustration of the interaction mechanism. (a)
Schematic representation of the deformed substrate due to
a repulsive interaction between two contact lines. (b) Dy-
namic deformation profiles associated to each of the contact
line. Superposition of these two profiles give the resultant
deformation.
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Following previous works [22, 24], we solve equs. (1)
and (2) using a Green’s function approach. Applying
Fourier transforms in both space and time (z — ¢ noted
by ‘77, t — w noted by ‘*’), the deformation can be writ-
ten as,

~ ~

hq.w) = T(g,w) G

Yol + =

K@) ®)

Forward and backward Fourier transforms (with re-

spect to space) of any function is defined as, f(q) =
75 fle)e " dw and f(z) = [ f(q)e'7"dg /2. Trans-
formation rules are equivalent for ¢ > w. Here u(w) is
the complex shear modulus of the material and consists
of the storage modulus G’ (w) = R[p(w)], and loss modu-
lus G" (w) = S[p(w)]:

p(w) = iw /000 U(t)e Widt = G (w) +iG" (w).  (4)



The spatial dependence is governed by the kernel E(q),
which for an incompressible, elastic layer of thickness hg
reads

~ sinh(2qho) — 2qhg 1
cosh(2gho) + 2(gho)? + 1| 2¢

(5)

Two backward transforms of (3) give the surface defor-
mation h(z,t).

In what follows, we perform the calculations assuming
a power-law rheology of the soft substrate, characterised
by a complex modulus,

p(w) = G 1+ (iwr)"]. (6)

This rheology provides an excellent description of the
reticulated polymers like PDMS, as are used in exper-
iments on soft wetting [22, 25-27]. In particular, the loss
modulus has a simple power-law form, G” ~ G(wt)",
where G is the static shear modulus and 7 is the relax-
ation timescale. The exponent n depends on the stoi-
chiometry of the gel, and varies between 0 and 1 [28-30].
The experimental data presented in fig. 1 is for a PDMS
gel with a measured exponent of n = 0.61 and timescale
7 = 0.68s.

C. Two steadily moving contact lines

Now we turn to two moving contact lines, as depicted
in fig. 2(a). Laplace pressure of the liquid drops scales
with R~!, and vanish in this limit of large drops. Hence,
the applied traction is described by two delta functions
(noted 0), separated by a distance d(t):

@)ﬂ&(x—@). (7)

Owing to the linearity of the governing equations, the
deformations form a simple superposition

T(z,t) =70 (:v +

h(z,t) = hi(z,t) + ha(z, t). (8)

Here hq(z,t) and ha(z,t) respectively are the solutions
obtained for contact lines moving to the left and right.

Before considering the superposition, let us first discuss
the deformation due to a contact line centered at the ori-
gin and moving steadily with velocity —v. The traction
and deformation are then of the form vd(x + vt), and
H_,(xz+ vt). When computing the shape in a co-moving
frame, it can be evaluated explicitly from (3) as

-1
Fou(g) =~ %un] . (9)

K(q)

The effect of velocity is encoded in the argument of the
complex modulus i, and hence couples to the dissipation

inside the viscoelastic solid. Setting v = 0, this expres-
sion (9) gives a perfectly left-right symmetric deforma-
tion of the contact line. As argued, for v # 0, the motion
breaks the left-right symmetry and induces a rotation of
the wetting ridge.

Now, for two contact lines located at +d(t)/2 moving
quasi-steadily with opposite velocities v = :l:%d, the de-
formation in eq. (8) can be written as

h(z,t) = H_, (:v + g) + H, (:v - g) . (10)

Under this assumption of quasi-steady motion, there is no
explicit time-dependence; the shape is fully known once
the velocity v and the distance d are specified. However,
as discussed in sec. ITA, the total deformation of eq. (10)
should be consistent with a liquid angle of 7/2. This
is satisfied when the ridge rotation due to motion, ¢,,
perfectly balances the slope induced by the second drop.
Summarizing this condition as

H”,(d) = ¢u, (11)

we can compute the velocity v for given separation d of
the two contact lines. Explicit expressions can now be
found from equation (9), as

00 o~ . d
) = @ a2)

— 0o

and (See ‘Methods’ section of [22] for details)

b0 =~ [, (0%) + H, (07))

= —/OO ® [l (q)] %-

— 00

(13)

In what follows we numerically solve eq. (11), and obtain
the interaction velocity as a function of d.

D. Dimensionless form

The results below will be presented in dimensionless
form. We use the substrate thickness hg as the charac-
teristic lengthscale, relaxation timescale of the substrate
7 as the characteristic timescale, and introduce the fol-
lowing dimensionless variables:

- H - d
q:qh@v j:i, H:_a dz_v T;:E,
ho ho ho ho
_ = = _ W
0 = wrT, o h e

In the remainder of the paper we drop the overbars, un-
less specified otherwise. Eqns (11), (12), (13) remain un-
altered in dimensionless form, but the scaled deformation
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oug) = a 1(vq)

2
asq” + —=
K(q)

: (15)

This form suggests that the two main dimensionless pa-
rameters of the problem are,

:L e = ’YS
Gho’ * T Ghy'

a (16)

which can be seen as two independent elastocapillary
numbers. « compares the typical substrate deformation
to its thickness, and as discussed in the next section g
measures the decay of substrate deformation compared to
ho. The assumption of linear (visco)elasticity demands
that the typical slope of the deformation is small, which
requires a/as = v/vs < 1. In the final section we will
also consider drops of finite size R. In that case, the ratio
R/hg appears as a third dimensionless parameter.

III. RESULTS
A. Relation between velocity and distance

Here we discuss our main result, namely the contact
line velocity v of the inverted Cheerios effect, as a func-
tion of distance d. Figure 1(d) represents a typical
velocity-distance plot for gy = 1 and n = 0.7 obtained
by numerically solving eq. (11). The theory shows qual-
itative agreement with the experiments: the interaction
velocity is repulsive at large distance, but displays an at-
traction at small distances. The change in the nature
of interaction can be understood from the local slope of
deformation. As can be seen from fig. 2(b), the slope
H'’ , is negative at small distances from the contact line.
This induces a negative velocity (attraction) to the con-
tact line located at d/2. However, incompressibility of
the material causes a dimple around the wetting ridge,
and at d ~ 1 the slope changes its sign and so does the
interaction velocity. A fully quantitative comparison be-
tween theory and experiment, taking into account finite
drop size effects, will be presented at the end of the paper
in Sec. V.

We now study the velocity-distance relation in more
detail. In fig. 3(a), we show the interaction velocity on a
semi-logarithmic scale, for different values of the rheolog-
ical parameter n. In all cases the interaction is attractive
at small distance, and repulsive at large distance. The
point where the interaction changes sign is identical for
all these cases. The straight line at large d reveals that
the interaction speed decays exponentially, v ~ e .
The exponent X is not universal, but varies as A ~ 1/n.
Indeed by rescaling the velocity as |v|", we observed a
collapse of the curves (cf. fig. 3(b)) in the ranges where
the interaction velocities are small. The inset of fig. 3(b),
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FIG. 3. (a) velocity-distance plots for increasing n values
(n=0.5, 0.6, 0.7, 0.9), for the parameter as = 1. The red
dashed line represent the far-filed asymtotic given in eq. (20)
for n = 0.7. (b) Rescaling the velocity gives a perfect collapse
for small velocity (large distance). Inset: rescaled velocity vs
distance on a log-log plot. The prefactor A(n) is given by
A(n) =n2"1/ cos(nm/2).

however, shows that the collapse does not hold at very
small distances where the velocities are larger.

To understand these features, we extract the far-field
asymptotics of the velocity-distance curve. As v de-
creases for large d, we first expand eq. (12) for small

v to get
> I
H', ~ a/ iq |sq® + =—— il 4 O(v). (17)
— 0 Ic(q) 2w

This effectively corresponds to the slope of a stationary
contact line and the viscoelastic effects drop out. Hence,
at large distances away from the contact line the de-
formed shape is essentially static. The substrate elas-
tocapillary number («g) governs the deformed shape in
far field. In the Appendix we evaluate this static slope,
which yields

H , ~aC(as) e_x(o‘S)d7 (18)

indeed providing an exponential decay. This relation con-
firms that o, governs the decay of substrate deformation.
Similarly, we expand ¢, in eq. (13) for small v as (see
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FIG. 4. Force vs distance plot for « = 1/5 and as = 1. The
blue line represents the dissipative drag force for n = 0.7 given
in eq. (13). The red points represent the localized force given
by eq. (21). Beyond small d, the slope of the dynamic profile
is similar its static counterpart. As a result, two forces agree
well.

[22]),

n2n71
a?-l-l

by~ a o™, (19)

nm
COSs 3

Hence, the rotation of the ridge inherits the exponent n
from the rheology. Comparison of eqs (18) and (19) gives
the desired asymptotic relation

- a?'HC(aS) " _Aea)y
il e o KRR

with A(n) = n2""!/cos(nw/2). For ay = 1, A = 0.783
and C' = 0.069. The red dashed line in fig. 3(a) con-
firms this asymptotic relation. The quantity A(n)v" is
independent of the substrate rheology and collapses to a
universal curve for large distances. Only at small sepa-
ration, a weak dependency on n appears (see the inset of

fig. 3(b)).

B. Force-distance

We now interpret these velocity-distance results in
terms of an interaction force, mediated by the substrate
deformation. The underlying physical picture is that the
interaction force between the two contact lines induces a
motion to the drops. In a regime of overdamped dynam-
ics, dissipation within the liquid drop can be neglected,
and the interaction force must be balanced by a dissi-
pative force due to the total viscoelastic drag inside the
substrate. In fact, eq. (11) can be interpreted as a force
balance: the slope H’  (d) induced by the other drop is
the interaction force, while the dissipative force is given
by the rotation ¢, due to drop motion. Viscoelastic dissi-
pation given by the relation G”(w) ~ w™ manifests itself
in the ridge rotation through, ¢, ~ v™. The blue line

in fig. 4, shows the corresponding dissipative force as a
function of distance for n = 0.7.

In Ref. [16] we presented a quasi-static approach to
compute the interaction force. There, the main hypoth-
esis was that the dissipative force can be modelled as a
point force f that is perfectly localized at the contact
line. We are now in the position to test this hypothesis
by comparing its predictions to those of the dynamical
theory developed above, where the viscoelastic dissipa-
tion inside the solid is treated properly. In the localized-
dissipation model, the deformation profiles are treated
as perfectly static and thus involve H,_,(d). However,
in this approximation the change in deformation profile
now leads to a local violation of the Neumann balance
(cf. inset figure 5(a)), since the static model has no ridge
rotation, ¢,—o = 0. This imbalance in the surface ten-
sions must be compensated by the localized dissipative
force f, which can subsequently be equated to the in-
teraction force. Hence, for the case of large drops, the
localized-force model predicts

J=1/r=H,(d). (21)

Like before, we drop the overbar and denote the di-
mensionless force by f. The result of the localized-
force model is shown as the red data points in fig. 4,
showing f versus d. At large distance this gives a per-
fect agreement with the dynamical theory. For large d,
H' (d) ~ H!_,(d), and the dissipative force ¢, perfectly
agrees with the interaction force f. In this limit, slope of
the deformation decays exponentially with distance, and
so is the interaction force. However, as d — 0, the static
profiles differ from the dynamic profiles, inducing a small
error in the calculation of the interaction force.

The differences between the localized-dissipation
model and the full viscoelastic dynamic calculation can
be interpreted in terms of true versus apparent contact
angles. Figure 5(a) shows the profile in the approxima-
tion of the localized-force model. The inset shows the
violation of the Neumann balance: the red dashed line is
the dynamic profile obtained from our viscoelastic the-
ory. A more detailed view on the contact angles is given
in fig. 5(b,c). Here we compare the dynamical slope (red
dashed line) to that of the localized-force model (gray
solid line), on both sides of the contact line at z = d/2.
The two profiles have the same slope beyond x ~ 75 /Ghy.
However, differences appear at small distance near the
contact line where viscoelastic dissipation plays a role.
While the dynamic profiles are left-right symmetric, the
localized-force model gives a symmetry breaking: the dif-
ference in slope between the two approach at the contact
line gives the magnitude of f.

In summary, the inverted Cheerios effect can be char-
acterised by an interaction force, which at separations (d)
larger than ~y,/Ghy is independent of substrate rheology.
In this regime the interaction force can be computed as-
suming that all dissipation is localized at the contact line
— this gives rise to an apparent violation of the Neumann
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FIG. 5. (a) Resultant deformation in the localized-force model, obtained by superimposing two static profiles (d = 1/2, for
a = 1/5 and as = 1). The gray curve represents a resultant static profile. The red dashed curve shows the corresponding
dynamic wetting ridge that maintains equilibrium shape. (b), (c) Slope of the resultant deformation profiles (dynamic and
static) measured away from the contact line at = d/2 = 1/4 in both directions. The red dashed lines are the dynamic slopes,
approaching v/2vs at the contact line. The gray lines correspond to the localized-force model, showing an apparent contact

angle that differs by an amount f.

balance, due to a dissipative force f. In reality the Neu-
mann balance is restored at small distance, but the total
dissipative force is indeed equal to f. At separations
d < 7s/Ghg, however, the spatial distribution of dissipa-
tion has significant effects and the localized-force model
gives rise to some (minor) quantitative errors.

IV. DROPS OF FINITE SIZE

We now show that interaction is dramatically changed
when considering drops of finite size R, compared to the
substrate thickness hg. A fully consistent dynamical the-
ory is challenging for finite-sized drops, since the two
contact lines of a single drop are not expected to move
at the same velocity. However, the previous section has
shown that the localized-force model provides an excel-
lent description of the interaction force, which becomes
exact at separations d > v5/Gho. We therefore follow
this approximation to quantify the inverted Cheerios ef-
fect for finite sized drops.

A. Effect of substrate thickness

We assume that during interaction, radius of both the
drops does not change and the liquid cap remains circular

(i.e. no significant dissipation occurs inside the liquid).
The traction applied by a single drop on the substrate
comprised of two localized forces pulling up at the contact
lines and a uniform Laplace pressure pushing down inside
the drop. The traction applied by a single drop of size
R, centered at the origin, is thus given by

Ty(xz) = ysinbeq [6(z + R) + 6(x — R)]
in 6., 22
2 16(R ~ |2, -

expressed in dimensional form. Here © is the Heavi-
side step function. The corresponding Fourier transform
reads

sin(qR)

Td(q) = 27ysinf, [cos(qR) R

(23)
Considering two drops centered at © = —¢/2 and x = /2
respectively, with corresponding tractions of Ty(z + ¢/2)
and Ty(x — £/2), the total traction induced by the two
drops reads, in Fourier space

T(q) = Ta(q)e'""/? + Ty(q)e™17/2, (24)

where the inter-drop separation d = ¢ — 2R. Using the
static Green’s function approach, we compute the corre-
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FIG. 6. (a) Substrate deformation and liquid cap shape due
to two interacting drops centered at © = £5/4. The sep-
aration distance between two neighboring contact lines is
d/R = £/R —2 = 1/2. (b) The interaction force vs dis-
tance plot as the substrate thickness to drop radius ratio is
increased (ho/R = 1/10,1/5,2/5,1). For thick substrates the
interaction becomes predominantly attractive. Inset: Force
vs distance plot on log scale for finite drops of an elastic half
space. The red dashed line is the far-field asymptotic rep-
resenting f ~ d~°. The parameters used in this figure are
v/GR = 2/5, and v5/GR = 1/5. 04 for this case is found to
be 78.91°.

sponding deformation profiles. A typical profile obtained
from this traction is shown in fig. 6.

The problem is closed by determining the liquid con-
tact angles at both the contact lines (6;, 6,) self-
consistently with the elastic deformation [20]. The inter-
action is found from reestablishing a violated Neumann
balance by a dissipative force (for details we refer to [16]).
As such we determine the force-distance relation for vary-
ing drop sizes. The results are shown in fig. 6(b), for var-
ious drop sizes hg/R. Clearly, upon decreasing the drop
size, or equivalently increasing the layer thickness, the
interaction force becomes predominantly attractive. For
a thin substrate, incompressibility leads to a sign change
of the interaction force. As the substrate thickness is
increased the profile minimum is moved away from the
contact line. For an elastic half space, i.e. ho/R = o0, the
deformation monotonically decays away from the contact
line giving rise to a purely attractive interaction. The in-
set of fig. 6(b) shows the interaction force for an elastic
half space.

B. Far-field asymptotics on a thick substrate

When two drops are far away from each other, 6; =
0, ~ 0. and the liquid cap resembles its equilibrium
shape. In this limit, the drop-drop interaction is medi-
ated purely by the elastic deformation. Here we calculate
the large-d asymptotics of the interaction force. We fol-
low a procedure similar to that proposed for elasticity-
mediated interactions between cells [31, 32|, where the
cells are treated as external tractions. The total energy
of the system FEj,; then consists of the elastic strain en-
ergy E.y plus a term F,, originating from the work done
by the external traction. At fixed separation distance,
the mechanical equilibrium of the free surface turns out
to give Fgp = —%Ew (the factor 1/2 being a conse-
quence of the energy in linear elasticity). So, we can
write Etot = Fer + Fy = —FEer [32]. Subsequently, the
interaction force between the droplets is computed as
f= —% = %. The task will thus be to evaluate
E.y from the traction induced by two drops.

In the absence of body forces, the elastic energy (per
unit length) is written as

Ey = %/Z T(z)h(x)dx )
-3¢ | _T@T-oR@3E.

Plugging in the traction applied by two drops given in
eq. (24) into eq. (25) we find that there are two parts
of the elastic energy: one is due to the work done by
individual tractions (the self-energy of individual drops),
and an interaction term (E;,;) given by

B =g | Ta@Ta-0R(@) @+ $2. 20

™

To obtain the far-field interaction energy (¢ > R), we
now perform a multipole expansion of the traction Ty(z),
or equivalently a long-wave expansion of its Fourier trans-
form. The quadrupolar traction of eq. (23) gives, after
expansion

(—ig)?
2

Ta(q) =~ Qo, (27)

were Q2 is the second moment of the traction and is
given by, Q2 = [ Ty(x)a*dz = 3ysinfe k% So, the
interaction energy in the far-field reads

1 [ (ig)* 5~ gt | —igt
By ~ — Q3K (q) (' +e71) —
G/_OO 22 ¢2 (28)

_ Q2 " "
— 2 (K"(0) + K" (~0).



For drops on a finite thickness, the Green’s function K (z)
decays exponentially and again gives an exponential cut-
off of the interaction at distances beyond hg.

A more interesting result is obtained for an infinitely
thick substrate, formally corresponding to hg > £. The

kernel for a half space is K (z) = —%, which can e.g.
be inferred from the large thickness limit of (5). Conse-
quently, K'(¢) = K""(¢) = 23, so that the interaction

==
energy becomes

4 (ysinfe,)? R*
Bt = ——— 2 29
T3 G A (29)
This is identical to the interaction energy between capil-
lary quadrupoles [12, 33, 34], except for the prefactor that
depends on elastocapillary length in the present case. We

calculate the force of interaction by f = d%’;‘, giving
;o 1631n208q( v ) R\’
v 3 GR 12
L1050y (1) (R (30)
a 3 GR/\d) "’

where the result is collected in dimensionless groups.
Here we replaced ¢ ~ d, which is valid when the drop
separation is large compared to R. The red dashed line
in the inset of fig. 6(b) confirms the validity of the above
asymptotic result, including the prefactor. Hence, in the
limit of large thickness the attractive interaction force
decays algebraically, as 1/d°, which is in stark contrast
to the exponential decay observed for thin substrates.

It is instructive to compare eq. (29) with the inter-
action energy for capillary quadrupoles formed by rigid
anisotropic particles embedded in a fluid-fluid interface
[5, 12]. In that case an undulated triple line is formed
owing to contact line pinning [12] or to the change in cur-
vature of the solid surface along the triple line [9, 35]. For
capillary quadrupoles the far-field interaction energy is
proportional to yH?(R/()* , where H, is the amplitude of
the quadrupolar contact line distortion. Despite an iden-
tical power-law dependence, the prefactors in eq. 29 and
in the corresponding expression for capillary quadrupoles
are different, reflecting a different physical origin. A cap-
illary quadrupole is formed by four lobes located at an
average distance R from the quadrupole center: two pos-
itive meniscus displacements of amplitude H,, along one
symmetry axis of the particle, and two negative displace-
ments along the perpendicular axis. The presence of a
second particle changes the slope of equal sign meniscii
along the center-to-center line, resulting in a net capillary
attraction. The corresponding interaction force per unit
length of contact line is proportional to y(H,/R)?(R/d)®,
to be compared with eq. 30. The non-dimensional ratio
(H,/R) is a geometric feature of the particle that de-
pends primarily on the particle shape and contact angle
[5]. This ratio is independent of the particle size. On
the contrary, the non-dimensional ratio & does depend

on the particle size, as well as on the material-dependent
scale v/G. A differentiating feature is also that in the
elastocapillary quadrupole the upward and downward
distortions of the elastic surface are located along the
line of interaction, thus forming a linear quadrupole. The
identical power-law dependence for capillary and elasto-
capillary quadrupoles is incidental. It is a consequence
of the fact that the log function is the Green’s function
for both the small-slope Young-Laplace equation of cap-
illarity and the equation governing 2D linear elasticity.

V. DISCUSSION

Finally, let us turn to experiments of the inverted
Cheerios effect. The results in fig. 1 already show a
qualitative agreement between theory and experiment.
A quantitative comparison in terms of “velocity vs dis-
tance” is challenging, since the experimental motion fol-
lows is due to a combination of drop-drop interaction and
gravity — the latter was not taken into account in the dy-
namical theory. However, gravity is easily substracted
when representing the result as “force vs distance”, as
was also done in [16]. The experimental data are re-
produced in fig 7: On thick substrates the interaction
is purely attractive (panel b), while a change in sign of
the interaction force is observed on thin substrates (panel
a). The two-dimensional model presented in this paper
predicts a force per unit length f. Hence, to compare
to experiment one needs to multiply the result with a
proper length over which this interaction is dominant.
The blue lines are obtained by choosing a length of TR/6,
i.e. a small fraction of the perimeter, giving a good agree-
ment with experiment. In [16] we provided numerically
a three-dimensional result, based on the same localized-
force approach. The result is shown as the red lines in
fig. 7 and is similar to the two-dimensional case. This
good agreement with experiment shows that the elasto-
capillary theory presented here provides an accurate de-
scription of the physics. The similarity between the two-
and three-dimensional models shows that the interaction
is dominated by the regions where the contact lines are
closest.

In conclusion, we present a theoretical model to cap-
ture the dynamical interaction between two liquid drops
on a soft, solid surface. For large drops the interaction
is limited to neighboring contact lines, and we find the
interaction velocity-distance relation in this limit. For
large distances, the velocity decays exponentially with
an exponent that depends both on substrate rheology
and surface tension. The over damped dynamics of drop
motion allow us to relate the velocity to an effective vis-
coelastic drag force at the contact line. We also connect
our theory to a quasi static description of the interac-
tion, quantified in terms of force-distance curves, and
find that the two approaches agree well for large inter
drop distances. Motivated by this, we extend the quasi-
static force calculation to finite sized drops to show how
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FIG. 7. Comparison between theory and experiment. The experimental data (black points) and 3D theory (red dashed lines) is
reproduced from [16]. The drops have an average radius (R) of 700 um in both cases. The liquid (ethylene glycol) and the solid
(PDMS) surface tensions are v = 48 mN/m, and 7, ~ 20 mN/m respectively. Shear modulus of the substrate is G = 280 Pa.
The blue lines are the interaction force obtained from 2D theory. (a) Attraction and repulsion on a substrate of thickness (ho)
40 pm. (b) Purely attractive interaction between drops on a thick substrate (ho = 8 mm). The adjustable length, multiplied
with the 2D interaction force for comparison with the experiments is 7R/6 for both the cases.

the ratio of substrate thickness to drop radius governs
the nature of the interaction. In the other physically rel-
evant limit of small drops on a very thick substrate, the
interaction force is found to decay algebraically for large
distances. We anticipate that the dissipation mediated
interaction mechanism studied here to play a key role in
collective dynamics of drops on soft surfaces [26, 36], and
dynamics of soft, adhesive contacts.

Appendix

We evaluate the complex counterpart of the integrand
in eq. (17) on a contour C, given by

-1

1 g d
ayg iq |asq? + —— lad S
c K(a) 2

Here q is the complex wave vector. The contour C' con-
sists of a semicircle of radius r centered at the origin and
a straight line connecting the ends of the semicircle. We
evaluate the above integral using Residue theorem. As
r — 00, the integrand vanishes on the semicircle and the
contour integral simplifies to eq. (17). For any «; the in-
tegrand of eq. A.1 has an infinite number of poles on the
complex plane. The leading order behavior of the inte-
gration is governed by the pole with smallest imaginary
part (gpote) as other poles lead to much faster decay.
The substrate elastocapillary number a; dictates the
value of qpore. Figure 8 shows that below a critical as,
dpole is purely imaginary suggesting an purely exponen-
tial decay of the deformation. Beyond the critical as,
dpole has a nonzero real and imaginary part giving rise
to oscillatory behavior of slope as predicted by Long et.

(A.1)

al [24]. Hence, the large distance approximation of slope
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FIG. 8. Variation of qpoe on the complex plane with the
elastocapillary number «;. Below a critical o, qpoie is purely
imaginary and signifies an exponential decay.

is given by,

H  ~2riRes | ——M8M8 ———— (A.2)
v 2. 1 5
dodm K(a) " d=dpole

aiq eiqd]

This expression simplifies to eq. (18) in the main text.
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