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10
Optomechanical experiments in a cryogen free

dilution refrigerator

We have shown in the previous chapters how optical cooling can greatly reduce the
effective mode temperature of the mechanical resonator. In this chapter, we per-
form optical side-band cooling at cryogenic temperatures, since only a combination
of optical and cryogenic cooling will be sufficient to reach the quantum mechanical
ground state. First, we describe the mass-spring system developed to mechanically
isolate the optical set-up from the vibrations generated in a cryogen free cryostat.
Next we demonstrate how via optical side-band cooling an effective mechanical
mode temperature of 3.09 ± 0.07 mK is achieved. This temperature corresponds
to an RMS motion of 9.2 ± 0.15 fm, demonstrating femtometer read-out precision
in a dry cryostat. Finally we discuss some of the limiting factors in achieving the
quantum mechanical ground-state and suggest improvements for the future.

10.1 Mechanical low-pass filters

The experiments at cryogenic temperatures are performed in a cryogen free dilu-
tion refrigerator (Leiden Cryogenics CF-CS81-1400) which uses a pulse tube (PT)
cryocooler instead of liquid helium to reach 4 Kelvin. The use of a cryocooler intro-
duces additional vibrations, from which the experiment needs to be isolated. The
cryostat itself is already modified to reduce vibrations. For example, the cold head
of the pulse tube is connected via copper braids to the 50 Kelvin and 3 Kelvin plate
instead of a rigid connection. Furthermore, the still plate is suspended via springs
from the 3 Kelvin plate to form a mass spring system with a cut-off frequency of
approximately 2 Hz of which the motion is damped by Eddy current dampers. A
more detailed overview is presented in the work of den Haan et al. [129]. Although
these modifications are a major improvement, additional isolation between the mix-
ing chamber plate and the experimental set-up is needed. Based on the work of K.
Heeck [130], we will discuss in this section the design of a mechanical low-pass filter.



92 Optomechanical experiments in a cryogen free dilution refrigerator

(a) (b)

Uin

+

L R

C

k Γ

M

Figure 10.1: The response of the LCR circuit in (a) and the damped harmonic oscillator in (b)
can both be described by a differential equation of the same form.

10.1.1 Correspondence between electrical and mechanical networks

Filters are common in electrical circuits, making them a natural place to start. Addi-
tionally, there is a correspondence between electrical circuits, such as the LCR circuit
shown in Fig. 10.1(a), and mechanical structures, such as the damped harmonic os-
cillator in Fig. 10.1(b). We will illustrate this correspondence with a simple example.
Using Kirchoff’s voltage law, the following differential equation is obtained for the
circuit in Fig. 10.1(a):

L
d2q

dt2
+R

dq

dt
+
q

C
= Uin (10.1)

in which L is the inductance, R the resistance, C the capacitance, q the charge and
Uin the input voltage. Using Newton’s laws, the following equation of motion is
obtained for the damped harmonic oscillator in Fig. 10.1(b):

M
d2x

dt2
+MΓ

dx

dt
+ kx = 0 (10.2)

in which M is the mass, Γ the damping rate, k the spring constant and x the dis-
placement. When comparing Eqs. (10.1) and (10.2) one can see that they are both
second-order differential equations. Furthermore, one can link equivalent compo-
nents together: mass and inductance, damping rate and resistance, and spring con-
stant and capacitance.

Kirchoff’s voltage law states that the sum of the electrical potential differences in
any closed loop is zero. This is an example of a loop or maze equation. Kirchoff’s
current law states that the sum of all currents flowing to and from a node add up
to zero. This is an example of a node equation. Equation (10.1) is derived via a
maze equation, while Eq. (10.2) adds all forces at the center of mass M . Equation
(10.2) is therefore a node equation. Since node equations in electrical circuits relate
to currents, we can link an electrical current to a mechanical force. Finally, since both
the velocity and the voltage have a gauge freedom (i.e. offsets can be added freely to
them without changing the physics) we see that they are analogous and thus we can
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Figure 10.2: (a) The dual of the series LCR circuit is a parallel LCR circuit. (b) The mechanical
circuit diagram of a damped harmonic oscillator.

connect voltage to velocity.1

With the correspondence in place, we can ask the following question: can we find
the circuit diagram of the mechanical structure in Fig. 10.1(b), using the LCR circuit
in (a) as a starting point? If we take the dual network [131] of the LCR circuit, the
voltage source becomes a current source and all elements in series will now be in par-
allel.2 Figure 10.2(a) shows this dual circuit. Note that the series LCR circuit of Fig.
10.1(a) describes a band-pass filter, while the dual circuit, a parallel LCR circuit, is a
band-stop filter. The dual transformation has inverted all properties of the original
network. If we now replace all electrical components with their mechanical counter-
parts, we obtain the circuit shown in Fig. 10.2(b). Applying the node equation to the
node indicated with 1 in Fig. 10.2(b), we obtain the following equation:

M
d2x

dt2
+MΓ

dx

dt
+ kx = Fin (10.3)

which is precisely the equation of motion describing a damped harmonic oscillator.
Although the schematic overview shown in Fig. 10.1(b) and the mechanical circuit
diagram of Fig. 10.2(b) may not look the same, they are both described by the same
differential equation and are therefore equivalent representations of a damped har-
monic oscillator.

The mechanical circuit diagram has some interesting properties. For example, it
makes sense that a damper and spring have two connections on either side, just as
their electrical counterparts. But what does it mean that the massM has two connec-
tions as well? Velocity has now taken the role of voltage. As such, the velocity must
be expressed with respect to some reference, in this case the coordinate origin. This
coordinate origin is the same for all the velocities of the masses.3 The most conve-

1Not only velocity but also position has a gauge freedom. It is, however, convenient to have velocity
correspond to voltage. As we will see in the next paragraphs.

2Additionally, one writes down the conductance of each element instead of the impedance, when
transforming to the dual network, see the work of Tellegen [131] for a rigorous treatment.

3If this is not the case, we have a mechanical circuit that connects different inertial reference frames
together. Since the velocity of each frame does not need to be the same, the circuit can literally be pulled
apart.
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Figure 10.3: Circuit diagram of a third order electrical low-pass filter, shown in the dashed
box. This is the starting point for designing the mechanical filter.
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Figure 10.4: Circuit diagram of the ideal mechanical low-pass filter derived from the electrical
equivalent circuit shown in Fig. 10.3.

nient reference is therefore to connect each mass to ground. Although any electrical
circuit has a mechanical equivalent, only mechanical circuits with the masses con-
nected to ground can be physically realized. Therefore the original electrical circuit
must have the inductors on the outer contours of the diagram.

We have found the equivalent mechanical circuit diagram by starting with an
LCR circuit, writing down the dual circuit and interchanging electrical for mechani-
cal components. The original LCR circuit acts as an electrical band-pass filter, while
the damped harmonic oscillator can be viewed as a mechanical band-pass filter. To
design a mechanical low-pass filter, we can thus use an electrical low-pass filter of
choice as a blue-print for the mechanical low-pass filter, as we will show in the next
section.

10.1.2 Mechanical low-pass filter

The most simple example of an electrical low-pass filter is perhaps the wave filter
(constant-k filter) [132], in which identical sections make up a ladder structure. A
third order electrical low-pass filter, see Figure 10.3, is chosen as a starting point.
Higher order filters are of course possible, at the expense of a larger structure. A
third order filter is therefore a compromise between performance and size.
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Figure 10.5: The final mechanical low-pass filter. Compared to the ideal low-pass filter in Fig.
10.4 the damper at the output is replaced with an additional mass, and the input has as an
additional weak spring in parallel to carry DC forces.

If we now follow the method outlined in the previous section, we can write down
the dual of the circuit in Fig. 10.3 and interchange the electrical components for
their mechanical counterparts. The resulting circuit is shown in Fig. 10.4. We can
already see that this mechanical filter can be physically realized, because each mass
is connected to ground. With this in mind, one can also see that the damper at the
output is impossible to construct, because the damper should also be referenced to
the coordinate origin. This means that the damper will largely bypass the filter. No
damper at the end means that reflections in the filter itself will increase the velocity
at the output above the corner frequency of the filter. Numerical simulations show
that this problem can be reduced by adding a mass M/2 to the output.

At the input a small adjustment is also needed. Suppose a DC force, for example
the gravitational force acting on the optical set-up connected to the filter, is applied
to the output of the filter shown in Fig. 10.4. Because this DC force is not resonant
with any closed loop of the circuit, no force is generated to counteract the applied
DC force. Therefore, the DC force is directly transmitted to the damper at the input.
The response of the damper is to continuously expand, therefore the damper can not
carry a DC force. This problem can be solved by adding a weak spring, with a spring
constant much smaller than the spring constant of the interconnecting springs, par-
allel to the damper. The final diagram of the mechanical low-pass filter is shown in
Fig. 10.5.

With the diagram of the filter explained, we turn to the characteristics of the filter.
To calculate the corner frequency, we make use of the theory developed for wave
filters by Campbell [132]. The corner frequency of the filter shown in Fig. 10.5 is
given by f0 = 1

π

√
k/m. Because the optical set-up shown in chapter 2 has a mass of

3.5 kg, it makes sense to choose the masses of the filter to be of that order. Although
we would like to have the corner frequency to be as small as possible and therefore
have very weak springs, the filter must still be able to carry weight of the set-up.
This naturally limits the spring constant of the springs. We have chosen a mass m of
2 kg and a spring constant k of 50 kN/m, resulting in a corner frequency of f0 = 50
Hz.

The only thing missing is the full transfer function of the mechanical filter. Figure
10.6(a) shows a schematic overview of the filter, based on the circuit diagram of Fig.
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Figure 10.6: (a) Schematic overview of the third order mechanical low-pass filter based on
the circuit diagram of Fig. 10.5. Note that the damper at the input is missing. (b) The final
vibration isolation system, designed by K. Heeck and constructed by H. van der Meer, as used
in the cryostat. Besides the mechanical filter with a corner frequency of 50 Hz, an additional
low-pass filter at 10 kHz is added to reduce vibrations generated by the pulse tube’s control
current.

10.5. The damper at the input is not shown. The mechanical filter is nothing more
than a coupled mass-spring system. Using Newton’s laws, the full transfer function
can be calculated. The final vibration isolation system is shown in Fig. 10.6(b). An
additional low-pass filter at 10 kHz is also added to reduce mechanical noise in the
cold head at 26 kHz, generated by the control current of the pulse tube. This filter is
designed following the same principles as outlined above.

At the time of writing, a cryogenically compatible damper was still in develop-
ment, therefore the vibration isolation system was operated without the damper.
The performance of each filter was separately tested. For the 10 kHz filter as well
as the 50 Hz filter, the position of each mechanical resonance was verified experi-
mentally. Additionally, the transfer function of the 50 Hz filter was also measured
at room temperature by applying a force excitation with constant amplitude via a
voice coil attached to the first mass while measuring the response using a geophone
attached to the final mass. Although this method of excitation only approximates a
constant force excitation, it does provide a reasonable indication of the performance
of the isolation stage. The results are shown in Fig. 10.7 together with the expected
transfer function [130]. Although there are some discrepancies, the measurement
matches the expected transfer function quite well. In particular, above 100 Hz more
than 100 dB of isolation is achieved.

Four distinctive resonances are visible in Fig. 10.7, corresponding to the different
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Figure 10.7: The mechanical transfer function as measured at room temperature for the 50 Hz
filter, together with the theoretical prediction.
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Figure 10.8: Mechanical displacement spectra as measured via the optical cavity at 100 mK.
Red: the noise with a single stage mass-spring system and no modification to the cryostat.
Blue: the remaining noise after lifting the pulse tube, suspending the still and using the vibra-
tion isolation system shown in Fig. 10.6(b).

modes of the mass-spring system itself. These can be suppressed by adding the
mechanical damper. These additional resonances are however not an issue. Because
the laser is actively locked to the cavity resonance, low frequency vibrations can be
compensated for. The real problem was the internal mechanical modes of the optical
set-up. These occur roughly at 1 kHz, the region in which the isolation system of Fig.
10.6 should perform optimally.

In Fig. 10.8 mechanical displacement spectra as measured via the optical cavity at
100 mK are shown. Without any modifications to the cryostat and using only a single
stage mass-spring system, significant noise is visible between 1 and 1.6 kHz, as is
indicated in red. After the modifications to the cryostat and using the isolation stage
shown in Fig. 10.6(b), the noise has significantly reduced, as is shown in blue. The
next section will show that with this isolation stage, sensitive optical experiments at
cryogenic temperatures are possible.
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Figure 10.9: (a) Cavity resonance for the low finesse cavity created by using a 950 nm laser. (b)
Power spectrum of the thermal motion measured via a side-of-fringe lock to the low finesse
cavity. The red dot in (a) indicates the laser frequency that was used to measure the spectrum
of (b).

10.2 Optical side-band cooling at cryogenic temperatures

Cooling down the cryostat occurs in two stages, first the cryostat cools to a base
temperature of 5.7 Kelvin using the pulse tube cooler. During this stage, the active
feedback demonstrated in the previous chapter is used to damp the motion of the
outer resonator, while the PiezoKnob motors are used to actively keep the cavity
aligned. When the base temperature is reached, all motors are shorted and the active
feedback is turned off. The next step is to turn on the dilution refrigerator to reach
mK temperatures. First we will report on measurements performed at 5.7 Kelvin.
The cooling power of the cryostat at this temperature is significantly higher than at
mK temperatures, so the lasers are not likely to heat up the set-up. After demonstrat-
ing stable operation of the optomechanical set-up at 5.7 Kelvin, the base temperature
is lowered via the dilution refrigerator to see if the mechanical mode can be cooled
even further.

10.2.1 Measurements at 5.7 Kelvin

First, we need verification of the mechanical mode temperature to confirm that the
sample has thermalized properly. To ensure that the optical read-out does not mod-
ify the mechanical motion of the resonator via the optomechanical interaction, a laser
wavelength of 950 nm is used, well outside the coating specifications of the DBR mir-
rors. In Fig. 10.9(a) the cavity resonance is shown together with a Lorentzian fit. The
linewidth of the resonance is 6.5 MHz, resulting in a finesse of about 460. Via a side-
of-fringe lock (see chapter 2) at a detuning indicated by the red dot in Fig. 10.9(a),
the thermal motion of the resonator is measured. Because the finesse is low, the laser
is far detuned and low laser power is used, optomechanical cooling and damping
should not occur. This is verified by switching from positive to negative detunings
and observing no change in the measured linewidth. Therefore this method is able
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Figure 10.10: The blue data-points are obtained via a Loretzian fit to the mechanical power
spectra obtained from the PDH probe signal. The effective temperature is obtained from the
integrated displacement power spectral density. The red curves are the result of a simultane-
ous fit to all three data-sets with only the optical linewidth and input power as free parame-
ters.

to measure the intrinsic mechanical linewidth. Figure 10.9(b) shows the observed
thermal motion. At 5.7 Kelvin we find a line-width of 0.67±0.03 Hz at a frequency
of 302 kHz.

Typically the power spectrum is measured in units of V2
rms/Hz. From the opti-

cal resonance shown in Fig. 10.9(a) we can obtain the slope, in units of V/Hz at the
specific detuning from the Lorentzian fit. Via the optical frequency shift per displace-
ment G = ωcav

L , we can obtain a conversion factor in units of V/m. Via this conver-
sion factor we can transform the scale of the measured power spectrum to m2/Hz as
is shown in Fig. 10.9(b). The area of the Lorenztian gives directly the displacement
〈x(t)2〉 of the mechanical resonator in the correct units. The mode temperature can
be calculated via the equipartition theorem

Tmode =
〈x(t)2〉mΩ2

m

kb
(10.4)

and using a mass ofm = 140 ng obtained via COMSOL. We find a mode temperature
of 5.7± 0.3 Kelvin, indicating that the mechanical mode is indeed thermalized to the
base temperature of the cryostat. This method has been verified separately at room
temperature as well, where the mode temperature is known.

To demonstrate the stability of the optical system at low temperatures, we use
the method outlined in chapter 5 to perform optical side-band cooling. As a func-
tion of laser detuning we measure the mechanical displacement spectrum. By fitting
the noise spectrum with a Lorentzian, we directly obtain the mechanical linewidth
and frequency shift. The area of the Lorentzian is propertional to the effective tem-
perature. As discussed in chapter 5, we use a relative calibration to scale this area
to an effective temperature. As shown by the side-of-fringe lock in Fig. 10.9, the
resonator is thermalized to the base temperature of the cryostat. Consequently, if
we measure via the Pound-Drever-Hall (PDH) method the displacement of the res-
onator, we know that a measured linewidth of 0.67 Hz should correspond to a mode
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(a) The effective linewidth and effective temperature show the expected behavior indicated
by the red line. (b) Selection of mechanical displacement spectra, showing that the spectra are
very clean.

temperature of 5.7 Kelvin. We have, however, noticed that the mode temperature
increases with read-out laser power. For typical laser powers the mode temperature
has increased from 5.7 to 6.5 Kelvin. The thermalization of the resonator is investi-
gated in more detail in the next section.

The results are shown in Fig. 10.10 for an hour long, fully automated measure-
ment. From the fitted red line, a value of 82±2 kHz is obtained for the optical
linewidth, showing that our system is side-band resolved. Furthermore, the excel-
lent agreement between theory and experiment demonstrates that we have created
a stable platform for sensitive optical experiments at low temperatures.

Figure 10.11 shows the results of side-band cooling when the cooling laser is fixed
at ∆ = −Ωm and the power is varied. The results follow theory nicely, as indicated
by the red line. In Fig. 10.11(b) some of the mechanical displacement spectra are
shown. Note that the scale on the y-axis is obtained by comparing the measurements
with the calibrated side-of-fringe method of Fig. 10.9. At the highest laser powers
an effective mechanical mode temperature of 3.6 ± 0.13 mK is achieved. As can be
see from Fig. 10.11(b), the mechanical spectra are very clean, thanks to the vibration
isolation system and the nested resonator. When increasing the cooling laser power
even further, the mechanical spectrum can no longer be distinguished from the noise
floor anymore.

At low read-out laser powers, the noise floor is limited by shot noise. Increas-
ing the laser power decreases the noise floor, but only down to the value shown in
Fig. 10.11(b). A quick calculation [38] shows we are at least two orders of mag-
nitude away from the the shot noise limit. This suggests that additional technical
noise dominates at these read-out powers. Furthermore, the noise floor has a def-
inite slope. This becomes clearer when looking at the full power spectrum of the
PDH error signal, as shown in Fig. 10.12. Up to 20 kHz the effects of the laser feed-
back are clearly visible, after which the noise floor gradually decreases. A decrease
in noise floor with frequency suggest 1/f type noise, however, careful investigation
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Figure 10.12: Full power spectrum of the PDH error signal. A clear downward slope is visible
towards higher frequencies.

is needed. For example, the cavity itself acts as a low-pass filter, with the optical
line-width κ as the corner frequency. This would, however, not explain the limit to
the read-out noise.

Besides the read-out noise floor, we are also limited by the intrinsic Q-factor of
the mechanical resonator. A higher Q-factor will directly result in a lower effective
temperature, assuming all other parameters are fixed [97]. In the next section, the
temperature of the cryostat is lowered with the dilution refrigerator. The hypothesis
is that the lower base temperature together with optical cooling lead to a significantly
lower effective mode temperature of the mechanical resonator than presented here
for the base temperature of 5.7 K.

10.2.2 Thermalization of the trampoline resonator

Optical cooling from a base temperature of 5.7 Kelvin has resulted in an effective
mode temperature of 3.6 mK. When lowering the base temperature to 100 mK, effec-
tive mode temperatures below 1 mK should be possible. Because the side-of-fringe
method has limited sensitivity, the spectra measured at 5.7 Kelvin via the PDH tech-
nique, which is much more sensitive, can serve as a reference for determining the
effective mode temperature at lower baser temperatures. This does require a method
to monitor the read-out sensitivity to be able to correct for any change in the read-out
when cooling down from 5.7 K to mK temperatures. Therefore, a calibration tone
at 304 kHz, generated by the same electric-optical modulator used for the Pound-
Drever-Hall (PDH) technique, is added to the read-out laser.

Figure 10.13 shows the results of side-band cooling for a fixed laser detuning of
∆ = −Ωm starting from a base temperature of 300 mK as measured with a RuO2
thermometer. The effective linewidth increases with laser power, as is shown in Fig.
10.13(a). The effective temperature, however, does not continuously decrease with
laser power. Furthermore, the lowest effective mode temperature that is achieved is
3.09 ± 0.07 mK, only slightly lower than the measurements performed at 5.7 K.

There are several possibilities why a lower base temperature does not lead to
a significantly lower effective temperature. For example, the mechanical Q-factor
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Selection of mechanical displacement spectra.

could have decreased when cooling down to mK temperatures. Another explana-
tion is that the mechanical mode thermalizes poorly. Both explanations can be in-
vestigated by using the side-of-fringe technique shown in Fig. 10.9 to determine the
intrinsic mechanical linewidth and the mode temperature.

The results in Fig. 10.14(a) show that the mechanical linewidth is roughly con-
stant when the setpoint of the side-of-fringe lock is varied. The setpoint is the trans-
mitted intensity to which the laser frequency is stabilized. The mode temperature
increases significantly with increasing setpoint, as is shown in Fig 10.14(b). The tem-
perature of the optical set-up was 200 mK during the entire measurement run and
the measurements were performed from high to low setpoint. A higher setpoint
means a larger transmitted intensity through the trampoline resonator, this suggests
that heating of the mechanical mode due to optical absorption is the cause of the
increased mode temperature. Another explanation is that the laser noise at the me-
chanical frequency of the resonator causes the mode temperature to increase. Laser
noise can be ruled out as the cause of the increased mode temperature by repeating
the experiment with a different laser at 1064 nm locked to the cavity resonance via
the PDH technique. In Fig. 10.15 the mode temperature of the resonator is shown
as function of read-out laser power for a base temperature of 5.7 K and 200 mK. The
increase in read-out sensitivity with laser power is taken into account via the addi-
tional calibration tone. The read-out power displayed on the horizontal axis is the
power in the optical fiber towards the optical set-up. At 5.7 K the read-out laser heats
up the mechanical mode with approximately 1 K. The mode temperature increases
even more at 200 mK, reaching a mode temperature of almost 4 K.

The increase in mode temperature with laser power is observed with two differ-
ent lasers and two different measurement techniques. Also, at 200 mK the increase
in temperature is larger for the same input power compared to measurements at 5.7
K. All these results can be explained by heating of the DBR mirror due to optical
absorption and subsequently poor heat conduction through the silicon nitride arms.
If we assume thermal equilibrium for the mechanical mode temperature when the
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Figure 10.14: Via the side-of-fringe lock to a low finesse cavity, the mechanical linewidth
shown in (a) and the mode temperature shown in (b) are obtained as a function of setpoint at
a base temperature of 200 mK. Each setpoint is measured both on the blue side (blue points)
and on the red side (red points) of the cavity resonance.
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Figure 10.15: Comparison of the mode temperature as function of read-out laser power both
at 5.7 K and approximately 200 mK.
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laser is on, the heat conduction can be described by Fourier’s law:

Pabs
A

= −kdT
dx

(10.5)

where Pabs is the absorbed optical power, A is the cross-section perpendicular to the
heat flow, k is the heat conductivity, and dT/dx the temperature gradient. Fourier’s
law might not be entirely valid for these small structures, but it will give a rough
estimate. We can rewrite Eq. (10.5) in the following way to find the temperature
difference between the DBR mirror and the support of the silicon nitride arms:

∆T =
1

4

Pabs∆x

Ak
(10.6)

where the factor 1/4 accounts for the four arms of the resonator and ∆x is the length
of one arm. One silicon nitride arm has the following dimensions: ∆x = 175 µm,
A = w × t with a width w = 50 µm and thickness t = 400 nm. Zink and Hellman
have investigated the thermal conductivity of low-stress amorphous silicon nitride
membranes [133]. Although we use high stress silicon nitride, we can use their value
of k = 0.1 W/(K m) at 5 K as an estimate.

For 1 µW of optical read-out power in the fiber, we can estimate how much light
leaks out of the cavity. With a mode-matching efficiency of 0.33 and a cavity coupling
κex/κ = 0.15, we estimate that 280 nW leaks out of the cavity through the trampoline
resonator for 1 µW of optical power in the fiber. Suppose now that the DBR mirror
on the trampoline resonator has 100 ppm transmission. The 280 nW of transmitted
light corresponds to 100 ppm of the circulating power. Assuming 0.5 ppm of optical
absorption in the DBR, this then corresponds to 1.4 nW of absorbed optical power.
Of course, the silicon nitride layer underneath the DBR mirror can also absorb light.
A quick estimate using the absorption coefficient of silicon nitride shows that this is
at least an order of magnitude smaller than the absorption in the DBR mirror.

From Fig. 10.15 we see that 80 µW of read-out power at 5.7 K warms up the mode
temperature with approximately 1 K. A read-out power of 80 µW corresponds to an
estimated absorbed power of 112 nW. Using Eq. (10.6) this results in a temperature
difference of 2.45 Kelvin. Although we have made several assumptions and guesses,
(we have, for example, not taken the outer resonator into account) the fact that we
find roughly the same value makes heating due to optical absorption plausible.

The thermal conductivity of silicon nitride at even lower temperatures is not well
known, but generally the heat conductivity decreases when the temperature is low-
ered even further. This would explain the larger increase in mode temperature at
200 mK compared to the measurements at 5.7 K. Finally, heating of mechanical res-
onators due to optical absorption has been reported in literature as well. Exper-
iments involving a silicon cantilever cooled to 300 mK show that the mechanical
mode temperature increases significantly when only 70 nW of laser power is used
for the optical read-out [134].

From Fig. 10.15 it is clear that there might be an optimal read-out power when
performing an optical cooling experiment. However, this does not yet take heating
due to the cooling beam into account. The measurements presented in Fig. 10.13 are
performed with a read-out laser power of 20 µW. As shown in Fig. 10.13, the effective
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Figure 10.16: Effective mode temperature as function of effective damping. In red the fit is
shown with the presence of classical laser noise, while in green the expected effective temper-
ature is shown.

mode temperature increases again for high cooling beam powers, suggesting that
also optical absorption of the pump beam occurs. The pump beam is placed at ∆ =
−Ωm, so only 1.8 % of the pump beam is transmitted through the cavity compared
to a detuning of ∆ = 0. Even with the high cooling laser powers used in 10.13, this
fraction is simply too small to explain the increase in effective temperature shown in
Fig. 10.13(b).

An alternative explanation is heating due to classical laser noise. As discussed in
chapter 2, the effective temperature of the resonator can be written as

Teff =
TenvΓm + TopticalΓopt

Γopt + Γm
. (10.7)

Jayich et al. have shown how classical laser noise (amplitude and phase) affects the
effective temperature [135]. We will not repeat the derivation, but using their as-
sumption that the laser noise is proportional to the laser power, we can write Eq.
(10.7) as follows:

Teff =
TenvΓm + Toptical(Plaser)Γopt

Γopt + Γm
(10.8)

with Toptical(Plaser) = αPlaser this becomes

Teff =
TenvΓm + αPlaserΓopt

Γopt + Γm
(10.9)

We can check the hypothesis of classical laser noise by using Eq. (10.9) to fit the
data of Fig. 10.13(b). The results are shown in Fig.10.16. The data fit the theory well,
indicating that classical laser noise is the problem. This might also explain why the
noise floor of the read-out of the mechanical motion is not shot-noise limited. The
solution would be to implement a filter cavity to reduce the classical laser noise [135].
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The issue of optical absorption in DBR mirror of the trampoline resonator might
be more difficult to solve. An alternative to trampoline resonators would be to use
thin silicon nitride membranes, which can be used in a membrane-in-the-middle
configuration. Because the membrane is placed at a node of the cavity field and the
membrane is very thin (50 nm or less), optical absorption might not have such a big
impact. Also, the mechanical Q-factor of these membranes is orders of magnitude
larger. Both should help with achieving the quantum mechanical ground-state via
optical side-band cooling. The next chapter discusses in more detail the advantages
of membrane resonators.
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