

Where photons meet phonons Buters, F.M.

Citation

Buters, F. M. (2017, December 21). *Where photons meet phonons. Casimir PhD Series*. Retrieved from https://hdl.handle.net/1887/58471

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/58471

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/58471</u> holds various files of this Leiden University dissertation.

Author: Buters, F.M. Title: Where photons meet phonons Issue Date: 2017-12-21

Stellingen

behorende bij het proefschrift

WHERE PHOTONS MEET PHONONS

1. The advantage of a Fabry-Pérot based optomechanical system with a trampoline resonator over other systems, is the absence of chaotic effects even at high laser power and large mirror displacement.

Chapter 3 of this thesis

2. It is preferable to separate the read-out and cooling laser by at least one free spectral range.

Chapter 5 of this thesis

3. Although microwave and optical cavities share many features, the ease with which the input polarization can be adjusted, is reserved for optical cavities.

Chapter 6 of this thesis

4. Even without the nested resonator design, feedback on the cavity length rather than the laser frequency is preferred.

Chapter 9 of this thesis

5. Apart from the device itself, vibration sensitive experiments should not contain high-Q resonators.

Chapters 7, 9 and 10 of this thesis

6. In the context of optomechanical cavities, the phrase "nonlinear radiation pressure dynamics" is a tautology.

Kraus et al., Phys. Rev. Lett. vol. 115 p. 233601, 2015

7. The work by Serra et al. suggests that also the geometry of the silicon nitride membrane influences the optical absorption for a membrane-in-the-middle system.

Serra et al., AIP Advances. vol. 6 p. 065004, 2016

8. The proposal by Xu et al. to cool a harmonic oscillator and simultaneously increase the Q-factor by optomechanical modification seems, from a thermodynamical point of view, impossible.

Xu et al., Phys. Rev. Lett. vol. 118 p. 223602, 2017 9. By observing quantum correlations at room temperature, Purdy et al. demonstrate the possibility of quantum optomechanics without the need for cryogenic cooling.

Purdy et al., Science vol. 356 p. 1265, 2017

10. The back-action-evading experiment by Hertzberg et al. does not show the critical point of these measurements: how to measure the correct quadrature without knowing the phase of the motion of the resonator.

Hertzberg et al., Nature Physics vol 6 p. 213, 2010

11. Professors and PhD students see different aspects of a scientific experiment.

Frank Buters Leiden, 21 december 2017