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We present the first detection of the high-resolution ro-vibrational spectrum of the m3 þ m5 combination
band of propyne around 3070 cm�1. The fully resolved spectrum is recorded for supersonically jet-cooled
propyne using continuous wave cavity ring-down spectroscopy (cw-CRDS). The assignments are sup-
ported with the help of accurate ab initio vibration-rotation interaction constants (ai) and anharmonic
frequencies. A detailed analysis of the rotationally cold spectrum is given.
� 2017 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Propyne, also known as methylacetylene (H3CAC„CH), is a
small unsaturated hydrocarbon of astrophysical importance. It is
believed to play a role in the chemistry of a number of
hydrocarbon-rich astronomical objects, including the atmosphere
of Titan [1], the dark cloud TMC-1 [2], the circumstellar shell of
the AGB star IRC+10216 [3], and two protoplanetary nebulae CRL
618 [4] and SMP LMC 11 [5], where it has been observed in the
infrared (IR) through the m9 (HAC„C bending) mode, and by radio
astronomy through pure rotational transitions. In addition, the
close spacing of the rotational transitions of different K0 subbands,
and the relatively low dipole moment (l = 0.78 D) [6] make pro-
pyne an ideal probe of the interstellar medium’s kinetic tempera-
ture; since the excitation temperature increases as K0 increases
[7–9].

From a pure spectroscopic point of view this molecule is also
interesting. As a prolate symmetric top the aliphatic (CH3) and
acetylenic (CH) stretches are suitably decoupled from each other
that the strong acetylenic CH stretch mode (m1) is not strongly per-
turbed [10]. Studies of spectra that are perturbed through weak
near-resonant couplings to background vibrational states, as seen
in other transitions of propyne, make it of interest for studying
intramolecular vibrational relaxation (IVR) [11–13,10,14–17].
Moreover, comparison between high-resolution measurements as
presented here for propyne and ab initiomethods offers a good test
of the accuracy of the Hamiltonians used to describe the involved
molecular energy levels.

Propyne has been extensively studied in the electronic ground
state (X1A1) through a number of microwave and IR experimental
studies and ab initio calculations (Ref. [18], and references therein).
In fact, all of the fundamental bands and a substantial number of
combination bands involving either m3 (C„C stretch) or m5 (CAC
stretch) excitations have been studied at high-resolution [19–23,
10,14,16,24,9,18,25,26]. The spectroscopic identification of the
m3 þ m5 combination band has not yet been reported. Based on
the published band origins for m3 [20] and m5 [25], the m3 þ m5 com-
bination band is expected at � 3068 cm�1.

The results of a survey around this wavelength are presented
here. The experimental and theoretical details are given in Sec-
tion 2. The spectroscopic analysis and discussion are presented in
Section 3. Line positions are available from the supplementary
material.
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2. Methods

2.1. Experimental

The experimental setup has been described in detail in Ref. [27],
and has recently been used to measure the m3 þ m8 combination
band, involving the CH3 rocking mode of jet-cooled propyne
around 3175 cm�1 [26]. The main difference with the present
experiment is that a different single-mode continuous-wave opti-
cal parametric oscillator (cw-OPO) had to be used; the Aculight,
Argos 2400-SF-C module that covers 3.2–3.9 lm is used, instead
of the B module, which covers 2.5–3.2 lm.

A gas mixture of 0.05% propyne in 1:1 argon:helium is used as
the precursor gas. The gas is then supersonically expanded with a
4 bar backing pressure through a long (0.3 � 30 mm) slit nozzle
connected to a pulsed valve (General valve, serial 9) [28] into a vac-
uum chamber with a stagnation pressure of �1.5 � 10�2 mbar,
realized by a large roots blower system with a total pumping
capacity of 4800 m3/hr. The valve runs at 10 Hz, and the typical
gas pulse has a duration of about 800 ls. The pulsed gas flow is
used to create a high pressure jet expansion, increasing the local
number density of propyne molecules at the nozzle slit.

The absorption spectrum is recorded using cw-CRDS, with the
IR laser path intersecting the expansion roughly 1 cm downstream
from the nozzle body. The optical cavity is comprised of two highly
reflective plano-concave mirrors (R � 99.98%, centered at
3300 cm�1). Typical empty cavity ring-down times (s0) are about
9 ls. The hardware (boxcar integrator) based multi-trigger and
timing scheme described in detail in Ref. [27] is used to coincide
the laser light and gas pulse. This guarantees that the trigger
scheme compensates for the low duty cycle when combining a
cw laser with a pulsed gas expansion. For this experiment the opti-
cal cavity length is modulated at � 26 Hz, using a piezo crystal
mounted on the back of one of the cavity mirrors.

The resulting spectrum is recorded in a series of �1.2 cm�1

parts that partially overlap to guarantee that spectra can be
directly compared. While the spectrum is recorded, the laser fre-
Fig. 1. (a) The experimental spectrum from 3059.5 to 3080.5 cm�1 (upper trace), and
different K0 subbands. (b) Simulations of the K0 = 0, 1, 2, and 3 subbands (including transi
spectra.
quency is simultaneously measured using a wavelength meter
(Bristol Instruments, 621A-IR). The frequency accuracy is indepen-
dently calibrated by measuring known transitions of ethylene
(C2H4) [29]. The resulting maximum frequency uncertainty of
�0.002 cm�1 is dictated by the wavemeter.
2.2. Theoretical

Equilibrium geometry and second-order vibrational perturba-
tion theory (VPT2) calculations are carried out at the CCSD(T) level
of theory. The core-valence correlation-consistent quadruple-f
basis set (cc-pCVQZ) [30] is used to determine the equilibrium
geometry and rotational constants, since it has been shown to give
highly accurate geometries for acetylenic molecules [31,32]. The
atomic natural orbital (ANO) basis set with the truncation
[4s3p2d1f] for non-hydrogen atoms and [4s2p1d] for hydrogen
(hereafter known as ANO1) [33] is used to determine the anhar-
monic vibrational frequencies and electronic ground state spectro-
scopic constants of propyne. It has been shown to reproduce
experimental frequencies better than the correlation-consistent
basis sets [34,32]. All calculations are performed with the develop-
ment version of the CFOUR program [35].
3. Results and discussion

An overview of the experimental spectrum is shown in the
upper trace of Fig. 1(a). It shows a regular pattern with excellent
signal-to-noise spreading over 15 cm�1. A parallel band consistent
with a C3v symmetric top molecule A1-A1 transition is clearly seen
with a Q-branch at �3070.1 cm�1, very close to the predicted
v3 + v5 frequency of 3068 cm�1. The experimental spectrum is ana-
lyzed using the PGOPHER software [36], assuming a rotational
temperature of 18 K and a Gaussian linewidth of 0.004 cm�1. The
latter is determined by minimal residual Doppler broadening in
the slit nozzle expansion. A first fit of the strongest transitions
gives lower state rotational constants in good agreement with
simulated spectrum (lower trace) of the m3 þ m5 combination band comprising of
tions to perturbing states). A rotational temperature of 18 K is used in the simulated



Table 1
Spectroscopic parameters of the vibrational levels m3 ; m5, and m3 þ m5 statea (in cm�1).

Ground stateb m3 m5 m3 þ m5

[25] [20] [25] K = 0 K = 1 K = 2 K = 3

E 0.0 2137.87(12) 930.276 530(21) 3070.1411(4) 3070.1411b 3070.1411b 3070.1411b

A 5.308 312 9 5.301 7(2) 5.300 964 6(26) – 5.293 07(40) 5.294 17(12) 5.294 91(10)
aA
i � 103 6.613 7.348

B 0.285 059 768 3 0.283 550(2) 0.283 800 493(11) 0.282 428(8) 0.282 432(9) 0.282 508(17) 0.282 323(223)
aB
i � 103 1.510 1.259

DJ � 107 0.980 422 0.975(5) 1.024 005(80) 0.857(350) 0.769(371) 5.99(96) 3.99(41) � 102

DJK � 105 0.545 095 8 0.513(2) 0.563 033 4(239)
DK � 105 9.701 5 9.696 5(74)
HJ � 1015 �2.227 263.97(189)
HJK � 1011 3.050 3 1.781 5(66)
HKJ � 1010 1.769 1 �7.504 6(237)
HK � 108 0.0 �0.270 0(539)
LJJK � 1015 �0.210 5 0.0
LJK � 1015 �1.451 0.0
LKKJ � 1015 �13.55 0.0

a Numbers in parenthesis are one standard deviation in units of the last significant digit.
b Fixed values.

Table 2
Effective spectroscopic parameters of the perturbing statesa (in cm�1).

K0 = 1 K0 = 2

P1 P2 P3

State symmetry A1 A1 A1

E 3070.0682(7) 3069.9488(6) 3070.1082(8)
A 5.335 30(126) 5.333 10(592) 5.299 31(42)
B 0.284 210(56) 0.284 160(75) 0.281 290(279)
Perturbation coefficient 0.007(1) 0.011(1) 0.009(1)

a Numbers in parenthesis are one standard deviation in units of the last signifi-
cant digit.
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those already known for propyne. For a more accurate rotational
analysis the lower state constants are fixed to the ground state
parameters reported by Pracna et al. [25]. The rotational constants
for the upper state are calculated by the standard relation for a pro-
late symmetric top molecule:

Eðvi; J;K; lÞ ¼ EðviÞ þ 2AflK þ ðA� BÞK2 þ BJðJ þ 1Þ
� DJJ

2ðJ þ 1Þ2 � DJKJðJ þ 1ÞK2 � DKK
4 ð1Þ

where DJ, DJK, and DK are the centrifugal distortion constants, f is
the coriolis coupling constant (in this case f = 0), l is the quantum
number related to the projection of the total vibrational angular
momentum on the symmetry axis, and A and B are the rotational
constants, which can be given as:

Av ¼ A0 � RðviaA
i Þ ð2Þ
Fig. 2. A zoom-in of the Q-branch region of the experimental (upper trace) and sum
simulated (lower trace) spectrum. Transitions of the m3 þ m5 subbands are labelled:
K0 = 1 with crosses, K0 = 2 with squares, and K0 = 3 with triangles, and the perturber
bands (designated Pn) are labelled: K0 = 1 P1 with circles and K0 = 2 P1 with
diamonds; some of the transitions are blended. The transitions are fit using a
Gaussian linewidth of 0.004 cm�1.
Bv ¼ B0 � RðviaB
i Þ ð3Þ

where ai is the vibration-rotation interaction constant.
The rotational analysis starts from a least-squares fit, which

gives excited state parameters that reproduce the overall pattern
with reasonable accuracy. However, many of the K0 = 1 and 2 tran-
sitions show large deviations between the observed and calculated
frequencies, suggestive of perturbations. As such, the K0 subbands
were fit separately, based on the method described by Zhao et al.
[26]; this is shown in Fig. 1b. The resulting effective spectroscopic
parameters, and the parameters of the m3 [20] and m5 [25] states are
summarized in Table 1. From a least-squares fit of the K0 = 0 sub-
band the band origin is determined to be 3070.1411(4) cm�1

(which we fix for the K0 > 0 subbands), and B0 = 0.282428(8) cm�1.
In addition to transitions to the main state, transitions to three per-
turbing states are identified in the experimental spectrum, and the
spectroscopic parameters of those bands are summarized in
Table 2. The o-c (obs.-calc.) values of all the assigned transitions
are listed in the Supplementary Material. The summed spectrum
of all the individual simulated subbands, including transitions to
perturbing states, is given in the lower trace of (a) in Fig. 1, and a
zoom-in of the Q-branch is given in Fig. 2. This shows that the mea-
sured and simulated spectra are in excellent agreement. As in the
jet-cooled propyne study described previously by Zhao et al. [26],
only one rotational temperature of 18 ± 2 K, and a 1:1 E: (A1, A2)
statistical weights is needed to reproduce the overall observed
intensity pattern.
The 3000 cm�1 region of the propyne spectrum is expected to
have a high density of states, many of which originate from high-
order combination states. As such, the assignment of the experi-
mental data is supported by ab initio calculations. The CCSD(T)/
ANO1 VPT2 calculations of propyne are able to predict the



Table 3
Harmonic and anharmonic (VPT2) frequencies of propynea (in cm�1).

CCSD(T)/ANO1 Experimental

Nuclear motion Harmonic frequency, x VPT2 anharmonic frequency,a m Fundamental frequency, m

m1(A1) CH stretch 3471.5 3338.0(46.6) 3335.065 90 [10]
m2(A1) CH3 sym. stretch 3050.3 2938.8(9.5) 2940.999 6 [21]
m3(A1) C„C stretch 2180.2 2138.0(3.1) 2137.87 [20]
m4(A1) CH3 umbrella motion 1414.3 1382.7(0.0) 1385.03 [19]
m5(A1) CAC stretch 935.3 924.2(0.5) 930.276 530 [25]
m6(E) CH3 asym. stretch 3126.4 2976.8(7.3) 2980.860 2 [21]
m7(E) CH3 scissoring 1486.6 1449.4(7.7) 1450.271 [19]
m8(E) CH3 rocking 1057.0 1034.3(0.1) 1036.147 539 [25]
m9(E) HAC„C bending 642.8 635.5(45.6) 638.569 14 [23]
m10(E) CAC„C bending 325.3 327.8(7.6) 330.938 56 [22]
m5 þ m10(E) 1260.6 1254.9(0.02) 1262.75 [19]
m5 þ m9(E) 1578.1 1558.3(0.002) 1566.18 [19]
m5 þ m8(E) 1992.4 1956.3(0.002) 1989.7 [20]
m5 þ m8 þ 3m10(A1 þ A2) 2968.2 2940.0(0.0) 2940.833 [21]
m3 þ m5(A1) 3115.6 3060.1(0.14) 3070.1411b

m3 þ m8(E) 3237.3 3170.5(0.05) 3176.0774 [26]
m3 þ m6(E) 5306.6 5114.3(0.01) 5122.0 [18]
m1 þ m3(A1) 5651.7 5468.7(0.007) 5465.0 [24]
m1 þ m3 þ m5(A1) 6587.0 6390.9(0.0) 6398.05 [16]
2m1(A1) 6942.9 6567.2(1.2) 6568.172 [14]
2m1 þ m5(A1) 7878.3 7491.5(0.0) 7500.6 [18]
2m1 þ m3(A1) 9123.2 8690.6(0.0) 8691.3 [18]
ZPE = 12003.1

a Intensities in km/mol are given in parenthesis.
b This work.

Table 4
CCSD(T)/ANO1 vibration-rotation interaction constants of propynea (in cm�1).

Mode aA
i � 103 aB

i � 103

m1 0.035(0.41) [10] 0.646(0.665) [21]
m2 55.44(38) [37] 0.077(0.084) [21]
m3 2.570(6.6) [20] 1.476(1.510) [21]
m4 �27.42 1.665(0.40) [21]
m5 6.012(7.572) [6] 1.285(1.260) [21]
m6 35.87(17) [38] 0.064(0.026) [21]
m7 39.68(42.89) [19] �0.887(�0.26) [21]
m8 �29.49(�61.8) [20] 0.196(0.141) [21]
m9 0.652(1.353) [39] �0.187(�0.18) [21]
m10 1.293(2.170) [22] �0.821(�0.78) [21]

a Experimental values are given in parenthesis.
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anharmonic frequencies and intensities of fundamental and com-
bination states; this applies even to states with ten or more quanta
of excitation. However, states involving three or less quanta of
excitation are believed to be the most accurate, since many states
at that level can be compared to experimentally determined band
origins [18]. As shown in Table 3, our VPT2 calculations are able to
reproduce the experimental frequencies of both fundamental and
combination bands to within 10 cm�1. This suggests that the pre-
dicted anharmonic frequencies for new transitions are equally
accurate. Within �100 cm�1 of 3070 cm�1 the calculations predict
only three states with appreciable IR intensity: m6 at 2976.8 cm�1,
and m3 þ m8 at 3170.5 cm�1, which are both E states, and m3 þ m5 at
3060.1 cm�1, which is an A1 state (Table 3). The calculated anhar-
monic frequency for m3 þ m5 at 3060.1 cm�1 has an o-c difference of
10.04 cm�1 relative to our experimentally determined band origin,
which is consistent with that expected for the accuracy of our cal-
culations. In addition, both the calculated and experimental values
agree well with the frequency predicted based on the experimental
frequencies of the m3 and m5 fundamental bands (Table 1), strongly
supporting the assignment of the new experimental band as the
m3 þ m5 combination band of propyne.

Furthermore, the CCSD(T)/ANO1 calculations result in
vibration-rotation interaction constants (Table 4) that are in much
better agreement with experimentally derived values compared to
previous calculations, particularly aA

i [10]. From Eqs. (2) and (3),
the m3 þ m5 rotational constants based on our calculated ai (Table 4)
are A = 5.2997 cm�1 and B = 0.28500 cm�1, and based on the
experimental ai (Table 1) we find A = 5.2944 cm�1 and
B = 0.28506 cm�1. Both predicted B3+5 values differ by less than
1% from our experimental B0, providing additional support for the
assignment of the m3 þ m5 combination band to the experimentally
observed band shown in Fig. 1.

For the fit, 31 transitions are assigned to the m3 þ m5 state K0 = 0
subband, while only 3 transitions are assigned to the K0 = 3 sub-
band. The fitting of the K0 = 0 and 3 subbands (both A1-A2 type
transitions) do not show signs of perturbations. However, in the
present data set we cannot exclude perturbations in the K0 = 3 sub-
band, since only a limited number and only Q-branch transitions
are observed. We also cannot exclude any perturbations at high-
J0 K0 in any of the subbands. Conversely though, 34 transitions are
assigned to the K0 = 1 subband of the m3 þ m5 state, and 26 transi-
tions are assigned to the K0 = 2 subband. The K0 = 1 and 2 subbands
(both E-E type transitions) require the inclusion of perturbing
states in the fit in order to accurately reproduce the observed line
positions.

The perturbing states all have the same A1 symmetry, and we
assume that all of the perturbations are homogeneous perturba-
tions that to our best approximation are independent of any quan-
tum numbers. Two perturbing states are required to accurately
reproduce the experimental line positions of the m3 þ m5 state
K0 = 1 subband. One (P1) with a perturbation coefficient of 0.007
(1) cm�1 has 8 observed transitions, including a noticeable Q-
branch, and it affects the J0 6 5 transitions. While the second (P2)
only has 4 observed transitions, with no observed Q-branch transi-
tions, but it has a larger perturbation coefficient of 0.011(1) cm�1

and strongly affects J0 = 9. Finally, while only 2 transitions are
observed to the P3 states, the interaction has a perturbation coef-
ficient of 0.009(1) cm�1, and significantly influences the J0 6 7 tran-
sitions, particularly the Q-branch, of the m3 þ m5 K0 = 2 subband.
Unfortunately, at this time we cannot conclusively identify the per-
turbing states. However, with the inclusion of the perturbing states
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the least-square fit analysis gives an effective A = 5.293 07(40),
5.294 17(12), and 5.294 91(10) cm�1, for the three K0 subbands
respectively, which all differ by less than 0.1% from the predicted
A3+5 values.

The present data set can be compared with the results pre-
sented by Zhao et al. [26]. The VPT2 calculations predict the inten-
sity of the m3 þ m5 combination band to be about 3� the intensity of
the m3 þ m8 combination band. A comparison of the m3 þ m5 data
presented here and the m3 þ m8 data published earlier by Zhao
et al. [26] – all recorded for similar expansion conditions and cor-
rected for small changes in the ring-down time – results in a factor
2.8� difference in the intensity. This provides a further argument
supporting the assignment made here.

4. Conclusion

The current high-resolution study of jet-cooled propyne using
cw-CRDS has yielded the first fully resolved observation of the
m3 þ m5 state. As also found in the recent work on m3 þ m8, our anal-
ysis indicates that near-resonant or non-resonant perturbations
are involved in the m3 þ m5 spectrum. The experimental data are
fully consistent with high level ab initio calculations, presented
here, for the anharmonic frequencies. These calculations also give
ground state spectroscopic constants accurate enough to aid in
the assignment of ro-vibrational spectra of propyne.
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