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Abstract 
Introduction. Drug-target binding kinetics (as determined by association and dissociation rate constants, kon 
and koff) can be an important determinant of the kinetics of drug action. However, the effect compartment 
model is used most frequently instead of a target binding model to describe hysteresis. Here we investigate 
when the drug-target binding model should be used in lieu of the effect compartment model.  

Methods. We tested the utility of the effect compartment (EC), the target binding kinetics (TB) and the 
combined effect compartment-target binding kinetics (EC-TB) model on either plasma (ECPL, TBPL and EC-
TPPL) or brain extracellular fluid (ECECF, TBECF and EC-TPECF) morphine concentrations and EEG amplitude in 
rats. We also analyzed when a significant shift in the time to maximal target occupancy (TmaxTO) with 
increasing dose, the discriminating feature between the TB and EC model, occurs in the TB model. All TB 
models assumed a linear relationship between target occupancy and drug effect on the EEG amplitude. 

Results. We found that all three model types performed similarly in describing the morphine PD data, 
although the EC model provided the best statistical result. Our analysis of the shift in TmaxTO (∆TmaxTO) as a 
result of increasing dose revealed that ∆TmaxTO is decreasing towards zero if the koff is much smaller than 
the elimination rate constant or if the target concentration is larger than the initial morphine concentration. 

Discussion and Conclusion. Our results for the morphine PKPD modelling and the analysis of ∆TmaxTO 
indicate that the EC and TB models do not necessarily lead to different drug effect versus time curves for 
different doses if a delay between drug concentrations and drug effect (hysteresis) is described. Drawing 
mechanistic conclusions from successfully fitting one of these two models should therefore be avoided. 
Since the TB model can be informed by in vitro measurements of kon, either plasma (a target binding model 
should be considered more often for mechanistic modelling purposes 

 

 

 

 

 

 

 

 

 

Abbreviations: AIC: Akaike Information Criterion, CNS: Central Nervous System, DE: Direct Effect, ECF: 
Extracellular Fluid, EC: Effect Compartment, IE: Indirect Effect, GOF: Goodness Of Fits, IIV: Inter-Individual 
Variability, OFV: Objective Function Value, PD: Pharmacodynamics, Pgp: P-glycoprotein, PK: 
Pharmacokinetics, PD: Pharmacodynamics, TB: Target binding, TmaxPD: Time between dosing and maximal 
drug effect, TmaxTO: Time between dosing and maximal target occupancy, ∆TmaxTO: TmaxTO of the lower 
dose - TmaxTO of the higher dose, VPC: Visual Predictive Check 
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Introduction 
Drug-target binding kinetics is an important criterion in the selection of drug candidates, as it can be a 
determinant of the time course and the selectivity of drug effect.[1–4] 

However, the in vivo time course of drug action is influenced by multiple factors including plasma 
pharmacokinetics, target site distribution, target binding kinetics, competition with endogenous ligands, 
turnover of the target, signal transduction kinetics and the kinetics of homeostatic feedback. As a 
consequence, the influence of binding kinetics on drug action can only be understood in conjunction with 
these kinetic processes and its relevance is still not fully understood and subject to an ongoing debate.[3,5–
8] 

One of the arguments against an important role of binding kinetics for in vivo drug action is that binding 
kinetics are most often not required to get a good fitting PKPD model for small molecules. However, 
numerous examples are available were binding kinetic models have been successfully applied, and binding 
kinetics are routinely incorporated in models for biologics and PET data.[9–17] The sparsity of target binding 
PKPD models for small molecules can be explained by the relatively fast binding kinetics of many drugs 
currently on the market, compared to their pharmacokinetics.[3] In addition, when a delay between drug 
concentrations and effect is observed, this delay is often described by an effect compartment or indirect 
response model.[18,19]  

Here we study the difference between the effect compartment (EC) model, the target binding (TB) model 
the direct effect (DE) and the indirect effect (IE) model which are described below. The EC model describes 
the delay between pharmacokinetics (PK) and pharmacodynamics (PD) by including first order distribution 
of the drug into and out of a hypothetical target-site (biophase) compartment, which drives the PD mostly in 
a nonlinear fashion.[20] The indirect effect (IE) model describes the delay between PK and PD by the zero 
order synthesis and first order degradation of an effector molecule which represents the PD, mostly in a 
linear fashion.[21] The target binding (TB) model describes the delay between PK and PD by the second 
order drug-target association and first order dissociation of the drug-target complex, which drives the effect 
in a linear or nonlinear fashion, depending on the efficacy and receptor reserve.[22–24] The DE model 
describes no delay between the PK and PD and links the drug concentration directly to the effect 
measurements in a linear or nonlinear fashion. 

These models thus result in a zero, first and second order formation of the compounds that drives the PD, 
being the drug concentration in the effect compartment, the target-bound drug concentrations and the 
endogenous effector molecule in the EC, TB and IE model, respectively. This results in different dose 
dependencies of the time to the maximal effect TmaxPD. As a current paradigm, the shift in TmaxPD 
(∆TmaxPD) in a PKPD dataset as a consequence of a change in the dose,  identifies the appropriate PKPD 
model to describe the data: with increasing dose, the TmaxPD can increase for the indirect response model, 
decrease for the TB model and is constant for the EC model.[25–27]  

However, in contrast to common belief, the indirect response model does not always result in an increasing 
TmaxPD with increasing doses but can also give rise to a decreasing TmaxPD with increasing doses, as shown 
by Peletier et al.[28] A comprehensive analysis of the conditions for which a shift in TmaxTO for changing 
doses occurs in a TB model is currently not available. It might be that EC models have been used while TB 
models could have been applied equally well to describe the data in previous PKPD studies.  

One example in which performance of TB and EC models has been investigated  indicates comparable 
performance in describing the data of eight calcium channel blockers, but this study used only one dose 
level for all drugs[14] and therefore cannot be used to validate the relationship between dose and ∆TmaxPD. 
An additional complexity in choosing the most appropriate PKPD model to describe PKPD data is that, for 
most drugs, factors as target site distribution, drug-target binding and turnover of signaling molecules occur 
in parallel. It is not always needed to incorporate all these factors in the PKPD model, as only the rate 
limiting mechanism is required for a proper model fit that describes the observed data. However, leaving 
out such factors will never lead to understanding of the individual contributions and the interplay between 
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these factors.  Combined EC-TB models[13,29,30] as well as combined IE-TB models[10] have been applied 
successfully to discriminate between the contributions of separate factors. However, this discrimination is 
not always possible if one of the factors is relatively fast and does not contribute significantly to the delay 
between PK and PD.[31–33]. In short, the relevance of drug-target binding kinetics cannot be excluded if 
one of the other models is successfully fitted to a dataset, and there is a need to generate more insight into 
the difference between the TB model and the EC model. 

The aim of the current study is to investigate if the TB and EC model can give similar drug effect versus time 
curves and under what conditions this will occur. In this study, we used a historical PKPD dataset for 
morphine [34] to compare the goodness of fit for the TB model with the EC model  and the combined EC-TB 
model in describing the time course of the EEG effect following administration of 3 different doses of 
morphine (4, 10 and 40 mg/kg). Both plasma and brain ECF drug concentrations were measured and tested 
in this study to be connected to the PD via an EC, TB or EC-TB model. Subsequently, a more general insight 
in the shift of TmaxTO for different dose levels in the drug-target binding model is obtained to identify for 
what parameter values the TB model can be discriminated from the EC model based on the ∆Tmax TO. To 
that end, we performed comprehensive simulations and mathematical model analysis for a wide range of 
drug-target association and dissociation rate constants, for various plasma elimination rate constants, target 
concentrations, and dose levels. 

 

Methods 
 

Pharmacokinetic and pharmacodynamic (PKPD) data of morphine in rats 
All PK and PD data used in this study were obtained from the experiments described earlier.[35] In short: 
Morphine was intravenously administered to Male Wistar rats, during a 10-minute infusion, in 4 different 
dose groups: 0, 4, 10 or 40 mg/kg with 5, 29, 11 and 14 animals, respectively.  The P-glycoprotein (Pgp) 
inhibitor GF120918 or vehicle was given as a continuous infusion. In the group of 29 animals that received 4 
mg/kg morphine, 9 animals received GF120918, the other 20 animals received the vehicle. Furthermore, 
while plasma concentrations were measured in all animals, brain ECF concentrations were measured with 
microdialysis in 29 animals, of which 15 received 4 mg/kg, 0 received 10 mg/kg, 9 received 40 mg/kg and 5 
received 0 mg/kg morphine.  

For the modelling data set, all data entries without time recordings, without concentration data or with 
concentration data equal to 0 were removed from the dataset. The lower limit of quantification for 
morphine in plasma samples was 88 nM and 1.75 nM for morphine in ECF samples. The PD of morphine was 
measured as the amplitude in the δ frequency range (0.5-4.5 Hz) of the EEG, and recorded every minute. 
The EEG data were further averaged for every 3-minute interval to reduce the noise and decrease the model 
fitting time. 

General model fitting methods 

Data fitting was based on minimization of the Objective Function Value (OFV =  – 2*log likelihood) as 
implemented in NONMEM 7.3.[36] To account for the number of parameters for the comparison of non-
nested models, the Akaike Information Criterion (AIC) was calculated by adding two times the number of 
estimated parameters to the OFV.[37] Variability in the data was described by IIV (Inter Individual 
Variability: variability in parameter values between animals) and a residual error term. IIV was implemented 
assuming a log-normal distribution according to equation 1: 

𝑃𝑖 =  𝑃𝑝𝑜𝑝 ∗  𝑒𝜂𝑖                                                                        (1) 

In which Pi is the individual parameter value, Ppop is the typical parameter value in the population and ηi is 
normally distributed around a mean of zero with variance ω2 according to equation 2: 
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𝜂𝑖  ~ 𝑁(0, 𝜔2)                                                                           (2) 

The remaining variation between the data and the model predictions are incorporated as residual error for 
which both a proportional (equation 3) and a combined proportional and additive (equation 4) error model 
were tested. 

𝑜𝑏𝑠𝑖𝑗 =  𝑝𝑟𝑒𝑑𝑖𝑗 ∗ (1 + 𝜀𝑝𝑟𝑜𝑝,𝑖𝑗)                                                          (3) 

𝑜𝑏𝑠𝑖𝑗 =  𝑝𝑟𝑒𝑑𝑖𝑗 ∗ (1 + 𝜀𝑝𝑟𝑜𝑝,𝑖𝑗) + 𝜀𝑎𝑑𝑑,𝑖𝑗                                                   (4) 

In these equations, obsij is the observation, predij is the model prediction, εprop,ij is the proportional error and 
εadd,ij is the additive error  for individual i at time point j. Both εprop,ij and εadd,ij are normally distributed 
around a mean of zero with variance σ2 according to equation 5 and 6: 

𝜀𝑝𝑟𝑜𝑝,𝑖𝑗  ~ 𝑁(0, 𝜎2)                                                                           (5) 

𝜀𝑎𝑑𝑑,𝑖𝑗 ~ 𝑁(0, 𝜎2)                                                                           (6) 

Morphine plasma PK modelling 

One-compartment, two-compartment and three-compartment models were fitted to the plasma PK data, 
with both proportional and additive plus proportional error models, and with IIV on the various parameters. 
The best fits (based on AICs) of each structural model were compared for their GOFs (Goodness Of Fits) and 
AICs. Since the purpose of the plasma PK modelling was to get the best possible input for the PD modelling, 
GOF was assessed by the AIC and by individual fits. Over- or underestimation of IIV and population 
parameter estimates and high uncertainties in population parameter estimates were not regarded as 
problematic, since only the right individual parameter estimates were required for PD modeling. 

Morphine brain ECF PK Modelling 

The individual parameter estimates that were estimated to describe the plasma PK were used as fixed 
parameters to describe the plasma PK profile as input for the brain ECF concentrations. To describe the ECF 
concentrations, we thus assumed that the distribution of the drug into and out of the ECF did not lead to a 
change in plasma concentrations. The best fits, based on the AICs, of each structural model were compared 
for their GOFs (Goodness Of Fits) and AICs. Since the purpose of the brain ECF PK modelling was to get the 
best possible input for the PD modelling, GOF was assessed by the AIC and by individual fits. Over- or 
underestimation of IIV and population parameter estimates and high uncertainties in population parameter 
estimates were not regarded as problematic, since only the right individual parameter estimates were 
required for PD modeling. 

EEG PD modelling 

To maximize the identifiability of the PD model parameters, all pharmacokinetic parameters were used as 
fixed parameters to describe the plasma and brain ECF concentrations as input for all the described PD 
models to describe EEG effects.[38] The different type of models that were tested are outlined in Table 1. 
For each model, the most informative variations on the model structure are given in the results section.  
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Table 1. Overview of the different model types, the data that were used and the model numbers as used in 
this manuscript. EC = Effect compartment, TB = target binding, EC-TB = effect compartment – target binding. 
IE = indirect effect, DE = direct effect and ECF = brain extracellular fluid. 

Model type Concentrations linked to 
effect 

Model number 

EC PLasma ECPL1 – ECPL4 
EC ECF ECECF1 
TB PLasma TBPL1 – TBPL5 
TB ECF TBECF1 
EC-TB PLasma ECTBPL1 – ECTBPL5 
IE ECF IEECF1 
DE ECF DEECF1 

 

To compare structural models that linked plasma or brain ECF concentrations directly to the PD, the models 
that used plasma PK were fitted to the reduced dataset that only contained animals with plasma PK, brain 
ECF and EEG measurements.  Model comparison was based on the AIC, visual inspection of the GOF and a 
VPC (Visual Predictive Check) to check if the IIV was captured appropriately. 

Drug-target binding model simulations 

Simulations with a one-compartment binding model with IV administration were performed for a wide 
range of kon and koff values and for a variety of elimination rate constants, target concentrations and drug 
dose levels. The TmaxTO was compared for 2 different doses to determine the influence of the drug dose on 
the TmaxTO. The ∆TmaxTO values were calculated by subtracting the TmaxTO of the highest dose from the 
TmaxTO of the lowest dose and ∆TmaxTO was plotted against kon and koff. 

 

Results 

Morphine PK modelling 
Modelling of morphine pharmacokinetic data in plasma and brain ECF as described in Supplement S 1 
identified very similar model structures as previously described for pharmacokinetic modelling of the same 
dataset by Groenendaal and coworkers.[35]  In short, the plasma concentrations were described by a 3-
compartment model and the ECF concentrations were described by passive distribution into and out of the 
brain combined with saturable active influx and first-order efflux. 

EEG PD modelling 
ECPL model fitting 

EC and TB models have been applied to the morphine data to describe the relationship between the 
observed plasma concentrations and EEG amplitude and direct effect (DE) indirect effect (IE), EC and TB 
models have been applied to brain ECF and EEG amplitude data. The differential equations for these models 
are given in Supplement S 1. Firstly, the originally published ECPL model structure was optimized by adding a 
slope parameter which describes the linear decline of EEG amplitude over time during the experiment 
independent of the drug effect, and including IIV on the baseline EEG amplitude only. For this model, a 
transit compartment was required between the plasma and the effect compartment.[34] An overview of the 
different variations on this basic model structure is given in Table 2. The structure of all ECPL is identical and 
is depicted in Figure 1. Based on the AIC, the parameter estimates and the GOF, model ECPL1 was chosen as 
the best parameterization for the effect compartment model in Figure 1. 
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Figure 1. Schematic representation of the ECPL model structure that was used to describe the morphine EEG amplitudes 
over time. kie  = first-order in- and outward distribution rate constant for the transit compartment. keo first-order outward 
distribution rate constant from the effect compartment. The effect compartment concentrations were linked to the EEG 
amplitude by a sigmoidal Emax model. The distribution from plasma to the tissue compartments and the brain ECF 
compartment is described in Supplement S 1. The arrows indicate morphine flows, the dotted line indicates a direct 
relationship. 

Table 2. Parameter values and objective function values of the tested EC models describing the EEG data 
based on plasma concentrations. CV denotes the coefficient of variation as percentage. OFV denotes the 
Objective Function Value, AIC denotes the Akaike Information Criterion. ω2 and σ2 denote the variances of 
the exponential IIV distribution and the error distribution, respectively. 

 
 

ECPL1 
selected model 

ECPL2 
no slope  

ECPL3 
k1e = keo 

ECPL4 
no Pgp effect 

OFV 44748.0 45084.2 44853.3 44868.4 
AIC 44770.0 45104.2 44871.3 44886.4 
parameter Value (%CV) Value (%CV) Value (%CV) Value (%CV) 
k1e(/min) 0.0393 (18) 0.0432 (10) 0.0403 (10) 0.0375 (8) 
keo(/min) 0.0382 (14) 0.0458 (9) - 0.0375 (8) 
k1e -Pgp (/min) 0.0565 (44) 0.0661 (38) 0.0295 (18) - 
keo -Pgp (/min) 0.016 (46) 0.0203 (20) - - 
E0 (µV) 45.1 (4) 42.2 (4) 45.8 (4) 45.9 (4) 
Emax (µV) 27.9 (23) 25.3 (16) 26.1 (18) 27.0 (18) 
EC50 (nM) 1270 (52) 1220 (31) 912 (37) 1000 (37) 
NH 1.44 (43) 2.02 (27) 1.46 (36) 1.37 (33) 
slope (µV/min) -0.024 (22) 0 FIX -0.0263 (15) -0.0267 (15) 
     
ω2 E0 (µV) 0.111 (20) 0.125 (19) 0.115 (20) 0.116 (20) 
     
σ2 proportional 0.0554 (7) 0.0584 (7) 0.0562 (6) 0.0564 (6) 

 

TBPL model fitting 

The TBPL model was applied to describe target binding from plasma, all TBPL models in  

Table 3 shared the same structure as represented in Figure 2. The parameter estimation results are given in  

Table 3. Since the target concentration is of influence only if it is similar to the drug concentration (which is 
mostly above 100 nM in plasma and in brain ECF, as shown in Supplement S 1), the target concentration 
could not be estimated in this model and was fixed to an arbitrary low value of 1 nM in the model 
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estimations. This low target concentration prevents the influence of the target concentration on the EEG 
amplitude in the model. The influence of blocking Pgp has been incorporated by estimating separate 
parameter values with and without the presence of Pgp blocker. While the influence of blocking Pgp on the 
koff or KD is mechanistically not plausible, the improved model fits for the models which incorporate these 
influences might indicate that the estimated koff and KD values refer to apparent values which include not 
only the molecular properties. The target occupancy is linearly related to the EEG amplitude in model TBPL1 - 
TBPL5, as nonlinear relationships could not be identified accurately in this study. On basis of the objective 
function values, model TBPL4 was selected as the best drug-target binding model. It should be noted that the 
AIC of model TBPL4 is 338 points higher than model ECPL1, which means that model ECPL1 performs better in 
fitting the data. All TBPL models have one compartment less than the transit-EC models ECPL1 - ECPL4. 
Therefore, the combined EC-TBPL models EC-TBPL1 - EC-TBPL5 were developed. 

 

Figure 2. Schematic representation of the TBPL model structure that was used to describe the morphine EEG amplitudes 
over time. kon is the second-order drug-target association rate constant. koff is the first-order drug-target dissociation rate 
constant. Target occupancy is linearly related to the EEG amplitude. The distribution from plasma to the tissue 
compartments and the brain ECF compartment is described in Supplement S 1. The arrows indicate morphine flows, the 
dotted line indicates a direct relationship. 

 

Table 3. Parameter values and objective function values of the tested TBPL models describing the EEG data 
based on plasma concentrations. CV denotes the coefficient of variation as percentage. OFV denotes the 
Objective Function Value, AIC denotes the Akaike Information Criterion. ω2 and σ2 denote the variances of 
the exponential IIV distribution and the error distribution, respectively. 

 
 

TBPL1 
no Pgp effect 

slope = 0 

TBPL2 
no Pgp effect 

TBPL3 
Pgp on koff 

TBPL4 
Selected model 

TBPL5 
slope = 0 

OFV 45677.7 45170.1 45166.6 45092.1 45536.9 
AIC 45689.7 45184.1 45182.6 45108.1 45550.9 
parameter Value (%CV) Value (%CV) Value (%CV) Value (%CV) Value (%CV) 
koff (/min) 0.017 (8) 0.0103 (13) 0.0109 (17) 0.009 (26) 0.0149 (15) 
koff -Pgp (/min) - - 0.0087 (26) - - 
KD (nM) 1980 (37) 995 (36) 935 (37) 1570 (59) 3610 
KD -Pgp (nM)    381 (88) 715 
E0 (µV) 42.4 (4) 45.9 (4) 45.8 (4) 45.4 (4) 42.2 
Emax (µV) 32.2 (14) 29.3 (13) 28.9 (13) 32.9 (20) 38.9 
Rtot (nM) 1 FIX 1 FIX 1 FIX 1 FIX 1 FIX 
slope (µV/min) 0 FIX -0.0313 (13) -0.0315 (12) -0.0299 (12) 0 FIX 
      
ω2 E0 (µV) 0.135 (18) 0.117 (20) 0.117 (20) 0.113 (19) 0.13 (17) 
      
σ2 proportional 0.0639 (6) 0.059 (6) 0.059 (6) 0.0584 (6) 0.0626 (6) 
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EC-TBPL model fitting 
 

The EC-TBPL model structure that was tested to describe the EEG data is shown in Figure 3. The parameter 
values, OFVs and AICs are given in Table 4. Model EC-TBPL1 was selected as best model on basis of the AIC, 
but this AIC is still 39 points higher than Model ECPL1. The uncertainty in the parameter estimate of the KD in 
the presence of the Pgp blocker (KD –Pgp) is rather high with 93%, but this was allowed to test the 
conclusion that none of the binding models (TBPL1 - TBPL5 and EC-TBPL1 - EC-TBPL5) yielded lower AICs than 
the best effect compartment model (ECPL1) in a conservative manner. 

 

Figure 3. Schematic representation of the EC-TBPL model structure that was used to describe the morphine EEG amplitudes 
over time. kon is the second-order drug-target association rate constant. koff is the first-order drug-target dissociation rate 
constant. keo is the first-order distribution rate constant into and out of the effect compartment. Target occupancy is 
linearly related to the EEG amplitude. The distribution from plasma to the tissue compartments and the brain ECF 
compartment is described in Supplement S 1. The arrows indicate morphine flows, the dotted line indicates a direct 
relationship. 

 

Table 4. Parameter values and objective function values of the tested EC-TBPL models describing the EEG 
data based on plasma concentrations. CV denotes the coefficient of variation as percentage. OFV denotes 
the Objective Function Value, AIC denotes the Akaike Information Criterion. ω2 and σ2 denote the variances 
of the exponential IIV distribution and the proportional error distribution, respectively. 

 
 

EC-TBPL1 
Selected model 

EC-TBPL2 
no Pgp effect 

EC-TBPL3 
Pgp on keo 

EC-TBPL4 
koff = 1 

EC-TBPL5 
slope = 0 

OFV 44790.9 44880.3 44873.8 45008.2 45235.3 
AIC 44808.9 44896.3 44891.8 45024.2 45251.3 
parameter Value (%CV) Value (%CV) Value (%CV) Value (%CV) Value (%CV) 
koff (/min) 0.0275 (14) 0.0243 (14) 0.0247 (14) 1 FIX 0.0400 (9) 
keo (/min) 0.0327 (17) 0.0365 (12) 0.0389 (14) 0.0162 (28) 0.036 (13) 
keo -Pgp (/min) - - 0.0265 (31) - - 
KD (nM) 1520 (34) 1150 (30) 1110 (30) 2110 (50) 3150 (36) 
KD -Pgp (nM) 296 (93) - - 385 (78) 594 (47) 
E0 (µV) 45.0 (4) 45.7 (4) 45.6 (4) 45.2 (4) 41.9 (4) 
Emax (µV) 31.8 (11) 30.7 (11) 30.5 (11) 34.4 (18) 37.3 (12) 
Rtot (nM) 1 FIX 1 FIX 1 FIX 1 FIX 1 FIX 
slope (µV/min) -0.0276 (15) -0.0296 (13) -0.0296 (13) -0.0273 (14) 0 FIX 
      
ω2 E0 (µV) 0.111 (20) 0.116 (20) 0.116 (20) 0.111 (19) 0.129 (18) 
      
σ2 proportional 0.057 (7) 0.0565 (7) 0.0565 (7) 0.0576 (7) 0.0597 (7) 
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ECECF, TBECF, IEECF and DEECF model fitting 

The last models that were fitted to the EEG data were based on the ECF concentrations instead of the 
plasma concentrations. Various model structures were tested, as shown in Figure 4. To compare the model 
fits based on ECF concentrations (ECECF1, TBECF1, IEECF1 and DEECF1) with the model fits that were based on 
plasma concentrations (ECPL, TBPL and EC-TBPL), the best plasma model (ECPL1) was fitted to the limited 
dataset that included only animals with ECF data. This model fit was compared to the ECF-based model fits 
on basis of their AICs, as shown in Table 5. 

 

Figure 4. Schematic representation of the ECECF, TBECF, IEECF and DEECF model structures that were used to describe the EEG 
data based on brain ECF concentrations. The different structures represent A) the DEECF model, B) the ECECF model, C) the 
TBECF model and D) the IEECF model, with ksyn being the zero-order effect generation rate constant, and kdeg being the first-
order effect degradation rate constant. The distribution from plasma to the tissue compartments and the brain ECF 
compartment is described in Supplement S 1. The arrows indicate morphine flows, the dotted line indicates a direct 
relationship. 
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Table 5. Parameter values and objective function values of the tested models describing the EEG data based 
on ECF concentrations. CV denotes the coefficient of variation as percentage. OFV denotes the Objective 
Function Value, AIC denotes the Akaike Information Criterion. ω2 and σ2 denote the variances of the 
exponential IIV distribution and the proportional error distribution, respectively. 

 a This value was estimated as the maximal ksyn minus baseline ksyn (calculated from E0 and kdeg) and 

calculated by dividing the estimated value by the kdeg.                             

Of all the models that are described above, model ECPL1 has the lowest AIC. To evaluate its performance in 
more detail, the most relevant diagnostic plots are given in Figure S 6 to Figure S 10. These diagnostic plots 
indicate that the main trend of the data is captured, although the obtained fit is not optimal (which is 
especially clear from Figure S 10). The small difference in AIC between the best combined EC-TB model (EC-
TBPL1) and the best EC model (ECPL1) is also reflected by very similar VPC results, as shown in Figure S 11. 
Moreover, the best model with only binding from plasma(TBPL4) also provided a similar VPC result (see 
Figure S 12). 

Dose-dependency of TmaxTO in a TBPL model 
Our simulations of drug-target binding in a TBPL model for the range of the most relevant binding kinetics 
demonstrated that the observable influence of dose on TmaxTO, which discriminates the TB model from the 
EC model, is limited to a confined range of kon and koff combinations. As visualized in Figure 5, if the koff has a 
value around the elimination rate constant of 0.03/hr ∆TmaxTO is maximal. Also, the initial drug 
concentration C0 should not be above a specific threshold value which is approximately equal to the target 
concentration. The absolute ∆TmaxTO for different doses (as shown in Figure 5) will be most relevant for the 
identification of the dose-dependent ∆TmaxTO in a PKPD modelling study. However, for the understanding of 
the underlying determinants of this shift in ∆TmaxTO, the ratio of the ∆TmaxTO values belonging to the 2 
doses should also be considered, as shown in Figure 6. For example, if the two different TmaxTO values 
obtained from the two doses are 1 and 3 minutes, their ratio is 3, but the absolute difference is 2 minutes. If 
the two TmaxTO values are 1 and 3 hours, their ratio is still 3, but the difference is now 2 hours. In this latter 
case, the influence of the dose on the TmaxTO will be more easily identified. Representative example 
simulations that can help to understand the characteristics of Figure 5 are provided in Supplement S 2. 

  

 
 

ECPL1 
ref. model 

 

TBECF1 
binding model 

DEECF1 
direct effect 

ECECF1 
effect 

compartment 

IEECF1 
indirect effect 

OFV 25996.1 26284.1 26284.0 26255.1 26240.3 
AIC 26118.1 26300.1 26300.0 26273.1 26258.3 
parameter Value (%CV) Value (%CV) Value (%CV) Value (%CV) Value (%CV) 
k1e(/min) 0.0457 (35) - - - - 
keo(/min) 0.0377 (41) - - 0.161 (40) - 
k1e -Pgp (/min) 0.0647 (36) - - - - 
keo -Pgp (/min) 0.0155 (77) - - - - 
E0 (µV) 47.6 (6) 48.9 (6) 48.9 (6) 49.1 (6) 49.1 (6) 
Emax (µV) 27.5 (20) 32.7 (17) 23.4 (18) 24.9 (19) 25.4a (36) 
Emax –Pgp (µV) -  41.6 (14) 43.2 (15) 43.3 (42) 
EC50 (nM) 1100 (87) - 173 (22) 182 (26) 182 (25) 
NH 2.05 (49)  2.3 (41) 2.02 (43) 2.07 (43) 
slope (µV/min) -0.0235 (34) -0.0400 (17) -0.0359 (17) -0.0373 (19) -0.0377 (19) 
koff (/min) - 0.0932 (37) - - - 
KD - 283 (40) - - - 
KD -Pgp - 55.9 (15) - - - 
kdeg (/min)     0.124 (34) 
      
ω2 E0 (µV) 0.0668 0.0668 (26) 0.072 (25) 0.0696 (26) 0.0961 (26) 
      
σ2 proportional 0.0550 (10) 0.0598 (10) 0.0598 (10) 0.0593 (10) 0.059 (10) 
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Figure 5. Overview of the shift in TmaxTO that was observed in the simulations with the TBPL model (see 
upper-right corner) as a result of the change in the affinity-normalized dose (leading to an initial 
concentration of 5 and 0.5 times the KD). The elimination rate constant kel was 0.03/hr and the target 
concentration was 0.1 nM for all simulations in this figure. 

 

Figure 6. Overview of the ratio of TmaxTO values that was observed in the simulations with the TBPL model 
(see inset) as a result of the change in the affinity-normalized dose (leading to an initial concentration of 5 
and 0.5 times the KD). The elimination rate constant kel was 0.03/hr and the target concentration was 0.1 nM 
for all simulations in this figure. 
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Interestingly, the relationship between the ∆TmaxTO, the elimination rate constant, the target concentration 
and the dose could be approximated mathematically for the upper region, the lower-left region and the 
lower-right region of Figure 5 as presented in Supplement S 3. From this analysis, it follows that for the 
upper half of Figure 5, where the koff is much larger than the kel, TmaxTO is always small, and a significant 
∆TmaxTO will thus not be observed. For the lower and the lower-right part of Figure 5, where the koff is much 
smaller than the kel, it is found that TmaxTO does not depend on the dose. More specifically, when the initial 
drug concentration is much lower than the target concentration (and koff is smaller than kel), the TmaxTO is 
merely determined by the kel. On the other hand, when the initial drug concentration is much larger than 
the target concentration (and koff is smaller than kel), the TmaxTO is given by a relation between koff and kel. 
This relationship between the ∆TmaxTO, the elimination rate constant, the target concentration and the 
dose is illustrated in Figure 7. 

 

 

Figure 7. Overview of the ∆TmaxTO that was observed in the simulations as a result of the change in the 
affinity-normalized dose for different combinations of parameter values as indicated above the panels. All 
panels vary only one parameter compared to the upper left panel. 

 

Discussion 
In this study, we compared TB and EC models to describe the delay between morphine plasma 
concentrations and EEG effects for 3 different dose levels. We found that model discrimination was difficult 
to obtain and that selection of the best model (the ECPL model in this study) was only possible on basis of 
the objective function value differences. Moreover, our simulation study with the TBPL model showed that a 
shift in TmaxTO with increasing doses, the distinctive future of the TB model compared to the EC model, only 
occurs for a limited range in parameter values. Both a koff value much smaller and much larger than the kel 
value and a target concentration larger than the initial drug concentration decrease this shift in TmaxTO 
towards zero. 

Since our model simulations show that the TmaxTO does not depend on the dose for koff values much lower 
than the kel and target concentrations much higher than the initial drug concentration, this means that the 
TBPL model for these parameter values behaves like an ECPL model, with a first order increase and decrease 
in the concentration that is linked to the effect. Together with the small differences in EC and TB model fits 
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to the morphine EEG data, this shows that for many parameter combinations, a TB model gives rise to 
similar drug effect profiles as an EC model. This means that neither a successful fit of a TB or EC model 
necessarily supports the relevance of target binding or target site distribution, respectively, while a single 
successful fit is often presented as such support[11,23,39]. To obtain support for one of the two 
mechanisms, both models should be fitted to the data and compared on basis of objective metrics such as 
the AIC. This approach demonstrated the added value of the combined EC-TBPL model compared to the ECPL 
and the TBPL model for buprenorphine and AR-HO47108.[13,29] However, this method also demonstrated 
that the TBPL model performed similarly as the ECPL model for eight calcium antagonists[14] and that the EC 
model performed similarly as the EC-TBPL model for fentanyl [13]. This demonstrates that even if objective 
metrics are used, discrimination between two models is not always possible. Moreover, obtained model 
discrimination strictly informs on the data fit of each model, not directly on the plausibility of the 
represented mechanism. The TB model should be considered and tested more often as alternative to the EC 
model, as its parameters can be measured in vitro/ex vivo, which enables a better in vitro-in vivo 
extrapolation (IVIVE). 

In this study, we also found that the models based on brain ECF concentrations did not perform better than 
the models based on plasma concentrations. One would expect that the brain ECF concentrations would 
reflect the target site concentration better than the plasma concentrations, especially if brain distribution is 
relatively slow and nonlinear, as it was in this study. The inferior performance of the brain ECF-based 
models might be explained by the extremely high variability in the brain ECF data of the 4 mg/kg dose 
group, as shown in Figure S 5. However, a direct effect model (DEECF1) could be identified from the brain ECF 
concentrations and showed an only 39 points higher AIC than the best model IEECF1, while such a model fit 
could not be obtained from the plasma concentrations, indicating that the ECF concentrations reflect the 
target site concentration more closely compared to the plasma concentrations. This is in line with the 
relevance of drug concentrations in the brain for CNS effects that has been demonstrated by several other 
studies[40–43] and the difference between plasma and brain concentrations that has been identified for 
several compounds[44]. In all our target binding models, a linear target occupancy-effect relationship had to 
be assumed to keep the model parameters identifiable. Such a linear relationship has been observed and 
can be expected unless for full agonists in tissues with relatively high target concentrations compared to the 
concentration of signal transduction molecules (i.e. for a high receptor reserve).[24] 

Only a one compartment pharmacokinetic model was used in this study in combination with the simplest 
TBPL model to investigate the ∆TmaxTO. We expect that the same principles apply if the TBPL model has a 
two-compartment or three compartment pharmacokinetic models or with target turnover or signal 
transduction models, but the parameter range for which TmaxTO shifts with a change in dose might be 
different compared to the model used in our simulations. In analogy to Figure 7, for the combined EC-TB 
model one would expect that to obtain a significant ∆TmaxTO and to identify the TB model in addition to the 
EC model, the ke0 should be in the same order of magnitude as the koff if the maximal drug concentration is 
around or below the KD. This is indeed the case for the two successful examples of a EC-TBPL fit: for 
buprenorphine, the ke0 was 0.0242 min-1 and the koff was 0.0731 min-1[13] and for AR-HO47108, the ke0 was 
0.0351 for the drug and 0.00749 for its metabolite and the koff was 0.00303 min-1 and 0.00827 min-1

, 

respectively[29]. On the other hand, the combined EC-TB model EC-TBPL1 that was identified in this study 
for morphine also showed a similar value for ke0 and koff (0.0327 and 0.275, respectively), but this model was 
not better than the EC model ECPL1. In comparison with our one compartment PK model with intravenous 
dosing, especially the absorption or the distribution phase into the target site could pose additional limiting 
factors that prevent a shift in TmaxTO with increasing doses. 

One of the most important advantages of the EC model is that it only requires one parameter, ke0. However, 
the EC model most often needs to be combined with an Emax model, which also requires two or three 
parameters, Emax, EC50 and possibly the hill factor. The binding model has 3 parameters, kon, koff and Rtot, 
and needs at least 1 additional parameter, Emax, to convert occupancy predictions to effect predictions. 
One or two additional parameters might be required to describe a nonlinear target occupancy-effect 
relationship, which is required in case of a high efficacy and receptor reserve[24]. The discrimination 
between the two nonlinearities in such cases might be hard or impossible to obtain. However, kon and koff 
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can be obtained from in vitro experiments and Rtot from ex vivo experiments. Especially the identification of 
Rtot from ex vivo data can help to reduce the difficulties with parameter identifiability as often associated 
with the TB model [45].  

In summary, the limited difference between TB and EC models should be taken into account in the 
evaluation of historical and the design of new modelling studies. By informing the TB models with in vitro 
data, TB models can help to translate between in vitro and in vivo studies. The combination of parameter 
values for which the TmaxTO in the target binding model is dependent on the dose is limited to koff values 
around the elimination rate constant and to target concentrations lower than the initial drug concentration. 
Although the combination of multi-compartment PK models, TB models and target turnover models might 
affect the parameter range were the TmaxTO is dependent on the dose, our study is a first indication that 
such limitations should be taken into account for understanding TB models. 

Conclusion 
In this study, we have shown that successful fitting of a TB or EC model is not enough support to assume the 
relevance of target binding or target site distribution. Moreover, we have shown for a one-compartment 
pharmacokinetic model with target binding that the ∆TmaxTO for changing doses can only be identified if the 
koff has a value around the pharmacokinetic elimination rate constant and the target concentration is lower 
than the initial drug concentration. We have thus identified that the TmaxTO is determined by the rate of 
target binding relative to the decline rate of unbound drug and unbound target concentrations. Our findings 
indicate that the relatively sparse occurrence of target binding models in literature does not discredit the 
relevance of target binding kinetics. Our study also shows that a TB and EC model might be similar for the 
tested dose range and pharmacokinetic conditions, while extrapolation to different conditions might result 
in different effect versus time profiles for the TB and EC model. We conclude that identification of the 
appropriate model is important and that target binding models should be tested more often to increase the 
translation between in vitro and in vivo studies and to increase the predictive power of developed PKPD 
models.  
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Supplement S 1. Morphine PK and PD model fits, GOF plots and VPCs 

Plasma concentration modelling 
A three-compartment model (Figure S 1) was identified as the best model with respect to the AIC and the 
individual fits. The goodness of fit of this model is illustrated in Figure S 2 and Figure S 3. 

  

Figure S 1. Schematic representation of the three-compartment model structure that was used to describe the morphine 
plasma concentrations over time. 

The differential equations of the model in Figure S 1 are given in equations 1-3. In these equations, Ac, A2 
and A3 represent the amount of drug in the central, second and third compartment, respectively. kel k12, k21 
k13 and k31 represent the first order rate constants of elimination and distribution between the 
compartments. The relation between the parameters in equations 1-3 and the estimated parameters as 
given in Table S 1 is shown in equation 4-8. Vc, V2 and V3 represent the volumes of the respective 
compartments and CL, Q12 and Q13 represent the clearances of elimination and distribution between 
compartments.  

1. 
𝑑𝐴𝑐

𝑑𝑡
=  −  𝑘𝑒𝑙  ∙  𝐴𝑐 −  𝑘12  ∙  𝐴𝑐 − 𝑘13  ∙  𝐴𝑐 + 𝑘21  ∙  𝐴2 + 𝑘31  ∙  𝐴3  

2. 
𝑑𝐴2

𝑑𝑡
=  𝑘12  ∙  𝐴𝑐 −  𝑘21  ∙  𝐴2 

3. 
𝑑𝐴3

𝑑𝑡
=  𝑘13  ∙  𝐴𝑐 −  𝑘31  ∙  𝐴3 

4. 𝑘𝑒𝑙 =  
𝐶𝐿

𝑉𝑐
 

5. 𝑘12 =  
𝑄12

𝑉𝑐
 

6. 𝑘13 =  
𝑄13

𝑉𝑐
 

7. 𝑘21 =  
𝑄12

𝑉2
 

8. 𝑘31 =  
𝑄13

𝑉3
 

 

 

The goodness of fit of this model is illustrated in Figure S 2 and Figure S 3. Inter individual variability (IIV) 
was estimated for 4 of the estimated model parameters. Attempts to add IIV on more parameters resulted 
in a failing covariance step while the drop in OFV was limited (9 points). Comparison to the 2-compartment 
model with the lowest OFV value that was tested demonstrated better individual fits and a 109-points lower 
OFV for the 3-compartment model. 
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Figure S 2. Diagnostic plots of the plasma concentration fits. Left panel: Overview of observed (dots) and predicted (lines) 
concentrations. Upper panel labels indicate the dose in mg/kg and lower panel labels the presence (1) or absence (0) of 
Pgp inhibitor GF120918. Right panel: relation between observed and individual predicted plasma concentrations on a 
double logarithmic scale. 

 

Figure S 3. Individual profiles of observed (dots) and predicted (lines) concentrations on a semi-logarithmic scale. Panel 
labels indicate the animal ID number.  
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Table S 1. Parameter values and objective function values of the tested models for the plasma 
concentrations. CV denotes the coefficient of variation as percentage. OFV denotes the Objective Function 
Value. ω2 and σ2 denote the variances of the exponential IIV distribution and the error distribution, 
respectively. 

 2-cmp model 3-cmp model 
4 IIV parameters 

3-cmp model  
5 IIV parameters 

OFV 9314 9205 9194 
parameter Value (CV) Value (CV) Value (CV) 
CL (L/min) 0.0300 (8) 0.028 (22) 0.028 
V1 (L) 0.200 (11) 0.17 (49) 0.12 
Q12 (L/min) 0.0432 (10) 0.019 (66) 0.056 
V2 (L) 1.15 (10) 1.3 (48) 0.51* 
Q13 (L/min) - 0.031 (30) 0.020 
V3 (L) - 0.36 (32) 1.4* 
    
ω2 CL 0.34 (23) 0.33 (25) 0.35 
ω2 V1 0.55 (27) 0.63 (35) 0.15 
ω2 Q12 0.28 (39) 0.62 (33) 0.72 
ω2 V2 0.32 (31) 0.66 (28) 0 FIX 
ω2 Q13   0.79 
ω2 V3   0.57 
    
σ2 proportional 0.0766 (15) 0.79 (14) 0.071 
σ2 additive 1710 (28) 0 FIX 7.2 

* To get the best model fit, V2 and V3 were estimated here as the ratio of V2 and V1 and the ratio of V3 and 
V2, respectively. The displayed values in this table are derived from the estimated ratios. CV = coefficient of 
variation as percentage. 

ECF concentration modelling 
Various structural models were tested for the description of the ECF concentrations, including a two-
compartent model (ECF and “deep brain”) and a target binding model (ECF-unbound and ECF bound). The 
best combination of OFV, parameter estimate uncertainty and diagnostic plots was obtained with the 
original one compartment ECF model, with passive first-order in- and outward distribution, saturable influx 
and first-order efflux (Figure S 4). As the parameters for the plasma concentrations were fixed, the only 
additional equation is given in equation 9, in which AECF and VECF refer to the amount and volume of the ECF 
compartment, respectively, kdiff and keff represent first order influx and efflux rate constants, Nmax 
represents the maximal saturable influx rate and C50 is the plasma concentration at which the saturable 
influx is half-maximal. 

9. 
𝑑

𝐴𝐸𝐶𝐹
𝑉𝐸𝐶𝐹

𝑑𝑡
=   𝑘𝑑𝑖𝑓𝑓  ∙  (

𝐴1

𝑉1
−

𝐴𝐸𝐶𝐹

𝑉𝐸𝐶𝐹
) +

 𝑁𝑚𝑎𝑥 ∙ 
𝐴1
𝑉1

𝐶50+ 
𝐴1
𝑉1

− 𝑘𝑒𝑓𝑓  ∙  
𝐴𝐸𝐶𝐹

𝑉𝐸𝐶𝐹
  

 

Figure S 4. Schematic representation of the model structure that was used to describe the morphine ECF concentrations 
over time. kdiff  = first-order in- and outward distribution rate constant. keff first-order efflux rate constant. Nmax = zero-
order maximal saturable influx rate constant. 
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Different versions of this model were tested in which the inter-individual variability was tested on different 
parameters and the influence of Pgp was estimated. Estimating the influence of Pgp did not reduce the OFV 
enough, so the final model did not include the influence of Pgp and had IIV estimated for kdiff and Nmax. The 
diagnostic plots for the evaluation of the fit of this model is given in Figure S 5. 

Table S 2. Parameter values and objective function values of the tested models for the ECF concentrations. 
CV denotes the coefficient of variation as percentage. OFV denotes the Objective Function Value. ω2 and σ2 

denote the variances of the exponential IIV distribution and the error distribution, respectively. 

 IIV on kdiff, Nmax IIV on kdiff, keff IIV on kdiff, keff 

Pgp on Nmax 
IIV on kdiff, Nmax 

Pgp on Nmax 

OFV -1126 -1096 -1104 -1128 
parameter Value (CV) Value (CV) Value (CV) Value (CV) 
kdiff(/min) 0.0025 (17) 0.0027 (19) 0.0027 (17) 0.0025 (16) 
keff(/min) 0.020 (11) 0.021 (20) 0.0213 (24) 0.019 (12) 
Nmax (nM/min) 2.6 (21) 3.0 (38) 2.2 (34) 2.2 (29) 
NmaxPgp (nM/min) - - 4.45 (52) 3.15 (28) 
     
ω2 kdiff 0.36 (39) 0.44 (47) 0.44 (45) 0.35 (39) 
ω2 keff 0 FIX 0.35 (108) 0.31 (71) 0 FIX 
ω2 Nmax 0.42 (55) 0 FIX 0 FIX 0.39 (52) 
     
σ2 proportional 0.11 (18) 0.11 (22) 0.11 (22) 0.11 (20) 

 

 

Figure S 5. Diagnostic plots of the ECF concentration fits. Left panel: Overview of observed (dots) and predicted (lines) 
concentrations. lower panel labels indicate the dose in mg/kg and upper panel labels the presence (1) or absence (0) of 
Pgp inhibitor GF120918. Right panel: relation between observed and individual predicted plasma concentrations on a 
double logarithmic scale. 

  



140 

EEG effect modelling 
Model equations, Goodness of fit and VPC for model ECPL1 

The model equations for the connection between plasma concentrations and EEG effect are given in 
equations 10-12, where ATRANS and VTRANS refer to the amount of drug and the volume of the transit 
compartment, AEFF and VEFF refer to the amount of drug and the volume of the effect compartment k1e and 
ke0 refer to the first order distribution rate constants into and out of the transit and effect compartment, E0 
is the baseline EEG amplitude, slope is the linear change of the EEG amplitude during the experiment 
without morphine treatment, Emax is the maximal increase in EEG amplitude due to morphine, NH is the hill 
coefficient and EC50 is the morphine plasma concentration that leads to the half-maximal increase in EEG 
amplitude. 

10. 
𝑑

𝐴𝑇𝑅𝐴𝑁𝑆
𝑉𝑇𝑅𝐴𝑁𝑆

𝑑𝑡
=   𝑘1𝑒  ∙  (

𝐴1

𝑉1
−

𝐴𝑇𝑅𝐴𝑁𝑆

𝑉𝑇𝑅𝐴𝑁𝑆
) 

11. 
𝑑

𝐴𝐸𝐹𝐹
𝑉𝐸𝐹𝐹

𝑑𝑡
=   𝑘1𝑒  ∙  (

𝐴𝑇𝑅𝐴𝑁𝑆

𝑉𝑇𝑅𝐴𝑁𝑆
) − 𝑘𝑒0  ∙

𝐴𝐸𝐹𝐹

𝑉𝐸𝐹𝐹
  

12. 𝐸𝑓𝑓𝑒𝑐𝑡 (𝐸𝐸𝐺 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) =  𝐸0 + 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑡 + 
 𝐸𝑚𝑎𝑥 ∙ (

𝐴𝐸𝐹𝐹
𝑉𝐸𝐹𝐹

)
𝑁𝐻

 

𝐸𝐶50
𝑁𝐻+(

𝐴𝐸𝐹𝐹
𝑉𝐸𝐹𝐹

)
𝑁𝐻

 

 

 

Figure S 6. Population (right panels) and individual (left panels) observed versus predicted EEG data as obtained from the 
model fit of model ECPL1. The upper panels have a linear scale and the lower panels have a logarithmic scale. 



141 

 

Figure S 7. Conditional weighted residuals versus time for the different dose groups and dose group combinations in the 
model fit of ECPL1. The top labels indicate the morphine dose in mg/kg. The side labels indicate the absence (0) or presence 
(1) of Pgp inhibitor GF120918. The columns and rows indicated with (all) display the combination of all dose groups or all 
Pgp inhibitor groups, respectively. 
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Figure S 8. Conditional weighted residuals versus observed EEG amplitudes. for the different dose groups and dose group 
combinations in the model fit of ECPL1. The top labels indicate the morphine dose in mg/kg. The side labels indicate the 
absence (0) or presence (1) of Pgp inhibitor GF120918. The columns and row indicated with (all) display the combination of 
all dose groups or all Pgp inhibitor groups, respectively. 
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Figure S 9. Individual model fits of model ECPL1 to the EEG data. The colors represent the different dose groups. Dots 
represent the observations, lines the model predictions. 

 

Figure S 10. Visual predictive check of the model fit of model ECPL1. The upper labels indicate the absence (0) or presence 
(1) of Pgp inhibitor GF120918. The lower labels indicate the morphine dose in mg/kg. The solid lines represent the 
observed 5%, 50% and 95% quantiles of the data. The dashed lines represent the median of the 5%, 50% and 95% 
quantiles of the simulated datasets. The shaded areas represent the 5%-95% percent interval of the 5%, 50% and 95% 
quantiles of the simulated datasets. 
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Model equations and VPC for model EC-TBPL1  

The model equations for the EC-TBPL model are provided in equations 13-15. In these equations, AEFF and 
VEFF refer to the amount and volume of the effect compartment, respectively. ARL and VRL refer to the 
amount and volume of the drug-target complex compartment, respectively. ARtot and VRtot refer to the 
amount and volume of the bound plus unbound target compartment, respectively. The rate constants ke0 
and koff are first order rate constants of distribution and dissociation, respectively. kon is the second order 
association rate constant. E0 is the baseline EEG amplitude, slope is the linear decline of the EEG amplitude 
per time unit, independent of the drug effect and Emax is the maximal drug effect. 

13. 
𝑑

𝐴𝐸𝐹𝐹
𝑉𝐸𝐹𝐹

𝑑𝑡
=   𝑘𝑒0  ∙  ( 

𝐴𝐸𝐹𝐹

𝑉𝐸𝐹𝐹
− 

𝐴1

𝑉1
) 

14. 
𝑑

𝐴𝑅𝐿
𝑉𝑅𝐿

𝑑𝑡
=   𝑘𝑜𝑛  ∙   

𝐴𝐸𝐹𝐹

𝑉𝐸𝐹𝐹
 ∙  ( 𝑅𝑡𝑜𝑡 − 

𝐴𝑅𝐿

𝑉𝑅𝐿
) − 𝑘𝑜𝑓𝑓  ∙

𝐴𝑅𝐿

𝑉𝑅𝐿
  

15. 𝐸𝑓𝑓𝑒𝑐𝑡 (𝐸𝐸𝐺 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) =  𝐸0 + 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑡 + 
 𝐸𝑚𝑎𝑥 ∙ 

𝐴𝑅𝐿
𝑉𝑅𝐿

𝐴𝑅𝑡𝑜𝑡
𝑉𝑅𝑡𝑜𝑡

 
 

 

Figure S 11. Visual predictive check of the model fit of model EC-TBPL1. The upper labels indicate the absence (0) or 
presence (1) of Pgp inhibitor GF120918. The lower labels indicate the morphine dose in mg/kg. The solid lines represent 
the observed 5%, 50% and 95% quantiles of the data. The dashed lines represent the median of the 5%, 50% and 95% 
quantiles of the simulated datasets. 

Model equations and VPC for model TBPL4 

The model equations for the combined TBPL model are provided in equations 16 and 17. In these equations, 
ARL and VRL refer to the amount and volume of the drug-target complex compartment, respectively. ARtot and 
VRtot refer to the amount and volume of the bound plus unbound target compartment, respectively. The rate 
constants koff is the first order rate constants of drug-target dissociation. kon is the second order association 
rate constant. E0 is the baseline EEG amplitude, slope is the linear decline of the EEG amplitude per time 
unit, independent of the drug effect and Emax is the maximal drug effect. 

 

16. 
𝑑

𝐴𝑅𝐿
𝑉𝑅𝐿

𝑑𝑡
=   𝑘𝑜𝑛  ∙   

𝐴𝑐

𝑉𝐶
 ∙  ( 𝑅𝑡𝑜𝑡 −  

𝐴𝑅𝐿

𝑉𝑅𝐿
) − 𝑘𝑜𝑓𝑓  ∙

𝐴𝑅𝐿

𝑉𝑅𝐿
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17. 𝐸𝑓𝑓𝑒𝑐𝑡 (𝐸𝐸𝐺 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) =  𝐸0 + 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑡 + 
 𝐸𝑚𝑎𝑥 ∙ 

𝐴𝑅𝐿
𝑉𝑅𝐿

𝐴𝑅𝑡𝑜𝑡
𝑉𝑅𝑡𝑜𝑡

 
 

 

 

Figure S 12. Visual predictive check of the model fit of model TBPL4. The upper labels indicate the absence (0) or presence 
(1) of Pgp inhibitor GF120918. The lower labels indicate the morphine dose in mg/kg. The solid lines represent the 
observed 5%, 50% and 95% quantiles of the data. The dashed lines represent the median of the 5%, 50% and 95% 
quantiles of the simulated datasets. 

Supplement S 2. Dose-dependency of TmaxTO in a TBPL. 
To obtain a better understanding of the influence of dose on the TmaxTO in a TBPL model, some of the 
underlying simulations for Figure 5 are shown in this section. In Figure S 13, the simulation with the lowest 
values of kon and koff is showing that in this situation, the TmaxTO has a high value, but also that there is no 
difference between the two doses. This can be understood by comparing the rate of equilibration in a 
situation with a constant ligand concentration with the rate of elimination. 

The rate of equilibration (kobs) for  a constant ligand concentration [L] can be calculated by equation 1 [46]: 

kobs = kon * [L] + koff              (1) 

Since the ligand concentration in our simulations is normalized for the value of KD, equation 1 can be 
rewritten as equation 2, in which c is the ratio [L]/KD: 

kobs = kon * c * koff/kon  + koff = koff*(c + 1)                                 (2) 

From equation 2, it can be observed that a low value of koff leads to slow equilibration, unless the ligand 
concentration is much higher than the affinity. If the equilibration rate is slow, the TmaxTO is mainly 
determined by the elimination rate constant, which is independent on the dose/ligand concentration. Thus, 
a low value of koff gives similar TmaxTO values for different doses, as confirmed in Figure S 13.  
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Figure S 13. Simulation of drug target binding for two different doses. The solid lines indicate plasma concentrations for 
the high (dark grey line) dose and the low (light grey line) dose. The dashed lines indicate target-bound drug 
concentrations. The vertical dotted lines indicate the time point of the maximal target-bound concentration for each dose. 
In this simulation, the elimination rate constant kel was 0.03/hr and the target concentration was 0.1 nM. The initial 
concentrations for the high and the low dose corresponded to 5 and 0.5 times the KD, respectively. The kon and koff values 
were 0.001 nM-1 h-1 and 0.001 h-1, respectively, representing the area of Figure 5 that is indicated with the square in the 
right panel. 

A high value of koff gives rise to fast equilibration and a significant influence of the dose on the equilibration 
time, because equilibration is now much faster than elimination, and thus determining the TmaxTO. 
However, because of the fast equilibration, the decrease in TmaxTO with increasing doses is difficult to 
detect because all TmaxTO values are low, and the absolute difference is low as well, as illustrated in Figure S 
14. 

 

Figure S 14. Simulation of drug target binding for two different doses. The solid lines indicate plasma concentrations for 
the high (dark grey line) dose and the low (light grey line) dose. The dashed lines indicate target-bound drug 
concentrations. The vertical dotted lines indicate the time point of the maximal target-bound concentration for each dose. 
In this simulation, the elimination rate constant kel was 0.03/hr and the target concentration was 0.1 nM. The initial 
concentrations for the high and the low dose corresponded to 5 and 0.5 times the KD, respectively. The kon and koff values 
were 0.0032 nM-1 h-1 and 10 h-1, respectively, representing the area of Figure 5 that is indicated with the square in the 
right panel. 

A low value of the KD (and therefore a low dose) will also lead to a difference in TmaxTO which is negligibly 
small or sometimes even negative (i.e. the highest dose leads to the highest TmaxTO value). In this area the 
assumption of a constant ligand concentration does not hold anymore, even when there is no elimination of 
the drug. This is caused by the depletion of ligand as a result of drug-target binding. When the ligand 
concentration is much lower than the target concentration, the equilibration rate can now be approximated 
by assuming the target concentration (Rtot) is constant, according to equation 3: 

kobs = kon * [Rtot] + koff                   (3) 
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From equation 3, it should be observed that there is no influence of the ligand concentration any more, and 
therefore the dose does not influence the TmaxTO anymore. The small band in Figure 5 where the difference 
in TmaxTO values is negative can be explained by the situation where the lowest dose has the same target 
concentration and drug concentration. In this case, both the target and the drug concentration decline upon 
drug-target binding and equilibration is twice as fast compared to the situation with a constant target or 
ligand concentration. This can make the equilibration of the lowest dose faster than that of the highest 
dose. An example of such a situation is shown Figure S 15.  

 

Figure S 15. Simulation of drug target binding for two different doses. The solid lines indicate plasma concentrations for 
the high (dark grey line) dose and the low (light grey line) dose. The dashed lines indicate target-bound drug 
concentrations. The vertical dotted lines indicate the time point of the maximal target-bound concentration for each dose. 
In this simulation, the elimination rate constant kel was 0.03/hr and the target concentration was 0.1 nM. The initial 
concentrations for the high and the low dose corresponded to 5 and 0.5 times the KD, respectively. The kon and koff values 
were 3.2 nM-1 h-1 and 0.032 h-1, respectively, representing the area of Figure 5 that is indicated with the yellow square in 
the right panel. 

To observe a change in TmaxTO, it follows from the previous examples that the value of koff should be low 
enough to make the change in TmaxTO observable, but it should not be so low that the elimination of the 
drug determines the TmaxTO. Moreover, the initial concentration of the drug should not be lower than the 
target concentration. An example of such a situation is given in Figure S 16. Additionally, the lines koff = 
kel/(c+1) and KD = Rtot/(c+1) align reasonably well with the middle and the diagonal end of the area where 
TmaxTO is most significant, where c represents the initial concentration/KD ratio for the lowest dose as 
shown in Figure S 17. 

 

Figure S 16. Simulation of drug target binding for two different doses. The solid lines indicate plasma concentrations for 
the high (dark grey) dose and the low (light grey) dose. The dashed lines indicate target-bound drug concentrations. The 
vertical dotted lines indicate the time point of the maximal target-bound concentration for each dose. In this simulation, 
the elimination rate constant kel was 0.03/hr and the target concentration was 0.1 nM. The initial concentrations for the 
high and the low dose corresponded to 5 and 0.5 times the KD, respectively. The kon and koff values were 0.001 nM-1 h-1 and 
0.032 h-1, respectively, representing the area of Figure 5 that is indicated with the yellow square in the right panel. 
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Figure S 17. Overview of the ∆TmaxTO that was observed in the simulations as a result of the change in the affinity-
normalized dose for different combinations of parameter values as indicated above the panels. All panels vary only one 
parameter compared to the upper left panel. The horizontal and diagonal lines represent the equations koff = kel/(c+1) and 
KD = Rtot/(c+1), respectively, where c represents the initial concentration/KD ratio for the lowest dose. 
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Supplement S 3. Asymptotic analysis of TOTmax  and its dependency on the dose. 

 

1 One compartment model with drug-target binding 
 

The model for drug-target binding is given by   

 BkLRkLk
dt

dL
offonel =  

 ,= BkLRk
dt

dB
offon   

 where 

  

    • L  is the drug concentration,  

    • R  is the free receptor concentration,  

    • B  is the concentration of bound complex of L  and R : ][LR ,  

    • onk  is the rate constant at which L  binds to free receptors, 

    • offk  is the rate constant at which L  unbinds, 

    • elk  is the elimination rate constant.  

  

Now, we use that the total receptor concentration is described by totR  so that totRBR = , 

and hence, BRR tot = . Then, after substituting this expression for R , the system becomes   

 BkBRLkLk
dt

dL
offtotonel  )(=  

 ,)(= BkBRLk
dt

dB
offtoton   

 and hence,   

 BkLkLkRk
dt

dL
offoneltoton )()(=   
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 .)(= BkLkLRk
dt

dB
offontoton   (1.1) 

 

We study this system together with the initial conditions D

on

off
cK

k

k
cL ==(0)  and 

0=(0)B . 

 The aim of this analysis is to determine the value of t  where B  attains a maximum for 

general c . We denote this maximum by )(cTmaxTO . Furthermore, the interest is to determine 

the difference in )(cTmaxTO  for two (different) values of c . More specifically for 1= cc  and 

2= cc  where 12 > cc , we want to determine )()( 12 cTmaxcTmax TOTO  . 

 

2.  Rescaling the system 
In order to be able to analyse system (1.1), we rescale it by using the fact that both L  and B  
can maximally reach certain concentrations. From the initial conditions it follows that the drug 

L  is limited by drug dose 

on

off

D
k

k
ccKL ==(0) . Also, the bound complex is limited by the 

total receptor concentration totR . This suggests to rescale L  with DcK  and B  with totR , and 

therefore, set ucKL D=  and vRB tot= . Then system (1.1) becomes   

 

 ])
1

([= v
c

uuRkuk
dt

du
totonel   

 ],)
1

([= v
c

uuck
dt

dv
off   (2.1) 

 

with 1=(0)u  and 0=(0)v . In this system u  corresponds to L  and v  to B . 

 Next, we study system (2.1) in different parameter regions and determine the value of 
t  for which v  attains a maximum.We use the different sets of coefficients present in system 

(2.1) to determine the various regions. In these regions, we use asymptotic analysis to determine 

an asymptotic expansion for v  from which we determine the leading order of )(cTmaxTO . 

To define the regions, we look at the groups of parameters present in system (2.1) and 
set them to be equal. This gives us the following lines   
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 eloff kck =  

 eloff kk =  

 totonoff Rkk =  

 
c

Rk
ck toton

off =  (2.2) 

 eltoton kRk =  

 .= eltoton ckRk  

 

In the following analysis, we assume that c  is of order 1, hence (1)= Oc , then we 

define various regions   

 Dtoteloff KRandkckI )(=. O  

 Dtotoffel KRandkkII .  

 Dtoteloff KRandkkIII .  

 Dtotoffel KRandkkIV .  

 .. Dtoteloff KRandkkV   

 

Note that since (1)= Oc , not all the lines in (2.2) are needed when defining these 

regions. On the other hand, when c >> 1, the different lines are essential. 
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Figure S18: Sketch of the different regions in the ),( offon kk -plane and the lines eloff kk =  and 

Dtot KR =  for 1>c . 

  

  

In these regions, we can find an asymptotic expression for v  and determine the leading 

order expression for TOTmax . Here, we summarise the results. 

 

In region I , we find that TOTmax  must satisfy an implicit relation depending on the different 

parameters. We introduce (1)== O
el

off

k

ck
a  then 

el

TO
k

Tmax


= , where   must satisfy   

 1.=)( 1)(

0

)( dseeeca sasacecea 





 (2.3) 

 

In the other regions we can determine the leading order of TOTmax  explicitly, this yields:   

 

















off

el

off

TO
kc

k
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TmaxII

21)(
log

1)(

1
=.  

 










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el

TO
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k
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TmaxIII log
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 











toton

off

toton

TO
Rk

k
c

Rk
TmaxIV 1)(log

1
=.  

 .
1

=.
el

TO
k

TmaxV  

 Note that we denote with log  the natural logarithm, ln . 

Hence, we find that when eloff kk   (in regions III and V) that TOTmax   does not 

depend on c , and therefore, is independent of the dosis, to leading order. For eloff kk   (in 

regions II and IV), we find from the above expressions that  TOTmax  is small, and so the 

dependence on the dose does also not play a role. 

Note that the above results are not true for 1c . We briefly study that case in 

section 5. 

To show how we obtain the above results, we give the details of the asymptotic analysis 
in two of the regions in the next sections. 

 

3.  The analysis in region III 

We choose the parameters to lie in region III such that Dtot KR   and eloff kk  . Then, we 

rescale time as tkel=  in this region and system (2.1) becomes   

 

 ])
1

([= v
c

uuu
d

du
 


 

 ].)
1

([= v
c

uu
d

dv



 (3.1) 

 

where 
el

toton

k

Rk
=  and 

el

off

k

ck
= . From the choice of the relation between the parameters, 

we find that 1  . Now, we assume the following asymptotic expansions for u  and v    

 ,= 01100 termsorderhigheruuuu    

 .= 01100 termsorderhighervvvv    
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 And, from the initial conditions for system (2.1), it follows that 0=(0)1,=(0)0 ijuu , 

0=(0)ijv  for all ji, . 

In the following we assume that   and 
2  are not of the same order. Next, we 

substitute the above expansions into system (3.1), collect terms at different orders and solve the 
corresponding equations at each level. 

At (1)O , we find that   

 

 0
0 = u

d

du



 

 0.=0

d

dv
 

 

 This can be solved and, together with the initial conditions, this leads to 0=0v  and 
eu =0 . 

Next, at )(O  we obtain   

 

 10
10 = u

d

du



 

 .=)
1

(= 0000
10 uv

c
uu

d

dv



 

 

Together with the initial conditions, this gives 0=10u  and 
ev 1=10 . Since this 10v  does 

not attain a maximum, we need to determine higher order terms in the expansion of v . 

Then, at )(O  we find   

 00001
01 )

1
(= v

c
uuu

d

du



 

 0,=01

d

dv
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which yields 0=01v . It turns out we don’t need 01u  to determine TOTmax  so we refrain from 

giving that here. 

At )( 2O  we obtain   

 

 01010010
20 )

1
(= vuv

c
uu

d

dv



 

 ))(1
1

(=    e
c

e  

 .
11

= 2

c
e

c

c
e 


  

 

 

 From this, we find  

                                   ).(1
1

)(1
2

1
= 2

20

   


 e
c

c

c
ev  

 

Since we do not need 20u  for further analysis, we also do not give that here. 

Now, collecting the various terms, we find that  

 










 

c
e
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c
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
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1
)(1

2

1
)(1=)( 22

 

to leading order. Using this expression, we can obtain a leading order expression for TOTmax . 

Differentiating we find  

                                      .
11

= 22











 

c
e

c

c
ee

d

dv  


 

Setting this expression to zero, we can find TOTmax  from a balance between the first and the 

last term. Hence, we set 
c

e
1

= 2 
 which leads to  

                                         ).(log=
c


   
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Rescaling back to original variables and parameters, we obtain  

                        ).(log
1

=
el

off

el

TO
k

k

k
Tmax   

4.  The analysis in region V 
 

In this section, we choose the parameters to lie in region V such that eloff kk   and 

totD RK  . We rescale time as tRk toton=  in this region and system (2.1) becomes   

 v
c

uuu
d

du
)

1
(= 


 

 ,])
1

([= v
c

uu
d

dv



 (4.1) 

 

where 
toton

el

Rk

k
=  and 

toton

off

Rk

ck
= . From the choice of the relation between the parameters, 

we find that 1  . Now, we assume the following asymptotic expansions for u  and v   

  

 ,= 10010 termsorderhigheruuuu    

 .= 10010 termsorderhighervvvv    

 

From the initial conditions for system (2.1), it follows that 0=(0)1,=(0)0 ijuu , 0=(0)ijv  for 

all ji, . 

In the following we assume that 
2  and   are not of the same order. Next, we 

substitute the above expansions into system (4.1), collect terms at different orders and solve the 
corresponding equations at each level. 

At (1)O  we find that   

 000
0 )

1
(= v

c
uu

d

du



 



157 

 0.=0

d

dv
 

This can be solved and, together with the initial conditions, this leads to 0=0v  and 
eu =0 . 

Next, at )(O  we find   

 010001
01 )

1
(= v

c
uuu

d

du



 

 0,=01

d

dv
 

which yields 0=01v . Solving for 01u  leads to  

                    .=01

  eu  

 

At )(O  we obtain   

 01010010
10 )

1
(= vuv

c
uu

d

du



 

 .=)
1

(= 0000
10 uv

c
uu

d

dv



 

Together with the initial conditions, this gives 
ev 1=10 . We do not give 10u  since we will 

not need it in the further analysis. Again, 10v  does not attain maximum, and therefore, we need 

higher order terms in the expansion of v . 

At )( 2O  we find that 0=02v  and so we need to go to )(O  where   

 01001001
11 )

1
(= vuv

c
uu

d

dv



 

 .=   e  

Hence,  

                     1,1)(=11   ev  

and the expansion for v  reads  
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                        ,1)1)((1=     eev  

to leading order. Differentiating leads to  

                                            ,=  


  ee
d

dv
 

which becomes zero when  

                                           .
1

=


  

Rescaling back to original variables and parameters, we obtain  

                                          .
1

=
1

=
eltoton

TO
kRk

Tmax


 

 

5.  The case when 1c . 
 

Next, we briefly look at the case when 1c . Then, the results are different from before. One 

essential difference is that the regions now depend on c  where 1c . 

We will only give results for region I . Note that this region shifts down in the 

),( offon kk -plane compared to before. 

We do still find that TOTmax  must satisfy an implicit relation depending on the 

different parameters. We find that 
el

TO
k

Tmax


= , where   must satisfy   

 0,=)(1
1

0

1)(1)(





 



 dseeaee
c

e
saebaeeaea




  (5.1) 

 and (1)== O
el

off

k

ck
a . 

 

 

 

 


