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Abstract  
 
Selectivity is an important attribute of effective and safe drugs, and prediction of in vivo target and tissue 
selectivity would likely improve drug development success rates. However, a lack of understanding of the 
underlying (pharmacological) mechanisms and availability of directly applicable predictive methods 
complicates the prediction of selectivity. We explore the value of combining physiologically based 
pharmacokinetic (PBPK) modelling with quantitative structure-activity relationship (QSAR) modelling to 
predict the influence of the target dissociation constant (KD) and the target dissociation rate constant on 
target and tissue selectivity. The KD values of CB1 ligands in the ChEMBL database are predicted by QSAR 
random forest (RF) modelling for the CB1 receptor and known off-targets (TRPV1, mGlu5, 5-HT1a). Of these 
CB1 ligands, Rimonabant, an inverse agonist at the CB1 receptor, CP-55940, a selective agonist for the CB1 
and CB2 receptor and Δ8-tetrahydrocanabinol, one of the active ingredients of cannabis, were selected for 
simulations of target occupancy for CB1, TRPV1, mGlu5 and 5-HT1a in three brain regions, to illustrate the 
principles of the combined PBPK-QSAR modelling. Our combined PBPK and target binding modelling 
demonstrated that the optimal values of the KD and koff for target and tissue selectivity were dependent on 
target concentration and tissue distribution kinetics. Interestingly, in many cases the optimal KD value is not 
the lowest KD value, suggesting that optimisation towards high drug-target affinity can decrease the benefit-
risk ratio. The presented integrative structure-pharmacokinetic-pharmacodynamic modelling provides an 
improved understanding of tissue and target selectivity. 
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Introduction 
  
Selectivity is an important attribute of successful drugs since highly selective compounds are less likely to 
mediate side-effects.[1] On the other hand, targeting multiple targets simultaneously is increasingly 
considered as a valuable option to exert sufficient effect on a complex biological system.[2,3] Regardless the 
desired degree of selectivity, understanding and prediction of the target binding to multiple targets in 
multiple tissues is essential for the optimisation of pharmacotherapy. In this article, we differentiate 
between two types of selectivity: target selectivity and tissue selectivity. Target selectivity is defined as a 
difference in target binding to different receptors and tissue selectivity is defined as a difference in target 
binding to the same target in different tissues. Additionally, a distinction is made between equilibrium 
selectivity and kinetic selectivity. Equilibrium selectivity refers to differential target binding while target 
binding is in equilibrium with the free drug concentration around the target. This equilibrium binding is 
described for single step target binding without target turnover according to Equation 1, in which KD is the 
dissociation constant, [L] is the unbound drug concentration, [R] is the unbound target concentration, [LR] is 
the bound drug-target complex concentration, koff is the first order target dissociation rate constant and kon 
is the second order target association rate constant. 
 

(1)                                                                 𝐾𝐷  =  
[𝐿]∙[𝑅]

[𝐿𝑅]
 =  

𝑘𝑜𝑓𝑓

𝑘𝑜𝑛
 

 
Equilibrium target selectivity is thus driven by differential KD values for the different targets. Kinetic 
selectivity, however,  refers to a difference of the duration of target occupancy, which can be achieved by 
differential koff values.[4] Differential koff values do not always result in a differential duration of target 
occupancy in vivo since the plasma and local pharmacokinetics can also be rate-limiting for the duration of 
target occupancy.[5,6] As kinetic selectivity has previously been equated with differential koff values[7], we 
will refer to differential koff values as in vitro kinetic selectivity, while we will refer to an in vivo difference in 
the duration of target occupancy due to slow dissociation as in vivo kinetic selectivity. 
 
A previous study that analysed a minimal mechanistic model for drug elimination, tissue distribution and 
target binding showed that an increase in drug-target affinity decreases the chance of observing in vivo 
kinetic selectivity, especially for slow tissue distribution and a high target concentration.[6] On that basis, it 
is expected that the optimal KD for target and tissue selectivity is dependent on the target concentration, 
tissue distribution kinetics and binding kinetics. This contrasts with the current practice of drug discovery 
and development which often aims at a minimal value for the KD and koff and a maximal ratio to the off-
target KD and koff value if selectivity is concerned. 
 
The minimal mechanistic model that was analysed in the study of de Witte et al.[6] did not consider i) the 
effects of  slow distribution of a drug into tissues where no target binding takes place nor ii) the limiting role 
that blood flow can have on tissue distribution. In order to capture the influence of these pharmacokinetic 
mechanisms, physiologically based pharmacokinetic (PBPK) models can be used. In these models, a 
distinction is made between system-specific properties and drug-specific properties. In this type of analysis, 
the values of system-specific parameters such as blood flows and volumes for each organ are based on the 
physiological literature data, while the values of drug-specific parameters, such as partition coefficients and 
protein binding are often based on in vitro data or on Quantitative Structure Activity Relationships (QSARs). 
[8] As such, these models allow the prediction of plasma and tissue unbound drug concentrations. The 
influence of drug-target binding on free drug concentrations has been described frequently with target-
mediated drug disposition (TMDD) models. [9] The combination of  PBPK and TMDD modelling has been 
reported in the literature previously but is not generally used in selectivity optimisation. [10–13] To obtain 
the drug-specific properties that determine the values of the partitioning parameters in PBPK models either 
experimental data for each individual drug or quantitative structure-activity relationships (QSAR) are 
required. These QSARs enable the prediction of partitioning parameters from the molecular structure. While 
these QSARs are often used in PBPK modelling to predict non-specific tissue distribution parameters, the 
prediction of specific target binding parameters is currently not incorporated in PBPK modelling, based on 
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the assumption that the amount of drug bound to its biological target is negligible relative to the total 
amount of drug in the body. [14–17] 
 
QSAR models may be either regression or classification models which predict a response variable from a set 
of predictor values. In regression models, these predictor values are related to a continuous response 
variable (e.g. a KD value), while in classification models the predictor values relate to a categorical variable 
(e.g. labelled “active” or “inactive”). The predictor values represent the molecular structure and molecular 
properties, and the response variable is an activity value, such as the KD in the case of affinity. Machine 
learning methods such as support vector machines (SVMs), decision trees such as random forests (RFs) and 
deep neural networks (DNNs) are generally used to obtain a predictive learning model.[18–20] The training 
of these models is based on prior data, which means that their performance is greatly dependent on data 
quality and availability. A suitable database for  bioactivity data is available in the ChEMBL, which can be 
used to obtain predictive QSAR models. [21,22] 
 
Integration of drug-target binding prediction and pharmacokinetic modelling allows for the prediction of the 
selectivity profile for a given ligand directly from its molecular structure. As such, this modelling approach 
may provide information on a ligand’s efficacy and safety in vivo during the very early stage of drug 
development. This is especially relevant in systems that contain off-targets or targets that are also 
expressed in organs were no drug effect is desired. An example of the latter system is the cannabinoid 
system, of which the cannabinoid receptor CB1 is a major component. The CB1 receptor is widely expressed 
throughout the body but mainly found in the brain where it mediates a broad range of effects in health and 
disease. [23,24] Many off-targets have been identified for CB1 ligands, including the vanilloid receptor 
TRPV1, the metabotropic glutamate receptor mGlu5, and the serotonin receptor 5-HT1a. [25,26] Activity at 
these receptors, predominantly in the brain, may amplify or counteract effects at the CB1 receptor. TRPV1, 
for example, has been suggested to have an effect opposite of that of CB1 in anxiety and depression, which 
are common side effects observed for CB1 antagonists, and mGlu5 is a major player in the GABA-system, 
which is the target system for CB1 mediated therapies in Parkinson’s disease. [27–29] The mechanisms 
underlying functional in vivo selectivity are diverse and complex, but computational elucidation of off-target 
affinities and their integration in combined PBPK-TMDD modelling could help to identify safety concerns 
early in drug discovery and development, which would improve decision making in (pre)clinical drug 
development. 
 
This article describes an approach towards the development of an integrative predictive modelling for drug 
selectivity. Firstly, the main determinants of in vivo equilibrium and kinetic selectivity, are identified by 
minimal PBPK-TMDD modelling and simulation. Secondly, the development and validation of a Random 
Forest based QSAR (QSAR-RF) model for the prediction of KD values is described. Lastly, an example of the 
use of predicted KD values in PBPK-TMDD modelling is provided for the combined in vivo target and tissue 
selectivity of Rimonabant, a prototype antagonist at the CB1 receptor.  
 

Materials and Methods 
 

1 Software 
All simulations were performed in RStudio Version 1.0.136 coupled to R version 3.4.0. [30,31] 

Physicochemical property prediction and QSAR modelling were performed in Pipeline Pilot version 2016. [32] 

2 Pharmacological Models 
Three PBPK-TMDD models were developed: a minimal PBPK-TMDD model for simulation of target 

selectivity (Model I, Figure 1), a minimal PBPK-TMDD model for simulation of tissue selectivity (Model II, 
Figure 2) , and an integrated brain PBPK-TMDD model for simulation of selectivity across brain regions and 
between targets using KD values predicted in a QSAR-RF (3.3 QSAR) (Model III, Figure 3). 
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Figure 1. Schematic overview of the minimal target selectivity model (Model I). ka = rate of absorption (h-1), kin = inwards 
distribution rate (h-1), kout = outwards distribution rate, kon = association rate (nM-1h-1), koff = dissociation rate (h-1), kF = 
forward rate of elimination constant (h-1), LR = ligand-receptor complex, V = tissue volume (L), nbt = non-binding tissue, c = 
central compartment, bt = binding tissue, el = eliminating tissue. 

 

Figure 2. Schematic overview of the minimal tissue selectivity model (Model II). ka = rate of absorption (h-1), kin = inwards 
distribution rate (h-1), kout = outwards distribution rate, kon = association rate (nM-1h-1), koff = dissociation rate (h-1), kF = 
forward rate of elimination constant (h-1), LR = ligand-receptor complex, V = tissue volume (L), nbt = non-binding tissue, c = 
central compartment, bt = binding tissue, el = elimination tissue. 
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Figure 3. Schematic model of the brain PBPK-TMDD model. ka = rate of absorption (h-1), Q = blood flow (L/h), kon = 
association rate (nM-1h-1), koff = dissociation rate (h-1), kF = forward rate of elimination constant (h-1), LR (with R = CB1, 
mGlu5, TRPV1 or 5-HT1a) = ligand-receptor complex, V = tissue volume (L), nbt = non-binding tissue, c = central 
compartment, bt = binding tissue, li = liver, cer = cerebellum, hyp = hypothalamus, fc = frontal cortex. 

 

 

 

2.1 Parameters 
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2.1.1 Model I and II 

All physiological values of the system-specific parameters were obtained from literature.[33–38] 
The heart was used as a reference organ for the determination of distribution into and out of the binding 
tissue. An overview of all model parameters is supplied in Supplemental 1. 

2.1.2 Model III 

All physiological values of the system-specific parameters were obtained from literature.[33–38] Target site 
distribution in the brain was characterized by the average effective flow through the target site as obtained 
from literature values from brain extra-cellular fluid flow to the cerebrospinal fluid as estimated for 9 
drugs.[39] The conversion of these values as well as an overview of all parameters are supplied in 
Supplemental 1. 

Receptor densities of CB1, mGlu5, TRPV1, and 5-HT1a in the cerebellum, hypothalamus, and 
frontal cortex were obtained from the literature for all four receptors, except the receptor concentration of 
mGlu5 in hypothalamus and 5-HT1a in cerebellum, which were not reported in the literature. [40–44] The 
mGlu5 receptor concentration in the hypothalamus was filled in with the averages of the other brain regions 
since differences between brain regions for the other receptors did not differ drastically. The 5-HT1a 
receptor concentration in cerebellum was set to the low value of 0.01 nM as it was reported to be 
unidentifiable.[43] Receptor concentrations in rats and humans  were used interchangeably since no 
complete set of receptor densities could be obtained for either rats or humans. Values found in literature 
have shown to differ no more than ten-fold. [41,45] TRPV1 concentrations were given in ng/mg lysate and 
converted to pmol/mg protein by linear conversion. For this, the receptor concentration in ng/mg lysate and 
fmol/mg protein in the hypothalamus as reported in the literature was used. [42,46] The receptor density in 
the hypothalamus in fmol/mg was divided by the receptor density in ng/mg lysate and the resulting 
coefficient was used to transform the receptor density in ng/mg lysate of the cerebellum, hypothalamus and 
frontal cortex to the corresponding receptor density in fmol/mg. CB1 and TRPV1 concentrations in pmol/mg, 
were then converted to nM using a conservative (i.e. the lowest published) estimate of protein 
concentration in wet tissue of 100 mg/mL from literature. [47–49] An overview of the target concentrations 
is presented in 
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Table 1. An overview of the conversions and all target concentrations can be found in Supplemental 2. 
Table 1. Receptor concentrations for the brain PBPK-TMDD model 

 Rtot,cer (nM) Rtot,hyp (nM) Rtot,fc (nM) 

CB1 527 248 529 

mGlu5 5.1 16 25 

TRPV1 19 13 12 

5-HT1a 0.01 2.37 1.7 

* cer = cerebellum, hyp = hypothalamus, fc = frontal cortex 
 
 Tissue-blood partition coefficients were calculated according to Poulin & Theil 2000 (Equation (2)). 
[50]  The required physicochemical parameters (logP, logSo) [51] were determined in Pipeline Pilot.  An 
overview of all parameters is supplied in Supplemental 3. 
 

(2) 𝑃𝑡:𝑏 =  
[𝑆𝑜∗𝑁𝑡]+[(𝑆𝑤∗0.7𝑃𝑡)+(𝑆𝑜∗0.3𝑃𝑡)]+[𝑆𝑤∗𝑊𝑡]

[𝑆𝑜∗𝑁𝑏]+[(𝑆𝑤∗0.7𝑃𝑏)+(𝑆𝑜∗0.3𝑃𝑏)]+[𝑆𝑤∗𝑊𝑏]
 

where: 
 
Pt:b = predicted value of the tissue-blood partition coefficient 
So = the solubility of the ligand in n-octanol (mol*m-3) 
Sw = the solubility of the ligand in water (mol*m-3) 
Nb = the neutral lipid content of blood (as fraction of blood volume) 
Nt = the neutral lipid content of the tissue (as fraction of tissue volume) 
Pb = the phospholipid content of blood (as fraction of blood volume) 
Pt = the phospholipid content of the tissue (as fraction of tissue volume) 
Wb = the water content of blood (as fraction of blood volume) 
Wt = the water content of the tissue (as fraction of tissue volume) 

 

 
2.2 Simulations 
Model I 

 Model I was used to investigate the influence of KD, target concentration (Rtot) and koff on in vivo 
target selectivity.  To this end, four different simulations (a,b,c,d) were performed. In all four simulations, 
the koff at the first target (R1) was set to 0.01 h-1 and the koff at the second target (R2) was set to 10 h-1 while 

both the KD and Rtot were the same for both targets. An overview of the parameter values that were varied 
in these simulations can be found in Table 2. An overview of all other parameters can be found in 
Supplemental 1. 

Table 2. Parameter values for in vivo target selectivity simulations with Model I.  

 Model I Model II 

 KD  Rtot  koff R1  koff R2  KD  Rtot1  Rtot2  koff  

a 10 25 0.01 10 10 25 0.025 10 

b 0.01 25 0.01 10 1 25 0.025 10 

c 10 0.25 0.01 10 0.1 25 0.025 10 

d 0.01 0.25 0.01 10 0.01 25 0.025 10 

* R1 is target 1, R2 is target 2, KD and Rtot are given in nM, koff is given in h-1 

Model II 

This model was used to perform simulations to investigate the influence of KD, target 
concentration (Rtot) and tissue distribution (kin) on in vivo tissue selectivity.  To this end, four different 
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simulations were performed for a kin value of 8.6 h-1 (fast tissue distribution) and for a kin value of 0.86 h-1 
(slow tissue distribution). An overview of the variable parameter values can be found in Table 2. An 
overview of all other parameters can be found in Supplemental 1. 

Model III 

Simulations were performed for Rimonabant, ∆8 tetrahydrocannabinol (∆8 THC) and CP-55940 in a 
minimal-PBPK-TMDD model (Figure 3). The KD at the selected targets (CB1, mGlu5, TRPV1, and 5-HT1a) was 
predicted by a QSAR per target model trained on the complete pChEMBL dataset per target. A fast 
dissociation from the receptor was assumed for all compounds by setting the koff value to 10 h-1 at all 
receptors. Simulations were performed for a time span of 7 days during which a dose was administered 
every 24 hours. 

 
In order to investigate the influence of increasing drug-target affinity without a change in 

equilibrium selectivity, additional simulations were performed in which the ratio between the different KD 
values for the different receptors was kept the same while adjusting the absolute KD values by a factor 10 
and 100. Simulations were performed for a time span of 7 days with dosing once every 24 hours. The dose 
was scaled for the KD to obtain similar equilibrium occupancies in all simulations.  
 

3 QSAR 
 A Random Forest QSAR per target model was developed using the Random Forest package from 
CRAN. [52]  
 
3.1 Data selection 

 
Bio-activity data from ChEMBL22 was used for the development of the QSAR model.[53] High 

quality data was selected by setting assay confidence at 9 and requiring an assigned pChEMBL value for all 
data points.[22] This means that a direct single protein target is assigned to the ligand. PubChem database 
data and potential duplicates were excluded from the dataset. Bioactivity data from ChEMBL was limited to 
four different constants: KD, Ki, IC50 and EC50. It has been shown previously that Ki and IC50 can be combined 
for modelling.[54] In order to check if these constants could be used interchangeably, a statistical analysis of 
their pChEMBL values was performed. In this analysis, the mean, standard deviation (SD), median and 
median absolute deviation (MAD) were analysed within and between all four constants. An overview of all 
results is provided in Supplemental 4. Since from this analysis it could be concluded that the deviation 
between pChEMBL values between KD and Ki do not differ significantly from the deviation within the KD 
dataset, both KD and Ki values were used in the model development. 
 

The molecular structure of the ligands was extracted from the molfile and physicochemical 
properties and FCFP_6 circular fingerprints were calculated in Pipeline Pilot.[55] The FCFP_6 fingerprints 
were then converted to 768 feature properties for use in model training. Selection was performed based on 
the relative frequency of substructures per target, where the optimal frequency was close to being present 
in 50% of the ligands. 

 
The complete dataset was split into a training set (70%) and validation set (30%). This split was 

performed seven times, each time with a different seed (111, 222, …, 777) in order to create seven different 
datasets. In this way, the model training and validation could be performed 7 times, allowing for 
reproducibility analysis of the model performance results. 

 
3.2 Training 

 
For each target, a Random Forest model consisting of 500 trees was trained using the seven 

different training sets. The models were trained on a predefined set of properties consisting of log(P), 
molecular weight, number of proton donors, number of proton acceptors, number of rotatable bonds, 
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number of atoms, number of rings, number of aromatic rings, molecular solubility, molecular surface area, 
molecular polar surface area and the 768 FCFP_6 fingerprint properties that describe the molecular 
structure in more detail. 

 
3.3 Validation 

 
The model performance was validated internally and externally using the corresponding validation 

dataset per seed, as described above. Internal validation was performed by an out-of-bag (OOB) estimate 
and presented as the average R2 regression coefficient and the root-mean-squared error (RMSE). [56] The 
OOB estimate method uses subsamples from the training dataset to determine the mean prediction error of 
the RF model. The RMSE is a value that measures the average magnitude of the error and is presented by 
the same unit as the dependent variable, which in this case is the pChEMBL value (-log KD/Ki in M). External 
validation was performed by a regression validation of the validation dataset against the predicted 
pChEMBL values. These results are also presented as the average R2

 regression coefficient and the RMSE. 

Results 

1. Model I 
 

The simulations in Figure 4 show in vivo kinetic target selectivity in all simulations, due to a 

difference in the koff value for target 1 and target 2. However, the extent of the observed selectivity is 

dependent on the KD value and target concentration. Given that optimisation is often performed towards 

lower koff values, the target at which koff is 0.01 h-1 is considered as the desired therapeutic target.  Initially, 

target selectivity for the off-target is observed, but this selectivity reverses to selectivity for the therapeutic 

target over time in all simulations, except in Figure 4b, where the KD is low and the target concentration is 

high. As it would be unlikely in drug development to develop two drugs with a 1000-fold different binding 

kinetics but the same KD value, we also performed these simulations with 100-fold different binding kinetics 

and 10-fold different KD values as presented in supplemental 5. In these figures, the same trend is observed, 

although the residual selectivity is higher due to the difference in KD values. 

 
In summary, we observed that both a high target concentration and a low KD value decrease the in 

vivo kinetic target selectivity. 
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Figure 4. Target concentration and KD determine the extent of in vivo kinetic target selectivity in Model I. Target selectivity 
is characterised by a difference in target occupancy between target 1 (solid) and target 2 (dashed). The parameter values 
for these simulations can be found in Supplemental 1. 

2. Model II 
 

 

Figure 5. Tissue selectivity reverses to off-target selectivity as KD decreases in Model II. kin is 8.6 h-1. Tissue selectivity is 
characterised by a difference in target occupancy between target 1 (solid) and target 2 (dashed). The parameter values for 
these simulations can be found in Supplemental 1. 
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For the simulations presented in Figure 5, no difference in koff or KD values between the two target 

sites could be included, since the ligand binds to the same target and the differences in target occupancy 

arise due to a difference in the target concentration. No selectivity is observed for the higher KD values (10 

and 1 nM), and only marginal selectivity is observed for lower KD-values (0.1 nM and 0.01 nM). Assuming 

that the target concentration in the target tissue is higher than the target concentration in the off-target 

tissue, the lowest simulated KD-values showed selectivity in the first 12 hours to the off-target tissue after 

which selectivity for the target tissue is observed (Figure 5d). Marginal selectivity for the target tissue is 

observed for a KD value of 0.1 nM (Figure 5c). Taken together, this means that the KD and receptor 

concentrations influence the extent of in vivo tissue selectivity. 

The simulations in Figure 5 were performed for fast tissue distribution based on the reported 

blood flow of well-perfused organs in the human body.[37]  

Figure 6 shows the simulation results for slower tissue distribution, representing limited perfusion 
of the target site (e.g. in a synaptic cleft) or the presence of diffusion barriers (e.g. for intracellular or CNS 
targets). In these figures, the same patterns are observed as for fast tissue distribution, but the observed 
selectivity is greater and the affinity for maximal selectivity for the target-rich tissue is lower. 

 

Figure 6. Slower tissue distribution amplifies the influence of KD on tissue selectivity in Model II. kin is 0.86 h-1. Tissue 
selectivity is characterised by a difference in target occupancy between target 1 (solid) and target 2 (dashed). The 
parameter values can be found in Supplemental 1. 



100 

3 QSAR-RF 
From the simulations described above, it follows that there is an optimal KD for both tissue selectivity and 
target selectivity. To facilitate the optimisation of the KD, we aimed to predict the KD value from the 
molecular structure with predictive QSAR modelling. In this study, a QSAR-RF model was developed. The 
results of the internal and external validation are given in Figure 7. For the OOB validation, R2 values range 
from 0.57 to 0.70, with an average of 0.63 (SD 0.04) and RMSE values range between 0.64 and 0.83 with an 
average of 0.69 (SD 0.05). For external regression validation, the R2 values range from 0.50 to 0.73 with an 
average of 0.62 (SD 0.05) and RMSE values ranging between 0.9 and 0.64 with an average of 0.71 (SD 0.06). 
These values indicate good model performance, since the error in public data is around 0.44 for pKi data. 
Moreover, based on this error it has been shown that the theoretical maximal achievable R2 value then 
becomes 0.81 for the perfect model. [57–59] A full overview of the results is supplied in Supplemental 4. 

 

Figure 7. QSAR RF model performance regression validation. Internal out-of-bag validation resulted in an average R2 value 
of 0.63 ± 0.06 (SD 0.04), with an RMSE of 0.69 ± 0.1 (SD 0.05). External regression validation gave an average R2 value of 
0.62 ± 0.12 (SD 0.05) with an RMSE of 0.71 ± 0.13 (SD 0.06). 

4 Model III 
To reflect a drug discovery/candidate selection scenario, the developed QSAR model was used to predict the 
affinity of the molecules Rimonabant, ∆8 tetrahydrocannabinol (∆8 THC) and CP-55940 for the four selected 
receptors (CB1, TRPV1, mGlu5, 5-HT1a, Figure 8). These KD values were then used to predict the selectivity 
over different brain regions (cerebellum, hypothalamus and the frontal cortex). The results of these 
simulations are given in Figure 8. For the target occupancy of ∆8 THC, the compound with the lowest CB1 
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affinity, no selectivity is observed between brain regions. The target occupancy for the higher affinity 
compounds Rimonabant and CP-55490 show a slower increase of target occupancy in the brain regions with 
the highest target concentrations, the cerebellum and frontal cortex compared to the hypothalamus. The 
difference in target occupancy between the brain regions is similar for all targets, which results in a change 
in target selectivity across brain regions. Two days after the start of Rimonabant dosing, for example, the 
simulated target occupancy at TRPV1 in the hypothalamus is similar to the CB1 target occupancy in 
cerebellum and frontal cortex.  

 

Figure 8. Simulated PK-profile for Rimonabant in cerebellum, frontal cortex and hypothalamus. Predicted KD values of Δ8-
THC, Rimonabant and CP-55940 at the CB1, 5-HT1a, mGlu5 and TRPV1 receptor were used in these simulations. koff values 
were assumed to be 10 h-1. A dose of 104 nM was administered every 24 hours. Rtot,cer,CB1 = 527 nM, Rtot,cer,mGlu5 = 5.1 nM, 
Rtot,cer,TRPV1 = 19 nM, Rtot,cer,5-HT1a = 0.01, Rtot,hyp,CB1 = 248 nM, Rtot,hyp,mGlu5 = 16 nM, Rtot,hyp,TRPV1 = 13 nM, Rtot,hyp,5-HT1a = 2.37, 
Rtot,fc,CB1 = 529 nM, Rtot,fc,mGlu5 = 25 nM, Rtot,fc,TRPV1 = 12 nM, Rtot,fc,5-HT1a = 1.7. 

 For CP-55940, it takes more than 7 days to reach the maximal occupancies in the cerebellum and frontal 
cortex, while this delay would be even more extensive for lower doses. It should be noted that equilibrium 
selectivity (i.e. the difference in KD values for the different receptors) is different for the compounds in 
Figure 8. To obtain a better view of the role of the value of the KD as such, rather than the KD ratio between 
targets, the simulations for Rimonabant were repeated with the same KD ratio between targets and tenfold 
increased and decreased KD values, as shown in Supplemental 6, Figure I. Additionally, to explore the 
influence of error propagation from the QSAR model into model III, simulations were performed for the 
lowest and highest KD value within the RMSE based KD(±) prediction range as shown in Supplemental 6, 
Figure II. Summarizing the results, it is consistently found that the selectivity profile changes drastically over 
time while this would not be expected based on plasma concentrations and KD values alone. 

Discussion  
In this study, we have shown that the integration of target binding and PBPK modelling demonstrates the 
importance of target concentrations, target site distribution kinetics, the KD and koff for both in vivo target 
selectivity and tissue selectivity. We observe that a low KD, in combination with a high target concentration, 
decreased the kinetic target selectivity. Moreover, we find that an increasing KD can both increase and 
decrease tissue selectivity, dependent on the target concentration and tissue distribution. The 
demonstrated mechanistic modelling can thus be instrumental to find an optimal KD value for a specific 
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target/therapeutic area. To utlize this approach most effectively, our QSAR model to predict CB1 and off-
target KD values can be used to predict tissue and target selectivity directly from the molecular structure. 
Using this combination of models, our simulations for the CB1 ligands confirm that lower KD values for all 
targets can decrease the CB1 and brain region selectivity significantly during the first days of treatment. 

Our results suggest that optimisation towards high drug-target affinity and slow drug-target dissociation, as 
is commonly performed within the current drug development paradigm, may not result in the most 
selective compounds. While this study demonstrates the influence of target concentrations on the target 
occupancy in different tissues, the influence of target concentrations on the occupancy-response 
relationship has previously been described as driving factor for tissue selectivity of partial agonists.[60–62] 
For the development of more selective drugs, target concentrations of both the intended target and off-
targets as well as distribution to the target tissue/target site should be taken into consideration. In this 
respect, it is important to consider that distribution to the target site is not only dependent on distribution 
into the target tissue, but also on the localisation of the target within this tissue (e.g. in the blood stream or 
intracellularly). Moreover, factors such as target concentrations and tissue distribution may be altered in a 
disease state, which is important for the translation from healthy volunteers to patients.[24,63–65] Finally, 
it should be considered that there is an increased interest towards allosteric modulation in CNS drug 
discovery due to the potential benefits with regard to selectivity and side effects.[66] However, it has also 
been shown that allosteric modulators display different physicochemical and efficacy (Ki versus ligand 
efficacy) profiles compared to orthosteric ligands.[67] These parameters can be included in the modelling 
approach for future studies. 

The methods described in this study provide valuable insights for drugs in later stages of the drug 
development process. The selectivity profiles in Figure 8, for example, would result in underestimation of 
CB1 selectivity in (pre)clinical studies, if only the first 7 days were studied. This might lead to the 
unnecessary discontinuation of the development of valuable drug candidates. Moreover, the slowly 
increasing target occupancy for high affinity drugs such as CP-55940 might lead to a clinically undesired 
delay and unfavourable selectivity between the initiation of treatment and the onset of the therapeutic 
effect. This can potentially be mitigated by a higher dose (i.e. a loading dose), which can be lowered as soon 
as steady state occupancy is reached. Since monitoring of occupancy levels in the clinic is hardly feasible, 
this would required in-depth knowledge of the mechanisms and predicted occupancy profile as described in 
this study. Moreover, it should be noted that the target occupancy will decline only slowly after 
discontinuation of treatment and that it might take several days or even weeks for these high affinity drugs 
before the target occupancy is back to insignificant levels. This could be counteracted in the clinic by 
administration of a competitive antagonist or agonist to displace the drug from the receptor and enhance 
the clearance out of the target binding tissue. 

The simulations in this study were all based on physiological parameter values as obtained from PBPK 

models and target concentration literature. However, additional assumptions were sometimes necessary. 

For the simulations in Figure 6, the tissue distribution of the drug was not based on the blood flow trough 

well-perfused organs, as for the other figures, but we assumed a delayed distribution due to, for example, 

limited diffusion into a synaptic cleft or the cytosol. The magnitude of this delay is compound and target 

specific and this assumption will thus only hold for a limited number of compounds. Secondly, the 

simulation in Figure 8 assumed fast binding kinetics as the actual binding kinetics of Rimonabant have been 

reported to be complex and therefore hard to accurately determine in in vitro studies.[68,69] The 

assumption of fast binding kinetics is supported by the the short dissociation half-life as reported by Packeu 

et al.[70] Additionally, this assumption will be valid for any drug for which the binding kinetics are not rate-

limiting compared to the pharmacokinetics, but slower binding kinetics could change the outcome of the 

simulations, as shown in Figure 4 and in previous studies. [5,6] Thirdly, a number of assumptions concerning 

(interspecies) translatability of target densities were made in order to obtain useful target densities for the 

simulations in Figure 8. In general, the quality of absolute tissue-specific target concentration data, rather 

than relative expression values, might be limited. This is illustrated by the large deviations between 
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experimental tissue density results found in the literature between PET-studies and tissue ‘no wash’ assay 

experiments. [41,71] Furthermore, the limited amount of information on target-site distribution for the 

simulations in Figure 8 limits the predictive value of these simulations. These simulations should therefore 

be considered as a prediction of the relevant parameters for combined target and tissue selectivity for a 

realistic set of traget concentrations and KD values, rather than a precise prediction of target occupancy 

values for the simulated CB1 ligands. One of the most striking findings in our study is that increasing the KD 

in drug development can both increase and decrease the target and tissue selectivity. This demonstrates the 

relevance of target concentrations and tissue distribution, and the valuable role of mechanistic modeling.  

The prediction error that is observed for the KD predictions of the developed QSAR model introduces an 
extra level of uncertainty into the overall reliability of the selectivity predictions. The largest RMSE value in 
this study was found for the mGlu5 QSAR, with an average value of 0.8. This value relates to the deviation of 
the predictions from the actual pChEMBL value, and has the same unit as the dependent variable, which in 
this case is the -log KD. This uncertainty is therefore carried on into the pharmacological simulations. From 
the simulations performed with the highest and lowest value within the KD prediction range of Rimonabant, 
it can be concluded that this propagation of error does influence the observed selectivity profile. This error 
is limited to the extent of selectivity and the distribution across brain regions during the first one to four 
days. However, part of this error is already present in the public data that was used to train our QSAR model, 
in which a larger standard deviation is found compared to the Rimonabant predictions at the CB1 receptor 
from the QSAR model (Supplemental 4, Figure I). Additionally, having the ability to predict the selectivity 
profile in the earliest stages of drug disovery justifies the use of predictions with significant uncertainty. 
Moreover, both the overrepresentation and underrepresentation of structural features or scaffolds in the 
ChEMBL database might decrease the predictive power for new compounds that do not share these 
structural features.  

Although the predictive value of the presented models is limited by the assumptions we made, the 
presented insight into the influence of the target concentration and tissue distribution kinetics is in line with 
the previous analysis of more simple models with only one target and one tissue.[6] Moreover, the 
relevance of incorporating target binding in PBPK models for the accurate prediction of tissue 
concentrations has been demonstrated before.[13] The basic principle behind the role of the KD and target 
concentration on the duration of occupancy is the high concentration of target-bound drug concentrations 
compared to unbound drug concentrations at the target site. This is mainly relevant for for drugs with a high 
KD and target concentration and at a target occupancy that is not completely saturated. If this target 
occupancy is increasing, drug-target association will deplete the unbound target site concentration, and if 
the occupancy is decreasing, drug-target dissociation will increase the unbound target site concentration 
compared to plasma concentrations.  

In summary, the information presented in this study provides new insights into the mechanisms underlying 
in vivo target and tissue selectivity, specifically in relation to drug-target affinity, target concentration, tissue 
and target-site distribution, as well as binding kinetics. The study provides situations in which selectivity is 
expected to occur, which may aid as a lead towards creating ligands with the desired selectivity profile. 
Additionally, the demonstrated integration of mechanistic modelling and machine learning could enable the 
incorporation of these insights in the earliest phases of drug discovery. The need for this model-based 
selectivity optimisation is especially valuable for therapeutic areas in which an optimal target or tissue 
selectivity profile is difficult to obtain (e.g. in oncology) and might be less valuable for therapeutic areas 
were selectivity is less challenging and the traditional minimisation of the KD is desired (e.g. for 
antibiotic/antiviral targets that are not expressed in human cells). 

Conclusions 
Simulations performed in semi-physiological pharmacological models with target binding revealed an 
important role for the target concentration and tissue distribution, next to the KD and koff values, in 
determining the extent of selectivity. Interestingly, it was observed that the optimal selectivity is not 
observed for the drug that displays the highest drug-target affinity when assuming that the desired target 
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concentrations are high and the desired binding kinetics are slow. Additionally, it was observed that kinetic 
selectivity is unlikely when the target concentrations and the drug-target affinity are high, while tissue 
selectivity is first increased and then decreased for increasing target concentrations and drug-target 
affinities. The context-dependent optimum of drug-target affinity in determining the extent of selectivity 
demonstrates the value of KD prediction for drug development. Taken together, this study demonstrates the 
potential of integrative predictive modelling in providing improved strategies to optimize drug candidates 
for maximal in vivo selectivity. 
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Supplemental 1 

A. Model I 

𝑑𝑎𝑐

𝑑𝑡
=  −𝑎𝑐𝑘𝑎   

𝑑𝑏𝑙

𝑑𝑡
=  𝑎𝑐𝑘𝑎 +  𝑘𝑜𝑢𝑡𝑏𝑡𝑏𝑡 + 𝑘𝑜𝑢𝑡𝑛𝑏𝑡𝑛𝑏𝑡 + 𝑘𝑜𝑢𝑡𝑙𝑖𝑙𝑖 − 𝑏𝑙(𝑘𝑖𝑛𝑏𝑡 + 𝑘𝑖𝑛𝑛𝑏𝑡 + 𝑘𝑖𝑛𝑙𝑖) 

𝑑𝑏𝑡

𝑑𝑡
=  𝑘𝑖𝑛𝑏𝑡𝑏𝑙 −  𝑘𝑜𝑢𝑡𝑏𝑡𝑏𝑡 − 𝑘𝑜𝑛1𝑏𝑡 (𝑅𝑡𝑜𝑡1 −

𝑅𝐿1

𝑉𝑏𝑡
) + 𝑘𝑜𝑓𝑓1𝑅𝐿1 − 𝑘𝑜𝑛2𝑏𝑡 (𝑅𝑡𝑜𝑡2 −

𝑅𝐿2

𝑉𝑏𝑡
) + 𝑘𝑜𝑓𝑓2  

𝑑𝑛𝑏𝑡

𝑑𝑡
= 𝑘𝑖𝑛𝑛𝑏𝑡𝑏𝑙 − 𝑘𝑜𝑢𝑡𝑛𝑏𝑡𝑛𝑏𝑡  

𝑑𝑙𝑖

𝑑𝑡
= 𝑘𝑖𝑛𝑙𝑖𝑏𝑙 − 𝑘𝑜𝑢𝑡𝑙𝑖𝑙𝑖 − 𝑘𝐹𝑙𝑖  

𝑑𝑅𝐿1

𝑑𝑡
=  𝑘𝑜𝑛1𝑏𝑡 (𝑅𝑡𝑜𝑡1 −

𝑅𝐿1

𝑉𝑏𝑡
) −  𝑘𝑜𝑓𝑓1𝑅𝐿1  

𝑑𝑅𝐿2

𝑑𝑡
=  𝑘𝑜𝑛2𝑏𝑡 (𝑅𝑡𝑜𝑡2 −

𝑅𝐿2

𝑉𝑏𝑡
) −  𝑘𝑜𝑓𝑓2𝑅𝐿2        

Table S1. Input paramters for model I. kin is the inwards distribution rate constant, V is volume, kF is the 
forward rate of elimination constant, ka is the absorption rate constant, bt is binding tissue, nbt is 
nonbinding tissue, li is liver, bl is blood.  

Parameter Value Unit 

kinbt 8.6 h-1 

kinnbt 25 h-1 
kinli 27 h-1 

Vbl 5.5 L 
Vbt 1.4 L 
Vnbt 61 L 
Vli 1.8 L 
kF 100 h-1 
ka 0.25 h-1 

 
 

B. Model II 

𝑑𝑎𝑐

𝑑𝑡
=  −𝑎𝑐𝑘𝑎    

𝑑𝑏𝑙

𝑑𝑡
=  𝑎𝑐𝑘𝑎 +  𝑘𝑜𝑢𝑡𝑏𝑡𝑏𝑡 + 𝑘𝑜𝑢𝑡𝑛𝑏𝑡𝑛𝑏𝑡 + 𝑘𝑜𝑢𝑡𝑙𝑖𝑙𝑖 − 𝑏𝑙(𝑘𝑖𝑛𝑏𝑡1 + 𝑘𝑖𝑛𝑏𝑡2 + 𝑘𝑖𝑛𝑛𝑏𝑡 + 𝑘𝑖𝑛𝑙𝑖) 

𝑑𝑏𝑡1

𝑑𝑡
=  𝑘𝑖𝑛𝑏𝑡1𝑏𝑙 − 𝑘𝑜𝑢𝑡𝑏𝑡1𝑏𝑡 − 𝑘𝑜𝑛𝑏𝑡1 (𝑅𝑡𝑜𝑡1 −

𝑅𝐿1

𝑉𝑏𝑡1
) +  𝑘𝑜𝑓𝑓𝑅𝐿1  

𝑑𝑏𝑡2

𝑑𝑡
=  𝑘𝑖𝑛𝑏𝑡2𝑏𝑙 − 𝑘𝑜𝑢𝑡𝑏𝑡2𝑏𝑡 − 𝑘𝑜𝑛𝑏𝑡2 (𝑅𝑡𝑜𝑡2 −

𝑅𝐿2

𝑉𝑏𝑡2
) +  𝑘𝑜𝑓𝑓𝑅𝐿2  

𝑑𝑛𝑏𝑡

𝑑𝑡
= 𝑘𝑖𝑛𝑛𝑏𝑡𝑏𝑙 − 𝑘𝑜𝑢𝑡𝑛𝑏𝑡𝑛𝑏𝑡  

𝑑𝑙𝑖

𝑑𝑡
= 𝑘𝑖𝑛𝑙𝑖𝑙𝑖 −  𝑘𝑜𝑢𝑡𝑙𝑖𝑙𝑖 − 𝑘𝐹𝑙𝑖  

𝑑𝑅𝐿1

𝑑𝑡
=  𝑘𝑜𝑛𝑏𝑡1 (𝑅𝑡𝑜𝑡1 −

𝑅𝐿1

𝑉𝑏𝑡1
) −  𝑘𝑜𝑓𝑓𝑅𝐿1  

𝑑𝑅𝐿2

𝑑𝑡
=  𝑘𝑜𝑛𝑏𝑡2 (𝑅𝑡𝑜𝑡2 −

𝑅𝐿2

𝑉𝑏𝑡2
) − 𝑘𝑜𝑓𝑓𝑅𝐿2  
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i. Fast distribution 

Table S2. Input parameters for the fast distribution simulations in model II. kin is the inwards distribution 
rate constant, V is volume, kF is the forward rate of elimination constant, ka is the absorption rate constant, 
bt is binding tissue, nbt is nonbinding tissue, li is liver, bl is blood, Rtot is receptor concentration, kon is the 
ligand-target association rate constant. 

Parameter Value Unit 

kinbt1 8.6 h-1 

kinbt2 8.6 h-1 
kinnbt 17 h-1 

kinli 27 h-1 
Vbl 5.5 L 
Vbt1 1.4 L 
Vbt2 1.4 L 
Vnbt 60 L 
Vli 1.8 L 
kF 100 h-1 
Rtot1  25 nM 
Rtot2 0.25 nM 
koff 10 nM-1h-1 

 

ii. Slow distribution 

Table S3. Input parameters for the slow distribution simulations in model II. kin is the inwards distribution 
rate constant, V is volume, kF is the forward rate of elimination constant, ka is the absorption rate constant, 
bt is binding tissue, nbt is nonbinding tissue, li is liver, bl is blood, Rtot is receptor concentration, kon is the 
ligand-target association rate constant. 

Parameter Value Unit 

kinbt1 8.6 h-1 

kinbt2 8.6 h-1 
kinnbt 17 h-1 

kinli 27 h-1 
Vbl 5.5 L 
Vbt1 1.4 L 
Vbt2 1.4 L 
Vnbt 60 L 
Vli 1.8 L 
kF 100 h-1 
Rtot1  25 nM 
Rtot2 0.25 nM 
koff 10 nM-1h-1 
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C. Model III 

𝑑𝑎𝑐

𝑑𝑡
=  −𝑎𝑐𝑘𝑎   

𝑑𝑏𝑙

𝑑𝑡
=  𝑎𝑐𝑘𝑎 + 𝑄𝑐𝑒𝑟

𝑐𝑒𝑟
𝑉𝑐𝑒𝑟

⁄

𝑃𝑐𝑒𝑟
+ 𝑄𝑓𝑐

𝑓𝑐
𝑉𝑓𝑐

⁄

𝑃𝑓𝑐
+ 𝑄ℎ𝑦𝑝

ℎ𝑦𝑝
𝑉ℎ𝑦𝑝

⁄

𝑃ℎ𝑦𝑝
𝑄𝑐𝑒𝑟 +

𝑛𝑏𝑡
𝑉𝑛𝑏𝑡

⁄

𝑃𝑛𝑏𝑡
+ 𝑄𝑙𝑖

𝑙𝑖
𝑉𝑙𝑖

⁄

𝑃𝑙𝑖
− 𝑄𝑏𝑙

𝑏𝑙

𝑉𝑏𝑙
  

𝑑𝑛𝑏𝑡

𝑑𝑡
=  𝑄𝑛𝑏𝑡 (

𝑏𝑙

𝑉𝑏𝑙
− 

𝑛𝑏𝑡
𝑉𝑛𝑏𝑡

⁄

𝑃𝑛𝑏𝑡
)  

 
𝑑𝑐𝑒𝑟

𝑑𝑡
=  𝑄𝑐𝑒𝑙 (

𝑏𝑙

𝑉𝑏𝑙
− 

𝑐𝑒𝑟
𝑉𝑐𝑒𝑟

⁄

𝑃𝑐𝑒𝑟
) −  𝑘𝑜𝑛𝐶𝐵1𝑐𝑒𝑟 (𝐶𝐵1𝑐𝑒𝑟 −

𝐶𝐵1𝑅𝐿𝑐𝑒𝑟

𝑉𝑐𝑒𝑟
) + 𝑘𝑜𝑓𝑓𝐶𝐵1𝐶𝐵1𝑅𝐿𝑐𝑒𝑟 − 𝑘𝑜𝑛𝑚𝐺𝑙𝑢5𝑐𝑒𝑟 (𝑚𝐺𝑙𝑢5𝑐𝑒𝑟 −

𝑚𝐺𝑙𝑢5𝑅𝐿𝑐𝑒𝑟

𝑉𝑐𝑒𝑟
) + 𝑘𝑜𝑓𝑓𝑚𝐺𝑙𝑢5𝑚𝐺𝑙𝑢5𝑅𝐿𝑐𝑒𝑟 − 𝑘𝑜𝑛𝑇𝑅𝑃𝑉1𝑐𝑒𝑟 (𝑇𝑅𝑃𝑉1𝑐𝑒𝑟 −

𝑇𝑅𝑃𝑉1𝑅𝐿𝑐𝑒𝑟

𝑉𝑐𝑒𝑟
) +  𝑘𝑜𝑓𝑓𝑇𝑅𝑃𝑉1𝑇𝑅𝑃𝑉1𝑅𝐿𝑐𝑒𝑟 −

 𝑘𝑜𝑛𝐻𝑇1𝑎𝑐𝑒𝑟 (𝐻𝑇1𝑎𝑐𝑒𝑟 −
𝐻𝑇1𝑎𝑅𝐿𝑐𝑒𝑟

𝑉𝑐𝑒𝑟
) +  𝑘𝑜𝑓𝑓𝐻𝑇1𝑎𝐻𝑇1𝑎𝑅𝐿𝑐𝑒𝑟  

 

 
𝑑ℎ𝑦𝑝

𝑑𝑡
=  𝑄ℎ𝑦𝑝 (

𝑏𝑙

𝑉𝑏𝑙
− 

ℎ𝑦𝑝
𝑉ℎ𝑦𝑝

⁄

𝑃ℎ𝑦𝑝
) −  𝑘𝑜𝑛𝐶𝐵1ℎ𝑦𝑝 (𝐶𝐵1ℎ𝑦𝑝 −

𝐶𝐵1𝑅𝐿ℎ𝑦𝑝

𝑉ℎ𝑦𝑝
) +  𝑘𝑜𝑓𝑓𝐶𝐵1𝑅𝐿ℎ𝑦𝑝 − 𝑘𝑜𝑛𝑚𝐺𝑙𝑢5ℎ𝑦𝑝 (𝑚𝐺𝑙𝑢5ℎ𝑦𝑝 −

𝑚𝐺𝑙𝑢5𝑅𝐿ℎ𝑦𝑝

𝑉ℎ𝑦𝑝
) + 𝑘𝑜𝑓𝑓𝑚𝐺𝑙𝑢5𝑚𝐺𝑙𝑢5𝑅𝐿ℎ𝑦𝑝 − 𝑘𝑜𝑛𝑇𝑅𝑃𝑉1ℎ𝑦𝑝 (𝑇𝑅𝑃𝑉1ℎ𝑦𝑝 −

𝑇𝑅𝑃𝑉1𝑅𝐿ℎ𝑦𝑝

𝑉ℎ𝑦𝑝
) + 𝑘𝑜𝑓𝑓𝑇𝑅𝑃𝑉1𝑇𝑅𝑃𝑉1𝑅𝐿ℎ𝑦𝑝 −

 𝑘𝑜𝑛𝐻𝑇1𝑎ℎ𝑦𝑝 (𝐻𝑇1𝑎ℎ𝑦𝑝 −
𝐻𝑇1𝑎𝑅𝐿ℎ𝑦𝑝

𝑉ℎ𝑦𝑝
) + 𝑘𝑜𝑓𝑓𝐻𝑇1𝑎𝐻𝑇1𝑎𝑅𝐿ℎ𝑦𝑝  

 

 
𝑑𝑓𝑐

𝑑𝑡
=  𝑄𝑓𝑐 (

𝑏𝑙

𝑉𝑏𝑙
− 

𝑓𝑐
𝑉𝑓𝑐

⁄

𝑃𝑓𝑐
) −  𝑘𝑜𝑛𝐶𝐵1𝑓𝑐 (𝐶𝐵1𝑓𝑐 −

𝐶𝐵1𝑅𝐿𝑓𝑐

𝑉𝑓𝑐
) + 𝑘𝑜𝑓𝑓𝐶𝐵1𝐶𝐵1𝑅𝐿𝑓𝑐 − 𝑘𝑜𝑛𝑚𝐺𝑙𝑢5𝑓𝑐 (𝑚𝐺𝑙𝑢5𝑓𝑐 −

𝑚𝐺𝑙𝑢5𝑅𝐿𝑓𝑐

𝑉𝑓𝑐
) +

 𝑘𝑜𝑓𝑓𝑚𝐺𝑙𝑢5𝑚𝐺𝑙𝑢5𝑅𝐿𝑓𝑐 −  𝑘𝑜𝑛𝑇𝑅𝑃𝑉1𝑓𝑐 (𝑇𝑅𝑃𝑉1𝑓𝑐 −
𝑇𝑅𝑃𝑉1𝑅𝐿𝑓𝑐

𝑉𝑓𝑐
) + 𝑘𝑜𝑓𝑓𝑇𝑅𝑃𝑉1𝑇𝑅𝑃𝑉1𝑅𝐿𝑓𝑐 − 𝑘𝑜𝑛𝐻𝑇1𝑎𝑓𝑐 (𝐻𝑇1𝑎𝑓𝑐 −

𝐻𝑇1𝑎𝑅𝐿𝑓𝑐

𝑉𝑓𝑐
) + 𝑘𝑜𝑓𝑓𝐻𝑇1𝑎𝐻𝑇1𝑎𝑅𝐿𝑓𝑐  

 

 
𝑑𝑙𝑖

𝑑𝑡
= 𝑘𝑖𝑛𝑙𝑖𝑙𝑖 −  𝑘𝑜𝑢𝑡𝑙𝑖𝑙𝑖 − 𝑘𝐹𝑙𝑖  

𝑑𝐶𝐵1𝑅𝐿𝑐𝑒𝑟

𝑑𝑡
=  𝑘𝑜𝑛𝐶𝐵1𝑐𝑒𝑟 (𝐶𝐵1𝑐𝑒𝑟 −

𝐶𝐵1𝑅𝐿𝑐𝑒𝑟

𝑉𝑐𝑒𝑟
) − 𝑘𝑜𝑓𝑓𝐶𝐵1𝐶𝐵1𝑅𝐿𝑐𝑒𝑟  

𝑑𝑚𝐺𝑙𝑢5𝑅𝐿𝑐𝑒𝑟

𝑑𝑡
=  𝑘𝑜𝑛𝑚𝐺𝑙𝑢5𝑐𝑒𝑟 (𝑚𝐺𝑙𝑢5𝑐𝑒𝑟 −

𝑚𝐺𝑙𝑢5𝑅𝐿𝑐𝑒𝑟

𝑉𝑐𝑒𝑟
) − 𝑘𝑜𝑓𝑓𝑚𝐺𝑙𝑢5𝑚𝐺𝑙𝑢5𝑅𝐿𝑐𝑒𝑟  

𝑑𝑇𝑅𝑃𝑉1𝑅𝐿𝑐𝑒𝑟

𝑑𝑡
=  𝑘𝑜𝑛𝑇𝑅𝑃𝑉1𝑐𝑒𝑟 (𝑇𝑅𝑃𝑉1𝑐𝑒𝑟 −

𝑇𝑅𝑃𝑉1𝑅𝐿𝑐𝑒𝑟

𝑉𝑐𝑒𝑟
) − 𝑘𝑜𝑓𝑓𝑇𝑅𝑃𝑉1𝑇𝑅𝑃𝑉1𝑅𝐿𝑐𝑒𝑟  

𝑑𝐻𝑇1𝑎𝑅𝐿𝑐𝑒𝑟

𝑑𝑡
=  𝑘𝑜𝑛𝐻𝑇1𝑎𝑐𝑒𝑟 (𝐻𝑇1𝑎𝑐𝑒𝑟 −

𝐻𝑇1𝑎𝑅𝐿𝑐𝑒𝑟

𝑉𝑐𝑒𝑟
) − 𝑘𝑜𝑓𝑓𝐻𝑇1𝑎𝐻𝑇1𝑎𝑅𝐿𝑐𝑒𝑟  

𝑑𝐶𝐵1𝑅𝐿ℎ𝑦𝑝

𝑑𝑡
=  𝑘𝑜𝑛𝐶𝐵1ℎ𝑦𝑝 (𝐶𝐵1ℎ𝑦𝑝 −

𝐶𝐵1𝑅𝐿ℎ𝑦𝑝

𝑉ℎ𝑦𝑝
) − 𝑘𝑜𝑓𝑓𝐶𝐵1𝐶𝐵1𝑅𝐿ℎ𝑦𝑝  

𝑑𝑚𝐺𝑙𝑢5𝑅𝐿ℎ𝑦𝑝

𝑑𝑡
=  𝑘𝑜𝑛𝑚𝐺𝑙𝑢5ℎ𝑦𝑝 (𝑚𝐺𝑙𝑢5ℎ𝑦𝑝 −

𝑚𝐺𝑙𝑢5𝑅𝐿ℎ𝑦𝑝

𝑉ℎ𝑦𝑝
) −  𝑘𝑜𝑓𝑓𝑚𝐺𝑙𝑢5𝑚𝐺𝑙𝑢5𝑅𝐿ℎ𝑦𝑝  

𝑑𝑇𝑅𝑃𝑉1𝑅𝐿ℎ𝑦𝑝

𝑑𝑡
=  𝑘𝑜𝑛𝑇𝑅𝑃𝑉1ℎ𝑦𝑝 (𝑇𝑅𝑃𝑉1ℎ𝑦𝑝 −

𝑇𝑅𝑃𝑉1𝑅𝐿ℎ𝑦𝑝

𝑉ℎ𝑦𝑝
) − 𝑘𝑜𝑓𝑓𝑇𝑅𝑃𝑉1𝑇𝑅𝑃𝑉1𝑅𝐿ℎ𝑦𝑝  

𝑑𝐻𝑇1𝑎𝑅𝐿ℎ𝑦𝑝

𝑑𝑡
=  𝑘𝑜𝑛𝐻𝑇1𝑎ℎ𝑦𝑝 (𝐻𝑇1𝑎ℎ𝑦𝑝 −

𝐻𝑇1𝑎𝑅𝐿ℎ𝑦𝑝

𝑉ℎ𝑦𝑝
) − 𝑘𝑜𝑓𝑓𝐻𝑇1𝑎𝐻𝑇1𝑎𝑅𝐿ℎ𝑦𝑝  

𝑑𝐶𝐵1𝑅𝐿𝑓𝑐

𝑑𝑡
=  𝑘𝑜𝑛𝐶𝐵1𝑓𝑐 (𝐶𝐵1𝑓𝑐 −

𝐶𝐵1𝑅𝐿𝑓𝑐

𝑉𝑓𝑐
) − 𝑘𝑜𝑓𝑓𝐶𝐵1𝐶𝐵1𝑅𝐿𝑓𝑐  

𝑑𝑚𝐺𝑙𝑢5𝑅𝐿𝑓𝑐

𝑑𝑡
=  𝑘𝑜𝑛𝑚𝐺𝑙𝑢5𝑓𝑐 (𝑚𝐺𝑙𝑢5𝑓𝑐 −

𝑚𝐺𝑙𝑢5𝑅𝐿𝑓𝑐

𝑉𝑓𝑐
) − 𝑘𝑜𝑓𝑓𝑚𝐺𝑙𝑢5𝑚𝐺𝑙𝑢5𝑅𝐿𝑓𝑐  

𝑑𝑇𝑅𝑃𝑉1𝑅𝐿𝑓𝑐

𝑑𝑡
=  𝑘𝑜𝑛𝑇𝑅𝑃𝑉1𝑓𝑐 (𝑇𝑅𝑃𝑉1𝑓𝑐 −

𝑇𝑅𝑃𝑉1𝑅𝐿𝑓𝑐

𝑉𝑓𝑐
) − 𝑘𝑜𝑓𝑓𝑇𝑅𝑃𝑉1𝑇𝑅𝑃𝑉1𝑅𝐿𝑓𝑐  

𝑑𝐻𝑇1𝑎𝑅𝐿𝑓𝑐

𝑑𝑡
=  𝑘𝑜𝑛𝐻𝑇1𝑎𝑓𝑐 (𝐻𝑇1𝑎𝑓𝑐 −

𝐻𝑇1𝑎𝑅𝐿𝑓𝑐

𝑉𝑓𝑐
) − 𝑘𝑜𝑓𝑓𝐻𝑇1𝑎𝐻𝑇1𝑎𝑅𝐿𝑓𝑐  

 
The clearances from brain extra-cellular fluid to the cerebrospinal fluid presented by Yamamoto et al are 
0.0556, 0.0250, 0.0598, 0.0200,0.0248, 0.0133, 0.0237, 0.0176 and 0.0254 ml/min, resulting in a mean value 
of 0.0295 ml/min. These values were allometrically scaled to humans by multiplying this value by 
(70/0.25)0.75, resulting in a value of 2.02 ml/min, which equals to 0.121 L/h. In this study, the ECF volume in 
humans was reported as 0.240 L. Given that the equation for clearance is 𝐶𝐿 =  𝑉 ∗ 𝑘𝑜𝑢𝑡, kout can be 
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calculated as 0.121 (L/h)/0.240 (L), resulting in a value of 0.504 h-1. By multiplying this value by the tissue 
volume, the effective flow through the target site (cerebellum, hypothalamus, frontal cortex) is obtained. 

Table S4. Model parameters for model III. Q is blood flow, P is the partition coefficient, V is volume, koff is 
the ligand-target dissociation rate constant, kF is the forward rate of elimination constant, ka is the 
absorption rate constant, bl is blood, nbt is nonbinding tissue, cer is cerebellum, hyp is hypothalamus, fc is 
frontal cortex, li is liver. 

Parameter Value Unit References 

Qbl 335 L/h [37] 

Qnbt 335-0.504*(Vcer+Vhyp+Vfc)-
108 

L/h  

Qcer Vcer*0.504 L/h [39] 

Qhip Vhyp*0.504 L/h [39] 

Qfc Vfc*0.504 L/h [39] 

Qli 27 L/h [37] 

Pnbt 46   

Pcer 13   

Phyp 13   

Pfc 13   

Pli 9.4   

Vbl 5.5 L [37]  

Vnbt 62 L [37]  

Vcer 0.15 L [35]  

Vhyp 1.4*10-2 L [38]  

Vfc 0.27 L [72]  

Vli 1.8 L [37]  

koff 10 h-1   

kF 100 h-1   

ka 0.25 h-1   

Dose 5.0*104 nM   
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Supplemental 2 

Table S5. Receptor density values obtained from literature. CB1 is cannabinoid 1 receptor, TRPV1 is vanilloid 
1 receptor, 5-HT1a is serotonin 1a receptor, mGlu5 is metabotropic glutamate receptor 5. All these values 
are obtained from rat studies, unless otherwise specified 

 CB1 
 
Bmax 
(pmol/mg 
protein) 

CB1a 
 
Bma
x 
(nM) 

mGlu5b 
 
Bmax 
(nM) 

TRPV1  
 
Protein level 
(ng/mg lysate) 

TRPV1c  
 
Protei
n level 
(nM) 

5-HT1ab 
 
Bmax 
(nM) 

cerebellum 5.27 527 5.1  
 

4.03 19 0.01d 

(frontal) cortex 5.29 529 25 2.53 12 1.70 

hypothalamus 2.48 248 16e 2.76 13 2.37f 

References [40]  [41] [42]  [43] 

a Conversion from pmol/mg protein to nM was obtained by multiplying with an assumed protein concentration of 100 
mg/ml tissue.[48] 

b Values from humans. 
c These values were obtained by multiplying the protein level in ng/mg lysate with the ratio of protein level in pmol/mg 
protein[46] and in ng/mg lysate[42] and subsequent multiplication with an assumed protein concentration of 100 mg/ml 
tissue.[48] 
d This value was too low to be identified in the reference and was therefore set to a low concentration. 

e The Bmax value was calculated as the average of the cortex, caudate-putamen and cerebellum. 
f  The reported value for the limbic average was used for the hypothalamus.  

 

Supplemental 3 

A. Physicochemical Properties 

Table S6. Physicochemical properties for the partition coefficient calculations in the Integrated QSAR-RF 
PBPK-TMDD model. P is the octanol-water partition coefficient, Sw is the solubility in water, So is the 
solubility in octanol. 

Ligand logP logSw P Sw So 

Δ8-THC 6.109 -6,152 12*105 7.05*10-7 0.91 
Rimonabant 6.613 -8,112 41*105 7.73*10-9 0.03 
CP-55940 6.162 -7,244 14*105 5.70*10-8 0.08 
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B. Volume Fractions 

Table S7. Volume fractions of water, neutral lipids and phospholipids in human tissues. Nbt is nonbinding 
tissue. 

 

Water Neutral lipid Phospholipid 

Blood 0.8 0.0044 0.0021 

Liver 0.72 0.039 0.028 

Nbt  0.56 0.21 0.071 

Brain 0.79 0.0462 0.0638 

 

Supplemental 4 

A. Compare Binding 

i. Within 

Table S8. Statistical analysis of the pChEMBL value deviations within measurements of the same bioactivity 
value and all bioactivity values together. Mean Δ is the mean difference between measurements of the 
same ligand at the same target. KD is the dissociation rate constant, Ki is the inhibitory constant, IC50 is the 
half-maximal inhibitory constant ions, and EC50 is the half-maximal effective concentration. 

 
KD - KD Ki - Ki IC50 - IC50 EC50 - EC50 Any - Any 

Mean Δ 0.32 0.44 0.61 0.50 0.61 

Mean pChEMBL value 6.56 ± 0.14 7.29 ± 0.20 6.83 ± 0.29 6.74 ± 0.23 6.90 ± 0.28 
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ii. Between 

Table S9. Statistical analysis of the pChEMBL value deviations between measurements of different 
bioactivity values. Mean Δ is the mean difference between measurements of the same ligand at the same 
target. KD is the dissociation rate constant, Ki is the inhibitory constant, IC50 is the half-maximal inhibitory 
constant ions, and EC50 is the half-maximal effective concentration 

 
KD - Ki Ki - IC50 Ki - EC50 IC50 - EC50 

Mean Δ 0.16 0.50 0.52 0.21 

Mean pChEMBL value 7.16 ± 0.19  6.93 ± 0.28 7.21 ± 0.23 6.83  0.29 

 

B. Out-of-bag validation 

i. R2 

Table S10. The R2 values of the out-of-bag validation of the QSAR-RF model trained on seven different 
datasets. The R2 values are reported per training of the model on a data set obtained using a different split 
seed. 

Seed CB1 TRPV1 ADORA2a mGlu5 5-HT1a 

111 0.62 0.61 0.67 0.59 0.62 

222 0.64 0.59 0.67 0.67 0.57 

333 0.65 0.61 0.68 0.70 0.59 

444 0.66 0.63 0.66 0.63 0.58 

555 0.64 0.64 0.68 0.68 0.58 

666 0.62 0.62 0.67 0.67 0.59 

777 0.63 0.61 0.68 0.64 0.59 

STDEV 0.016 0.015 0.0076 0.038 0.015 

AVG 0.64 0.62 0.67 0.65 0.59 
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ii. RMSE 

Table S11. The RMSE values of the out-of-bag validation of the QSAR-RF model trained on seven different 
datasets. The root-mean squared error (RMSE) values are reported per training of the model on a dataset 
obtained using a different split seed. 

Seed CB1 TRPV1 ADORA2a mGlu5 5-HT1a 

111 0.67 0.66 0.67 0.83 0.68 

222 0.66 0.68 0.67 0.69 0.70 

333 0.65 0.67 0.67 0.73 0.70 

444 0.64 0.66 0.68 0.81 0.70 

555 0.65 0.65 0.66 0.76 0.70 

666 0.67 0.64 0.67 0.77 0.69 

777 0.66 0.67 0.66 0.75 0.69 

STDEV 0.013 0.013 0.0076 0.047 0.0085 

AVG 0.66 0.66 0.67 0.76 0.69 

 

External Validation 

i. R2 

Table S12. The R2 values of external validation of the QSAR-RF model trained on seven different datasets. 
The R2 values are reported per training of the model on a dataset obtained using a different split seed. The 
external validation was performed as a regression validation, using a validation dataset, containing only data 
which was not exposed to the model before validation. 

 

CB1 TRPV1 ADORA2a mGlu5 5-HT1a 

111 0.65 0.66 0.70 0.73 0.57 

222 0.59 0.60 0.72 0.62 0.62 

333 0.57 0.63 0.64 0.52 0.61 

444 0.59 0.50 0.68 0.68 0.60 

555 0.60 0.52 0.63 0.58 0.61 

666 0.63 0.56 0.67 0.62 0.57 

777 0.62 0.5 0.69 0.65 0.58 

STDEV 0.028 0.056 0.031 0.070 0.020 

AVG 0.61 0.58 0.68 0.63 0.60 
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ii. RMSE 

Table S13. The RMSE values of the out-of-bag validation of the QSAR-RF model trained on seven different 
datasets. The root-mean squared error (RMSE) values are reported per training of the model on a dataset 
obtained using a different split seed. The external validation was performed as a regression validation, using 
a validation dataset, containing only data which was not exposed to the model before validation. 

 

CB1 TRPV1 ADORA2a mGlu5 5-HT1a 

111 0.66 0.64 0.65 0.72 0.68 

222 0.68 0.70 0.64 0.75 0.66 

333 0.7 0.66 0.69 0.90 0.67 

444 0.71 0.74 0.64 0.74 0.69 

555 0.70 0.73 0.70 0.85 0.69 

666 0.67 0.76 0.67 0.79 0.69 

777 0.67 0.68 0.66 0.87 0.7 

STDEV 0.019 0.045 0.021 0.071 0.015 

AVG 0.68 0.70 0.66 0.80 0.68 

 

C. Prediction errors for Rimonabant at the CB1 receptor 
In Figure S1, it can be seen that all predicted pChEMBL values for Rimonabant at the CB1 receptor fall within 
the confidence interval of pChEMBL values which are reported in the ChEMBL database. Although the 
structure of Rimonabant was present in the training set, this is indicative of a reliable prediction of the KD 
values (at the CB1 receptor) used in this study. 

 

Figure S1. All model predictions for the binding affinity of Rimonabant at the CB1 receptor fall within measured range. The 
average pChEMBL value and the standard deviation are reported. Measured pChEMBL values include all the reported 
pChEMBL values for Rimonabant at the CB1 receptor in the ChEMBL database after filtering to obtain a high-quality 
dataset. Measured: average pChEMBL value is 8.3 with a standard deviation of 0.52. The full model predicted a pChEMBL 
value of 8.28 for Rimonabant at the CB1 receptor. The average pChEMBL value as predicted by the externally validated 
models is 8.11 with a standard deviation of 0.03. 
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Supplemental 5 

 

 

Figure S2. Target concentration and KD determine the extent of in vivo kinetic target selectivity in Model I. Target 
selectivity is characterised by a difference in target occupancy between target 1 (solid) and target 2 (dashed). The 
parameter values for these simulations can be found in Supplemental 1. 
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Supplemental 6 

 

Figure S3. The simulated influence of KD on the Rimonabant selectivity profile in Model III. Predicted KD values of 
Rimonabant at the CB1, 5-HT1a, mGlu5 and TRPV1 receptor were used in these simulations, and multiplied by 10 or 0.1. 
koff values were assumed to be 10 h-1. A dose of 104 nmol was administered every 24 hours. Rtot,cer,CB1 = 527 nM, Rtot,cer,mGlu5 = 
5.1 nM, Rtot,cer,TRPV1 = 19 nM, Rtot,cer,5-HT1a = 0.01, Rtot,hyp,CB1 = 248 nM, Rtot,hyp,mGlu5 = 16 nM, Rtot,hyp,TRPV1 = 13 nM, Rtot,hyp,5-HT1a = 
2.37, Rtot,fc,CB1 = 529 nM, Rtot,fc,mGlu5 = 25 nM, Rtot,fc,TRPV1 = 12 nM, Rtot,fc,5-HT1a = 1.7. 

 

Figure S4. The influence of prediction errors on the simulated Rimonabant selectivity profile in Model III. Predicted KD 
values of Rimonabant at the CB1, 5-HT1a, mGlu5 and TRPV1 receptor were used in these simulations. The RMSE values 
obtained from the external model validation of the QSAR were added or substracted from the predicted pChEMBL value 
and then converted to the KD value in nM (10-pChEMBL value*109). koff values were assumed to be 10 h-1. A dose of 104 nmol was 
administered every 24 hours. Rtot,cer,CB1 = 527 nM, Rtot,cer,mGlu5 = 5.1 nM, Rtot,cer,TRPV1 = 19 nM, Rtot,cer,5-HT1a = 0.01, Rtot,hyp,CB1 = 248 
nM, Rtot,hyp,mGlu5 = 16 nM, Rtot,hyp,TRPV1 = 13 nM, Rtot,hyp,5-HT1a = 2.37, Rtot,fc,CB1 = 529 nM, Rtot,fc,mGlu5 = 25 nM, Rtot,fc,TRPV1 = 12 nM, 
Rtot,fc,5-HT1a = 1.7. 

 

 

 


